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ABSTRACT: The pteropod (pelagic snail) Limacina helicina antarctica is a dominant grazer along
the Western Antarctic Peninsula (WAP) and plays an important role in regional food web dynam-
ics and biogeochemical cycling. For the first time, we examined the gut microbiome and feeding
ecology of L. h. antarctica based on 16S and 18S rRNA gene sequences of gut contents in the WAP
during austral summer. Eukaryotic gut contents of L. h. antarctica indicate that this species pre-
dominantly feeds on diatoms and dinoflagellates, supplementing its diet with ciliates and fora-
minifera. Mollicutes bacteria were a consistent component of the gut microbiome. Determining
the gut microbiome and feeding ecology of L. h. antarctica aids in identifying the underlying
mechanisms controlling pteropod abundance and distribution in a region of rapid environmental

change.
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1. INTRODUCTION

The abundant pteropod (pelagic snail) Limacina
helicina antarctical is a dominant grazer among
zooplankton, and is an important prey species for
other pteropods, fish, and seabirds along the West-
ern Antarctic Peninsula (WAP), a region of rapid
climate change (Hunt et al. 2008, Bernard et al.
2012, Mintenbeck & Torres 2017, Henley et al.
2019). However, the feeding ecology of L. h.
antarctica has not been well characterized, and to
our knowledge, its microbiome has not been exam-
ined. While L. h. antarctica abundance over the past

1limacina rangii (d'Orbigny, 1835), the currently recognized
name (Janssen et al. 2019) for the species previously called
Limacina helicina antarctica Woodward, 1854
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25 yr has remained stable overall along the WAP,
its long-term abundance has increased sub-region-
ally in the offshore slope region, attributed to a
shortened sea ice season in spring/summer that
favors longer periods of open water for feeding
(Thibodeau et al. 2019). Since pteropod biogeogra-
phy can be influenced by the availability of food,
examining the feeding ecology of L. h. antarctica
will aid in identifying mechanisms controlling its
abundance and distribution in this dynamic region
of the Southern Ocean. Furthermore, identification
of the gut microbiome contributes to our under-
standing of marine microbial diversity and host—
microbe interactions in marine ecosystems (Trous-
sellier et al. 2017).

Thecosome (shelled) pteropods have typically been
considered generalist, suspension-feeding omnivores
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because they use a mucous web to feed (Lalli &
Gilmer 1989), with their guts and feces containing
large numbers of phytoplankton (Hopkins 1987). The
diet of Limacina spp. has been previously described
via a few qualitative analyses of gut contents, and
these analyses suggested that pteropods mainly feed
on phytoplankton and small protozoa (Lalli & Gilmer
1989, Hunt et al. 2008). The use of amplicon-based
sequencing methods facilitates the determination of
the prey field in the water column as well as within
the gut immediately prior to capture. Cleary et al.
(2018) conducted amplicon sequencing of the 18S
rRNA gene for Antarctic krill Euphausia superba gut
contents and identified diverse prey including phyto-
plankton, copepods, ciliates, and pteropods. The only
prior zooplankton microbiome study in the Southern
Ocean analyzed the microbiome of E. superba by 16S
TRNA gene sequences (Clarke et al. 2019). They
found different krill-associated microbes from those
in surrounding seawater as well as distinct communi-
ties inhabiting the krill molts, digestive tract, and
fecal pellets (Clarke et al. 2019). Despite the high
abundance and importance of thecosomes, such as L.
h. antarctica, as grazers in the Southern Ocean, no
study has utilized sequencing techniques to examine
their feeding ecology or microbiome.

The objectives of this study were to examine L. h.
antarctica feeding in the WAP by analyzing gut con-
tents and to compare the gut microbiome composi-
tion with surrounding seawater communities using
high-throughput sequencing of 16S and 18S rRNA
genes. Our study provides higher taxonomic resolu-
tion of pteropod gut contents compared to prior stud-
ies using traditional microscopy and isotopic analysis
and represents one of the few studies to examine the
microbiome of a gelatinous zooplankton species.

2. MATERIALS AND METHODS

The Palmer Antarctica Long Term Ecological Re-
search (PAL LTER) study region is located west of the
Antarctic Peninsula, spanning approximately 700 km
from north to south, and 200 km from the peninsula
coast to the continental slope offshore (Waters &
Smith 1992) (Fig. S1 in the Supplement at www.int-
res.com/articles/suppl/a088p019_supp.pdf). Sampling
for this study occurred during the PAL LTER 2017
summer research cruise (30 December 2016 to 10
February 2017) aboard the ARSV ‘Laurence M. Gould.’
Samples of Limacina helicina antarctica were col-
lected with a 2 m, square-frame, 700 pm mesh net,
towed obliquely to 120 m as described by Thibodeau

et al. (2019). Gut contents of L. h. antarctica were
sampled from 9 stations during this cruise, based on
when animals were available. At least 10 individual
guts from pteropods collected at each station (Fig.
S1) were immediately dissected once onboard to
avoid gut evacuation. Guts were then immediately
frozen at —80°C. To compare gut contents with prey
available in the seawater, corresponding surface sea-
water samples were collected from 0.5 m at 6 of the 9
pteropod collection sites and drawn from 20 1 Niskin
bottles attached to a conductivity—temperature—
depth/rosette, with 2 to 4 1 of seawater filtered onto a
47 mm 0.45 pm Supor filter (Pall), and frozen at
-80°C.

The gut microbiome and prey contents of L. h.
antarctica along the WAP were determined with
high-throughput amplicon sequencing of 16S and
18S rRNA genes of prokaryotes and eukaryotes,
respectively. Primers 515F-Y and 926R targeting
both 16S and 18S rRNA genes were used (Quince et
al. 2011, Parada et al. 2016). This primer pair encom-
passes both the V4 and V5 hypervariable regions of
16S and 18S rRNA genes. The DNA extraction, PCR
setup, and sequencing are described in Text S1 in
the Supplement. Amplicon sequences from this study
have been deposited to the Sequence Read Archive
under accession number PRINA646234 (https://www.
ncbi.nlm.nih.gov/sra).

Bioinformatics of the 16S and 18S sequences were
conducted using the DADA2 package (Callahan et
al. 2016) and visualized with Phyloseq as ampli-
con sequence variants (ASVs; McMurdie & Holmes
2013). Diversity was estimated with unrarefied se-
quences of seawater and pooled gut samples and
analyzed separately for 16S and 18S using Phyloseq.
Additional information on the bioinformatic analysis
is provided in Text S1.

3. RESULTS

The principal coordinate analysis plot of Limacina
helicina antarctica gut and seawater samples from
the same locations showed a significant difference
between the gut contents and pelagic microbial com-
munities (permutational multivariate ANOVA, F =
5.03, p =0.001, Fig. 1); therefore, guts were analyzed
separately from pelagic microbial communities for
further analyses. Diversity of gut communities was
significantly lower than that of water communities
(ANOVA, F=9.31, p =0.01). Replicate 16S samples
from guts revealed relatively similar communities
(Fig. S2).
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Fig. 1. Principal coordinate analysis representing the beta-diversity of pro-
karyote and eukaryote communities within seawater (Water) and pooled Li-
macina helicina antarctica guts (Pteropod) based on 16S and 18S amplicon

sequence variants

There was adequate coverage of all samples for
16S and 18S sequences as determined by rarefaction
curves and the number of observed ASVs (Fig. S3,
Table S1). A total of 52271 and 662 129 trimmed 18S

and 16S rRNA gene sequences, re-
spectively, were obtained from 6 sea-
water samples and 25 gut samples of
L. h. antarctica. To obtain an adequate
number of eukaryotic sequences (185S),
samples were combined by station for
downstream analyses and yielded
sequence averages = SE of 43506 +
15328 for 16S and 30063 + 6294 for
18S (Table S1). When pteropod host
18S sequences were subtracted from
® those in the gut, a total of 23699
sequences were available for analysis
of 18S (mean 2633 + 933 per sample);
hence gut samples were pooled for
subsequent 16S and 18S sequence

analyses.
® Pooled 16S gut samples of L. h.
=] antarctica indicated that Mollicutes,

Alphaproteobacteria, and Bacteroidia
comprised the largest proportion of
the prokaryotic community and were
present within all samples (Fig. 2).
Gammaproteobacteria were also pres-
ent in all seawater samples but did not
contribute to a substantial proportion
of the community. Eukaryotic gut contents of L. h.
antarctica as determined with 18S sequences com-
prised diatoms (Bacillariophyceae, Coscinodiscophy-
ceae, Mediophyceae), dinoflagellates (Dinophyceae),
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Fig. 2. Prokaryotic community composition at the class level present (A) in surface seawater and (B) within pooled Limacina

helicina antarctica pteropod guts at each sampling station as determined by 16S amplicon sequence variants. Numbers in

grey represent sampling station numbers, arranged from north (N) to south (S) (see Fig. S1 for station locations). Cyanobac-
teria are not included here because their taxonomies could not be resolved to class level
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Fig. 3. Eukaryotic community composition at the class level present (A) in surface seawater and (B) within pooled Limacina
helicina antarctica pteropod guts as determined by 18S amplicon sequence variants. Other details as in Fig. 2

chlorophytes (Mamiellophyceae), and haptophytes
(Prymnesiophyceae) (Figs. 3 & S4). Analysis of
chloroplast 16S further confirmed the presence of
diatoms and haptophytes (Fig. S5). Dinoflagellates
were the only eukaryotic group present in all gut
samples. Haptophytes and chlorophytes were also
present in guts throughout the sampling grid. Other
eukaryotic groups, including salps (Thaliacea), and
protozoa such as ciliates (Spirotrichea) and foraminif-
era (Picomonadea), and fungi only occurred in a few
samples.

4. DISCUSSION

Mollicutes, Alphaproteobacteria, and Bacteroidia
comprised the largest proportion of the prokaryotic
community in the gut of Limacina helicina antarctica
and were present within all samples. Bacteroidia and
Alphaproteobacteria were equally frequent within
the pteropod gut and in surrounding seawater, sug-
gesting that those bacteria were acquired passively
through feeding and were not endemic to the host
pteropod. In contrast, Mollicutes were a key compo-
nent, representing the most relatively abundant
prokaryotic class (>40 % of relative abundance) in all
gut samples, but they rarely occurred or were absent
in seawater samples. However, we are not able to
directly distinguish between host-specific microbio-
mes and those associated with its ingested prey since
L. h. antarctica was not starved prior to gut extrac-
tion. Differences between gut and pelagic microbial
communities in seawater may also be due to varia-
tion in sampling depth.

Mollicutes were a common component of the L.
h. antarctica microbiome as they occurred in all gut

samples, indicating that the gut microbial commu-
nity primarily comprises a few highly abundant
taxa (i.e. Mollicutes, Alphaproteobacteria, and Bac-
teroidia at >70%). Low diversity within the gut
microbiome has also been observed in Southern
Ocean lanternfish, revealing that low diversity may
be attributed to the occurrence of digestive en-
zymes and acidic pH (Gallet et al. 2019). In addi-
tion, Mollicutes are dominant components of other
mollusk and aquatic invertebrate gut microbiomes,
including jellyfish, but their function remains un-
certain (Boyle et al. 1987, Daley et al. 2016). Ex-
panding the application of sequencing analyses to
determine the metabolic functions (i.e. transcrip-
tomics) of these gelatinous zooplankton gut micro-
biomes is needed.

The eukaryotic gut contents of L. h. antarctica as
determined with 18S sequences were consistent with
previous studies using traditional methods and indi-
cate that pteropods are mainly herbivorous in sum-
mer, consuming predominantly diatoms and dino-
flagellates but also supplementing their diet with
ciliates. At stations where diatoms and dinoflagel-
lates were not the dominant prey, chlorophytes, boli-
dophytes, and haptophytes, specifically Phaeocystis,
were present in the gut. These results generally
agree with those of Rozema et al. (2017), who found
that nanophytoplankton (cryptophytes and hapto-
phytes) dominated surface waters in Marguerite Bay
(WAP) in summer during low phytoplankton biomass
years. A taxon surprisingly absent from pteropod
guts was cryptophytes, which in the WAP are most
abundant during summer months (December and
January) after the seasonal retreat of sea ice (Scho-
field et al. 2017). The absence of cryptophytes as a
prey item may be due to a combination of local envi-
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