
Foundations and Trends® in Programming

Languages

Neurosymbolic Programming

Suggested Citation: Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh,
Armando Solar-Lezama and Yisong Yue (2021), “Neurosymbolic Programming”, Foun-
dations and Trends® in Programming Languages: Vol. 7, No. 3, pp 158–243. DOI:
10.1561/2500000049.

Swarat Chaudhuri
UT Austin

swarat@cs.utexas.edu

Kevin Ellis
Cornell

kellis@cornell.edu

Oleksandr Polozov
Google

polozov@google.com

Rishabh Singh
Google

rising@google.com

Armando Solar-Lezama
MIT

asolar@csail.mit.edu

Yisong Yue
Caltech

yyue@caltech.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit
Publisher approval. Boston — Delft



Contents

1 Introduction 160
1.1 What is Neurosymbolic Programming? . . . . . . . . . . . 162
1.2 Benefits Over Deep Learning . . . . . . . . . . . . . . . . 164
1.3 Why Now? . . . . . . . . . . . . . . . . . . . . . . . . . . 165
1.4 Algorithmic Approaches . . . . . . . . . . . . . . . . . . . 166
1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 167
1.6 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

2 The Landscape of Neurosymbolic Programming 171
2.1 Neurosymbolic Learning Algorithms . . . . . . . . . . . . . 171
2.2 Neurosymbolic Representations . . . . . . . . . . . . . . . 178

3 Motivating Goals 182
3.1 Generalization and Sample Efficiency . . . . . . . . . . . . 182
3.2 Transfer and Abstraction . . . . . . . . . . . . . . . . . . 185
3.3 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . 187
3.4 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
3.5 Procedural Reasoning . . . . . . . . . . . . . . . . . . . . 194

4 Learning Algorithms 198
4.1 Symbolic Search . . . . . . . . . . . . . . . . . . . . . . . 198
4.2 Gradient-Based Search . . . . . . . . . . . . . . . . . . . 204



4.3 Learning to Synthesize . . . . . . . . . . . . . . . . . . . 207
4.4 Distillation . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.5 Neural Relaxations . . . . . . . . . . . . . . . . . . . . . . 215
4.6 Transfer of Neural Modules . . . . . . . . . . . . . . . . . 217
4.7 Transferring Symbolic Code . . . . . . . . . . . . . . . . . 219
4.8 Programmatic Weak Supervision . . . . . . . . . . . . . . 224

5 Conclusion 226

References 229



Neurosymbolic Programming
Swarat Chaudhuri1, Kevin Ellis2, Oleksandr Polozov3, Rishabh Singh4,
Armando Solar-Lezama5 and Yisong Yue6

1The University of Texas at Austin; swarat@cs.utexas.edu
2Cornell University; kellis@cornell.edu
3Google; Work authored while at Microsoft Research;
polozov@google.com
4Google; rising@google.com
5Massachusetts Institute of Technology (MIT); asolar@csail.mit.edu
6The California Institute of Technology (Caltech); yyue@caltech.edu

ABSTRACT

We survey recent work on neurosymbolic programming, an
emerging area that bridges the areas of deep learning and
program synthesis. Like in classic machine learning, the
goal here is to learn functions from data. However, these
functions are represented as programs that can use neural
modules in addition to symbolic primitives and are induced
using a combination of symbolic search and gradient-based
optimization.

Neurosymbolic programming can offer multiple advantages
over end-to-end deep learning. Programs can sometimes
naturally represent long-horizon, procedural tasks that are
difficult to perform using deep networks. Neurosymbolic
representations are also, commonly, easier to interpret and
formally verify than neural networks. The restrictions of
a programming language can serve as a form of regular-
ization and lead to more generalizable and data-efficient
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learning. Compositional programming abstractions can also
be a natural way of reusing learned modules across learning
tasks.

In this monograph, we illustrate these potential benefits
with concrete examples from recent work on neurosymbolic
programming. We also categorize the main ways in which
symbolic and neural learning techniques come together in
this area. We conclude with a discussion of the open technical
challenges in the field.



1
Introduction

The last decade has seen breathtaking progress in the field of deep
learning. Every few months, the media is abuzz with tales of a deep
neural network conquering yet another milestone in artificial intelligence
(AI). Deep learning systems such as AlphaGo (Silver et al., 2016), the
deep reinforcement learning agent that defeated a world champion in
the game of Go, and GPT-3 (Brown et al., 2020), the neural language
model with 175 billion trainable parameters and the ability to generate
stunningly human-like text, are now part of folklore.

At the same time, concerns remain about the use of deep neural
networks in real-world problem domains (Marcus and Davis, 2019). In
applications such as autonomous robotics and the natural sciences, it
is important for learning models to be interpretable. However, neural
networks are black boxes for most practical purposes. While modern
neural networks are obtained through the composition of many layers, it
is nearly impossible to assign responsibility for a network’s capabilities
to specific layers. This makes it difficult to reuse components of a
network in the way that is possible for traditional, human-written
software. Finally, the training process for neural networks is entirely
data-driven and must learn even the most basic forms of human-held

160
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knowledge from data. Such training usually takes very large volumes of
data. Also, commonly, their results depend on low-level facets of the
training environment, and the networks they learn can fare poorly on
inputs that fall even slightly outside the training distribution.

More fundamentally, as Bengio argues in his Turing lecture (Bengio,
2019), deep learning primarily automates what Kahneman (Kahneman,
2011) calls System 1 thinking: intuitive, fast, and unconscious pattern
recognition. However, human cognition also includes System 2 thinking,
which is slow, logical, and algorithmic. Bengio points out that AI systems
of the future would need to also automate such thought.

Of course, the symbolic AI tradition, which dominated AI for several
decades, had invested heavily on automating System 2 thought. This tra-
dition modeled the world using symbolic rules and logical assertions and
used symbolic methods like heuristic search and automated deduction
to construct inferences and plans. Unfortunately, capturing the world
entirely using rules and logic proved difficult, not least because it was
difficult to model uncertain and ambiguous knowledge in such notations.
Also, classical symbolic methods did not have a mechanism to handle
sensory inputs. Finally, discrete reasoning is an NP-hard problem, and
algorithms for tasks such as planning and theorem-proving could only
scale so far. As a result, bottom-up, data-driven methods ended up
eclipsing these methods.

However, as integrating System 1 and System 2 thought becomes
more important, an emerging body of work on neurosymbolic machine
learning is seeking to couple classical symbolic algorithms with contem-
porary deep learning techniques. The resulting whole is often greater
than the sum of its parts. For example, the neural component of such
a method can help the method’s symbolic component scale better, by
guiding the latter’s discrete decisions. The neural component can also
handle lower-level sensory processing and allow the symbolic algorithm
to operate on perceptual inputs. Conversely, the symbolic component
can often serve as a regularizer that helps the neural component learn
better, and provide a level of interpretability and trust that would be
impossible with a purely neural method.

In particular, there is an emerging body of work on neurosym-
bolic learning that lies at the interface of deep learning and program
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synthesis (Gulwani et al., 2017). We refer to this literature as Neurosym-
bolic Programming. The purpose of this monograph is to survey recent
developments in this area.

1.1 What is Neurosymbolic Programming?

Neurosymbolic programming, as we define the term, is a generaliza-
tion of classic program synthesis. The goal in program synthesis is
to automatically discover programs from high-level task specifications.
Traditionally, the specifications are hard logical constraints, for example,
tests that need to be satisfied exactly, pre-postcondition pairs, or tem-
poral logic formulas. The programs are structured, symbolic terms that
follow the syntax of a domain-specific language (DSL). The discovery
of programs is based on a combination of combinatorial search and
automated reasoning (Gulwani et al., 2017).

By contrast, programs in neurosymbolic programming can have both
neural and symbolic elements. The synthesis objective may include hard
constraints like in classic program synthesis. However, neurosymbolic
programming also incorporates into the picture the standard objec-
tive of machine learning: finding a function that fits a given dataset
approximately and generalizes to unseen inputs.

Now we delineate the boundaries of neurosymbolic programming
more precisely. Let us define a symbolic component as a function that
comes with a symbolic implementation, or at least, a (possibly incom-
plete) symbolic specification of its functionality. In contrast, a neural
component is a (typically over-)parameterized, differentiable blackbox
function that does not have an a priori specification.

Composition is a fundamental operation in both traditional pro-
gramming and deep learning. However, there is a key difference between
composition in the two settings. In traditional programming, compo-
sition requires that certain requirements hold at the interface of the
components being composed. No such requirement exists at the interface
of different layers in deep learning. Let us designate the former kind of
composition as symbolic. We consider a neurosymbolic program to be a
program that uses neural components and either symbolic components
or symbolic compositions.
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A neurosymbolic learning algorithm is a mechanism for program
synthesis that uses deep representations and gradient-based optimization
as well as symbolic methods such as search and automated deduction.
Such an algorithm must discover the program’s discrete structure, or
architecture. In addition, the algorithm must discover the program’s
real-valued parameters (for example, parameters of the program’s neural
modules), if any. The task specification that directs this search could
include hard constraints like in classic program synthesis. Commonly,
however, it also includes a quantitative loss function derived from, for
example, labeled data or reward functions. The goal of the algorithm
is to find a program that optimizes the loss while obeying the hard
constraints.

The sets of methods that target neurosymbolic programs and use
neurosymbolic learning algorithms are overlapping but not identical.
In particular, there are methods that use neurosymbolic algorithms to
discover symbolic programs, and methods that synthesize neurosymbolic
programs using purely symbolic or purely neural methods. In this paper,
we take a broad perspective and consider neurosymbolic programming
to be the study of the union of the two sets.

We leave out of the scope of this paper models such as Neural Turing
Machines (Graves et al., 2014) and Neural Stack Machines (Grefenstette
et al., 2015). These models are inspired by classic models of programming,
such as Turing Machines and stack machines, and have certain program-
like capabilities (for example, Neural Turing Machines can perform
reads and writes to a differentiable memory). However, these models
are not learned using neurosymbolic algorithms. Also, they do not
impose human-comprehensible specifications on the interfaces between
model components and cannot be naturally decomposed into high-level
modules.

Neither do we consider Tensor Product Representations (Smolensky
et al., 2016), which provide a symbolically inspired inductive bias in
neural networks, to be an example of neurosymbolic programming.
This is because such a model cannot be naturally interpreted as a
program even when the network implements a programmatic task. Also
outside our scope are Neural Programmer Interpreters (Reed and De
Freitas, 2015), which are recurrent neural networks that learn to execute
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programs, and neural models for combinatorial tasks such as MAX-SAT
solving (Wang et al., 2019). That said, all of these models are closely
related to neurosymbolic programming, and future work may integrate
them with approaches that we discuss in this monograph.

1.2 Benefits Over Deep Learning

Neurosymbolic programming has multiple potential benefits over end-
to-end deep learning. In general, by virtue of their modularity and use
of symbolic primitives, neurosymbolic programs are closer to human-
written code than deep networks. Because of this, neurosymbolic pro-
gramming can provide a means for interpretable learning, especially
when the learning algorithm being used is biased towards models that
are “more symbolic” and structurally simpler.

Symbolic abstractions can also simplify the automated analysis of
models. Over the last few years, there have been many efforts on algo-
rithmic analysis of the safety and robustness of neural networks (Katz
et al., 2017; Gehr et al., 2018; Anderson et al., 2019). To a significant
extent, these methods are adaptations of methods for quality assurance
of traditional software. Unfortunately, analyzing even simple proper-
ties of deep neural networks is NP-hard, and scaling these analysis
methods to real-world neural networks is difficult. In contrast, recent
work on certifiable learning reduces (Anderson et al., 2020) the safety
and robustness analysis of certain specialized neurosymbolic models to
the analysis of its (simpler, more compact) symbolic components. The
latter task can be done relatively easily with existing software analysis
techniques.

Neurosymbolic programming gives human users a mechanism to
guide the learning process, and this can lead to more reliable learning.
For example, in recent work in the reinforcement learning setting (Cheng
et al., 2019), a (deep) learning algorithm is given a human-provided
function (program) that performs a task, albeit not optimally, and
tasked with improving the performance of this program. The resulting
learning process has lower statistical variance than one in which the
task is entirely learned from data. If the prior is of reasonable quality,
this strategy can lead to greater overall performance as well.
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Also, a key advantage of high-level programming abstractions is that
they tend to be compositional, i.e., allow the structured creation of larger
programs using smaller modules. This enables a principled mechanism
of transferring knowledge (Valkov et al., 2018) across learning tasks:
one can train a model in one task and reuse it in another task in the
way a human programmer would use a library module. This mechanism
is a generalization of a popular family of transfer learning techniques
in deep learning, which commonly reuse network layers with frozen
weights across tasks (Yosinski et al., 2014).

Finally, higher-level programming abstractions can reduce the su-
pervision effort needed for learning. In supervised learning settings
such as image classification, one requires human users to label training
inputs, and this can get expensive. In contrast, in the data programming
paradigm (Ratner et al., 2016), the user writes labeling programs that
can automatically produce labels for inputs. Such programs are easy to
write or automatically synthesize in many domains (Zhan et al., 2020;
Sun et al., 2020). When they are available, they can drastically reduce
the cost of learning.

1.3 Why Now?

The idea of combining neural and symbolic methods has a long his-
tory in AI research (Sun and Alexandre, 2013; Garcez et al., 2002). In
knowledge-based neural networks, an early example of a neurosymbolic
model (Towell et al., 1990), a set of hand-written symbolic rules were
compiled into a neural network, which is then refined using data. It was
shown that such neural networks are more data-efficient and tend to
generalize better than classic neural networks. There were complemen-
tary efforts that extracted symbolic models, such as rules (Towell and
Shavlik, 1993) and finite automata (Giles et al., 1992), out of neural
networks, essentially performing a form of program synthesis. Unifying
these two strands of work, Shavlik, 1994 proposed a general learning
framework in which an initial neural network, constructed using sym-
bolic knowledge, is refined using data, and new symbolic knowledge
is extracted from this refined network. These ideas were embodied,
and taken further, in the Connectionist Inductive Learning and Logic
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Programming system (Garcez and Zaverucha, 1999), which integrated
logic programming and neural networks. These approaches certainly fit
the category of neurosymbolic programming as defined in this paper.

While the first wave of neurosymbolic programming produced many
interesting ideas, the practical impact of this line of work was limited.
However, the current moment feels especially appropriate for resurrect-
ing this area. For one, AI is increasingly deployed in real-world problems
in which safety, reliability, and interpretability are important, and there
is growing awareness about the limitations of pure deep learning in these
problems. This opens up a window of opportunity for neurosymbolic
methods. (Indeed, as we describe in Section 1.5, neurosymbolic methods
are already making inroads into these tasks.)

Second, we now have access to much larger datasets and computa-
tional power than we did in the 1990s. This fact was key to the revival
of neural networks as a research area, and it can help neurosymbolic
programming as well. Finally, in the recent past, there has been signifi-
cant progress on symbolic program synthesis, and new ways of coupling
gradient-based and combinatorial search have emerged. As we show in
this monograph, a new wave of research on neurosymbolic programming
is already beginning to build on this progress.

1.4 Algorithmic Approaches

The fundamental challenge in neurosymbolic programming is that here,
one must search through a combinatorial, and quickly exploding, space
of program architectures. Worse, for each architecture explored in such
a search, one must often perform high-dimensional continuous opti-
mization to find optimal parameters for the neural modules appearing
in the architecture. Nevertheless, over the last few years, researchers
have discovered multiple new lines of attack on this problem, and some
unifying themes are beginning to emerge in this area.

For example, one set of methods for neurosymbolic programming
uses a neural network to learn to synthesize programs, i.e., direct a
search process over program architectures (Balog et al., 2016; Murali
et al., 2018). The network is trained using metalearning, from data that
relates a set of tasks to programs that solve the tasks. Once a program



1.5. Applications 167

architecture is generated, its lower-level parameters can be found using
neural or symbolic methods.

A second category of methods, which we call learning to specify (Ellis
et al., 2018b), determine how to generalize incomplete or ambiguous
task specifications to more complete specifications. These complete spec-
ifications are then used to direct a program synthesis process. A third
category uses neural relaxations of a nonsmooth set of programs (Shah et
al., 2020). This space could consist of programs with completely different
architectures. However, since a program is ultimately a representation of
a function, the parameters of a neural network can (approximately) rep-
resent it. A final body of methods goes in the other direction, distilling
a smooth neural function (Verma et al., 2018) into a discrete program
whose behavior approximately matches the network’s. We discuss all of
these methods in more depth in Section 2 and Section 4.

1.5 Applications

The algorithmic innovations sketched above are already beginning to
impact real-world applications. Now we sketch some of these applications.
Given the increased deployment of machine learning in domains in which
trust and procedural reasoning are important, we expect many more
such applications to emerge in the coming years.

Scientific Discovery. Building learning algorithms that discover new
scientific hypotheses and guide experiments is a grand challenge in
AI. Such algorithms must respect constraints known to hold in the
world and produce outputs that scientists can interpret. This makes
neurosymbolic programming a natural fit to this space.

As a concrete example, Cranmer et al. (2020) propose a method for
symbolic regression — the automatic discovery of symbolic equations
from data — and apply it to a task in cosmology (dark matter predic-
tion). Also, several recent efforts use neurosymbolic programming in
behavior analysis of lab animals. For instance, Sun et al. (2020) use
a neurosymbolic method to embed videos of lab animals into lower-
dimensional representations. Shah et al. (2020) use neurosymbolic pro-
gramming to classify sequential animal behaviors. Zhan et al. (2021)



168 Introduction

use neurosymbolic representation learning for interpretable clustering of
such behaviors. Tjandrasuwita et al. (2021) learn interpretable programs
that describe divergences between different human experts annotating
behaviors.

Programming Systems. There has been significant recent interest
in machine-learning-based assistants for software developers. Purely
neural tools often struggle with understanding the complex, logical
semantics of software, which are sensitive to even the smallest changes
in syntax. Neurosymbolic programming is a natural way to overcome
this issue given that symbolic methods have long been used successfully
in program analysis.

For example, the Bayou system (Murali et al., 2018) automatically
completes Java methods given a few keywords that appear in the
method. The Patois system (Shin et al., 2019a) uses neurosymbolic
programming to semantically parse text into code. Ellis et al. (2018b)
simplifies graphics programming with a method to synthesize graphics
code from a given picture.

Dialog Systems. Task-oriented dialog systems assist users with specific
goals through a natural language interface. As digital assistants, they
facilitate travel booking, database question answering, scheduling, and
much more. The key challenge of task-oriented dialog is state tracking

— identifying the user’s intent and parameters in each dialog act, and
using them to drive the system’s actions. Fundamentally, dialog state is
an intermediate symbolic representation that depends on complex, high-
dimensional semantic context, namely dialog history and the underlying
knowledge base or API. Thereby, neurosymbolic programming is a
natural choice for modeling dialog state, successfully applied in many
domains. For example, Andreas et al. (2020) design a calendar assistant
in which scheduling actions, dialog corrections, and exceptions are
represented as compositional programs, synthesized by neurosymbolic
models in context.

Process Automation. The field of robotic process automation (RPA)
aims to automate procedural GUI workflows to facilitate business digi-
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tization and software testing. RPA agents interact with Web browsers,
GUI applications, and APIs to accomplish the user’s parameterized
tasks. They are typically pretrained for each task using natural language
commands, UI-grounded demonstrations, task completion rewards, or
some combination thereof.

In RPA, the agent’s state and action spaces are enormous – the
current screen or Web page defines the state and the action space in-
cludes all possible interactions with its elements. Learning a robust and
interpretable RPA agent is challenging even from grounded demonstra-
tions as supervision. Instead, recent approaches leverage neurosymbolic
programming and model the agent as a neurosymbolic task program.
For example, Srivastava et al. (2020) combine neural language model-
ing with inductive program synthesis Gulwani et al., 2017 to learn a
generative model of programs that both guarantees consistency with
the demonstrations and optimizes natural language alignment.

Robotics and Control. When designing policies or controllers for
autonomous embodied systems, factors such as safety and data efficiency
become paramount. For both low-level control and high-level planning
problems, the standard practice has been to leverage symbolic domain
knowledge (e.g., the governing equations of motion for the system,
or an automaton representation of the high-level states) to design
structured models that have certifiable guarantees, good generalization,
or both (e.g., Verma et al. (2019)). An emerging research direction
is to automatically learn or discover the structure of the symbolic
knowledge (e.g., Xu et al. (2018)), which can be viewed as an instance
of neurosymbolic programming.

1.6 Roadmap

The rest of this monograph is organized as follows. In Section 2, we
give an overview of the landscape of recent research on neurosymbolic
programming. Section 3 describes in some depth the main motivating
goals for research in this area, along with concrete examples of how
recent research is addressing these goals. In Section 4, we discuss some of
the common themes in learning algorithms for neurosymbolic programs.
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We conclude with a discussion of future challenges in the area in Section
5.



2
The Landscape of Neurosymbolic Programming

Research on neurosymbolic programming has two dimensions:

• The study of neurosymbolic learning algorithms, i.e., mechanisms
to discover symbolic code or neurosymbolic programs using a
combination of deep learning and symbolic program synthesis.

• The study of neurosymbolic program representations, obtained
through the composition of symbolic code and neural modules in
complex ways.

Over the past few years, the community has come up with a variety
of innovations along both dimensions. In this section, we provide an
overview of the landscape of this research.

2.1 Neurosymbolic Learning Algorithms

At the heart of neurosymbolic programming are a body of methods
that search over symbolic program architectures using a combination
of neural and symbolic techniques. Most of these ideas were originally
presented in the context of learning symbolic code; however, they also
apply to searching over programs with neural components. Now we
sketch the main categories that these methods can be divided into.

171
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2.1.1 Learning to Synthesize

Perhaps the most well-established paradigm for neurosymbolic pro-
gram discovery is Learning to synthesize. The goal here is to generate
programs from a high-level specification which may include both hard
constraints — any requirement for which it is possible to unambigu-
ously check whether it is satisfied or not — and soft constraints. Hard
constraints can include input/output examples as well as formal specifi-
cations that describe properties the code must satisfy on all possible
inputs. The soft constraints may include artifacts such as natural lan-
guage specifications. Unlike the hard constraints, the soft constraints
can only be interpreted in a probabilistic way, by drawing statistical cor-
relations in the training data between the constraints and the generated
code.

More formally, at learning time, the user is expected to provide
evidence v consisting of hard constraints and soft constraints v =
(φh, φs). Given this evidence, the goal is to find the most likely program
e that satisfies the hard constraints—indicate by the predicate φh(e).

The starting point for this approach is a corpus of solved synthesis
problems. Each of these includes the hard and soft constraints that
the user would be expected to provide as inputs, together with the
output program that the synthesizer would be expected to produce
D = {(vi, ei)}.

During the meta-learning phase, the system learns how to map from a
given specification to a program in a previously specified language which
may include structure constraints restricting the set of valid programs.
During the learning phase, the resulting trained synthesizer is then fed
the particular specification for which the user wants to synthesize a
program, and the synthesizer produces a program in return.
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A standard way to formalize this approach is in terms of conditional
probabilities. In this setup, one assumes that there is a conditional
distribution over programs that depends on a body of evidence v, and
a set of parameters ω. So for any program e, one can compute the
probability of that program given the parameters and the evidence as
Pr[e|v, ω]. This conditional distribution is generally represented as a
neural network, where the parameters ω correspond to the parameters
of the network.

During the meta-learning phase, the goal is to discover the optimal
parameters such that

ω∗ = arg max
ω

∑
(vi,ei)∈D

Pr[ei|vi, ω]

Once the optimal parameters have been discovered, they can be
applied during the use phase to find the most likely program given some
particular evidence v.

e∗ = arg max
e∈L

Pr[e|v, ω∗]

If the evidence includes both hard and soft constraints v = (φh, φs),
then it is not enough to find the most likely program given the learned
parameters ω∗, it is also necessary to make sure the returned program
satisfies the hard constraints

e∗ = arg max
e∈L ∧ φh(e)

Pr[e|v, ω∗]

An important observation about the formula above is that while the
formula seems to imply that one should first identify all the programs
that satisfy the hard constraint and then select among them the one with
the highest probability, existing algorithms can apply more sophisticated
search techniques to sample the most likely programs from Pr[·|v, ω∗]
and then check them against the hard constraints.

Many of the approaches proposed for this paradigm seek to emulate
the ways in which humans engage in cognitively demanding tasks which
usually require combining intuitive knowledge—“muscle memory“—with
more formal knowledge. An early instance of this paradigm was Deep-
Coder (Balog et al., 2016). In this system, the distribution Pr[·|v, ω∗]
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had a very simple form where it would simply determine what compo-
nents could be part of the program and would give a zero probability to
any program that had disallowed components. Another early example
was Bayou (Murali et al., 2018), which generated code snippets demon-
strating the use of an API from soft constraints containing information
about the APIs to use and hard constraints that required the resulting
code to typecheck. Yet another example of this paradigm is Robust-
Fill (Devlin et al., 2017), where the conditional distribution is a more
sophisticated attention model. For more details on these methods, see
Section 4.3.

2.1.2 Learning to Specify

The paradigm of learning to specify is closely related to learning-to-
synthesize. Here, the user also wants to generate symbolic code from
a high-level specification, but it aims to address a different problem.
Learning to specify aims to address a mismatch between the specification
artifacts available, and the function that we want to produce. For
example, an early instance of Learning to Specify was by Ellis et al.
(2018b), who aimed to synthesize symbolic code from hand-drawings.
In this case, there was a mismatch between the formal specifications
expected by the symbolic synthesis and the hand drawings that the
user would provide during the use phase.

The Learning to specify approach was to pre-train a neural network
during the meta-learning phase that could map from hand drawings to
a set of hard constraints that could then be used to drive a symbolic
synthesis.

The same approach could also be followed switching the roles of
gradient-based learning and symbolic synthesis. For example, suppose
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the goal is to train a neural network, which normally requires large
amounts of labeled data, but only a small number of training labels are
available. There is some work (Ratner et al., 2016) that uses (manually
written) labeling programs to automatically generate labels, enabling
the application of deep learning. Recent work has begun to explore
ways to use symbolic program synthesis to automatically generate such
labeling programs. For more details on these methods, see Section 4.8.

One important aspect of meta-learning in Learning to specify systems
is that they do not require a corpus of synthesis problems mapping
specifications to programs, since the component that is meta-learned,
the specification translator, does not have to be able to generate full
programs, only specifications. So you only need either a corpus of high-
level and low-level specifications, or a corpus of high-level specifications
and an oracle that can tell whether the low-level specifications match
the intent of the high-level ones.

2.1.3 Distillation

Ultimately, neural networks and symbolic code are just two different
representations of functions from inputs to outputs (with different
expressiveness). A recent set of methods go back and forth between
these two kinds of representations as part of a neurosymbolic learning
process.

In particular, one body of methods are based on distillation of neural
networks into symbolic code. This approach is similar to learning-to-
specify in that it aims to address a mismatch between the specification
available and the desired artifact. Unlike learning-to-specify, however,
distillation does not rely on a meta-learning phase to train a specification
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translator. Instead, the approach is to generate a neural network (or even
a program with neural modules) that is a good match to the available
specification and then to extract from that a symbolic program whose
behavior approximates the neural function.

More formally, given a task φ, the first step is to learn a model f
that solves the task, and then derive a symbolic program e∗ that most
closely approximates the learned model

e∗ = arg min
e∈L

Dist(e, f)

One potential problem with this simple approach is that there may be
many neural models f that solve the task almost as well, but not all of
them can be approximated equally well with a symbolic program. Some
variations of this approach address this by introducing a feedback loop,
where the symbolic program is then used to introduce a regularization
penalty that is used to find a new neural model that is more likely to
be representable as a program, and the process is repeated with that
new model.

An early example of Symbolic Distillation is Programatically Inter-
pretable Reinforcement Learning (Pirl) by Verma et al. (Verma et al.,
2018), where the goal was to learn symbolic code that could control a
race car given a simulator environment for the car. Deep reinforcement
learning can do a god job of learning a controller for the car given this
environment, but producing symbolic code from a complex simulation
environment is beyond the capabilities of traditional program synthe-
sizers. Pirl approaches this difficulty by first using deep reinforcement
learning to produce a neural representation of the controller from the
simulation environment, and then distilling this neural network into
symbolic code using imitation learning. For more details on this and
related methods, see Section 4.4.
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2.1.4 Relaxation

Another body of methods take the opposite path of relaxing symbolic
programs into neural networks. The motivation here is that while
one needs combinatorial methods to search over symbolic code, the
neural relaxations can be trained using more scalable gradient-based
techniques. For example, Propel (Verma et al., 2019), a successor to
the Pirl approach, utilizes this perspective. Here, a purely symbolic
controller, discovered using a distillation step, is relaxed into a controller
with neural modules (in principle, this program could be just a single
neural network). The relaxed controller is then trained further using
deep reinforcement learning. The Near (Shah et al., 2020) method
applies a neural relaxation to direct a discrete search over program
architectures. A followup effort by Cui and Zhu (2021) goes further,
using a relaxation to reduce the entire architecture search problem to a
continuous optimization task. For more details on these methods, see
Section 4.5.

2.1.5 Beyond the basic categories

The approaches we have described so far in this section represent broad
classes of neurosymbolic algorithms. Later in the paper, we provide
details of concrete algorithms in each of these categories.

It is important to note that many practical algorithms can incorpo-
rate elements from many of these categories. For example, an algorithm
could use learning to-synthesize techniques to produce a symbolic pro-
gram, followed by a relaxation step to replace some elements of the
program with symbolic components. An algorithm could also use a
learning-to-synthesize approach to make distillation more efficient. Sec-
tion 4 provides more concrete examples of these combinations.
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2.2 Neurosymbolic Representations

Now we discuss program representations that weave together neural
components and symbolic code. The holy grail for research on neurosym-
bolic programming would be a general learning algorithm that could
efficiently generate arbitrary combinations of neural components and
symbolic code. However, such an algorithm has not been developed, and
seems hard given the joint numerical and combinatorial optimization
that would be required. However, the community has had important
successes with a few specialized approaches tailored to particular com-
binations of program structure and neural components.

2.2.1 Symbolic-after-Neural Pipeline

This is a particular combination where the inputs are preprocessed by
a collection of neural components, and the results are then passed to
symbolic code, generally either a functional or logic program.

For example, consider a program meant to detect whether an image
has a cat on top of a table. Such a program could be written by relying
on neural components to identify cats and tables, combined into a
symbolic program that checks that both elements are present in the
image and that the cat is indeed on top of the table.

The Houdini approach (Valkov et al., 2018) uses this idea to perform
structured computations over natural inputs, for example, to count the
number of cars in a photograph. The neural components can do a good
job identifying cars, but learning to count is something more effectively
done via symbolic computation. Murali and Madhusudan (2019) have
also explored similar ideas in a different context.

In general, this approach requires some pre-training of the neural
components, which then must be further optimized for the particular
context where they will be applied in the program. See Section 4.6 for
more details.

2.2.2 Neural-after-Symbolic Pipeline

It is also possible to set up a pipeline in the opposite direction, with
inputs being fed first through a set of synthesized program components,
and the results then fed to a neural network.
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With older machine learning methods, which relied heavily on feature
engineering in order to produce good results, this was a way to support
the discovery of new features. For example, back in 2012, Cheung et al.
(2012) showed that you could improve upon a simple linear classifier by
leveraging synthesized features.

With deep learning, there is less of a need for feature engineering, but
there are still contexts where deep learning benefits from pre-processing
the input. This creates an opportunity in cases where this pre-processing
involves the kind of text or data-structure manipulations that program
synthesis techniques excel at.

2.2.3 Neural Module Networks

Neural Module Networks (Andreas et al., 2016b) constitute another
neurosymbolic paradigm where a collection of neural modules are treated
as components in a programming language which can be composed
together to provide high-level functionality.

In the original work by Andreas et al. (2016b), the program-like
composition was extracted directly from a text specification through
traditional parsing, and the modular components are learned by training
from data on the end-to-end behavior of different compositions. The
idea has been expanded in more recent work that aims to learn not
just the modules, but also how to compose them. For example, the
work on dynamic neural module networks (Andreas et al., 2016a) learns
a network layout predictor that determines how the modules will be
composed. The starting point for this composition is still provided by
a traditional parser, but there is a neural network that learns to score
the possible parses to select the best composition. More recently, Alet
et al. (2018a) have explored Modular meta-learning. In this approach,
there is a meta-learning phase where the system learns a set of models
and their composition to solve a given set of tasks, and then the models
are frozen, so that the use-phase just looks like a traditional synthesis
problem where the goal is to search for a composition of the existing
modules that solves the task.
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2.2.4 Algebraic Compositions

Another way of combining neural and symbolic programs is to allow
them to run independently and then aggregate their results using an
algebraic operator ⊕. The resulting hybrid program h can be described
as

h(s) = e(s)⊕ f(s)

For example, one of the simplest instantiations of the operator ⊕
is vector addition. One way to interpret this instantiation is that the
result of the neural program is added as a correction to the result of
the symbolic program. This idea originally appeared in the core-rl
approach to reinforcement learning Cheng et al. (2019). This effort con-
siders policies that additively combine a symbolic program and a neural
network, and shows that the resulting policy preserves some of the
guarantees of the symbolic program. One weakness of the approach is
that the symbolic component of the policy is static and human-written.
The Propel approach (Verma et al., 2019), mentioned earlier, over-
comes this weakness by allowing the symbolic component of the policy
to be automatically synthesized (using a combination of distillation,
relaxation, and gradient-based learning).

2.2.5 Neurally Accelerated Symbolic Programs

There is strong precedent for using machine learning to help guide
the execution of a program in ways that do not affect its functional
correctness but help it run more efficiently. For example, in the SAT
community, there is work dating back to the mid 2000s that used
machine learning to set the parameters of a SAT solver that control
its internal heuristics (Hutter et al., 2007). We do not consider such
applications on their own as an instance of neurosymbolic programming,
but they can be if parts of the program itself are synthesized as well.

More formally, the goal is to synthesize a neurosymbolic program h,
that is a composition of a neural network f (interpreted as a performance-
enhancing heuristic) and a symbolic program e,

h(x) = e(x, f)
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where the symbolic program e(x, f) will invoke the neural network f
internally, but for any input x, its output is guaranteed to be correct
regardless of the values provided by those invocations of h. An important
special case is when f is invoked only once on the input x, so h can be
represented as

h(x) = e(x, f(x))

There is a range of possibilities for this approach depending on how
much work is done by e relative to the neural heuristic f . For example,
at one extreme, a neural heuristic is simply fine-tuning some parameters
in otherwise symbolic code, like the parameters in a SAT solver that
would otherwise just be hard-coded to some value that happens to work
well for most benchmarks. At the other extreme, the oracle is actually
doing most of the work, and the symbolic code is acting simply as a
monitor, intervening only when it sees the oracle performing a bad
action.

It is important to note that the line separating this paradigm from
algebraic composition can be blurry in some cases. For example, consider
the recent work on safe learned controllers (Zhu et al., 2019; Fulton and
Platzer, 2018; Anderson et al., 2020). The basic idea is to combine a
learned controller with a synthesized function that computes a set of
safe actions at each state. If the action proposed by the controller is
in the set of safe actions, it is simply taken. If it is not, then an action
from the safe set is taken instead.

Such a system can be seen as synthesizing a neural guided programs
where for a given state s, a = f(s) computes an action a, and then
e(x, a) computes a set of safe actions and returns a if it is in that set or
its own safe action otherwise, so the program is guaranteed to take a
safe action regardless of the value a. On the other hand, it can also be
seen as a form of algebraic composition

h(s) = e(x)⊕ f(x)

Where the program returns its set of safe actions, and then the combi-
nation operator ⊕ is an if-then-else combinator that chooses between
the result of the neural policy or one of the safe actions.



3
Motivating Goals

Now that we have given an overview of neurosymbolic programming,
we elaborate further on the main motivating goals for research in this
space. We also present some concrete examples of research driven by
these goals.

3.1 Generalization and Sample Efficiency

Generalization and sample efficiency are foundational concepts in ma-
chine learning. Generalization refers to the ability of a learned system
to predict well on new test cases outside of its training set (under a
suitable definition of “well”). Sample efficiency refers to the number
of training samples needed to reach a target learning goal (e.g., being
able to generalize well). In most practical settings, the two notions are
virtually synonymous with each other.

Historically, generalization and sample efficiency have largely been
considered when evaluating performance (as measured by a standard
loss function) on test examples sampled independently and identically
distributed (i.i.d.) from the same distribution that generated the training
examples, i.e., the so-called i.i.d. setting. In other words, how many
training examples (sampled i.i.d. from the data distribution) does one
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need to train a predictor that achieves a target accuracy on unseen
examples drawn i.i.d. from the data distribution?

A canonical theoretical framework to study this setting is the PAC
(“Probably Approximately Correct”) learning framework (Valiant, 1984).
The basic premise is to study the following quantity

Pr
(
∀P ∈ L :

∣∣∣R(P )− R̂n(P )
∣∣∣ ≤ ϵ) ≥ 1− δ, (3.1)

where R̂n is the empirical risk (with n denoting the number of training
examples), R is the true population risk (expected loss over the true test
distribution), ϵ quantifies “approximately”, and δ quantifies “probably”.
A guarantee of this nature typically expresses n as a function ϵ and 1/δ,
e.g., n = O([complexity(L) + log(1/δ)]/ϵ2), for some measure of the
complexity (or capacity) of the hypothesis class L. In other words, the
more complex L is, then the more training data is required in order
to generalize from the empirical training set to the true population
distribution. In this context, the study of regularization and inductive
bias in improving generalization and sample efficiency is well studied,
and one can think of neurosymbolic architectures are providing a form
of regularization.

More recently, there has been increased interest in studying general-
ization (and sample efficiency) when the target or test domain is not the
same data distribution as the training domain (Bickel et al., 2009; Dudík
et al., 2014; Chen et al., 2016; Beery et al., 2018; Taori et al., 2020).
For instance, in sequential decision making scenarios (such as those
typically solved using reinforcement learning), the training environ-
ments may be substantially different from the test environments (James
et al., 2019; Liu et al., 2020). Other examples include (adversarially)
perturbed inputs from training examples, e.g., visually imperceptible
modifications to the pixel values of an image can change a prediction of
a cow to that of airplane. The growing interest in this area reflect the
increasing recognition that real-world learning systems will encounter
test examples that are not sampled i.i.d. from the training distribution.
One can also relate the study of generalization and sample efficiency to
transfer learning (i.e., efficiently generalizing to new domains) (Wang
and Schneider, 2014), discussed further in the next section. In all the
above cases, the use of neurosymbolic primitives offers the possibility
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of greatly improved generalization power and sample efficiency. In par-
ticular, the function class that one learns over is a neurosymbolic one,
that ideally provides useful inductive biases to improve generalization
and sample efficiency.

For example, the Corerl (Cheng et al., 2019) and Propel (Verma
et al., 2019) approaches to reinforcement learning are examples of
how neurosymbolic programs can aid generalization. In these methods,
one considers policies that are neurosymbolic programs of the form
h(s) = e(s) ⊕ f(s), where e is a symbolic program and f is a neural
network. The symbolic component of such a program is expressed in a
human-written DSL and therefore captures a potentially useful inductive
bias. The papers demonstrate the value of this bias theoretically —
by showing that it can lead to lower learning variance — as well as
empirically.

Zhan et al. (2021) demonstrate the generalization benefits of neu-
rosymbolic programming in unsupervised representation learning. The
goal here is to simultaneously learn an encoder and a decoder that map
data to latent vector representations and back. The encoder has a neural
module and a symbolic module, each of which constructs part of the
learned representation. This approach is shown to outperform purely
neural approaches at efficiently learning latent spaces that are semanti-
cally meaningful, i.e., separated into well-defined clusters consisting of
encodings of semantically similar inputs.

A final category in this topic is programmatic supervision (Ratner
et al., 2016; Zhan et al., 2020), which is closely related to the concepts
of self-supervision (Hendrycks et al., 2019; Chen et al., 2020a) and data
augmentation (Taylor and Nitschke, 2017). Self-supervision and data
augmentation have become popular ways to improve sample efficiency
of representation learning. In self-supervision, the basic idea is use auto-
matically generated auxiliary tasks as a form of supervision. Common
examples arising in images include inpainting, and denoising. Using
such trained representations can often lead to significant annotation
savings on the down-stream prediction task (e.g., object classification),
thus leading to improved sample efficiency. In data augmentation, the
basic idea is to procedurally create modified variants of training ex-
amples (e.g., rotating an image) in a way that does not change the
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supervised label. More recently, the concept of programmatically gen-
erated (self-)supervision tasks has proven effective (Sun et al., 2021).
In other words, the program provides supervised guidance to a (deep)
learning system, rather than directly constraining the learning system
by using a neurosymbolic function class.

In most methods of this sort, the programs are hand-written rather
than automatically synthesized. However, recent work has begun to
integrate program synthesis with such programmatic supervision. We
will elaborate more on this topic in Section 4.8.

3.2 Transfer and Abstraction

Transfer learning systems aim to distill useful knowledge from a corpus
of training tasks, which can then be generalized to testing tasks—ideally,
even if those testing tasks are not drawn from the training distribution.
Within neurosymbolic programming, transfer learning schemes typically
work by first discovering reusable modules. These modules can be either
small neural nets or fragments of symbolic code, which are induced
given a training corpus of synthesis problems. They then transfer these
reusable modules to test problems by deploying them in the test-time
program synthesizer.

For instance, the Houdini (Valkov et al., 2018) system learns neural
modules which are shared across synthesis tasks. It takes as input a
collection of synthesis problems, each of which it solves by finding a
program with symbolic control flow operating over neural modules. At
the end state of learning, the system produces neurosymbolic programs
solving each synthesis task, and also outputs the set of neural modules
which can be transferred for solving further tasks in the future. As a
concrete example, Houdini can solve a problem involving detecting
digits in images, for which it trains a reusable neural module. Later, it
can transfer this neural module to perform a task such as counting how
many times a given digit occurs in a list of images–which interviews
both programmatic, procedural reasoning with low-level perception.

Ideally, such modules should correspond to reusable high-level ab-
stractions. In the Houdini example, the system reused learned object
detectors (Valkov et al., 2018). In a purely symbolic functional pro-
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gramming domain, a transfer learning system might learn and reuse
recursive control flow patterns (Ellis et al., 2020). In a semantic pars-
ing domain, the system might learn and reuse chunks of code which
execute common English phrases (Shin et al., 2019a). Thus, transfer
learning via these abstractions can be an end goal to itself: at the end
of learning, such systems will have constructed reusable, executable
abstractions which can be used for virtually any downstream neural
programming task. In principle these abstractions could also be reused
by human programmers, although to to the best of our knowledge this
human-facing application has not been explored yet to date.

While inducing transferable abstractions can be an end to itself, it
also connects to and supports other goals of neural programming. It can
aid sample efficiency, particularly when the reused modules are neural
networks, because the reused modules do not need to be learned from
scratch. This boost to sample efficiency was analyzed by e.g. Liang et al.
(2010), which showed that learning reusable subtrees of text editing
programs causes those programs to generalize better to held-out inputs.

This kind of transfer learning can also reduce computational com-
plexity by reducing the depth of search. For symbolic abstractions, this
works because each abstraction is a fragment of code, so using it im-
plicitly calls many other pieces of code, effectively taking multiple steps
at once through the symbolic search space. For neural modules, this
works because the module does not need to be retrained from scratch,
effectively reusing statistical knowledge distilled from prior training
data. By reducing both the search depth and the sample complexity,
this approach is then conceptually related to the ‘options’ framework
within reinforcement learning (Sutton et al., 1999).

Transferring abstractions can also help interpretability by discover-
ing more compact ways of expressing program solutions. This connection
to interpretability was noted by e.g. Ellis et al. (2020) and Dechter et al.
(2013), which showed that many learned abstractions correspond to
human-understandable functions, such as functional programming id-
ioms like map and fold, and Boolean operations like XOR etc. Figure 3.1
(top) shows example output of one such system inducing transferable
programs for physics equations. Intriguingly, the same benefits to in-
terpretability seem to hold for transferring modular neural networks.
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This is demonstrated by Alet et al. (2018b) (Figure 3.1 bottom), which
learns neural modules for symbolic regression and other domains such
as human pose estimation. Without supervision, this system learns
(on symbolic regression) interpretable basis functions such as sinusoids,
while learning (on human pose estimation) canonical pose-components
that are independent of the human doing the posing.

3.3 Interpretability

With increasing development and deployment of machine learning tech-
niques in various safety-critical applications, the interpretability of these
models is becoming ever so important. Interpretable models not only al-
low for a better understanding of the logic of the learnt function, but are
also extremely helpful for debugging and verifying their functionality.

Several approaches have been proposed recently for interpreting ma-
chine learning models. One common approach is to attribute importance
to different features for each prediction. Integrated Gradients (Sun-
dararajan et al., 2017) (IG) uses an axiomatic approach to design an
attribution technique that computes a feature attribution for the model
prediction on an input x by accumulating the gradients at all points
along the path from a baseline input x′ to the input x. These attributions
can then be used to construct a saliency map for interpreting impor-
tance of different features for a prediction. TCAV (Kim et al., 2018)
(Testing with Concept Activation Vectors) is a technique to calculate the
degree to which a user-defined high-level concept (trained as a concept
vector) influences the model’s prediction for a given class, allowing to
understand the model prediction in terms of high-level concepts. Some
approaches use symbolic solvers such as SMT solvers for identifying
minimal input regions that are critical for a model prediction (Zhang
et al., 2018; Sahoo et al., 2020).

Unlike these approaches that compute input feature attribution,
high-level programs (symbolic or neurosymbolic) present an alternate
approach to interpret the learned models. Such programs can represent
learned functions in terms of compositions of abstract primitives, which
makes them more interpretable compared to traditional deep learning
models. This structured representation of learned functions can be
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Transfer of symbolic code:

Transfer of neural modules:

Figure 3.1: Examples outputs of transfer learning, both for symbolic code (top) and
for neural modules (bottom). At top we show the output of DreamCoder (from Ellis
et al., 2020) when trained to synthesize symbolic code. The system is tasked with
synthesizing programs fitting random data simulated from physics equations such
as those shown at the right. To do this, it starts with a functional programming
language (left), but does not start with vector algebra. In synthesizing these programs
it assembles a library of reusable procedures (middle). These reusable procedures
include basic vector algebra and common patterns found in physics equations, which
can then be transferred when solving new synthesis tasks in the future. Bottom:
Example output of Modular Metalearning (taken from Alet et al., 2018b). This
system is tasked with synthesizing neurosymbolic programs fitting real-valued curves
such as those shown at the left. Each of these training functions is built from a small
number of basis functions. The middle shows neural modules learned by this system,
with the closest basis function plotted in red. They have a high degree of agreement
with the original ground truth basis functions that generated the data. Contrast
with baseline (right): Modular Metalearning correctly discovers the true basis, which
is both more interpretable and more useful for transfer.
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if (s[tangle] < 0.011 and s[tangle] > −0.011)
then PIDrpm,0.45,3.54,0.03,53.39(s) else PIDrpm,0.39,3.54,0.03,53.39(s)

Figure 3.2: A learned programmatic policy for acceleration, automatically dis-
covered by Propel (Verma et al., 2019). This program invokes PID controllers
PIDj,θS ,θP ,θI ,θD , where j identifies one of 29 sensors that provide inputs to the
controller, θS is the target value (setpoint) that the controller aims for, and θP ,
θI , and θD are respectively the real-valued coefficients of the proportional, integral,
and derivative terms in the controller. Note that the program only uses the sensors
tangle and rpm. The tangle sensor, which measures the position of the car relative
to the track axis, is used to decide which controller to use (s[tangle] represents the
most recent reading from sensor tangle). Note that only the rpm sensor is needed to
calculate the acceleration. The program has the following interpretation: If the car
aligned with the center of the track, then aim for a high acceleration value, otherwise
aim for a lower one.

considered similar to writing programs in a high-level language, whose
functionality can be understood by understanding the semantics of
the underlying language primitives. This representation also opens up
the possibility of using decades of research in program verification and
debugging tools to verify various properties about the learnt functions.

Pirl (Verma et al., 2018) and Propel (Verma et al., 2019) are two
neurosymbolic programming approaches motivated by interpretability.
These methods address the reinforcement learning (RL) setting, in which
the goal is to discover a policy that maximizes an agent’s long-term
reward. In mainstream deep RL, these policies are represented as neural
networks. In contrast, policies in Pirl and Propel are required to have
a parsimonious representation in a domain-specific language (DSL) that
is assumed to be restricted enough to ensure interpretability.

Concretely, Pirl and Propel consider spaces of functional pro-
grams in which classic controllers — for example, Proportional-Integral-
Derivative or PID controllers — can be used as “library modules”. Pro-
grams from these spaces are discovered using a combination of deep RL
and symbolic program synthesis (for more details, see Section 4.4). Both
methods are evaluated in an RL domain in which the goal is to drive a
car around a race track. Figure 3.2 shows a program for controlling the
accelerator of this car that was automatically discovered using Propel.
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map(λx. if DistAffine[.0217];−.2785(x)
then AccAffine[−.0007,.0055,.0051,−.0025];3.7426(x)
else DistAffine[−.2143];1.822)(x))

Figure 3.3: A program, learned using the Near approach (Shah et al., 2020),
for classifying a “sniff” action between two mice in the CRIM13 dataset. Here,
DistAffine and AccAffine are functions that first select the parts of the input that
represent distance and acceleration measurements, respectively, and then apply affine
transformations to the resulting vectors. In the parameters (subscripts) of these
functions, the brackets contain the weight vectors for the affine transformation, and
the succeeding values are the biases. The program can be interpreted as follows: If the
distance between two mice is small, they are doing a “sniff” (large bias in else clause).
Otherwise, they are doing a “sniff” if the difference between their accelerations is
small.

The Near approach (Shah et al., 2020) uses symbolic programs as
interpretable classifiers for sequential behavior data, and discovers these
programs using a combination of heuristic search and neural relaxations
of discrete sets of programs (see Section 4.5). Figure 3.3 shows an
example classifier for mice behavior, in the CRIM13 dataset, discovered
by this approach.

There is also a line of work that combines deep learning and sym-
bolic regression, i.e., the discovery of symbolic equations from data,
with the motivation of interpretability. These methods are a form of
neurosymbolic programming because equations are a simple kind of
programs. An interesting example of such work is AI Feynman (Udrescu
and Tegmark, 2020), an approach that repeatedly applies a series of
tactics, including neural network training and enumeration over a space
of symbolic expressions, to discover symbolic equations from data. For
another example, Cranmer et al. (2020) give a method for learning
equations that first trains a graph neural network on a dataset, and
then distills various components of this network into symbolic subex-
pressions of the overall equation. This method is applied to, among
other things, data from a gravitational simulation of the universe, and
used to recover an interpretable equation that determines the excess
amount of matter in “dark matter halos”.
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3.4 Safety

Safety is a central concern in recent machine learning research. There is
for multiple reasons. First, machine learning is now routinely deployed
in real-world applications in which failure has high human and financial
costs. Second, deep models are now known to fail badly on inputs that
are even slightly outside the training data distribution. Third, deep
networks cannot be analyzed using the mechanisms that programmers
traditionally use to reason about the software that they write. Instead,
methods that provide automatic assurance of models are required, and
the design of such methods is a challenging open problem.

The problem of safe machine learning comes in two flavors. In the
first, one requires the final learned function to satisfy a constraint (a
requirement) over the function’s inputs and outputs. Recent work has
considered many specific forms of such requirements, including robust-
ness to adversarial perturbations, fairness, differential privacy, avoidance
of “bad” states, and reachability of “good” states. In general, we can
pose the task of learning modulo such requirements as a constrained
optimization problem

f∗ = arg min
f

J(f) s.t. f ∈ S, (3.2)

where f ranges over learnable functions (hypotheses), S is the set of
functions that meet the safety requirement, and J(f) is the loss function
that the learning algorithm seeks to minimize.

The second formulation applies to scenarios that are especially
safety-critical, for example, when the learning algorithm is deployed on
a physical robot whose actions can have real-world consequences. Here,
every hypothesis that the learner considers during training is required
to obey the safety requirements.

In either case, one needs a mechanism for determining the extent to
which specific hypotheses are safe. In most of the safe learning literature,
this mechanism is statistical, i.e., based on estimation using samples
from a model’s input space. While principled and algorithmically simple,
such mechanisms often need intractably many samples to give strong
guarantees. More critically, they fail to guarantee safe behavior on
adversarial inputs coming from outside the training distribution.
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Automatic formal verification is an increasingly popular response to
this challenge. Here, a statistical model (in particular, a neural network)
is viewed as a program in a low-level language. Classic formal methods
such as abstract interpretation and bounded model checking are now
used to prove or falsify this program’s requirements. Unfortunately,
scalability is a basic challenge with these methods. Symbolic verifica-
tion tends to only be efficient for programs that are small or have a
compositional structure (enabling the verification process to be easily
decomposed into subproblems). Neural networks do not satisfy either
property, and verification of state-of-the-art neural networks for complex
tasks remains a faraway goal. Invoking such verifiers from within the
learning loop, as would be required if one desires safety during training,
is simply infeasible.

An important benefit of programmatic models is that they make
this verification problem more tractable. As described in Section 3.3,
it is sometimes possible to learn purely symbolic code that also have
a high performance in the learning objective. Such programs tend to
be parsimonious and compositional, and this makes them easier to
verify. Also, a high-level programming language facilitates abstraction.
For example, suppose that, given a program with neural and symbolic
modules, we replace the decisions made by the neural component with
nondeterministic choice. We can now use standard formal methods to
determine whether the resulting symbolic program is safe under all pos-
sible instantiations of this choice. If it is, then the original neurosymbolic
program is safe as well.

Safety at Convergence. So far, most work on formally verified pro-
gram learning has happened in the RL setting. The goal in these efforts
is to learn programmatic policies that come with formal proofs of safety.
In particular, the Pirl (Verma et al., 2018) and Propel (Verma et al.,
2019) approaches for programmatic RL (mentioned in Section 3.3) con-
sider formal verification of the learned program. Also, the closely related
Viper (Bastani et al., 2018) approach learns decision tree policies using
neurosymbolic methods with the primary objective of formal verification.
Properties considered here include:
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• Smoothness: Small perturbations to the (continuous) inputs of
a policy do not substantially change its (continuous) outputs
(Verma et al., 2018; Verma et al., 2019).

• Boundedness: Assuming the inputs of a policy are within a rea-
sonable bound, the policy outputs (continuous) are bounded as
well (Verma et al., 2018; Verma et al., 2019).

• Stability: The learned policy is provably stable (Bastani et al.,
2018).

• Functional correctness: The learned policy for a game (specifically,
Pong) leads to provable victory under reasonable assumptions
about competing players (Bastani et al., 2018).

Pirl, Viper, and Propel perform verification in a post-learning
phase. A problem with this strategy is there is no obvious course of
action is provided if the learned policy fails the requirements. One could
discard the policy and learn a new one, but there is no guarantee that
the newly learned policy will satisfy the requirement either. In response
to this challenge, Zhu et al. (2019) give a method for incorporating a
safety constraint into the program synthesis process. More details on
this method are available in Section 4.4.

Zhu et al.’s paper has a second interesting dimension. Extending prior
work on shielded, or simplex, control (Alshiekh et al., 2018), the paper
extends its safety guarantees to a certain class of neurosymbolic policies.
These policies have a neural module g(x) and a provably safe symbolic
module f(x) (a safety shield). By default, the neural component g(x) is
executed; however, before actually executing this module, a predicate
known as a safety monitor, is used to check if its execution can lead to
a potentially unsafe state. If so, the shield f(x) executed instead. The
overall policy h(x) can be described in code as

h(x) = if (ψ(x, f(x)) then f(x) else g(x). (3.3)

Zhu et al. give a way to synthesize the monitor and the shield
together such that h(x) is safe no matter what g(x) is. Importantly,
this construction does not require explicit formal verification of the
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neural network g(x). Thus, the approach can be seen to establish safety
through an abstraction of the neurosymbolic program that is ultimately
deployed on the agent.

Safety during Training. Safe exploration, or the problem of ensuring
safety during learning, is a well-studied problem in RL (Garcıa and
Fernández, 2015; Achiam et al., 2017). Most approaches to the problem
estimate the safety of policies statistically (Moldovan and Abbeel, 2012;
Chow et al., 2018; Achiam et al., 2017; Chow et al., 2018). However,
there are also recent efforts (Alshiekh et al., 2018; Fulton and Platzer,
2018; Anderson et al., 2020) that attack the problem using formal
methods.

Broadly, these approaches apply the idea of shielded control during
the training process. Specifically, Alshiekh et al. (2018) and Fulton and
Platzer (2018) construct spaces of formally verified shields before the
learning process starts. During the training process, a monitor predicate
observes the learner, forbidding all actions that cannot result from one
of these safe policies. If the learner is about to take a forbidden action,
a shield is executed instead.

One issue with these methods is that the shields and safety monitors
are constructed a priori and do not improve as learning progresses.
The recent Revel framework (Anderson et al., 2020) addresses this
weaknesses using by maintaining a neurosymbolic policy representation
as in Equation 3.3, but allowing updates to both the neural and the
symbolic components of the policy as training progresses. See Section 4.4
for more details.

3.5 Procedural Reasoning

We say that an AI system exhibits procedural reasoning when it ac-
complishes multi-step tasks that involve program-like abstraction mech-
anisms such as looping, functional abstractions, and symbolic data
structures. Procedural reasoning is one of the key challenges of contem-
porary AI systems, as evidenced by their poor inductive generalization
on a wide range of procedural tasks such as database question answering
and embodied instruction following (Keysers et al., 2020). Neurosym-
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bolic programs offer a task representation that inductively generalizes
by construction, by the virtue of retaining many of its task parameters
in explicit symbolic form. In addition, they represent a form of explicit
System-2 reasoning as a logical and algorithmic procedure (Kahneman,
2011). This has made neurosymbolic programming effective as a means
to solve algorithmic tasks such as question answering (Amizadeh et al.,
2020) or learn representations of human-made semi-structured objects
such as graphical illustrations (Young et al., 2019).

Question answering is a quintessential reasoning task – it requires an
AI system to translate a natural language question into an interaction
plan over an underlying knowledge base (e.g. a relational database, a
knowledge graph, an image or its scene graph) that retrieves or computes
the answer to the question. While purely-neural approaches that emit a
symbolic program (e.g. SQL for a relational database or SPARQL for a
knowledge graph) are effective, they often fail to inductively generalize
to different parameterizations of the same question or exhibit other
compositional generalization (Keysers et al., 2020). They also require
limited symbolic DSLs for interacting with non-discrete KB modalities
such as images and video.

Neural module networks (Andreas et al., 2016b; Hu et al., 2017; Liu
et al., 2019a) are the first neurosymbolic approach to visual question
answering. Their key idea is to represent each visual operation in the
target program (e.g. Find[apple]) as a neural module with learnable
parameters, which compose into an end-to-end differentiable program
to answer a question. Figure 3.4 shows an example.

Question answering via NMNs typically involves two stages. In the
first, semantic parsing maps the question into a program, which includes
the required operators and their symbolic parameters. In the second,
each operator is replaced with its neural module representation, and
the resulting neurosymbolic program is executed to obtain the answer.
The two phases are connected via a discrete decision, which complicates
end-to-end training of neural modules. They can be either pre-trained
in a separate phase using supervised programs (Vedantam et al., 2019;
Amizadeh et al., 2020) or trained end-to-end using gradient estimators
such as Gumbel-Softmax (Liu et al., 2019a).
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Figure 3.4: An example neural module network for visual question answering
(by Andreas et al. (2016b)). The neurosymbolic program where[dog] is composed
of a neural module where, implemented as a trainable CNN fθ, and its symbolic
parameter dog. The symbolic architecture of this program can be either inferred
from dependency tree parsing, or synthesized.

TAPAS (Herzig et al., 2020) instead follows the Neural-λ pipeline (Sec-
tion 2.2.1) by training a neural semantic parsing model that culminates
in a single layer of symbolic program operators such as COUNT. These
operators allow a soft differentiable estimator, which makes the model
end-to-end differentiable. At training time, TAPAS optimizes the ex-
pected semantic parsing result by computing a probability distribution
over all operators and averaging the corresponding operator estimations.

Neurosymbolic reasoning is also effective to elicit inductive general-
ization in other reasoning domains. Chen et al. (2019) develop a Neural
Symbolic Reader (NeRd) architecture for reading comprehension, i.e.
question answering over natural language passages. Its neurosymbolic
programmatic representation of the question combines symbolic or
mathematical operators such as COUNT or ARGMAX with pointer-based
neural operators for selecting spans out of the passage based on given
keys. Similarly to other NMN systems, NeRd is weakly supervised and
trained using hard EM with thresholding. Thanks to its explicit reason-
ing capabilities, NeRd significantly outperforms neural baselines on the
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challenging DROP (Dua et al., 2019) and MathQA (Amini et al., 2019)
benchmarks that require mathematical and multi-step inference.



4
Learning Algorithms

In this section, we discuss in more depth the main categories of learning
algorithms in neurosymbolic programming.

4.1 Symbolic Search

In symbolic program synthesis, the core learning algorithms that have
enabled numerous successful applications are enumerative, solver-driven,
deductive, and evolutionary program search (Gulwani et al., 2017).
Given a domain-specific language L and a specification φ, the goal of
program search is to discover a program expression e ∈ L that satisfies φ
(written e |= φ). The specification φ can take many forms, including pre-
postconditions, types, input-output examples, or equivalent programs.

Gulwani et al. (2017) present an extensive overview of symbolic
program synthesis techniques. In this section, we will outline them
at a high level, along with representative examples of their usage in
neurosymbolic programming. Symbolic program synthesis proves ef-
fective in a multitude of neurosymbolic applications, typically either
as a backbone search process for symbolic program sketches (program
architectures), or as a neurosymbolic pipeline stage with a specification
φ deduced neurally.

198
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4.1.1 Enumerative search

Enumerative search (Udupa et al., 2013) follows the grammar of the
DSL L and iteratively constructs candidate programs e from smaller
ones to bigger ones until it finds a program that satisfies the spec φ. It
maintains a cache of previously examined program expressions, which
are used as constituents to construct bigger candidate expressions, fol-
lowing the principle of dynamic programming. The search can either
follow the grammar top-down (from its root to its leaves), or bottom-up
(from its leaves to its root). A top-down search grows partial program ex-
pressions by iteratively expanding their holes into appropriate grammar
productions (e.g. PLUS(??, ??) → PLUS(??, VAR(x ))). A bottom-up
search grows smaller program expressions by assembling them as con-
stituents into larger program expressions (e.g. VAR(x ) and CONST(1)→
PLUS(CONST(1), VAR(x ))). Enumerative search sometimes uses the
specification to drive exploration but typically only uses it to validate
candidate programs.

In neurosymbolic programming, enumerative search is often used
to drive program synthesis for neurosymbolic programs identically
to its use for synthesis of symbolic code. The transfer learning tool
Houdini (Valkov et al., 2018), discussed in detail in Section 4.6, uses
enumerative search to iterate over strongly-typed neurosymbolic pro-
gram sketches, whose parameters are then learned using gradient descent
(Section 4.2).

Formally, Houdini first uses the training set D to identify a type
signature τ0 for the desired neurosymbolic program e. Its language of
types, shown in Figure 4.1, uses the idioms of functional programming
such as algebraic data types (ADTs) and higher-order combinators, to
strongly-type any neurosymbolic program expressible as a composition
of feed-forward layers, graph convolutions, or recurrent networks. Strong
typing of expressions and sub-expressions allows Houdini to efficiently
enumerate programs that compose to conform to τ0, eliminating ill-
typed expressions during the search. Each full program candidate is
a neurosymbolic program composing a mixture of pre-trained neural
modules from a given library L and un-trained neural modules. Since
every such program candidate is fully differentiable, the parameters
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of its fresh modules can be learned with gradient descent. The overall
optimization process of Houdini thus alternates between enumerating
the space of appropriately-typed programs and recording the trained
performance of each candidate program until convergence to the desired
performance.

Type τ ::= A | TT | ADT Atom A ::= bool | real

Tensor TT ::= Tensor ⟨A⟩ [m1][m2] . . . [mk] ADT ::= A | α ⟨ADT ⟩
Functor F ::= ADT | F1 → F2 α ::= list | graph

Programs over a library L :
P ::= fw :: τ | P1 ◦ P2 |mapα P | foldα P | convα P

Figure 4.1: Top: The grammar of types for neurosymbolic programs of Houdini.
Bottom: The grammar of Houdini programs over a library L of neural modules. Here
fw :: τ are library modules of type τ with learned parameters w; map, fold, conv
are higher-order combinators whose arguments are neurosymbolic lambda functions;
m1, . . . , mk are integers defining a tensor’s shape.

Domain-specific enumerative search has also been applied to neu-
rosymbolic generative models, e.g. by Young et al. (2019) and Mao
et al. (2019). Such a model generates a semi-structured 2D image or 3D
scene via a neurosymbolic composition of programmatic operators and
image/scene generative networks, e.g. as in Young et al. (2019).

Figure 4.2 shows an image with repetitive structure and a learned
program that generates this image. The architecture of the program is
generated using a domain-specific program synthesis algorithm over the
grammar of 2D loops with an enumerative grid search component for
their parameters.

4.1.2 Deductive and Solver-driven search

Deductive search (Manna and Waldinger, 1971; Polozov and Gulwani,
2015) is an extension of top-down enumerative search that recursively
decomposes the spec φ into smaller sub-specs {φj}j s.t. (a) the solution
to the synthesis problem e |= φ can be reconstructed out of the sub-



4.1. Symbolic Search 201

→

Figure 4.2: Programmatic generative models for repetitive structures (figure from
Young et al. (2019)).

problem solutions ej |= φj , and (b) the sub-problems φj can be solved
via recursive application of deductive search. Typically φj represent
either constraints on the subexpressions of the desired program or sub-
constraints of the original spec φ. Deductive search is often augmented
with neural or probabilistic guiding policies that prioritize some sub-
tasks φj in the search (see Section 4.3).

Solver-driven search (Solar-Lezama et al., 2006; Jha et al., 2010;
Torlak and Bodik, 2013) translates the space of programs L and the
spec φ into a joint formal constraint for a SAT or SMT solver such
as Z3 (Moura and Bjørner, 2008). A satisfying assignment of variables
in the constraint corresponds to a single program e ∈ L s.t. e |= φ by
construction. High-level frameworks and constraint languages often help
produce an efficient encoding of the desired constraint. For example,
Sketch (Solar-Lezama, 2009) translates a C-like program with syn-
tactically limited holes (which act as the spec φ) into a SAT/SMT
constraint. Rosette (Torlak and Bodik, 2013) is a framework embedded
into the Racket virtual machine that translates a subset of the Racket
language into an SMT constraint using symbolic execution. In all cases,
the semantics of the program execution and the spec must be expressible
in some SMT theory (Barrett et al., 2010).

Most applications of deductive and solver-driven search use neu-
rosymbolic learning algorithms to synthesize symbolic code. This in-
cludes neural-guided search, described in Section 4.3, and neurosymbolic
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Figure 4.3: Learning of generative programs for 2D graphics images (figure adapted
from Ellis et al. (2018b)). Black arrows represent a top-down generative model:
Program→Spec→Image. Red arrows represent a neurosymbolic inference pipeline:
Image→Spec→Program.

pipelines, described in Section 2.2.1. Neural-guided search (Ellis et al.,
2020; Kalyan et al., 2018; Parisotto et al., 2017; Ji et al., 2020) uses
a probabilistic or neural policy π : φ 7→ Rn to prioritize branches of
the program search tree characterized by their sub-task specifications
φj . Neurosymbolic pipelines, such as works by Ellis et al. (2018b) and
Chen et al. (2020b), process the input using a neural component to
learn a specification that is passed to a symbolic program synthesis
components (with possible feedback). For example, Ellis et al. (2018b)
synthesize generative programs for semi-structured 2D drawings by first
neurally parsing the drawings into atomic strokes and shapes, and then
using those as a specification φ for a solver-driven program synthesis
algorithm (see Figure 4.3). While an application of such hybrid pipeline
to learn a program for a given input constitutes neurosymbolic learning,
the learned program typically comprises of symbolic components only.

A notable exception is DeepProbLog (Manhaeve et al., 2018),
which integrates neural components into the ProbLog (De Raedt et al.,
2007) probabilistic logic programming system. In ProbLog, atomic
facts q(t1, . . . , tm) :: p are annotated with their probabilities p. When
such facts appear as outputs of neural modules, the modules can be
interpreted as predicates in the ProbLog system and seamlessly inte-
grated into the inference process of logical programming. For example, a
neural module Mw : R28×28 → [0, 1]×10 classifying MNIST digits can be
interpreted as a neural predicate emitting probabilities for its associated
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facts digit(v⃗, d), where v⃗ ∈ R28×28 is a feature vector for a MNIST
image, and d ∈ [0, . . . , 9]. Formally, such neural predicate defines an
annotated disjunction

nn(Mw, v⃗, [0, . . . , 9]) :: digit(v⃗, 0); . . . ; digit(v⃗, 9).

where the notation nn(Mw, v⃗, d) indicates that the associated probability
for a disjunct digit(v⃗, d) is obtained by evaluating the network Mw(v⃗)
and retrieving its dth normalized probability from the output layer.

Learning of the parameters w of these predicates happens jointly
with a logical inference process. Specifically, during learning, a Deep-
ProbLog program is automatically annotated with gradient semiring
tuples (p,∇p). Here p is each fact’s probability, and ∇p is the probabil-
ity’s partial derivative w.r.t. the program’s parameters w. This allows
using the ProbLog inference mechanism to compute the gradient of
the desired loss through the ground program. The gradient is then
passed directly to an auto-differentiation framework to optimize the
parameters w, iterating until convergence. The desired loss ensures that
the user’s query statement in a logic programming system is satisfied
above a certain threshold of probability.

4.1.3 Evolutionary Search

Evolutionary methods are a popular paradigm in classical program
synthesis (Krawiec, 2016; Le Goues et al., 2011). These methods iter-
atively update a pool of candidate programs written in a DSL L. A
fitness function derived from the specification of the synthesis problem
is used to filter this pool. Mutation and crossover operations mimicking
biological evolution are used to grow the pool.

Evolutionary methods are also a popular choice for architecture
search for neural networks (Liu et al., 2021). Deep learning approaches
that use such architecture search can be seen as a form of neurosymbolic
program learning, as any neural architecture can be represented as a
program. That said, most existing work on neural architecture search
only aims to automate low-level design decisions such as the width of
convolutional filters, the details of the gating mechanism, and so on.
The use of such a restricted, low-level DSL sets these methods apart
from most methods that we consider in this monograph.
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Recent work by Real et al. (2020) significantly extends the mandate
of neural architecture search and brings it closer to general program
synthesis. Here, the goal is to discover entire machine learning algorithms,
expressed in a generic programmatic notation, that perform well on a
given set of tasks. Evolutionary methods are used to solve this problem.
It is shown that the resulting framework can rediscover contemporary
neural architectures and algorithmic techniques, for example, bilinear
interactions, normalized gradients, and weight averaging. Also, the
synthesis method is shown to adapt to different task types — for instance,
in settings with limited data, dropout emerges as a top candidate.

4.2 Gradient-Based Search

One of the distinguishing features of deep learning is the use of stochastic
gradient descent as the underlying search mechanism, so it is natural to
ask whether the same mechanism can be used to search for programs.
This can be particularly valuable when the goal is to discover hybrid
programs that include both program-like features—branches, loops,
recursion and potentially even complex data-types—but also some
numerical computation, which may even include small or not-so-small
neural networks.

There is a whole space of solutions that have attempted this in
different forms, but they all involve the use of gradient-based optimiza-
tion at synthesis time. This stands in contrast to neural-guided search
techniques, which perform gradient-based learning at meta-learning
time. Also, the program returned to the user is the direct result of
the optimization process, unlike the Distillation approaches where the
gradient-based learning is just one step in the process of searching for a
discrete program.

There are two major constraints that all the techniques in this space
have to cope with. First, the space of programs is fundamentally discrete,
so searching this space through continuous optimization necessarily
requires us to come up with a continuous approximation for this search
space; we can refer to this as structural discontinuity. And second, the
programs themselves may have discrete behavior, especially if they
involve conditionals. So even if the discrete architecture of the program
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is already given, one may still need a continuous approximation of the
program in order to search for numerical parameters within the program;
we refer to this second kind of discontinuity as parameter discontinuity.

To illustrate this issue, consider the program shown below, which
encodes a space of programs as a parametric program. The structural
discontinuity is illustrated by the parameter α, which represents a
discrete choice between adding or multiplying at every iteration of the
loop. The parameter β, by contrast represents a continuous choice, but
the output of the overall program is still discontinuous on this choice β;
in the strictest sense, the gradient for the output t with respect to β is
either zero or undefined for every point in the space, even after fixing
the choice of α.

t = 0;
while(x > y){

if(α){x = x ∗ β}
else{x = x+ β}
t = t+ 1;

}
return t;

The challenge in using gradient search on programs is to cope with both
of these types of discontinuities.

Program smoothing, introduced by Chaudhuri and Solar-Lezama
(2010), was one of the early responses to these challenges. The idea be-
hind that work was to represent the overall search space as a parametric
program similar to the one shown above, but to reduce the structural
discontinuity to parameter discontinuity, for example, by replacing the
code if(α) above with if(α > 0) so that α is now a continuous pa-
rameter, but it still has a discontinuous effect on the function. The
parameter discontinuity is then handled by symbolically approximating
the effect of running the program on a Gaussian distribution of inputs
and then computing the expected value at the output.

Chaudhuri et al. (2014) used a similar approach to synthesize pro-
grams that could be verified to satisfy a set of probabilistic assertions.
Instead of smoothing the execution of the program itself, this paper
smoothed execution of an abstract interpretation of the program, and
in that way was able to find parameters that allowed the program to
verify with that abstract interpretation.
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Subsequent work on differentiable program interpreters (Gaunt et al.,
2016; Riedel et al., 2016; Gaunt et al., 2017) connected continuous re-
laxations with automatic differentiation. These papers gave frameworks
for writing parameterized programs that use high-level constructs for,
among other things, looping, branching, and procedure calls. These pro-
grams are interpreted using a differentiable abstract machine. Program
parameters are discovered via backpropagation through this abstract
machine.

In principle, the parameters in these programming frameworks could
dictate a choice between discrete program statements. In practice,
however, the frameworks require detailed, hand-written templates, and
general search over discrete program architectures is not allowed. This
sets these methods apart from most of the other methods considered in
this monograph.

The DiffLog (Si et al., 2019) approach to inductive logic program-
ming is an example of how gradients can be used to search over program
architectures. The goal in this work is to learn or select a subset of rules
that explains a dataset, starting from a large, predefined set of Datalog
rules. DiffLog’s learning algorithm relaxes this discrete search problem
into a continuous problem in which rules have real-valued weights, and
the goal is to find an optimal weight assignment. Once this continuous
problem is solved, the algorithm uses certain properties of Datalog to
recover the discrete-valued target program.

The general approach of synthesizing programs using gradient de-
scent works well for simple problems. However, on more complex tasks,
gradient-based search becomes more challenging. The issue is that differ-
entiability is just one element that makes deep neural networks effective,
and that there are two other elements that smoothed programs tend
to lack. The first one is overparameterization. Unlike a neural network,
a smoothed program will often have a lot of structure and relatively
few parameters, leading to an optimization landscape with many local
minima. The second one is what may be termed “derivative engineering”;
many well known neural architectures such as LSTMs and residual net-
works owe their existence to the fact that more na ive architectures can
end up with gradients that either vanish or have numerical instabilities.
When taking derivatives over smoothed programs, a user must ensure
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that such vanishing gradients or numerical instabilities do not arise,
and this can be challenging.

A recent method, dPads (Cui and Zhu, 2021), tries to address
the overparameterization issue by coupling gradient-based search with
neural relaxations. The method’s goal is to synthesize both the architec-
tures and the parameters of symbolic programs. To this end, it follows
the lead of recent work on gradient-based architecture search for neural
networks Liu et al., 2019b and defines a continuous relaxation of the
space of programs. This relaxation involves neural elements with many
parameters. We elaborate on this method further in Section 4.5.

Hamiltonian Monte-Carlo (HMC; see Neal (2011)) methods, which
use gradients to guide a sampling process, form another promising
direction. HMC has been popular in probabilistic programming lan-
guages such as Stan (Carpenter et al., 2017) and Pyro (Bingham et al.,
2019) where one cares not just about finding a single optimal solution
but finding a representative sample over some prior conditioned by
some constraints. The probabilistic programming language Omega com-
bines program smoothing with HMC in an algorithm called predicate
exchange that allows it to condition the search on complex boolean
predicates (Tavares et al., 2019).

4.3 Learning to Synthesize

A key challenge in generating symbolic programs is the large combi-
natorial search space of all possible discrete programs. One common
approach for tackling this large search space is to learn to synthesize,
i.e., to learn, from data, neural policies that generate probability dis-
tributions over the space of programs. These distributions can then be
used to guide the combinatorial search to efficiently identify the desired
program.

Let L denote a domain-specific language (DSL) for a given domain
D. In neural program synthesis, the goal is to find a program P ∈ L
that satisfies a given specification φ. Quite often, the specification is
defined using a set of input-output examples φ ≡ {(Ij , oj)}j , such
that the desired program P produces the corresponding output when
executed on the input, i.e. ∀j : P (Ij) = oj . However, in certain cases,
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Figure 4.4: An example array program in the Deepcoder DSL together with the
corresponding input-output example from Balog et al. (2016). The goal here is to
automatically synthesize the program on the left given the input-output example.

the specification could also be more ambiguous, for example, a set of
keywords (Murali et al., 2018).

Deepcoder (Balog et al., 2016) is a neural program synthesis
system that first learns a probability distribution over the DSL operators
given the input-output example specification, and then uses the learnt
distribution to guide an enumerative breadth-first or depth-first search
over DSL programs. Formally, it trains a policy π : φ → Rn, where
n denotes the number of operators in L. Given a specification φ at
test time, it calls the policy π(φ) to return a distribution over DSL
operators and assigns a probability score to each operator. It then uses
the probability scores to assign scores to different programs P ∈ L and
uses a greedy algorithm to explore the search space to find a program
that is consistent with the specifcation.

An example task for synthesizing an array manipulation program
considered by Deepcoder is shown in Figure 4.4. The DSL consists
of first-order functions such as HEAD, TAIL etc. as well as higher-order
functions such as MAP, FOLD etc. where only certain pre-defined lambda
functions can be used. Using large amounts of synthetic training data
of randomly sampled programs in the DSL, Deepcoder trains a policy
that predicts probabilities of functions in the DSL given an input-output
example. Some example predictions are shown in Figure 4.5. Finally, it
uses these predicted probabilities to guide an enumerative depth-first
or a breadth-first search over DSL functions to generate a program that
is consistent with a given input-output example.

In contrast to Deepcoder that only learns the initial distribution
over DSL operators, Neuro-symbolic program synthesis (Parisotto et al.,
2017) learns a distribution over programs to guide every step of the
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Figure 4.5: The probabilities of different functions in the DSL predicted by the
trained neural network given the input-output example for different example tasks
(one row per task) taken from Balog et al. (2016). The synthesis algorithm then uses
these probabilities to guide an enumerative breadth-first or depth-first search.

program search as shown in Figure 4.6. More concretely, it trains a
policy π : (p, φ)→ R|c(p)|, where p denotes a partial program in L and
c(p) denotes all possible completions of the partial program p given the
grammar of the DSL. It presents an architecture called R3NN (Reverse-
Recursive-Reverse neural network) to encode partial program trees.
Similar to recursive neural networks, it first performs a bottom-up pass
over a program tree to compute distributed representations of the tree
nodes starting from the leaf nodes. It then perform a top-down pass,
where it updates the node representations using a new set of weight
matrices by conditioning on parent nodes. Finally, it uses the updated
leaf node representations to generate a distribution over promising
non-terminal nodes to expand next for the search.

RobustFill (Devlin et al., 2017) uses seq2set2seq models using
attention to learn a distribution over complete programs. This approach
trains a policy π : φ → R(n×s), where n denotes the vocabulary size
of the DSL and s denotes the length of the target program. The pol-
icy first uses bi-directional LSTMs to encode each input and output
strings for each example individually, and then uses a decoder LSTM to
generate latent program embeddings for each example while attending
over the example embeddings. Finally, it uses a max pooling over the
latent embeddings to generate a distribution over program sequence,
where beam search can be used to generate programs from the learnt
distribution.
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Figure 4.6: Parisotto et al. (2017) trains a policy to guide the program search
at each intermediate step. It uses R3NN architecture to learn a distribution over
next expansion of a partial program given the input-output example and the current
partial program. The search terminates when there are no non-terminal nodes left to
expand in the partial program.

Bayou (Murali et al., 2018) learns an encoder-decoder, trained
using variational methods, that maps specifications to distributions over
syntactic abstractions, or sketches, of programs. Sketches generated
from this distribution are concretized into complete symbolic programs
using classic methods for program synthesis (Alur et al., 2015).

Neural-Guided Deductive Search (NGDS) (Kalyan et al., 2018)
uses a hybrid search approach where the policy is used to guide a
deductive synthesis search. The deductive search (Polozov and Gulwani,
2015) recursively decomposes the original synthesis task φ into smaller
sub-tasks {φj}j such that same deductive principles can be further
applied to the sub-problems φj . NGDS learns a policy π : φ → Rk,
where k denotes the number of sub-problems at a given search depth
to prioritize selection of promising sub-problems amongst all possible
decompositions.

A common theme for many of these learning-to-synthesize ap-
proaches is using synthetic datasets of programs and specifications
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to train the guiding policy. To generate such training datasets, one
common methodology is to first sample random programs P ∈ L and
then use pre-conditions of P to sample a set of random inputs I ≡ {Ij}j
such that they are valid inputs for the program. The program P is then
executed on the inputs to generate corresponding outputs O ≡ {oj}j .
Generating datasets using such sampling methods can potentially intro-
duce some biases and some recent techniques have been proposed to
generate more diverse and balanced datasets for training the guiding
policies (Shin et al., 2019b).

The neural search policies used in the learning-to-synthesize paradigm
are usually trained using supervised learning on the synthetically gener-
ated specification and program pairs. One issue with such supervised
learning approaches is that they do not capture cases when there are
multiple possible correct programs that are consistent with a given
specification. Some techniques (Bunel et al., 2018; Chen et al., 2020b)
use reinforcement learning to alleviate this issue. The central challenge
in these methods is that the reward landscape here is extremely sparse,
as “bad” programs vastly outnumber the “good” ones. This makes it
difficult to train an RL policy directly for learning the search policy.
To overcome this problem, Bunel et al. (2018) first train a supervised
model for program generation. Then they use the Reinforce algo-
rithm to fine-tune this distribution by sampling programs from the
distribution and giving a positive reward for a program that, when
executed, produces the desired output. The approach by Chen et al.
(2020b), applicable to tasks in which the search objective is to satisfy a
hard constraint, uses automated deduction to prune out subspaces of
undesirable programs as the search progresses. One interesting aspect
of this approach is that the deduction algorithm can give feedback not
only about programs that can be generated using the current search
policy, but also programs that are “out-of-distribution” (i.e., produced
by search actions that have not been explored so far). The method uses
an off-policy RL algorithm (Levine and Koltun, 2013) to make use of
such feedback.
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4.4 Distillation

In machine learning, knowledge distillation Hinton et al. (2015) refers
to methods that transfer the knowledge stored within a trained, high-
capacity model (the teacher) to a lower-capacity model (the student).
For example, the teacher could be a large neural network, and the
student could be a decision tree or a small network. The traditional
reason for distillation was to execute learning models on platforms with
limited computational resources. However, in the recent past, distillation
has also emerged as a key tool for learning symbolic and neurosymbolic
programs.

In distillation-based approaches to program learning, one starts
with a neural or neurosymbolic teacher function g that is learned
using gradient-based optimization. The core distillation operation is to
synthesize a fully symbolic program, with the same domain and range as
g, that maximally imitates the input-output behavior of g. In versions
of the problem that arise in safe or verified learning (Section 3.4),
the symbolic program is additionally required to satisfy a correctness
constraint. In all cases, the symbolic program can then be used to
construct a new teacher that can be updated and distilled again.

Formally, let us assume a space F of symbolic programs (satisfying
relevant syntactic and semantic constraints), a distribution D over func-
tion inputs that we can statistically estimate, and a distance function
δ over the space of function outputs. The problem of distilling into
programs can be can be stated as

f∗ = arg min
f∈F

Ex∈D δ(f(x), g(x)) (4.1)

For distillation to be profitable, the above problem must be easier
than the end-to-end program learning problem, and the teacher g

should be easy to construct. These assumptions hold in the setting of
reinforcement learning (RL), which is where most distillation-based
program learning has been applied so far.

Specifically, Pirl (Verma et al., 2018), Viper (Bastani et al., 2018),
and Propel (Verma et al., 2019), described earlier in this paper, are
three distillation-based approaches to RL. The goal in all of these meth-
ods is to learn a fully symbolic, programmatic policy that maximizes an
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RL agent’s long-term reward. Pirl and Viper approach this objective
through a two-step process. Both methods first learn a neural policy
that performs well in the task objective using a standard deep RL
algorithm. This neural network is then distilled into a symbolic program
using online imitation learning, a family of methods for learning policies
that behaviorally mimic a given oracle policy. Specifically, Pirl and
Viper use variants of Dagger, an imitation learning algorithm that
grows a dataset of input-output pairs through repeated queries to the
oracle. Distillation amounts to finding a program that fits this dataset,
i.e., an instance of supervised program learning.

The subsequent Propel approach (Verma et al., 2019) incorporates
the distillation procedure inside an iterative training loop. Specifi-
cally, the framework considers neurosymbolic policies h(x) of the form
f(x) + g(x), where f(x) is a neural policy and g(x) is a symbolic policy
expressible in a DSL. The set of symbolic policies is viewed as forming a
proper subset Π of the set H of neurosymbolic policies, and the discovery
of an optimal symbolic policy is framed as a constrained optimization
task. The learning process, an instance of approximate functional mirror
descent, starts with an initial, suboptimal neurosymbolic policy. In each
learning step, it iterates between:

1. Applying a series of gradient updates (UpdateF) to the current
neurosymbolic policy. Importantly, these updates are based on
the gradient of the neural component of the policy, and is thus an
approximation to the true gradient in the H-space.

2. Using an operation ProjectΠ to distill this neurosymbolic policy
into a symbolic policy, which is then lifted back into the neurosym-
bolic space H.

Thus, both the neural and the symbolic components of the program
are learned from data through a synergistic process. The approach is
visually depicted in Figure 4.7 from Verma et al. (2019).

Several recent efforts extend the above ideas to settings involving
a formal safety property. In particular, a method by Zhu et al. (2019)
(previously alluded to in Section 3.4) uses a combination of imitation
learning and counterexample-guide inductive synthesis to distill a neural
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Figure 4.7: The Propel algorithm (figure from Verma et al. (2019)).

policy into a provably safe symbolic policy, without direct verification
of neural networks. The Revel approach (Anderson et al., 2020) for
formally verified exploration is an extension of Propel in which the
neurosymbolic policies have the form

h(x) = if (ψ(x, f(x)) then f(x) else g(x).

where f(x) is a shield (a safe symbolic policy), g(x) is a potentially
unsafe neural policy, and ψ is a symbolic monitor predicate. Each
learning iteration consists of an update to the neural component of
the current neurosymbolic policy, a distillation step that produces a
new monitor and shield, and a lifting operation that constructs a new
neurosymbolic policy. The main difference from Propel is that each of
these steps maintains the invariant of provable safety.

Cranmer et al. (2020) offer an example of distillation-based program
learning outside the RL setting. The goal here is symbolic regression,
i.e., the automatic discovery symbolic mathematical equations from
labeled data; however, the method can be extended to more general
programs as well. The algorithm in this work first trains a sparse graph
neural network on the input dataset. Next, it uses genetic programming
to distill components of this network into explicit symbolic expressions.
Collectively, these expressions describe physical relationships between
objects that the data describes.



4.5. Neural Relaxations 215

Figure 4.8: An example of program learning formulated as informed search, from
Shah et al. (2020). Nodes represent incomplete program architectures, constructed
in a top-down manner. The numbers in red represent static “structural costs” for the
use of various program constructs. The values of the neural heuristic are in black,
prediction errors ζ are in blue, ◦ refers to a “hole” in a partial architecture, and the
path to a goal node returned by Near is in teal.

4.5 Neural Relaxations

Another class of learning algorithms is based on neural relaxations of
programs. These methods are motivated by the insight that one can
interpret programs as a constrained or regularized subspace of functions
learnable by deep neural networks.

Formally, we can think of the space of programs L ⊂ H as a subset
of the space of functions learnable by deep neural networks H. Given a
training loss function C, we can then write the learning optimization
problem as

arg min
P ∈L⊂H

C(P ). (4.2)

The goal then is to learn a program that minimizes C (e.g., has small
classification error). While learning over L directly suffers from combina-
torial intractability issues, learning over (subsets of)H is straightforward
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using modern deep learning techniques. The key idea of neural relax-
ations then is to leverage the fact that we can effectively learn (or
search) over H in order to effectively learn over L.

The Propel approach (Verma et al., 2019) from Section 4.4 is
partly based on the idea of neural relaxations. As explained earlier,
Propel views (4.2) through the lens of constrained mirror descent:
in any iteration of the learning algorithm, one takes an unconstrained
update step into H space (via deep learning), then projects back to
the L space (through distillation into a fully symbolic program using
methods discussed in Section 4.4), then lifts the distilled into the H
space. This last step can be viewed as applying a relaxation.

The Near (neural admissible relaxations) approach (Shah et al.,
2020) uses neural relaxations to guide a combinatorial search over
program architectures. The method views a neural relaxation as an
admissible heuristic, which can be used to instantiate informed search
algorithms, such as A*-search, over discrete program architectures. The
key difference between this approach and other neural-guided search
methods discussed in Section 4.3 is that, rather than training a neural
net to predict good search directions, the neural relaxation is directly
trained to find a high-performing neural net that is functionally similar
to a program.

Specifically, Near considers a search procedure in which program
architectures are constructed top-down (see Figure 4.8). This procedure
can be seen to traverse a program derivation graph whose nodes are
partial and complete program architectures. To apply informed search
methods such as A* to this graph, one requires an admissible heuristic
that lower bounds the best error achievable from an internal node in
the graph (a partial program architecture). A trivial lower bound is 0,
but in that case A*-search reduces to breadth-first search which suffers
from high combinatorial cost. If the heuristic is perfectly tight (i.e., the
lower bound is tight), the A*-search reduces to Dijkstra’s shortest path
algorithm (which runs in polynomial time). In Near, each incomplete
program architecture is relaxed by substituting its “holes” (missing
sub-structures) by neural networks. This relaxation is then trained end
to end. Because deep neural networks can be expected to perform at
least as well as the best program completion, the training loss on the
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deep neural network is lower bound on the loss of the best program,
hence it is an admissible heuristic.

Subsequent work by Cui and Zhu (2021) extends the ideas in Near
to develop an end-to-end differentiable method for program synthesis.
In this method, called dPads, the entire program derivation graph
is modeled as a differentiable program. That is, at each node in the
search graph, the categorical choice between different edges out of the
node (corresponding to the application of different grammar rules to
the partial architecture at the node) is relaxed into to a softmax with
trainable weights. The gradient updates for these softmax weights are
guided by a lower-level signal from the neural relaxations for the nodes
to which the edges lead. The optimization problem resulting from this
formulation can be challenging to solve. However, the paper proposes
several heuristic techniques, such as iteratively unfolding the graph and
sharing nodes between partial architectures, that somewhat simplify
the problem.

4.6 Transfer of Neural Modules

In general, the aim of transfer learning for abstraction is to induce
reusable modules–either neural, symbolic, or both–which can be reused
when solving new synthesis tasks (Section 3.2); here we focus on transfer
of neural modules. They operate via a “pre-training” phase, where this
inventory of neural modules is constructed, followed by a “deployment”
or test-time phase when this inventory is used to solve testing problems.
This deployment phase can use neural programming algorithms such as
the search algorithms discussed in Section 4.3.

During the “pre-training” phase, an inventory of small neural net-
works are composed to solve training synthesis tasks in tandem with
training the weights of each network. The size of this bank of neural
modules can either be fixed ahead of time–such as in modular meta-
learning (Alet et al., 2018b) and memoised wake-sleep (Hewitt et al.,
2020)–or grow in size after each training experience, such as in Hou-
dini (Valkov et al., 2018). At the test time or “deployment” phase,
these neural modules can be used wholesale when synthesizing solu-
tions to test problems, and so not need massive amounts of data to
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learn at test time. The programmatic, compositional reuse of these
neural modules supports strong forms a generalization. For example,
Houdini bootstraps neural networks for recognizing digits, which then,
when combined with arithmetic and control flow primitives, allow it to
calculate the sum of a list of digits represented as hand-drawn images.

At a high level, we formalize such approaches as follows. Let the
library I be a set of neural networks, and let Progs(I) be the space of
symbolic programs that can call out to members of I; referencing the
pseudocode in Sec. 2.2.1, the primitives catPos and tablePos would
be members of I, and the whole expression would be a member of
Progs(I). We also have a collection of N training specifications with
loss functions {Cn(·)}Nn=1. At train-time we synthesize N programs
{hn}Nn=1 minimizing the loss for each spec, and induce the reusable
library I. For instance, in a batched setting where all specs are available
at once, we could minimize the summed losses

I∗ = arg min
I

N∑
n=1

arg min
hn∈P rogs(I)

Cn(hn)

hn = arg min
hn∈P rogs(I)

Cn(hn) (4.3)

Houdini instead works through an incremental, lifelong learning setting
where a sequence of libraries {In}Nn=1 are constructed sequentially
while synthesizing each program hn ∈ Progs(In). Each program hn is
symbolic code that can call out to neural modules in In as well as new
neural modules, whose parameters are written θn. Writing hn(·|θn) for
the function computed by symbolic code hn with its new neural module
weights set to θn, Houdini iterates

hn(·|θn) = arg min
θn a weight vector

hn∈P rogs(In)

Cn(hn(·|θ))

In = In−1 ∪ {neural modules in hn−1(·|θn)}

where the optimization

arg min
θn a weight vector

hn∈P rogs(In)

Cn(hn(·|θn))
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works by an outer loop search over discrete program structures, and an
inner loop of gradient descent to optimize θn. This inner loop requires
that the program and loss be differentiable with respect to the module
parameters.

Houdini freezes the weights of its neural modules, but contemporary
meta-learning approaches (Finn et al., 2017) adapt pre-trained weights
to each new task. The modular meta-learning (MoMA) algorithm in-
troduced by Alet et al., 2018b combines Houdini-style pre-trained
modules with this weight adaptation. Writing Θ for the weights of all
of the neural modules in I, and h|Θ′ for the expression h with weights
assigned to Θ′, MoMA tries to solve for

Θ∗ = arg min
Θ

N∑
n=1

arg min
hn∈P rogs(I)

Cn(hn|Θn(Θ,hn))

Θn(Θ, h) = Θ− η∇ΘCn(h|Θ), where η is a learning rate

(Compare with Eq. 4.3: we have replaced I with Θ because the library
is defined solely in terms of the weights of each of its constituent neural
modules.) This optimization is difficult and so MoMA alternates between
using simulated annealing to infer a collection of low-loss hn’s, and then
taking gradient steps on Θ.

4.7 Transferring Symbolic Code

A symbolic transfer learning approach is to induce a library of reusable
symbolic code, typically by compressing out reused syntactic patterns
across a training corpus of programs. Figure 4.9 illustrates an example
output of one such system. Here, the system is initialized with basic
primitives for list processing and arithmetic–map, fold, etc.–and is given
a corpus of around 100 training problems, such as sorting a list, or
counting the number of even numbers in a list. It tackles these problems
by jointly synthesizing code satisfying each training spec, while also
building a library of reused functions that prove useful while solving the
training corpus–and which should transfer to similar problems in the
future. It builds this library by examining the source code of synthesized
programs and mining them for reusable templates. Figure 4.10 illustrates
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Figure 4.9: Adapted from Ellis et al., 2020. This example system transfers symbolic
code by learning a reusable library of expressions (middle, ‘Learned Library’) which
it uses to synthesize programs solving training specs, such as the input-outputs for
‘sort list’ (right, topmost). Before learning the system has rudimentary primitives
such as those shown at the left. Over its learning trajectory it defines new functions
that build on top of these (learned call graph notated with arrows). Using the learned
library, problems such as list sorting can be solved with relatively small amounts
of code (rightmost, middle). In principle these problems are solvable without the
learned library, but would be prohibitively lengthy in many cases (bottommost).

a special case of this library learning where the reused template is a
syntactic fragment of the synthesized programs.

Transferring symbolic code also opens up the possibility of super-
vised learning: learning the library by mining repeated code schemas
from ground-truth, human-written symbolic code. At the same time,
unsupervised approaches–which learn only from specifications–remain
viable by learning a library on the programs the system itself discovers.
A supervised system inputs a set of programs {en}Nn=1 and outputs
a set I of symbolic expressions, each of which is a reusable function.
An unsupervised system instead inputs a set of specs {φn}Nn=1. For
example, if we think of the library as producing a prior over expressions,
supervised maximum a posteriori learning of the library corresponds
to Eq. 4.4; unsupervised algorithms interleave an update like that of
Eq. 4.4 with a program synthesis step like that of Eq. 4.5

solve for library, supervising on programs:

I∗ = arg max
I

Pr(I)
∏
n

Pr(en|I) (4.4)

optional, unsupervised only: alternate with imputing programs:
en = arg max

e:
e|=φn

Pr(e|I∗) (4.5)
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Figure 4.10: Left: syntax trees of two programs sharing common structure, high-
lighted in orange, from which the system in Ellis et al., 2018a extracts a fragment
(reused syntactic template) and adds it to the library (bottom). Right: actual
programs, and proposed fragments that (top) slice from the beginning of a list or
(bottom) perform character substitutions.

As examples of unsupervised approaches, the EC2 (Ellis et al., 2018a)
algorithm alternates between (1) searching over a space of possible
libraries to find the library which best encodes the programs found
during the synthesis step of Eq. 4.4 (equivalent to this maximum a
posteriori formulation); then (2) updating {en}Nn=1 with this new library
according to Eq. 4.5; and (3) additionally training a neural program
synthesis network (Sec. 4.3) which guides search during synthesis, aiding
the optimization in Eq. 4.5. It also finds a set of programs solving each
task, which helps if there is ambiguity as to the correct program. There
is one such set for each of the N tasks, collectively written {Bn}Nn=1.
Using this notation, EC2 updates its library by marginalizing over
programs found solving each task

I ← arg max
I

Pr(I)
∏
n

∑
e∈Bn

Pr(e|I) (4.6)

Its neural network guides the search during its program synthesis step,
by predicting a spec-conditioned distribution over programs which is
then enumerated from. Writing Q(e|φ) for the distribution predicted
by the neural network, the synthesis phase is

Bn ← arg top k
e∼Q(·|ϕn)

e|=φn

Pr(e|I) (4.7)



222 Learning Algorithms

where k, number of programs we keep around for each task, is small
(typically k = 5). Above, the notation e ∼ Q(·|ϕn) should be read as the
expression being drawn from the distribution predicted by the neural
network, but algorithmically EC2 works by enumerating programs in
decreasing order according to Q(·|ϕn), and scoring them according to
1 {e |= φ}Pr(e|I).

Last, EC2 trains its neural network. The network learns to map a
spec to a distribution over programs likely to solve it. This network is
trained on programs found during the synthesis step (i.e. programs in
{Bn} given the corresponding specs {φn}). Additionally however, we
can use the current library to generate random programs and train on
those too. As the library learns to put more probability mass on realistic
programs, this randomly generated training data will grow more useful
for learning:

Q← arg min
Q

Eφ [KL(Pr(·|I, φ) || Q(·|φ))] (4.8)

≈ arg min
Q

En [KL(Pr(·|I, φn, e ∈ Bn) || Q(·|φn))]︸ ︷︷ ︸
train on programs found solving tasks

+

Ee∼Pr(·|I) [logQ(e|φe)]︸ ︷︷ ︸
train on randomly generated programs

, for a φe where e |= φe

This iterative scheme allows a kind of bootstrap learning that com-
pensates for the lack of supervision. The easiest synthesis problems
are solvable without the learned library, and ideally should expose
transferable abstractions which allow harder synthesis problems to be
solved. Over successive iterations, the learned library can build new
abstractions on top of those learned earlier by calling out to them,
much as human software engineers build more sophisticated libraries by
calling out to code in more basic libraries (Ellis et al., 2020). Thus even
the pretraining phase hinges on transfer of abstractions across synthesis
problems.

A complementary work in this space, PATOIS (Shin et al., 2019a),
combines library learning with semantic parsing. This work shows that
training a neural semantic parser is more effective when it parses into
expressions built using a learned library. They give a supervised library
learning system which optimizes for libraries whose components are
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both frequent and informative. Learning driven only by frequency yields
trivial components and learning driven only by informativeness yields
non-reusable components.

To balance both objectives, the idiom mining process of PATOIS op-
timizes for high coverage as well as high cross-entropy gain of each idiom.
Coverage measures the extent to which a candidate library component
is used in the dataset ( 1

n

∑
n 1 {ℓ ∈ en}, where ℓ is a candidate library

component). Cross-entropy gain measures a component’s expressivity,
defined as an average log-ratio of its probability under the inferred gram-
mar over the probability yielded by the basic probabilistic grammar of
the underlying language: 1

size(ℓ) log Pr(ℓ|I)
Pr(ℓ) , where size(·) measures the

size of a syntax tree, and Pr(ℓ) is a description-length prior over library
components.

Discussion. A key link between this symbolic library learning and
neural programming is that, once we have this transferable library,
we can train a neural program synthesis model to map between task
specifications and a distribution over programs built from the library
that are likely to solve that spec. Indeed, the MWS algorithm Hewitt
et al., 2020 performs both operations in tandem, jointly training a
bank of neural modules together with a neural program synthesizer
that learns to wire up these modules conditioned on a particular spec.
PATIOS accomplishes an analogous integration by conditioning the
neural synthesizer on natural language.

While transfer can support some forms of strong generalization
(see Valkov et al., 2018), the training examples should require concepts
that are, at minimum, useful for solving later tasks. Dechter et al., 2013
also shows that unsupervised methods require a spectrum of training
task difficulty: otherwise, there is too large a gap between easy and hard
problems, preventing the algorithm’s bootstrapping dynamics. Houdini
exploits this intuition further through its explicit curriculum of training
problems.
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4.8 Programmatic Weak Supervision

A completely different way to use programs is for them to generate
training signals for conventional machine learning. This idea is common
known as generating so-called “pseudo-labels” that can serve as proxies
for supervised labels. Pseudo-labels have been used most prominently in
the context of self-training (Daumé III, 2008; Sachan and Xing, 2018),
whereby a model trained a small labeled dataset is used to generate
labels on the larger unlabeled dataset. A recent interesting development
is to instead use programs to generate the pseudo-labels instead to
train the conventional machine learning approach (e.g., a handcrafted
“labeling” function that automatically generates labels to train a deep
neural network) (Ratner et al., 2016; Zhan et al., 2020; Sun et al., 2020),
which can lead to orders-of-magnitude savings in human effort compared
to annotation.

The basic setting is as follows. For now, suppose we are given a
program P that was hand-crafted by a domain expert. Then the goal is
to learn a neural representation h to optimize∑

x

[Csupervised(h(x), P (x)) + Cunsupervised(h, x)] , (4.9)

where Csupervised quantifies the ability of h(x) to predict P (x), and
Cunsupervised is a standard unsupervised learning objective such as
autoencoding (Kingma and Welling, 2013). The goal is for the program
P to provide pseudo-labels that can pre-train the neural representation
h to quickly learn from only a few ground-truth supervised labels.

The bulk of existing work has relied on hand-craft programmatic
labeling functions, as embodied in the above example, but there is also
interest in automatically learning such programs as well (Iyer et al.,
2019). In this latter case, the resulting learning problem becomes a a
cyclical one, whereby the conventional (deep) learning component is
providing a learning signal to the program learning component, and vice
versa. The key intuition is that the inductive bias of the programming
language is encouraging the program to learn or distill specific patterns
from the conventional machine learning model (i.e., we do not know
exactly what the right labels should be a priori, but they should satisfy
certain structure as encoded by our programming language). In this
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case one would alternate between learning h using P as in (4.9), and
learning P using h and the few ground truth labels. Figure 4.11 shows
a depiction of this workflow from Iyer et al., 2019.PLDI 2019, June 22–26, 2018, Phoenix, AZ A. Iyer et al.

Model TrainingAnnotated Inputs ML Model Noisy labels Program Synthesizer

Features All Inputs Constraints

Disjunctive ProgramSemi-automated AnnotatorAdditional Annotations

Figure 3. Data Extraction Framework

s. of Shri Alluri Satyanarayana Raju b. at

K-fname K-fname V-fname V-fname V-fname V-fname K-dob K-dob

Sequence:

Labels:

The features for a word are computed using its neighbouring words and labels
"K-" stands for key-based labels, and "V-" for value-based labels

Figure 4. Conditional Random Fields (CRFs)

program synthesizer. The synthesis algorithm needs to deal
with two major issues: noise in the speci�cation and the
multiplicity of formats. To overcome both these issues, the
algorithm uses sampling to generate candidate programs that
cover subsets of the data-set. Intuitively, the algorithm re-
peatedly samples small sets (of size 1 � 4) of inputs with the
goal of sampling a subset of inputs that are all of the same
format, such that the ML model produces correct outputs
on all the sampled inputs. Given these inputs and the corre-
sponding ML model outputs as the speci�cation, a standard
inductive synthesizer is capable of producing a program that
is not only correct for those speci�c inputs, but also other
inputs of the same format. Optionally, the user may provide
a type speci�cation, which we call �eld constraint, which
identi�es if a given extracted output (for a �eld) is correct
for a given input. For example, for the “Father’s name” �eld,
the constraint we use checks if each token of the produced
output is present in a dictionary of common Indian names.

Given 2 inputs where the value we want to ex-
tract lies between "Father’s Name:" and "Date
of Birth" (see Figure 1), the candidate synthe-
sized in the DSL is ValueBetween("Father’s Name",
"Date of Birth", inputTokens), i.e., extract between the
two relevant keys. On the other hand, given inputs of
di�erent formats, say with the keys “Father’s Name”
and “s. of”, along with the correct outputs, there is no
candidate synthesized.

From the generated candidate programs we compute a
subset of programs that cover all the inputs (across vari-
ous formats), and maximizes agreement with the ML model
outputs, as well as satisfaction of any given constraints.

The synthesis algorithm is parameterized by a Domain
Speci�c Language (DSL) L. Intuitively, we tune the expres-
sivity of the DSL such that, for a �xed format of inputs, the
DSL only contains programs that can extract equivalent parts
of the outputs. As a result, the synthesized disjunctive pro-
gram produces correct output on almost all inputs of a format
if the ML model is correct on a sizable fraction of inputs in
the format. This leads to signi�cant accuracy improvements
in the extraction algorithm.

Semi-automated annotator: Completing the loop. We
employ a feedback loop to iteratively improve the ML model
and the synthesis output. In cases where the ML model and
programs agree on the labels, we increase the con�dence
value of these labels. In cases where there are disagreement,
we use a semi-automatic procedure for resolution: We rank
programs by the number of inputs that are correctly pro-
cessed by the program. If an ML model output disagrees with
output produced by a highly ranked program, we declare
the program’s output as the winner. We use the modi�ed
labels to re-train the ML models and �nd that the re-trained
models have improved accuracy.

For the “Airport” �eld of the Expedia domain of the
M2H data-set, we automatically produce additional
training data by using the outputs of the disjunctive
program on these outputs (since these programs are
highly ranked). Using this additional training data, the
re-trained model has precision and recall of 0.99 and
0.99, as compared to 0.78 and 0.34 of the initial model.

In cases where there is a disagreement, but the program is
not highly ranked, we resort to user intervention to resolve
the disagreement. In this case, the synthesized programs are
shown to the user, who may either individually accept or
reject some of the programs, or provide annotations to �x

4

Figure 4.11: An example from Iyer et al., 2019 on using programs to provide weak
supervision for conventional machine learning. In this example, there is a cyclical
process where the predictions of the conventional learning approach act as noisy
labels that is “cleaned” using the programmatic structure. The program is then
used as a semi-automated annotator (which is cleaned or augmented by human
annotators) to further improve training of the conventional learning model.



5
Conclusion

In this monograph, we have discussed neurosymbolic programming, an
emerging branch of computer science that brings together ideas from
deep learning and program synthesis. The central ideas in this area
are to use a combination of neural and symbolic primitives and to cast
the learning problem as a form of program synthesis. Recent research
has identified multiple distinct ways of bringing together statistical and
symbolic techniques to solve this problem.

Now we summarize some of the challenges that research in this area
needs to address in the short to medium term.

Scalability. Perhaps the most immediate challenge in neurosymbolic
programming is scalability. Searching over discrete program architec-
tures is a combinatorially hard problem, and despite sustained effort
from the program synthesis community, program architectures that
can be automatically discovered through search tend to be small. In
contrast, end-to-end deep learning now scales to models with hundreds
of billions of parameters.

One response to this challenge is to use high-performance computing.
GPUs were a key contributor to the deep learning revolution. Likewise,
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methods for large-scale distribution and parallelization on specialized
hardware could go a long way in scaling neurosymbolic programming.
Prior work on parallelization of combinatorial problems such as SAT-
solving (Hamadi and Wintersteiger, 2012; Dal Palù et al., 2015), model
counting (Fichte et al., 2019), and model checking (Lerda and Sisto,
1999; Barnat et al., 2010) can form a starting point for research on such
methods.

However, better implementations can only go so far; we also need
fundamental algorithmic innovation. One hope in neurosymbolic pro-
gramming is that continuous methods and neural representations can
massively accelerate the generation of programs. In this monograph,
we have discussed multiple examples of such methods. However, these
efforts only scrape the surface of what is possible.

A key perspective in neurosymbolic programming is that program
synthesis and deep learning are part of a continuum, rather than discrete
categories. In particular, several approaches in this monograph allow
programs to be “largely neural”, i.e., describe the composition of a
small number of neural modules. Such programs can describe complex
functions with a small amount of symbolic code; thus, algorithms for
learning these programs can be largely gradient-based. Naturally, this
ease of learning requires us to trade off some of the benefits of symbolic
models. Future research should systematically explore these tradeoffs.

Specification Neurosymbolic programming assumes that one can sym-
bolically specify known facts about the world. However, such speci-
fication can be nontrivial. For example, DSLs for program learning
need to be carefully designed. An overly restrictive DSL would prevent
the discovery of interesting models. An overly permissive DSL would
make search too difficult and also encourage overfitting. The recent
DreamCoder project has explored neurosymbolic approaches to learn
the DSL from data (Ellis et al., 2020), but more research into this area
is needed to fully address the challenges of hand-crafting DSLs.

The same goes for semantic constraints, in particular, requirements
for safe neurosymbolic learning. There needs be sustained effort on
designing “canonical” symbolic requirements that can constrain and
guide learning in application domains. There are some efforts along
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these lines (Karimi and Duggirala, 2020; Dennis et al., 2016), but much
more can be done.

An important question in this kind of specification design is how to
align symbolic specifications with representations learned using neural
methods. For example, a DSL may use symbols such as pedestrian,
is-walking, and velocity; however, associating these symbols to neu-
ral representations computed by a neurosymbolic program may be non-
trivial. This symbol grounding problem (Harnad, 1990; Mooney, 2008)
is well-established in many areas of AI. However, it is especially tricky
in neurosymbolic programming, where symbolic and neural components
can be interleaved in complex ways.

Applications Deep learning started making waves when neural meth-
ods convincingly outperformed the state of the art in real-world appli-
cations in speech processing, vision, natural language processing, and
control. Similarly, for neurosymbolic programming to realize its promise,
methods in this area must clearly outperform the state of the art in at
least some high-impact applications. In Section 1.5, we have sketched
some promising candidates for such applications. However, these efforts
are only a start. There is a distance to go before practitioners in even
the domains we have noted widely adopt neurosymbolic programming;
also, there may be “killer apps” for neurosymbolic methods that have
not been identified yet. The pursuit of such applications needs to be
among the highest priorities of researchers in the area.
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