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ABSTRACT

A popular metric for measuring progress in autonomous driving

has been the “miles per intervention”. This is nowhere near a suffi-

cient metric and it does not allow for a fair comparison between

the capabilities of two autonomous vehicles (AVs). In this paper we

propose Scenario2Vector - a Scenario Description Language (SDL)

based embedding for traffic situations that allows us to automat-

ically search for similar traffic situations from large AV data-sets.

Our SDL embedding distills a traffic situation experienced by an

AV into its canonical components - actors, actions, and the traffic

scene. We can then use this embedding to evaluate similarity of

different traffic situations in vector space. We have also created a

first of its kind, Traffic Scenario Similarity (TSS) dataset which con-

tains human ranking annotations for the similarity between traffic

scenarios. Using the TSS data, we compare our SDL embedding -

with textual caption based search methods such as Sentence2Vector.

We find that Scenario2Vector outperforms Sentence2Vector by 13%

; and is a promising step towards enabling fair comparisons among

AVs by inspecting how they perform in similar traffic situations.

We hope that Scenario2Vector can have a similar impact to the AV

community that Word2Vec/Sent2Vec have had in Natural Language

Processing datasets.
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1 INTRODUCTION

A subtle but influential enemy is jamming thewheels of autonomous

vehicles (AVs) - public distrust. According to a May 2020 [1] sur-

vey, nearly three in four Americans say that autonomous vehicle

technology is not yet ready for prime-time. About half of the re-

spondents said they would never get inside a vehicle that is being

driven autonomously. Fatal self-driving-car accidents [2, 3] have

cast further doubt in the general public on whether AVs can become
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the future of mobility. Autonomous vehicles are an example of au-

tonomous Cyber-Physical Systems (CPS) - in that they combine

the physics of motion with advanced perception, planning, and

control (cyber) algorithms to act on their own without (or with

limited) close human supervision. The present approach towards

developing such automated systems is that reasonable levels of

autonomy can be reached with the help of advances in artificial

intelligence, formal methods, and control algorithms that can cope

with the uncertainties of the real world, and provide assurances.

Due to the rarity of unexpected situations, real-world testing

cannot provide high confidence in the safety of automated driving

systems [4, 5]. This leads to a challenging issue today for automated

vehicle manufacturers and suppliers who are determined to incor-

porate machine learning for automated driving. It is difficult, and

maybe impossible, to characterize all of the behaviors of these com-

ponents under all circumstances. While the principle of safety by

design (verification) is useful, it remains insufficient for AI-enabled

autonomous vehicles, because of unknown scenarios that cannot

be directly verified, and the incompatibility of formal methods with

statistical deep neural network models.

The AV industry is in a trust race. It’s certainly convincing to go

on a ride where it seems the human is just there for show, or on

rides where there’s no human present at all. Therefore, companies

carefully curate demo routes, avoid urban areas with cyclists and

pedestrians, constrain geofences and pickup/drop-off locations, and

limit the kinds of maneuvers the AV will attempt during the ride

— all in order to limit the number of disengagements. As a result,

disengagement-free driving has started to become a prerequisite

for commercial deployment of AVs. Unfortunately, it has also been

used by the media and others to compare technology from different

AV companies, or as a proxy for commercial readiness.

The idea that disengagements serve as a meaningful signal about

whether an AV is ready and safe for commercial deployment is

a myth. The meaning of safety in regard to AVs is surprisingly

unclear—and no standard definition exists. The regulators rely on

automotive companies to present a view of safety, while the com-

panies themselves, each having a different interpretation of what

constitutes as safe driving behavior, in turn seek input from the reg-

ulators. The majority of safety assessments today are self-reported

by the testing companies, in good faith [6–19]. These companies

develop different interpretations of what constitutes safe driving

behavior. Autonomous miles driven and miles per disengagements

are two metrics closely watched by industry observers to provide a

high-level view of AV safety. Disengagements happen when either

a safety operator detects bad behavior and takes control of an auto-

mated vehicle, or the vehicle itself detects something wrong and
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calls for a human to take over. Low rates of intervention do not nec-

essarily indicate higher safety, they indicate only high agreement

between drivers and automated systems.

Safety assessments for automated vehicles need to evolve beyond

the existing voluntary self-reporting. There is no comprehensive

measuring stick that can compare how far each AV developer is in

terms of safety. Our goal in this research is to answer the following

question: How can we fairly compare two different AV implementa-

tions? In doing so, the aim of this work is to make progress towards

an innovative certification method allowing for a fair comparison

between AVs by comparing them on similar traffic situations.

To do so, we propose a novel method called Scenario2Vector -

which can transform data (video + other sensors) for a given traffic

situation into a semantic embedding based on a Scenario Descrip-

tion Language (SDL) [20]. This embedding can then be used to

compare AVs operating in similar traffic situations. The first step in

designing such a unified safety certification scheme is to develop

a unified representation of a traffic scenario. A standard scenario

description language to define a traffic scenario will provide a high-

level representation of the multi-agent interaction in a given video.

Compared to a low level vector embedding, a high level scenario de-

scription for a video preserves human readable information about a

traffic scenario. In order to provide a fair, and equitable comparison

of two AV designs, it will be necessary to use a reference traffic

scenario to query datasets for similar traffic situations.

For this work, a scenario is defined as a short video clip captured

from the front facing camera (can be extended to other sensing

modalities). Figure 1[Left] shows the SDL encoding schema - com-

prising of a list of actors, actions, and scene elements. We use the

BDDX [21] dataset to extract SDL descriptors from the sample

videos. We focus on capturing the temporal structures of traffic

scenarios to form a vector representation called Scenario2Vector

(similar to word2vec [22] in natural language processing).

As indicated in Figure 1[Left], the SDL features are extracted

from the last fully connected layers from the DNN which takes a

sequence of images as inputs. The learned vector representation

is an encoding of the video clip (or traffic scenario). As shown in

Figure 1[Left], the embedding consists of an Actor-Action matrix,

the columns of which denote which actors (ego, light vehicle, pedes-

trian, bicycle etc.) are performing which actions (slowing down,

accelerating, turning, parking, stopped etc.); along with information

about the traffic scene (intersection, freeway, stop sign etc.).

We can then use this encoding in the followingmanner. As shown

in Figure 1[Right], consider a (fictional) AV company called "Driftic"

which releases a database of its autonomous vehicle’s operation.

We would like to compare the performance of Driftic’s AV with

two other AV companies - Goodrive, and Idlewagon - who have

released their own datasets from their AVs operating in different

cities. Let’s say we choose a specific traffic situation from Driftic’s

dataset as a reference - e.g. how the AV handles navigating a tunnel.

Using the Scenario2Vec embedding of the reference video clip, our

goal is to search Goodrive and Idlewagon’s datasets for similar

traffic situations (navigating a tunnel). To do so we compare the

distance between the vector embedding of the reference clip to the

samples from the other datasets, thereby allowing us to compare

the performance of different AVs in similar traffic conditions.

This paper has the following research contributions:

(1) We present a first of its kind - Traffic Scenario Similarity

(TSS) dataset. This dataset contains 100 traffic video sam-

ples (scenarios) and for each sample, it contains 6 candidate

scenario videos ranked by human participants based on its

similarity to the baseline sample.

(2) We then present Scenario2Vector - a scenario description

language which can encode the actor, action, and scene ele-

ments of the traffic scenario video into an embedding which

can then be used for similarity search.

(3) Finally, we rigorously compare our method Scenario2Vector

with other (text-based) similarity approaches such as Sent2Vec

on the TSS dataset using several similarity criteria: SDL one-

hot, SDL Matrix, BLEU1, BLEU4, and METEOR.

2 RELATEDWORK

The problem of video similarity has received a lot of attention from

the computer vision, knowledge discovery and themachine learning

research community in recent years. However, little to no work

has been done to study this problem in the context of autonomous

vehicles and their performance comparison. The related work spans

several areas of inquiry and here we present an overview of the

most related literature to our problem setting.

2.1 Video Retrieval with Embeddings

One method of performing video retrieval tasks is to model the

spatial and temporal aspects of a video with an embedding. [23]

uses this approach to learn a spatio-temporal embedding of a video

that incorporates appearance, motion, and geometry using a causal

convolutional network and a monocular self-supervised depth loss.

The embedding space encourages video pixels of the same instance

to be clustered together for video instance segmentation. This paper

introduces a new spatio-temporal loss for video instance segmenta-

tion that maps video pixels to a high dimensional space, a temporal

model that improves embedding consistency over time, and a depth

loss. In contrast to embedding based approaches, region proposal

based methods rely on a region of interest proposal network that

predicts bounding boxes and then estimates the mask of the object

in the box. However, embedding based approaches are becoming

more popular due to their ability to better represent inter-relations

of objects for segmentation tasks, and their granularity in mapping

each pixel to a high dimensional space to avoid overlapping bound-

ing boxes as is the case in region proposal based networks. The

model in [23] consists of an encoder that encodes each input frame

as a compact feature, a temporal model that learns a rich spatio-

temporal representation of the video, and a decoder that outputs

the instance embedding and depth prediction. Although an embed-

ding based approach can be successful for segmentation tasks, it

does not preserve high level, human readable information about the

scenario, as a caption would. As a result, it can become difficult to

interpret multi-agent interaction in a video from a low level embed-

ding in a high dimensional space. A similar issue occurs in [24]. The

Video2Vec approach encodes the videos in a global temporal encod-

ing of the frame-level CNN features and combines this encoding

with a Word2Vec model to embed the spatio-temporal features in

a semantic embedding space where diverse videos sharing similar
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Figure 1: [Left] Framework of our Scenario2Vec representation architecture, and the scenario description language descriptors.

[Right] The embedding is then used to search across multiple AV databases to output similar traffic situations. This allows for

a fair comparison between different AVs (from different databases) based on the reference traffic scenario.

semantics are clustered together. However, the semantic portion

of the embedding uses single words to describe the action taking

place in a video and thus would not be suitable to capture a more

detailed, high level description of a the scenario. Furthermore, video

retrieval tasks based on video similarity in a semantic embedding

space would not be as accurate for longer, more complex videos

that only differ slightly in content. However, this case scenario is

important to consider for applications in the AV field because al-

though a scene with a car stopped at a red light without pedestrians

compared to a scene with a car stopped at a red light with pedes-

trians might look very similar and get placed close together in a

semantic embedding space, it’s critical to identify pedestrians in the

scene for safety reasons. As a result, using low-level embeddings to

represent videos, particularly traffic scenarios, may not be the most

desirable route. Instead, we need a representation that accounts for

the importance of specific actors, actions and scene elements in a

scenario to accurately model the multi-agent interaction in a video.

2.2 Characterization of a Traffic Scenario

As discussed in papers [24] and [23], it is difficult to provide a

complex, high level representation of a video based on a low level

spatio-temporal embedding. [24] suffered from a lack of complexity

of the caption generated for a video and [23] did not preserve a

high level, human readable representation of the video. As a result,

a higher level embedding would be required to capture both spatial

and temporal aspects of a scenario. These descriptions would need

to account for multi-agent interaction in the video and extract infor-

mation from a scenario that would be useful in differentiating two

traffic scenarios. Open Autonomous Safety outlines scenarios that

an AV could encounter and defines a detailed scenario description

language to capture the behavioral requirements that must be fol-

lowed by an AV in order to maintain the highest standard of safety

at all times [25]. This scenario description language outlines road

segments, number of lanes, stop signs, actions, actors, and start

and end positions along with scene elements such as intersections,

pedestrians, and speed limits. The definition of an SDL enables the

development of a comprehensive list of different scenarios to define

the various situations an AV might encounter. This language can

be used to quickly parametrize a traffic scenario an AV might en-

counter and evaluate whether the AV is following safety standards.

Similarly, M-SDL is an open source, human readable high level lan-

guage that captures information about a scenario [26]. This allows

for easy reuse and sharing of scenarios between companies to com-

pare two AVs on similar, standardized data. However, both Open

Autonomous Safety and M-SDL require manual labeling which can

be a time consuming, error prone process.

2.3 Similarity Metrics

More recently, there have been accelerated developments in the

field of video captioning. However, one of the major challenges

in judging captioning models is evaluating their performance on

video captioning tasks. Due to the lack of human generated ground

truth data, we are left to rely on automatic evaluation metrics

such as Bilingual Evaluation Understudy (BLEU) [27], Recall Ori-

ented Understudy for Gisting Evaluation (ROUGE) [28] Metric for

Evaluation of Translation with Explicit Ordering (METEOR) [29],

Consensus based Image Description Evaluation (CIDEr) [30], Se-

mantic Propositional Image Captioning Evaluation (SPICE) [31],

and Word Mover’s Distance (WMD) [32]. Due to the automatic and

quantitative nature of these metrics, they are not always in perfect

alignment with human judgement. Furthermore, the metrics are not

always robust to the comparison of synonyms and different length

sentences making it difficult to rely on them for the evaluation of a

model. A video can be described in multiple different ways, which

highlights another limitation of these evaluation metrics - they do

not adequately account for multiple correct reference sentences in

comparison to a candidate. As a result, these metrics still require

human oversight to verify their reliability and validity. There ex-

ists a need for a systematic approach to reliably evaluate captions

for similarity [33]. More specifically, what constitutes similarity in

the autonomous vehicle domain with traffic scenarios may differ

from more general purpose video captioning. For example, a bird

captured in a traffic scenario matters less than a bird captured in a

scene at the zoo. These subjective differences in evaluation make it
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difficult to use automatic evaluation metrics to determine similarity

between two scenarios. There exists a need for a weighted simi-

larity score that takes into account the relevant parts of a traffic

scenario for similarity analysis.

3 PROBLEM FORMULATION

3.1 Autonomous Vehicle Comparison Problem

The goal of our research is to provide a common metric that will fa-

cilitate the comparison of different autonomous vehicle algorithms.

Consider a set 𝐴 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) containing 𝑛 different AV algo-

rithms. Each algorithm takes a scenario 𝑣 as its input and produces

an action for the vehicle to take as its output. In order to compare

the different AVs together, we need to observe them under similar

traffic conditions or scenarios. Our goal therefore is to find simi-

lar traffic scenarios from the datasets generated by different AVs.

Having found similar traffic situations, we can then observe if the

output of one AV is more safe/optimal compared to another.

The first step in this process is to look through the recorded data

from each AV algorithm and identify the individual scenarios. Let

𝑉 be the set of recorded sensor data. For some given AV algorithm

𝑎𝑖 ∈ 𝐴 we have sensor data 𝑣𝑖 ∈ 𝑉 that contains all of the sensor

data recorded by vehicle 𝑖 . This sensor data 𝑣𝑖 contains a sequence
of scenarios that together comprise the activity of the vehicle: 𝑣𝑖 =
(𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑛). Therefore, a specific scenario can be defined as

𝑣𝑖 𝑗 ∈ 𝑉 , which is the 𝑗th scenario driven by vehicle 𝑖 .
The next step in this process is to take these scenarios and con-

vert them into high level embeddings. Given a scenario defined by

a sequence of AV sensor data 𝑣𝑖 𝑗 , we aim to create an embedding

that preserves the relevant information about the scenario. Rather

than learning the semantic representation, we define our own high

level embedding 𝑆 such that each value 𝑠 ∈ 𝑆 is a tuple recording

the information that defines a scenario. Thus our goal is to learn a

function 𝑓 : 𝑉 → 𝑆 that maps the AV sensor data 𝑣𝑖 𝑗 ∈ 𝑉 defining

a scenario into the equivalent embedding 𝑠𝑖 𝑗 ∈ 𝑆 . The main benefit

is to use the embedding to enable us to compare the similarity of

different traffic scenarios. This, in turn, will allow us to perform a

similarity search between traffic scenarios.

3.2 Traffic Scenario Similarity Search Problem

In this paper we focus on the problem of performing similarity

search between traffic scenarios. Given a scenario defined by a

sequence of AV sensor data 𝑣𝑖𝑛𝑝𝑢𝑡 ∈ 𝑉 as input, our goal is to find

the scenarios in 𝑉 that are most similar to our input. In order to

determine the similarity of two scenarios, we define some distance

function 𝑑 (·). This distance function takes two scenarios as inputs,

and returns the distance between them as a single number, with

higher values indicating that the scenarios are less similar.

Note that the input to𝑑 (·) need not be sensor data from𝑉 . In fact,

sensor data is particularly difficult to compare directly. Instead, we

use the high level embedding returned from our mapping function

as the input to our distance function. Since our high level embedding

represents the scenario as a whole, a similarity between two high

level embeddings indicates the similarity between the scenarios.

Therefore, given this information, our similarity search has the

following steps. First, for each scenario in our dataset 𝑣𝑖 𝑗 ∈ 𝑉 ,
use the mapping function to compute the high level embedding

𝑠𝑖 𝑗 ∈ 𝑆 . Similarly, for an input scenario 𝑣𝑖𝑛𝑝𝑢𝑡 , compute the high

level embedding 𝑠𝑖𝑛𝑝𝑢𝑡 ∈ 𝑆 . Next, compute the distance between

the input and the scenarios in our dataset 𝑑𝑖 𝑗 = 𝑑 (𝑠𝑖𝑛𝑝𝑢𝑡 , 𝑠)∀𝑠 ∈ 𝑆 .
The scenario that is most similar to the input will be the scenario

that provides the lowest value for 𝑑𝑖 𝑗 .

4 SCENARIO2VECTOR

4.1 Video Dataset

In order to develop the mapping 𝑓 : 𝑉 → 𝑆 as described in section

3, we use the Berkeley Deep Drive-X (eXplanation) dataset (BDDX)

[34] as the primary source of data. This dataset contains 77 hours

of driving footage, taken from a dashboard camera, which is split

into 6,970 videos each of which is an average of 40 seconds long.

The dataset also provides start and end times within each video

to further divide the videos into multiple clips. In addition to the

timestamps, each clip contains a human annotated textual explana-

tion describing the action taking place. For this paper, we consider

each of the sample clips from the BDDX data as an example of a

traffic scenario 𝑣𝑖 𝑗 , with a text caption represented by 𝑡𝑖 𝑗 .

4.2 Scenario Description Language

Using the BDDX dataset containing dashboard footage of the sce-

narios 𝑣𝑖 𝑗 ∈ 𝑉 where 𝑉 is the set of scenarios, an equivalent em-

bedding 𝑠𝑖 𝑗 ∈ 𝑆 was extracted that represents what occurred in

each scenario. Using a Bag of Words analysis, Figure 2 shows the

list of actors, actions and scene elements that are present in the

BDDX dataset. This elements shown are meant to be a starting

point for investigating SDLs, not a comprehensive list of every

possible component of a traffic situation. However, this approach is

highly modular making it easy to add new elements as necessary.

Scenario 
Description 
Language

ActionsActors

Scene

Cyclist
Pedestrian

Light Vehicle
Heavy Vehicle

Ego

Traffic

Turn
Turn left

Turn right
Turn through

U-turn Merge
Merge center

Merge left
Merge right

Accelerate
Brake
Stop

Forward
Park

Reverse
Walk

Traffic light
Green light
Red light

Yellow light

Intersection
Crosswalk

Bridge
Turn lane

Stop sign
Yield sign

U-turn sign

Figure 2: Characterization of scenario description language

with the specific actors, actions and scenes that were ex-

tracted from the BDDX data.
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Pedestrian

Crosswalk

Red light
AA

(1) BDDX Ground Truth:
The car is stopped at a 

crosswalk as the light is red 
and pedestrians are crossing 

the street

(2) Actions and Scene 
Elements

(4a) SDL Matrix Embedding

(3) SDL Extraction

(4b) SDL One-Hot Embedding

Figure 3: SDLExtraction. The actors are the car and the pedestrianwhere the car is stopped and the pedestrian iswalking. There

is also a red light and a crosswalk in this scene. The SDL is composed of three fields: actors, actions and scene elements. So the

scenario descriptor fills in the ego vehicle (car), and pedestrian as actors, stop and walk as respective actions, and red light and

crosswalk as scene elements. The automated SDL extraction process produces two embeddings: SDL Matrix embedding with

actor-action matrix and a scene matrix, and a one-hot embedding of the actors, actions and scenes.

We used the captions from the BDDX data together with the

elements described in Figure 2 as the basis for constructing our

SDL. The Scenario2Vector SDL object is a tuple 𝑆 = 〈𝐴𝑇,𝐴𝐶, 𝑆𝐶〉
with each element of 𝑆 representing a list that contains information

about the content of the scenario. The list 𝐴𝑇 contains the Actors

present in the scenario, with elements such as “Ego” and “Light Ve-

hicle”. Similarly,𝐴𝐶 contains temporal Actions such as “Accelerate”,

“Brake”, ”Merge”, while 𝑆𝐶 contains Scene Elements such as “Stop

Sign”, ”Intersection”, “Green Light”. Including Undefined values

and variations of elements listed in Figure 2, there are 6 possible

actor elements, 19 possible action elements, and 20 possible scene

elements that are valid entries to these lists. These three lists taken

together encapsulate the relevant information about the scenario.

Figure 3 illustrates an example of a scene 𝑣𝑖 𝑗 ∈ 𝑉 and its cor-

responding scenario embedding 𝑠𝑖 𝑗 ∈ 𝑆 as returned by our SDL

extraction method. The SDL extraction method returns two types

of scenario embeddings: SDL one-hot embedding and SDL matrix

embedding. Given a scenario 𝑣𝑖 𝑗 ∈ 𝑉 , the SDL extraction process

identifies the actors, actions and scene elements from a ground truth

caption 𝑡𝑖 𝑗 provided in the BDDX dataset, as shown in Figure 2.

The extraction process starts by searching the caption to find words

that are associated with elements of our language. Each word that

represents an actor, action, or scene element is added to the corre-

sponding list in our SDL. Actions require extra analysis during this

process in order to associate them with the specific actor perform-

ing said action. Each actor must perform some action, or else have

a “No action” element associated with it. Similarly, for each action

identified in the caption, there must be an actor performing that

action, meaning that the number of actors and actions will always

be equal. The scene elements, however, are independent from the

actor-action pairs, and may differ in length. The actor-action pairs

and scene elements are converted into the high level embedding 𝑠𝑖 𝑗 .
Thus, the SDL extraction process serves as a function that maps a

scenario 𝑣𝑖 𝑗 ∈ 𝑉 to an equivalent embedding 𝑠𝑖 𝑗 ∈ 𝑆 .

4.3 Scenario2Vector Embeddings

4.3.1 One-Hot Embedding. The SDL tuple 𝑆 = 〈𝐴𝑇,𝐴𝐶, 𝑆𝐶〉 en-
codes high level information about the actors and their associated

actions as well as scene elements. In order to calculate similarity be-

tween two SDLs, a one-hot embedding was developed to represent

the actors, associated actions, and scene elements for any given

scenario. The one-hot embedding consists of a tensor with three

dimensions: actor, action and scene. This embedding is illustrated

in Figure 3[4b]. Each SDL tuple has a 7x20x22 one-hot embedding

representing its action, actor and scene elements where each dimen-

sion has an extra element to account for NaN values. These one-hot

embeddings are stacked on top of each other to produce a 4D tensor

with dimensions [samples x actors x actions x scenes]. The advan-

tage of this embedding method is that it makes it straightforward to

compute similarity between different embeddings using Euclidean

distance. However, the embedding is very sparse, with most SDLs

containing two or fewer actors, and three or fewer scene elements.

Furthermore, although there is no connection between the scene el-

ement and actors/actions in our representation of the SDL, the one

hot embedding forces the scene to be linked to an actor-action pair.

As a result, if there is more than one scene element, there is no de-

terministic method for embedding multiple scene elements, so the

scenes will be intrinsically linked to actor-action pairs. This could

provide misleading information when computing the Euclidean

distance to determine similarity between two embeddings.

4.3.2 Matrix Embedding. To address some of the limitations of

one-hot embedding, and also provide a more robust representation

that could be used for further evaluation and comparison, we also

considered an approach where the tuple structure was converted

to an actor-action matrix and a scene matrix. This separation better

depicted the information captured by the SDL since scene elements

are considered to be separate from the actor-action pairs. The actor-

action (AA)matrix is a [2 x n] matrix where n represents the number

of actor-action pairs in each SDL tuple. A single SDL tuple always

contains at least one actor-action pair because each video will

always have an ego actor. The scene elements (SC) are encoded in

a list and are independent of the actor-action matrix.

171



ICCPS ’21, May 19–21, 2021, Nashville, TN, USA Aron Harder, Jaspreet Ranjit, and Madhur Behl

AA =

[
𝑎𝑡0 ... 𝑎𝑡𝑛
𝑎𝑐0 ... 𝑎𝑐𝑛

]
SC =

[
𝑠𝑐0 ... 𝑠𝑐𝑚

]

To determine similarity in the SDL space, a distance function

was constructed to compare two SDLs using two assumptions. The

first assumption is that the scenario follows a hierarchy with actors

being the most important measure of similarity, then actions, and

lastly the scene elements. For this reason, we punish SDLs more for

having differing actors than for having differing scene elements. The

second assumption is that, relative to a baseline scenario, a compar-

ison scenario missing one element from the baseline is less similar

than a comparison scenario with an extra element over the baseline.

For this reason, we punish SDLsmore for lacking elements than hav-

ing extra elements. Under this assumption, our distance function is

not a distance metric due to a lack of symmetry, but it still allows

for comparison between SDLs. Each list from the SDL tuples is com-

pared independently using an intermediate function. The Actor List

uses an intermediate function𝑑 ′𝑀𝑅 (𝐴𝑇𝑏𝑎𝑠𝑒 , 𝐴𝑇𝑐𝑜𝑚𝑝 ,𝑤𝐴𝑇 ,𝑤𝑚𝑖𝑠𝑠𝑖𝑛𝑔 )

which returns two values - the number of elements present in the

comparison list that are not present in the baseline list (calculated

by |𝐴𝑇𝑐𝑜𝑚𝑝 \𝐴𝑇𝑏𝑎𝑠𝑒 | ×𝑤𝐴𝑇 ), and the number of elements present

in the baseline list that are not present in the comparison list (calcu-

lated by |𝐴𝑇𝑏𝑎𝑠𝑒 \𝐴𝑇𝑐𝑜𝑚𝑝 | ×𝑤𝐴𝑇 ×𝑤𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ). The other lists from

the SDL tuple are compared in similar fashion. After calculating

these six values from our representation, we use them to form a

vector, and define the distance function 𝑑𝑀𝑅 (𝑠𝑖 , 𝑠 𝑗 ) as the length of

this vector.

4.4 Caption Evaluation Metrics

4.4.1 Sentence2Vector. Sent2Vec [35] is an extension of Word2Vec

that provides an efficient model for learning sentence embeddings.

The embeddings have useful properties for computing similarity

between two sentences as the embeddings are derived from a pre-

trained model on a large dataset. As a result, Sent2Vec can serve as

a powerful model for downstream tasks such as sentiment analysis,

and calculating similarity between two sentences. Sent2Vec was

used to compute a similarity score between two captions from the

BDDX dataset. After computing sentence level embeddings for each

of the captions in the BDDX dataset, cosine similarity is used to

calculate the similarity score for each embedding. This served as

one of the baseline scores for comparing how well the SDL metric

performed in computing similarity between two SDL tuples.

4.4.2 BLEU and METEOR. Two other automatic evaluation meth-

ods were also used in addition to Sent2Vec to perform the same

downstream sentence comparison task. Automatic evaluation of

captions can be performed by a variety of metrics including Bilin-

gual Evaluation Understudy (BLEU)[27], Metric for Evaluation of

Translation with Expicit Ordering (METEOR)[29], Recall Oriented

Understudy for Gisting Evaluation (ROUGE) [28] and several others

as described in [33]. In this paper, the BLEU andMETEOR similarity

metrics were investigated. One of the advantages of using BLEU

is that it has been widely adopted, and tends to correlate fairly

well with human evaluation. The BLEU metric ranges from 0 to

1 where 1 implies a sentence is identical to a reference sentence.

BLEU compares n-grams in the candidate sentence to n-grams in

the reference text and calculates the score based on the overlap,

regardless of the position of the n-grams. For example, n-grams can

be unigrams where each word in the sentence serves as a token and

the overlap of unigrams are compared between sentences. METEOR

is an extension of the BLEU metric but first compares the reference

sentence and candidate sentence using unigrams. However, ME-

TEOR also takes into account the stemmed forms of words, and

their meanings using a WordNet model.

5 EXPERIMENTS AND RESULTS

5.1 Traffic Scenario Similarity Dataset

Our goal was to find a distance metric that would accurately deter-

mine the similarity of two input videos. In order to evaluate our

distance metrics, we needed a ground truth measure of similarity.

However, the BDD-X dataset does not have any measure of similar-

ity between videos. Therefore, we created our own Traffic Scenario

Similarity (TSS) Dataset out of the videos in the BDDX dataset.

The Traffic Scenario Similarity Dataset consists of 100 scenario

samples. Each sample 𝑣 ′
𝑘
in the Traffic Scenario Similarity Dataset

represents a scenario 𝑣𝑖 𝑗 randomly sampled from the BDD-X dataset.

From this scenario 𝑣𝑖 𝑗 , we extracted the camera footage as a baseline

video against which other scenarios could be compared. We chose

six candidate videos in total to compare against the baseline video

for each sample. For each scenario 𝑣 ′
𝑘
in our dataset, we have one

baseline video 𝑏𝑘 and six candidate videos: 𝐶𝑘 = [𝑐𝑘,1, . . . , 𝑐𝑘,6]
In addition to the baseline video and the six candidate videos, the

TSS Dataset also includes a list of the ranking of how similar each

candidate video is compared to the baseline video. This ranking list

is represented as r𝑔𝑡,𝑘 = [r𝑘,1, . . . , r𝑘,6]. To obtain these ranking

lists, we asked participants watch the baseline video and rank the

candidate videos from most similar to least similar. When ranking

the videos, participants were instructed to pay attention to aspects

such as the actions of the vehicles in the video or the presence of

road signs. Figure 4 shows the videos and the corresponding human

evaluated similarity ranking of two samples taken from the Traffic

Scenario Similarity Dataset. As can be seen from the image, the

candidate videos can vary dramatically in context from the base

video, but a human annotator has little trouble ranking them from

most to least similar. Looking at the sample on the left, we can see

that the highest ranked video (the bottom video) shows a vehicle

waiting at a red light, the same scenario shown in the base clip.

The TSS dataset is different from the existing video similarity

datasets described in Section 2. These other datasets do not have a

subjective, human evaluated ground truth as the TSS dataset does.

They are typically concerned with finding videos that look similar,

and often perform modifications on existing videos to generate

ground truth data. Instead of looking at visual similarity, our dataset

explores conceptual similarity with a focus on scene understanding.

Our ground truth data is not automatically generated, but created

by human annotators. Even within the autonomous vehicle domain,

this dataset is unique. There are many existing datasets for traffic

situations, but none that look at comparing video similarity. Our

dataset extends the BDD-100k dataset in a previously unexplored

direction in this area. The dataset will be made publicly available

at a later date.

172



Scenario2Vector: Scenario Description Language Based Embeddings for Traffic Situations ICCPS ’21, May 19–21, 2021, Nashville, TN, USA

5.2 Similarity Ranking Experiment Setup

Figure 5 provides an overview of the similarity ranking experiment.

For each sample 𝑣 ′
𝑘
in the TSS dataset, we used the distance metrics

defined in section 4 to calculate the distance between the baseline

and each of the candidate videos. For the one-hot distance met-

ric, we calculated list of distances 𝑑𝑂𝐻 = [𝑑1 . . . 𝑑6], where 𝑑𝑖 is

Figure 4: Dataset Samples. The Traffic Scenario Similarity

Dataset Contains 100 samples. Each sample consists of a

baseline video, and six candidate videos. For each candidate

video, a human annotator has ranked its similarity to the

baseline video to create a ground truth similarity ranking.

the distance between the baseline and candidate video 𝑐𝑖 . These
distances were then ranked from smallest to largest to provide a

list of rankings 𝑟𝑂𝐻 = [𝑟1 . . . 𝑟6], where 𝑟𝑖 is the rank of candidate

video 𝑐𝑖 . When there was a tie between two distances, we assigned

those rankings the rank that most closely matched the ground truth

data if possible. The rankings for each of the other metrics (𝑟𝑀𝑅 ,

𝑟𝑆2𝑉 , 𝑟𝐵𝐿𝐸𝑈 1, 𝑟𝐵𝐿𝐸𝑈 4, and 𝑟𝑀𝐸𝑇𝐸𝑂𝑅 ) were all generated in a simi-

lar manner. The list of rankings generated by each metric distance

function was then compared against the ground truth rankings for

that sample, to assess how well the metric performed on the task

of ranking the videos.

5.2.1 Kendall’s Tau. In order to determine which distance metric

was most accurate in predicting the ranks of the candidate videos,

we looked at two different list similarity metrics. The first list simi-

larity metric is Kendall’s Tau. Kendall’s Tau returns the correlation

between two lists based on the number of items that are similarly

ranked. A score of 1 indicates a perfect correlation, while a score of

0 indicates no correlation. The advantage of using Kendall’s Tau is

that it does not require any specific ordering of the data, as long as

both lists have the same order of candidate videos when they are

uniformly weighted. Kendall’s Tau shows how accurate the metrics

are in predicting the order of the candidate videos. It provides the

same score for getting the two most similar videos wrong as getting

the two least similar videos wrong.

5.2.2 Rank-Biased Overlap. Instead of a uniform similarity metric,

an alternative method of measuring similarity between two ranked

lists could be to use a weighted similarity measure. For instance, it

makes sense to use a list similarity metric that places more emphasis

on getting themost similar video (as reported by the human) correct.

Therefore, in addition to Kendall’s Tau we have chosen to also

compare our ranked lists from the SDL and the Sent2Vec criteria

to the human ground truth rankings using Rank-Biased Overlap

(RBO) [36]. RBO assigns more importance to the first few elements

of the ranked list by using a weight vector defined by a geometric

series based on a hyper-parameter 𝑝 . Thus, in order to give the

most weight to the video that is most similar, it is necessary to

order the lists from most similar to least similar. The amount of

weight given to the most similar video as opposed to less similar

videos varies depending on the value used for 𝑝 . At 𝑝 = 0, only the

first element of the list is considered, and RBO returns either a 0 if

the first element is not the same, or a 1 it is. As 𝑝 approaches 1, the

weights become flatter (although it never truly becomes uniformly

weighted) to allow later elements to have more of an impact, at the

cost of early elements being weighted less. As a side effect of RBO,

a high value for 𝑝 also implies that there are more elements for

comparison, approaching infinite elements as 𝑝 approaches 1. For

a list with few elements, such as in our experiments, this has the

effect of providing a very low RBO score at high values of 𝑝 .

5.3 Similarity Ranking Results

5.3.1 Choice of 𝑝 . Since there is no specific value of 𝑝 for the RBO

score that is guaranteed to work best for a list of depth six, we

performed a hyper-parameter search of 𝑝 . For each of our distance

metrics, we compared the ranking list to the human labels using

RBO as we varied the value of 𝑝 . We set 𝑝 to values ranging from
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rgt,k= [r1 … r6]

Caption Metrics
Sent2Vec: rS2V,k = [rk.1 … rk,6]

BLEU1: rBLEU1,k = [rk.1 … rk,6]
BLEU4: rBLEU4,k = [rk.1 … rk,6]

METEOR: rMETEOR,k = [rk.1 … rk,6]

SDL Metrics
SDL One-Hot: rOH,k = [rk.1 … rk,6]
SDL Matrix: rMR,k = [rk.1 … rk,6]

Rank 
Biased 

Overlap

Kendall’s 

Results

Metric Kendall’s 
Rank 

Biased 
Overlap 
(p=0.15)

SDL One-
Hot 0.112 0.342

SDL 
Matrix 0.047 0.348

Sent2Vec 0.099 0.341

BLEU1 0.043 0.232

BLEU4 0.052 0.232

METEOR 0.045 0.237

Traffic 
Scenario 

Similarity 
Dataset

Human Ranking

100 scenario 
samples –
subset of 
BDDX dataset
Each scenario 
sample contains 
a baseline and 6 
candidates
Candidates 
ranked by 
humans based 
on similarity to 
baseline

Figure 5: Experiment Setup. Each sample of the Traffic Scenario Similarity dataset contains a baseline video along with a

set of 6 candidates. Each sample goes through the SDL extraction process which outputs a one-hot and matrix embedding

for the baseline video and the 6 candidates. Human evaluation of the videos results in a human ranking of how similar the

candidate videos are to the ground truth. Caption based metrics investigated in this study include: Sent2Vec, BLEU1, BLEU4,

andMETEOR. SDL basedmetrics include euclidean distance for the one-hot embedding and the metric defined in section 4.3.2

for the SDLmatrix: 𝑑𝑀𝑅 (𝑠𝑖 , 𝑠 𝑗 ). Each of these metrics results in a ranked list of the candidate video with respect to the baseline

video. The rank biased overlap and Kendall Tau’s metrics take as input, the human evaluation and one of the other seven

metrics and output a similarity score based on rank order.

0.01 to 0.99 in increments of 0.01. The results of these tests can be

seen in Figure 6 [Top]. In a similarity search, it can be assumed

that there are far fewer videos that are similar than those that are

dissimilar. For this reason, we choose to focus on low values of 𝑝
for RBO, values from 0.01 to 0.20 (the shaded region of Figure 6

[Top]). Figure 6 [Bottom] shows an example of the RBO weights

for a low value of 𝑝 = 0.15. These weights place the majority of the

emphasis on correctly predicting the top ranked human video for

each sample. Only a small amount of weight is given to correctly

predicting the second highest ranked human video, and the other

four videos are given almost no weight.

5.3.2 Interpretation of Results. The results of our experiments for

the TSS data are summarized in Table 1. For each metric, we report

the Kendall’s Tau result as well as the RBO score at 𝑝 = 0.15. We

chose 𝑝 = 0.15 as the point to report our RBO scores because at

this value of 𝑝 almost all of the weight is placed on the highest

ranked sample, and the remaining samples have barely any weight

as shown in Figure 6 [Bottom]. Out of all of the metrics, the SDL

One-Hot embedding achieves the highest Kendall’s Tau score, while

SDL matrix embedding achieves the highest RBO score, with a 13%

improvement over Sent2Vec. One-hot embedding doing well on the

Kendall’s Tau metric implies that it is the best metric for creating an

overall ranking. Sent2Vec performs second best here, while matrix

embedding and the other caption-based metrics lag behind. On the

RBO metric, for 𝑝 = 0.15 we see matrix embedding performing

slightly better comparative to Sent2Vec, with a 2% improvement.

One-hot embedding achieves nearly the same accuracy as Sent2Vec.

This implies that the SDL metrics perform the best at finding the

single most similar video which is agreement with the highest similar

reported video tagged by the human annotator. As 𝑝 increases to

about 0.65, we see Sent2Vec begins to outperform the SDL metrics

slightly, and the caption-based metric begin to close the gap. After

𝑝 = 0.65, the RBO values begin to drop off as the weights become

smaller and smaller. Despite the values becoming smaller, the met-

rics remain in the same relative order with Sent2Vec performing

best and METEOR performing worst. The biggest improvement

from Kendall’s Tau to RBO is matrix embedding, which has the

highest RBO score just above one-hot embedding. This implies that

matrix embedding performs much better on the top few videos

than it does on those that are less similar. These results show SDL

metrics just barely outperforming caption-based approaches. The

improvements made were incremental rather than significant, how-

ever it still shows that working in a high-level embedding space is

as useful as working in text space.
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Table 1: For eachmetric, the average value of Kendall’s 𝜏 and
RBO at p=0.15

Similarity Kendall’s 𝜏 Rank Biased Overlap

metric [RBO] (p=0.15)

SDL One-Hot 0.112 0.342

SDL Matrix 0.047 0.348

Sent2Vec 0.099 0.341

BLEU1 0.043 0.232

BLEU4 0.052 0.232

METEOR 0.045 0.237

Figure 6: [Top] The plot shows the RBO for each metric as

a value of 𝑝. [Bottom] The plot shows the distribution of

weights with a p-value of 0.15 for the RBO metric.

5.4 Qualitative Analysis

Figure 7 Shows examples taken from the TSS dataset along with the

highest ranked video from the one-hot embedding and the Sent2Vec

metrics. Let us do a more in-depth analysis of example 1 from this

figure. The video from this example shows the ego vehicle speeding

up after a stop and following a yellow van. Along the sidewalk

there are many pedestrians. The caption for this video is The car

accelerates because traffic is speeding up. Of the six candidate videos,

the one-hot embedding metric ranks the first video as being most

similar. The first candidate video shows the ego vehicle speeding

up after a stop and following another car. Unlike the baseline video,

this video does not have any pedestrians, and there are many other

vehicles on the road. The caption for this video is The car is picking

up speed and driving forward because traffic is picking up speed ahead.

The ground truth also ranked the first video as being the most

similar. In contrast, the Sent2Vec metric ranks the second candidate

video as being the most similar. The second candidate video shows

the ego vehicle speeding up after a stop, with a truck in front of it.

Again, there are no pedestrians and more traffic compared to the

baseline video. Also, in this clip the ego does not match the speed

of the truck in front of it, allowing the truck to get further away

throughout the clip. The caption for this video is The car accelerates

because traffic is moving again. The ground truth ranked the second

video as being the second most similar.

The one-hot embedding metric rates the first candidate video as

being very similar to the baseline because they contains the same

information in the actor-action matrix. In the first candidate video,

the ego vehicle is accelerating and traffic is also accelerating. These

are the same actor-action pairs as the baseline video. Therefore,

one-hot embedding metric gives these pair of videos a distance of 0.

In the second candidate video, the ego vehicle is accelerating while

traffic is moving. This simple difference in the action associated

with the traffic causes the one-hot embedding metric to rank this

video as much less similar, with a final ranking of fifth out of six.

The Sent2Vec metric rates the second candidate video as being

very similar to the baseline because the caption for these videos

are very similar. Both captions start with the same phrase, The car

accelerates because traffic is.... Since these captions are word-for-

word identical up until the last two words, Sent2Vec determines that

they must be very similar. In the first candidate video, the captions

do not match each other as closely. Even though the meaning of

the sentence is the same, the exact words used are different, which

causes Sent2Vec to rank this video as much less similar, with a final

ranking of fourth out of six.

Clearly, both metrics have their flaws. Since the SDLs have been

extracted from the captions, an error in the caption will cause both

both metrics to fail. If the captioning data fails to accurately rep-

resent the video, the metrics will rank them poorly. Similarly, if

two different people provide a caption for the same video, they are

likely to describe the video differently. With two different captions,

Sent2Vec is likely to underestimate their similarity. The SDL extrac-

tion process aims to avoid this problem by identifying synonyms

and placing the elements within predefined categories. However,

this comes with a lack of nuance such that even a small difference

become a large distance. A more robust approach to extracting the

SDL information would likely increase its ranking accuracy.

6 CONCLUSION AND DISCUSSION

This paper lays the foundation for a novel method called Sce-

nario2Vector - for generating a vector embedding for traffic sce-

narios. The vector embedding is based on a scenario description

language which aims to capture the actor, action, and scene ele-

ments of a complex traffic situation into an equivalent embedding.

The embedding is indicative of both the temporal and static ele-

ments of the traffic situation. The SDL based embedding can then
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Figure 7: Qualitative results. For each of the chosen exam-

ples, we show a video frame, the caption, and the SDL actor-

action matrix from the baseline video, the highest ranked

SDL video, and the highest ranked Sent2Vec video.

be used to search for traffic situations similar to a baseline reference

traffic situation; allowing for an equitable method of comparing

two AVs operating under similar traffic scenarios. In doing so, we

have also created the first of its kind Traffic Scenario Similarity

(TSS) dataset. This dataset contains human rankings for similarity

between 100 traffic scenarios and 6 candidate scenarios for each.

Such a dataset will form the basis for a fair comparison and certifi-

cation method for AVs which goes beyond the disengagement per

miles used widely today. We compare our SDL based embedding

with caption based methods such as Sentence2Vector and report

findings which indicate that the SDL based method outperforms

caption based methods by 13%.

Our ongoing and future work is focused on extending and releas-

ing our TSS dataset to the CPS, autonomous vehicles, and computer

vision communities. In addition, we will explore expanding and

automating the SDL capture process to work with other sensor

modalities - beyond video.
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