
SNIS: Storage-Network Iterative Simulation for

Disaggregated Storage Systems

Danlin Jia∗, Tengpeng Li†, Xiaoqian Zhang†, Li Wang∗, Mahsa Bayati‡, Ron Lee‡, Bo Sheng† and Ningfang Mi∗

∗Department of Electrical and Computer Engineering, Northeastern University, Boston, USA
†Department of Computer Science, University of Massachusetts Boston, Boston, USA

‡Samsung Semiconductor Inc., San Jose, CA, USA

Abstract—In recent years, designs and optimizations on disag-
gregated storage systems supported by cutting-edge storage and
network techniques emerge dramatically. However, conducting
experiments in a disaggregated architecture is often expensive. A
comprehensive modeling system of disaggregated storage systems
is indispensable for researchers to construct fast and reliable
experiments. Modeling and evaluating the performance of disag-
gregated storage systems is a challenge for the following reasons.
First, the performance of a disaggregated storage system depends
on network protocols and storage solutions jointly. Second, the
available trace datasets for generating the workload may not
suffice the need for the simulation, as they are collected without
considering the integration of network delay and storage process-
ing time. This work proposes a storage-network iterative simu-
lation (SNIS) for disaggregated storage systems by considering
the issues above. Our simulation methodology integrates storage
and network simulations to model the end-to-end performance
of disaggregated storage systems and conducts multiple rounds
of simulations to update arrival times of read/write requests. The
evaluation results show that SNIS can converge to a relatively
stable state after a certain number of iterations.

I. INTRODUCTION

Efficient infrastructure is critically essential for large-scale

enterprise storage systems (i.e., hyperscaler [1] and cloud

storage [2]) to provide a high quality of service. One promising

direction of solutions is to develop a disaggregated storage

system where storage drives are physically apart from compute

nodes. In such a system, compute and storage resources can be

scaled independently for different needs, and resource manage-

ment becomes more flexible. With other technologies such as

software-defined storage and hyper-converged infrastructure,

the disaggregation architecture represents a form of scale-

out storage solution. All-flash arrays have emerged in data

centers recently, yielding superior performance to traditional

storage systems. Consequently, storage network protocols have

also drawn much attention in the industry. The prevalent

storage technique, Non-Volatile Memory Express (NVMe), has

spawned its network protocol standard NVMe-oF which can be

implemented on multiple underlying network protocols such as

Ethernet, Fibre Channel, RoCE [3], InfiniBand [4] or TCP/IP.

With all these advances, disaggregated storage infrastructure

is becoming an important research field for both academia and

industry.

This work was partially supported by the National Science Foundation
Career Award CNS-1452751, the National Science Foundation Awards CNS-
2008072, and the Samsung Semiconductor Inc. Research Grant.

Fig. 1. Architecture of a disaggregated storage system.

As a large-scale system, conducting experiments in a dis-

aggregated architecture is often expensive, and simulation is

a well-accepted alternative. While simulators for both storage

and network systems have been well developed, there is no in-

tegrated simulation environment that can holistically evaluate

our targeted disaggregated storage systems. The lack of a com-

prehensive simulator connecting storage and network subsys-

tems cannot be compensated by individually running storage

and network simulation. For evaluation of a storage system,

the most primary performance metric is I/O response time.

In the disaggregated setting, the I/O response time consists

of two overheads: storage overhead and network overhead. It

is challenging to measure these two overheads and aggregate

them for each request by simulating storage and network

separately. The correlation and dependence between storage

and network simulation hinder a straightforward integration

for evaluating disaggregated storage systems. In addition, the

available trace datasets for generating the workload may not

suffice the need for the simulation. The legacy storage system

traces are often collected at a central point with the timestamp

of the request arrival. The network overhead is not considered,

and some other networking factors usually are not detailed.

In this paper, we attempt to examine an iterative storage-

network simulation approach named as SNIS to evaluate dis-

aggregated storage systems. We integrate the existing storage

and network simulators (i.e., an NS3 simulator for RDMA

(NS3-RDMA [5]) and an MQSim [6] simulator for SSD)

and conduct an iterative multi-round simulation process. We

construct extensive experiments on traces with different char-

acteristics and observe that our simulation method converges

for all types of workloads. Our results show that for various

workloads, SNIS leads to a relatively stable state after a

certain number of iterations. In the remainder of this paper, we

introduce the background and motivation in Sec. II. In Sec. III

978-1-6654-4331-9/21/$31.00 ©2021 IEEE

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 P
er

fo
rm

an
ce

,
C

o
m

p
u
ti

n
g
,
an

d
 C

o
m

m
u
n
ic

at
io

n
s

C
o
n
fe

re
n
ce

 (
IP

C
C

C
)

| 9
7
8
-1

-6
6
5
4
-4

3
3
1
-9

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/I

P
C

C
C

5
1
4
8
3
.2

0
2
1
.9

6
7
9
3
9
7

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 31,2022 at 17:28:03 UTC from IEEE Xplore. Restrictions apply.

PFC [9] and ECN [10] mechanisms which are extensively ex-

ploited in popular network congestion control schemes. On the

other hand, most packet scheduling-based congestion control

schemes have developed their simulators, e.g., pHost’s YAPS

[11], NDP’s NDP simulator [12], and HOMA’s OMNet++

[13]. NS-3 enables PFC by default unless otherwise stated.

This simulator takes network configuration and a workload

trace as the input and simulates the network data transfer with

a complete set of network protocols. We can configure the

network topology, link capacity, number of network flows, and

traffic size of each flow. Some other parameters that influence

the simulation result are listed below. 1) Incast ratio, which

has a great impact on the chance of the occurrence of network

congestion. 2) PFC queue length threshold, which triggers the

switch to send PFC PAUSE packets when the switch queue

length is above that threshold.

B. Storage Simulation (MQSim)

For storage simulation, we focus on the latest NVMe SSD

simulator. There are several open-sourced simulators, e.g.,

FEMU [14] and MQSim. FEMU is an emulator integrated

with QEMU/KVM and exposed to Guest OS as an NVMe

block device, while MQSim is a trace-driven discrete event

simulation framework. After comparing the pros and cons

between these two simulators, we choose to use MQSim as

1) it provides higher accuracy than FEMU, and 2) it is light

and easy to collaborate with the network simulator. MQSim

takes an SSD configuration file and a workload trace as inputs

and generates performance statistics, e.g., average read/write

latency, cmd queue length, and cmd waiting time.

We can launch multiple MQSim processes to emulate mul-

tiple targets (i.e., storage nodes) in the disaggregated storage

system. In each MQSim, there are three sets of configurations:

host configuration, device configuration, and flash configura-

tion. We notice that the default configurations provide high

latency at the scale of hundreds of microseconds. Thus, we use

the micro benchmark to verify MQSim’s correctness and un-

derstand the critical parameters in the MQSim configurations.

We find there are a set of critical parameters in MQSim as

follows. 1) FTL defines the Flash Translation Layer, 2) Write

Cache defines write cache capacity, 3) CMT (Cache mapping

table) defines read-cache capacity, 4) Queue Fetch Size decides

the number of requests processed simultaneously, 5) Page

Capacity specifies the unit of transactions at the device level,

6) Read/Program/Erase Latency defines the latency of a single

internal operation, and 7) Channel Transfer Rate defines the

transfer rate of flash channels in the SSD backend.

C. SNIS: Overall Simulation

We integrate MQSim and NS3-RDMA into a storage-

network iterative simulation method (SNIS) to model disag-

gregated storage systems. SNIS simulates read/write requests

generated by a set of initiators (users) and processed by a

group of targets (storage devices). Each storage device is

simulated as an individual MQSim instance with independent

configurations. NS3-RDMA defines the topology of the com-

munication network of the disaggregated storage system with

a configurable network congestion control mechanism.

For the whole simulation process, the input workload is a

set of I/O requests indicated as REQ with the following major

attributes: 1) RequestID is the unique index of a request, 2)

InitiatorID and TargetID specify the source and destination of a

request, 3) ArrivalTime indicates the start time of a request, 4)

Size is the amount of data in an I/O operation, and 5) IOType

is either read or write. The format is almost the same as

those used in the traditional storage system simulation except

InitiatorID and TargetID that are specific to the disaggregated

architecture. During our multiple iterations of simulations,

most workload attributes are intact, and only the ArrivalTime

will be updated through the process. Let us use A(r) to

represent the original ArrivalTime of a request r.

For both MQSim and NS3-RDMA simulators, at each

iteration, they take a set of I/O requests as the input workload,

and at the end of the simulation, each simulator reports the

finish time or departure time of the processed requests. We use

NAi(r) and NDi(r) to denote the arrival time and departure

time of request r for the network simulator NS3-RDMA at

iteration i. In other words, at the beginning of iteration i,

request r with arrival time NAi(r) is in the workload input

for NS3-RDMA, and at the end of the network simulation,

NDi(r) is the time when request r finishes its network

transfer. Similarly, we use SAi(r) and SDi(r) to represent

the arrival time and departure time of request r for MQSim

at iteration i. In addition, we use R and W to indicate

the set of read requests and write requests, respectively, i.e.,

REQ = R ∪W .

Fig. 3 illustrates our iterative two-phase simulation SNIS.

Our simulation process includes multiple iterative steps. The

first iteration is considered as iteration 0. In each iterative step,

all the requests are processed by both storage and network

simulators. We always run the storage simulation first and then

continue with the network simulation. At each iteration, for

read requests, we assign their original arrival time as the arrival

time for storage simulation, ∀r ∈ R,SA0(r) = A(r). Simi-

larly, the original arrival time of write requests is assigned to

their arrival time for network simulation, ∀r ∈ W,NA0(r) =
A(r). For the other part of the requests, i.e., read requests in

network simulation and write requests in storage simulation,

we update their arrival time before conducting the simulation

as follows:

NAi(r) = SDi(r), ∀r ∈ R (1)

SAi(r) = NDi−1(r), ∀r ∈ W (2)

For a read request r at iteration i, before entering the

network simulation, its network arrival time is updated as the

storage departure time at iteration i, see Eq. 1. The rationale

here is that for a read request, data is first loaded from

targets and then transferred to initiators over the network.

Thus, the start time of network read flows is equal to the

finish time of storage read requests. Here we use the finish

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on March 31,2022 at 17:28:03 UTC from IEEE Xplore. Restrictions apply.

