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Threading the Needle - Overtaking Framework
for Multi-Agent Autonomous Racing
Suresh Babu, Varundev and Behl, Madhur

Abstract

Multi-agent autonomous racing still remains a largely
unsolved research challenge. The high-speed and close
proximity situations that arise in multi-agent autonomous
racing present an ideal condition to design algorithms which
trade off aggressive overtaking maneuvers and minimize the
risk of collision with the opponent. In this paper we study a
two vehicle autonomous racing setup and present AutoPass
- a novel framework for overtaking in a multi-agent setting.
AutoPass uses the structure of an automaton to break down
the complex task of overtaking into sub-maneuvers that
balance overtaking likelihood and risk with safety of the ego
vehicle. We present real world implementation of 1/10 scale
autonomous racing cars to demonstrate the effectiveness of
AutoPass for the overtaking task. Our results indicate that
the overtake success ratio for the AutoPass framework is
0.395 or 23 times more likely, compared to a purely
reactive system at 0.017, while traditional ROS based path
planners (depending on the navigation plugin used) are
placed between 0.115 to 0.286.

Introduction

Demonstrating high-speed autonomous racing can be
considered a grand challenge for multi-agent robotics, and
for autonomous vehicles, and making progress in this arena
has the potential to enable breakthroughs in agile and safe
autonomy. To succeed at autonomous racing, an
autonomous vehicle is required to perform both precise
steering and throttle maneuvers in a physically-complex,
uncertain environment, and by executing a series of
high-frequency decisions. Autonomous racing is also
slowly becoming a motorsport featuring head-to-head battle
of algorithms. Roborace [1] is the Formula E’s sister series,
which will feature fully autonomous race cars in the near
future. Autonomous racing competitions, such as F1/10
racing [2,3], Autonomous Formula SAE, and Indy
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Autonomous Challenge are, both figuratively and literally,
getting a lot of traction and becoming proving grounds for
testing perception, planing, and control algorithms at high
speeds and at the limits of controls.

Most past research in autonomous racing has focused on a
single-agent time-trial style of racing, i.e, a single
autonomous racecar completes a lap in the shortest amount
of time. Time-trial poses a number of challenges in terms of
dynamic modeling, on-board perception, localization and
mapping, trajectory generation and optimal control. Much
less attention has been devoted to the multi-agent style of
racing that we address in this paper. In addition to the
aforementioned challenges, multi-agent autonomous racing
also requires inferring the states of other agents, and
opportunistic passing while avoiding collisions. Multi-agent
autonomous racing provides the opportunity for testing
ground for developing and testing more widely applicable
non-cooperative multi-robot planning strategies.

In this paper, we examine a two-agent autonomous racing
setup to develop effective strategies for overtaking involving
autonomous agents that know each other’s goals and
constraints. The contributions of the paper are:

1. We present AutoPass - an automaton-based framework
for high-speed overtaking in a multi-agent
autonomous racing setting. The AutoPass framework
distills the overtaking maneuver into canonical
sub-maneuvers such as approach, overtake trajectory
synthesis, passing, and merge in front of the opponent.

2. We present an energy management system model that
accounts for boost energy depletion and recovery
during the race - a feature common in many
motorsports [4].

3. We demonstrate the effectiveness of our approach and
its ability to overtake safely on real F1/10 (one-tenth
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scale) autonomous racing testbed [2] as well as on the
ROS F1/10 autonomous racing simulator [3].

Our control architecture is modular and can fit into the
perception, planning, and control stack of any autonomous
racecar.

This paper is organized as follows: In Section 2, we present
a detailed review of existing literature relevant to the
problem of multi-agent autonomous racing. We then
provide an overview of the Boost Energy system model in
Section 3. The overtaking problem formulation is described
in detail in Section 4, followed by the description of our
novel AutoPass framework in Section 5. In Section 6, we
evaluate the effectiveness of our proposed AutoPass
framework in terms of successful overtakes for both
simulated and real F1/10 autonomous racing testbed.
Finally, we conclude the paper with a summary of the
results and a brief discussion on future work in the
conclusion Section 7.

Related Work

Autonomous Overtaking: Research
overtaking has focused mostly on free
where the ego vehicle is tasked with s
to pass a slower car. There have been
on the best way to make this happen.

a method for overtaking a car using ar
with an emphasis on passenger comfo
in [8] demonstrates classical path plar
autonomous overtaking. These metho
tested for structured autonomous drivi
and well-defined passing behaviors, ai
autonomous racing. Authors in [9] de
overtake strategy from a non-linear m
controller, while works demonstrated
data-driven approaches to solving autc
a simulated environment.

Autonomous Racing: The work done

game approach to autonomous racing,

graph based trajectory planning for hi

limits of control. An example of data-

high-speed autonomous racing is dem

the purpose high speed autonomous r:

overtaking framework, however, we f¢

described in [15] demonstrates how pr

used for high-speed autonomous racing, but it has several
drawbacks, such as corner-cutting, which can lead to
collisions with the racetrack boundary. The authors in [16]
propose using a model predictive controller for a high-speed
racing controller that overcomes the corner-cutting problem,
but this requires significant off-board computation and is
compute and memory intensive. The work shown in [17]
demonstrates an online implementation of MPC in an
embedded robotic control system that is both fast and
reliable for high speed autonomous racing. However, these
methods are not capable of autonomous overtaking, except
for [16] which can track and avoid dynamic obstacles, but
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only in a reactive manner.

Boost Energy Recovery and Management: Boost energy
is used in real motorsport racing as an aid in overtaking.
Examples include the Formula 1 Kinetic Energy Recovery
Systems [18] and Motor Generator Units [4], and the
Indycar’s Push-to-Pass system [19]. There is no related
work in incorporating boost energy systems within
autonomous racing overtaking approaches. This paper is
among the first to address this problem.

Consequentially, in this paper we attempt to address
shortcomings of these related efforts by presenting a new
framework that uses a high-speed MPC controller that is
capable of autonomous overtaking using the F1/10 racecar
testbed and also by incorporating a boost energy
management system capable of both recovering and using
the stored boost energy. The framework is implemented
using an automaton that lends itself well to model checking
and design by verification methods in the future; such
verification is not included in the current work.

Energy Management System

Brake Effort Driver Control

Speed
Boost
Module

Process
Monitor

Figure 1: High level architecture of the Energy Management System
(EMS).

In motorsport racing, overtaking involves using additional
energy (boost) to move past an opponent. Racecars are
fitted with dedicated boost energy control systems like the

Variable Description  Value

Time step q 0.1sec

Energy Bank T

Speed drain rate AU 1% of T for 1q
Max. speed Umaz

Speed boost Uboost 25% of Umaz
Brake effort b 0A - 45A
Regeneration range | B 5A - 60A
Regen. capture rate | AT 0.1 for 1¢

Table 1: The EMS control variables, with values during experiment.
Demand values are between 0 and the stated max; drain rates indi-
cated percentage from 7 for every g; A is current amperage; Vmaz

is continuous max speed.
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Figure 2: Overtake Stages for a Two Racecar Setup: the ego racecar (a) approaches the leading opponent, (b) chooses a feasible overtake trajectory,

(c) passes the opponent, and (d) safely merges in front of the opponent

F1 Motor Generator Unit (MGU) [4] and the Indycar’s 7 Problem Formulation
Push-to-Pass system [19]. In some of the top motorsports,
this boost energy has to be recovered by the racecar [4, 18]
from its kinetic energy. In a similar manner, we created the
Energy Management System (EMS) for our F1/10 [2]
testbed to recover kinetic energy and provide boost energy
to the racecar. The F1/10 testbed used in this paper has an
electric drivetrain fitted with a motor controller

(VESC [20]) capable of recovering, metering, and storing
kinetic energy through regenerative braking. We created a
virtual boost control system that allowed the F1/10 racecar
to travel at a higher-than-maximum rated speed using the
recovered energy for a fixed duration of time. The various
parts of the EMS are shown in Figure 1. Energy recovery
works by using the back-EMF from the axles to the motor,

175 Consider an ego racecar following a global raceline lagging
176 an opponent racecar within its horizon. The objective for
177 the ego racecar is to safely pass the leading opponent. The
178 ego racecar approaches the opponent and generates a

17e  feasible overtake trajectory to pass the opponent; the ego
180 racecar estimates its chance of a successful overtake, and if
181 feasible, executes the overtake maneuver in the sequence
182 shown in Figure 2, while utilizing the available boost

183 energy for overtaking as needed. A summary of the four

184 stages of an overtake maneuver is as follows:

o . . : 185 » Approach Opponent: The ego racecar approaches the
W,hIChHIS metered an‘? sto;:d mn thg mim %r;;tlon battert))/ asa 186 leading opponent and generates multiple overtake
virtually Sepa?te:éllt\l/ltg ( ne.rgy acrll )- . eﬁ energy llocl))slt 187 trajectories to pass the opponent; the ego racecar
1s necessary, the provides a dynamically controllable 188 estimates its chance of a successful overtake.
speed boost boost by drawing more power (peak power),
which is subtracted from the Energy Bank. Normally the 189 » Begin Overtake: The ego racecar chooses a valid
drivetrain is operated under continuous maximum power. 190 overtake trajectory (if one exists) and verifies whether

191 it has enough boost energy to pass the opponent, if so,
192 it starts the overtake maneuver.
T,=T,-1+AT;b ¢ B n 193 * Pass Opponent: The ego racecar passes the opponent
Vg = Vg1 + Uboost; Ty = Ty—1 — AU 194 and takes the lead while continuing to estimate if the
195 overtake maneuver remains feasible on the current
196 overtake trajectory.
The energy regeneration and utilization are governed by the 197 » Complete Overtake: The ego racecar clears enough
Equation 1 and Table 1 provides a list of variables used by 198 distance in front of the opponent and attempts to take
the AEMS. The variable T, models regenerative braking, 199 the lead position on the global raceline trajectory to
while v, models the dynamic boost energy utilized with 200 continue the race. Otherwise the ego racecar abandons
proportional energy drain from the EMS. 201 the overtake.
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Figure 3: Approximated overtake geometry

Figure 3 provides an approximate geometry of this overtake
maneuver. For the purpose of simplification, the ego racecar
must not violate (a) the minimum rear separation distance
Dgepp and minimum frontal separation distance from the
opponent (Dgepr ), and (b) the minimum separation from
the fender of the opponent during overtake (Dsepr ). The
ego racecar must take the approximate path ABC (z¢0:)
around the opponent, with the point B being on an overtake
trajectory. Table 2 provides a brief description of notations
used in this paper.

Notation | Description

Ttot Total overtake path length

Dgepr. Lateral separation between racecars

Dgepr Minimum front separation between racecars
DgepB Minimum rear separation between racecars
Demin Minimum follow distance

Drmaz Maximum follow distance

Table 2: List of notations used in AutoPass

The objective of the ego racecar is to safely pass the leading
opponent. Assume the ego racecar is travelling at velocity
(tego) and the opponent at (uopp) With a differential
velocity of the ego w.r.t. the opponent at (du). The ego
racecar must travel along the path ABC (see Figure 3),
which is the total overtake path length (x+0+) calculated
using Equation 2. Here, we assume Dsepp and Depr are
the same. Additionally, in the right triangle ABD from
Figure 3, AB is the hypotenuse, BD is the height which is
Dgepr and the base AD is the sum of the initial vehicular
separation (Dsep ) and the differential progress made by
the opponent while the ego travels along the hypotenuse
until it reaches the apex at B. We calculate the hypotenuse
BC of the right triangle BDC in the similar method. Since
Dgepp and Dy are similar, the right triangles ABD and
BDC are the same as long as the opponent’s velocity does
not change during the overtake maneuver, thus the total
overtake path (Z+0¢) is the sum of the hypotenuse AB and
AC'. Equation 2 explains this mathematically. Equation 2 is
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formulated in the moving frame of the opponent.

0U = Uego — Uopp
AB = (AD? + BD*)"/?
= ((Dseps + 6uxt)” + Dicpr)
BC = (DC? + AD*)'/? ()
= ((Dsepr + 6ux t)* + DZ.,1)"?
Ztot = AB + BC

= 2% ((DsepB + du * t)2 + D?epL)l/2

1/2

From Equation 2, (du * t) is the differential progress made
by the ego racecar w.r.t. to the opponent during the time
period t. A positive (du) is necessary for a successful
overtake i.e., the velocity of the ego racecar greater than the
velocity of the opponent. It is also assumed that both the
ego racecar and the opponent have non-zero velocities.

The problem is to find an efficient and feasible way to use
the boost energy during the overtake maneuver such that the
likelihood of the completion of the maneuver can be
computed ahead of time. For this, we compute the
minimum value for Uego + Uboost (boosted speed) that
would satisfy Equation 3. The boosted speed is the sum of
the normal speed of the racecar and the temporary increase
over the maximum continuous speed provided by the energy
management system (EMS). The boosted speed

(Uego + Uboost) 1S capped at (Umaz + Uboost ). The energy
management system in section 3 and Table 1 provides more
information about these variables and how they are
controlled by the AutoPass framework.

D2
t=2x sk
(uego + uboost) — Uopp (3)

t<=T

The value ¢ is the boost energy budget (in terms of time)
assigned to the overtake maneuver from the Energy Bank
(7). This means that the ego racecar has the time target ¢ to
reach the end of the overtake path. Figures 2 and 3 along
with Table 1 provide more information about the variables.

We have made the following assumptions in this paper: (a)
the ego racecar is only tasked with overtaking an opponent
and is not expected to defend its position if the opponent
initiates an overtake, (b) the ego racecar is capable of
accurately estimating the vehicle state of the opponent (incl.
position, velocity, etc.), (c) the ego racecar is aware of the
opponent’s racing strategy, and (d) we currently assume a
two racecar setup i.e., one ego and one opponent racecar.
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AutoPass Framework

To fully implement the above sequence and to account for
scenarios where an overtake may not be possible, current
overtake becomes infeasible, or opponent attempts to block
an overtake attempt, the ego racecar must continuously
track the opponents state and accurately predict the
opponent’s future state. The entire framework’s architecture
is shown in Figure 4. The framework works simultaneously
to (a) estimate ego and opponent states, (b) make decisions
based on an overarching racing strategy, and (c) implement
the chosen strategy on the ego racecar’s race controller. The
three modules are connected to an overtake state machine (a
finite state automaton) to precisely execute the correct
racing behaviour before, during, and after an overtake
attempt. The state machine (AutoPass automaton) is
described in detail in the next sections.

" Decision ) SR ™ Race )
Decision Race
Module Controller
Set/Reset Raceline
Logical Trajectory
Flags Server
Overtake
Monitor — State > Pure-
Distance Machine Pursuit
Triggers Control
Check Process
Path Sync.
Feasibility Node
—
a
Ve
Overtake Boost 'State. Ego Opponent
Path Energy Estimation State State
Generator Node Module Estimation Estimation
-

Figure 4: Overtake Control Architecture, showing the various func-
tional modules and their interdependent relationships

State Estimation Module The observable states of the ego
racecar and the opponent are estimated using a fast
approximate particle filter [21]. These states include
position in racetrack and absolute velocities, which helps
extrapolating into the future to calculate future states as
well. The ego racecar’s internal state estimation includes
the B.E.M. and the overtake path generation. In our setup,
the ego racecar produces several parallel trajectories to the
main raceline equally spaced using the largest dimension of
the ego and the opponent base footprint. The overtake
trajectories are generated by projecting the global raceline
by a constant offset from the geometric center of the
racetrack. The offsets used in this paper is a multiple of
Dgepr.. To judge the feasibility of the overtake paths, we
checked for potential collisions with the racetrack bounds
using a simple ROS occupancy grid search of the racetrack.

Decision Module The ego racecar must maintain safe
distances from the opponent in addition to the constraints
imposed by the navigation stack. These are a set of distance
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triggers that help in calculating the logical inputs to the
overtake state machine:

* Dprmin - the minimum follow distance, which is the
closest the ego racecar is allowed to follow the leading
opponent without risking collision or violating the ego
racecar’s constraints.

* Drmas - the maximum follow distance, which is the
farthest the ego racecar is allowed to follow the
leading opponent when in the follow state (more info
next section) .

* Dsepr - the minimum frontal separation, which is the
minimum distance the ego racecar must achieve
between the front fender of the opponent and the rear
fender of the ego during overtake to be allowed to
merge in front of the opponent.

* Dsepp - the minimum rear separation, which is the
absolute minimum distance between the front fender
of the racecar and the rear fender of the opponent that
the ego racecar must achieve to consider the current
overtake abandoned.

Race Controller The ego racecar is controlled by a robust
Ackermann-steering adjusted pure-pursuit path planner [22]
and a global trajectory server using costmap and occupancy
grid layers from the Robot Operating System (R.O.S.). The
trajectory server breaks down the given trajectory whether it
is the reference raceline or the chosen overtake trajectory
path into a set of equidistant waypoints that the pure-pursuit
controller can use to navigate around the race track at high
speeds. For our current implementation, we chose
pure-pursuit over more sophisticated controllers such as the
Model Predictive Controller described in [23] because of
the ease of hardware implementation and computational
simplicity. The pure-pursuit controller used in this paper
may not be well suited for a full-scale racecar [24,25]. Our
decision to use the pure-pursuit controller over more
sophisticated model-based controllers shown in [24,25], is
because (a) our F1/10 testbed [2] is based on a scaled
radio-controlled (RC) car, and (b) our test race-track short
and wide enough to reasonably accommodate the path
tracking error and limitations of the pure-pursuit planner
used. We have made the AutoPass framework modular in
order to accommodate different race controllers (see

Figure 4) as long as the necessary state information is made
available from the race controller to the rest of the AutoPass
framework. As can be seen in Figure 4, the right hand side
is the race controller which comprises the following nodes
that (a) monitor the pose of the ego racecar on the global
raceline, (b) provide the synchronization signal for the other
nodes in the AutoPass framework, and (c) provide steering
and throttle commands to the vehicle controller. The scope
of our work is focused on designing the architecture and
algorithm for the overtake maneuver - which itself is
decoupled from the low-level controller i.e. a different race
controller such as MPC could be used in place of
pure-pursuit. The race controller provides the timing signal
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necessary to synchronize all the processes in the AutoPas
framework. The race controller also ! ‘
traction effort to overcome wheel-sli

We chose an automaton to implemer
framework as it allowed us to easily
assumptions about how the overtake
structured, and in the future, we will
model check our framework.

The overtake state machine is define
(P, M,Z,6), with P inputs, M stat
and § = P x M is the set of transitic
The state estimation module provide
machine.

Figure 5 shows the AutoPass automs
conditions governing state transition

Inputs
Relative Path Progress (ygap)

The distance 445 is the absolute pat

racecars. It is the product of differen

of the corresponding racecar on the 1

resolution (actual distance between successive waypoints).
‘We calculate the path distance instead of the minimum
distance between racecars due to the geometric
complexities of the racetrack.

Ygap = argMin(Yego — w;) — arg min(yYopp — wi) (4)

In Equation 4, w; is a waypoint along the global raceline
(or, reference trajectory) and the function arg min is
calculating the index of the waypoint closest to the racecar’s
base_link (geometric center of racecar control - usually at
the center of the rear axle).

Overtake Flag (OT'F') The overtake flag (OT'F) is a
boolean flag that checks if an overtake maneuver is feasible
by comparing the resources requested for the overtake and
the resources available to the race controller. It takes into
account the feasibility of the list of overtake trajectories
generated and chooses the best trajectory to execute the
overtake using minimum amount of boost energy available.

Position Match Flag (P M F') This input is a boolean flag
that is set when the relative path progress is zero for the first
time during the attempted overtake maneuver to separate the
trigger conditions between the overtake attempt and merge
front maneuver.

Safe Fall Back Flag (SF'B) When an overtake attempt
fails, the ego racecar is designed to transition to the the
follow mode behind the opponent racecar, and the safe
fallback flag is a boolean flag that is set T'rue when all
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safety distance thresholds have been met.

[61] [62] [64]

Fall back
Mode
B

[68]

[69]

[610] [611] [613]

Figure 5: The AutoPass automaton, showing the different states in-
volved in an overtake attempt and the transition (guard) conditions

between the states
States

Normal Mode In this state, the ego racecar executes normal
racing behavior on the raceline while within the same mode
[61]. Two transitions are possible from this state to (a)
Follow Mode and (b) Overtake Mode, as defined by guard
conditions [62] and [§3]

01 :|Yygap| < DFmin
82 :[ygap|e[Drmin, Drmas)&!OTF (5)
43 :‘ygapk[DFmina DFma,;c]&OTF

Follow Mode In follow mode, the ego racecar maintains a
safe following distance from the opponent racecar while on
the raceline [§4] with two possible transitions to (a) Normal
Mode and (b) Overtake Mode, as defined by guard
conditions [65] and [§6]

04 :|ygap|e[DFmin, DFmaz|&!OTF
05 :[ygap| < DFmin (6)
66 :‘ygapk[DFmin, DFmaT]&OTF

Overtake Mode In overtake mode, the racecar follows the
selected overtake trajectory [§7] while continuously
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monitoring the progress of the overtake maneuver against
the available controller resources with two possible
transitions to (a) Merge Front Mode and (b) Fall Back
Mode, as defined by the guard conditions [§8] and [§9]

57 :OTF&'\PMF
58 :OTF&PMF ©)
§9 :10TF

Merge Front Mode In merge front mode, the ego racecar is
tasked with merging back onto the main raceline in front of
the opponent racecar [010] while maintaining a safe
distance from the opponent racecar with two possible
transitions to (a) Normal Mode and (b) Fall back Mode, as
defined by the guard conditions [011] and [012]. The
current design of the Merge Front mode assumes that the
opponent is unable (incapable, too aggressive, etc.) to avoid
a collision with the ego, thus forcing the ego to not violate
its safety constraints and ultimately abandon an overtake.

810 :|ygap| <= Dsepr&OTF&PMF
011 :|ygap| > Dsepr 8)
612 :\OTF|!PMF

Fall Back Mode If the current overtake attempt becomes
infeasible, the ego racecar transitions to the Fallback state.
In this state, the ego racecar engages its full available
braking power to prevent a collision with the opponent or
the racetrack bounds [§13]. The primary objective of the
fallback state is to prevent an impending collision and then
safely guide the ego racecar back to the global raceline
[614] in the normal mode.

513 :[Ygap| <= Disep&!SFB

9
614 :|ygap| > DsepB&SFB ( )

The AutoPass framework is currently designed only to
overtake an opponent and cannot defend the ego racecar’s
position from an attempted overtake by an opponent. Each
state’s output enables the different behaviours that make up
the various overtake sequences. More information about the
overtake sequences are described in the experiments
section.

Experiments & Results

Experiment Setup We chose the F1Tenth racecar [2]
platform for our experiments and conducted multiple tests
using an indoor racetrack. We deployed two autonomous
F1Tenth racecars in real world and the racing simulator [3].
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The opponent racecar was initialized in the lead position for
all experiments, and each experiment was 25 laps long for
different values of boost energy and opponent advantage,
with a total of 225 laps across all different variables on the
physical testbed and 600 laps in simulation leading to a total
of 33 experiments covering all variables).

The Ego Racecar was deployed with the AutoPass
framework, while the Opponent Racecar was made to
autonomously navigate the racetrack on the global raceline
at high speeds using a pure-pursuit controller. Each racecar
used a single 2D planar scanning LiDAR as the primary
perception and navigation sensor with a feedback enabled
motor and steering controller providing odometry data.
Both LiDAR and odometry data were used by an online
GPU particle filter [21] for fast and dependable localization
at high speeds around the racetrack. To simplify the ability
of the ego racecar in tracking the opponent, we enabled
base_link (which is the standard ROS name for the
racecar’s main control frame) sharing across both racecar’s
through a centralized control computer.

Figure 6 shows two outcomes of the AutoPass framework
implemented on the F1Tenth racecars. The left half of the
figure shows the ego racecar attempting to overtake the
opponent from the outside of the turn and running out of
boost energy, thus abandoning the overtake attempt. The
right half of the figure shows the ego racecar attempting to
pass the opponent from the inside of the turn using the boost
energy provided to successfully pass the opponent and
continue on the global raceline. This behavior in Figure 6 is
similar to those observed in real motorsport racing.

Defined Overtake Sequences Figure 7[Left] provides the
complete state transition sequence for the different overtake
sequence labels described in this section. Each of the
sequence labels define the outcome of an overtake attempt

* High Speed Overtake: (best case scenario), when the
ego racecar approaches the opponent at a high speed,
it immediately attempts an overtake because an
overtake trajectory exists and completes the overtake
by merging in front of the opponent. The ego racecar
uses very little boost energy in this case.

» Normal Overtake: the ego racecar approaches the
opponent and determines that an overtake is currently
infeasible, so it follows the opponent until an overtake
attempt is feasible and executes the overtake maneuver
using the boost energy and successfully passes the
opponent then merges in front of the opponent

* Normal Abandoned Overtake: the ego racecar
executes the Normal Overtake sequence because it
estimated that the overtake was feasible but a
recalculation with updated state information finds that
the attempt is no longer feasible (eg: ego racecar uses
the entire boost energy before the attempt is
successful, the opponent manages to increase the
lateral separation during the attempt etc.) forcing the
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Figure 7: [Left]: Traces labels of valid state transitions (1) high speed overtake, (2) normal overtake, (3) normal abandoned overtake, (4) overtake
infeasible, and (5) hybrid abandoned overtake; [Right]: Overtake probability and attempts vs boost energy. Red trace is the overtake probability

and the Blue histogram is the size of the boost energy bank 7'

ego racecar to fallback behind the opponent declaring
the overtake unsuccessful

Overtake Infeasible: The ego racecar approaches the
leading opponent but an overtake attempt is infeasible
and will continue to remain infeasible for an extended
time (narrow racetrack, not enough boost energy etc.),
thus making the ego racecar follow the opponent in
perpetuity until an overtake attempt becomes feasible

* Hybrid Abandoned Overtake: the ego racecar
successfully passes the opponent in an overtake
attempt but estimates that a merge-front maneuver
might violate safety its constraints (e.g. when the
opponent is overly aggressive and denies the ego an
opportunity to complete the merge front maneuver by
forcing an imminent collision between the racecars,
etc.), thus the ego racecar abandons the current
overtake attempt using all available braking effort to
safely fallback behind the opponent. This trace is not
frequently observed, but it shows the robustness of the
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AutoPass framework and its designed emphasis on
vehicular safety

Figure 7[Right] shows (a) the probability that an overtake
may be successful for an experiment for the different values
of boost energy available, and (b) the number of overtake
attempts for the corresponding values of boost energy. The
results from this figure show that the probability of a
successful overtake proportionally increase with the
available boost energy. An interesting note here is that the
ego racecar attempts to overtake the most number of times
when the probability of success is around 50%, and
continues to decrease with higher boost energy values
showing that the ego racecar attempts fewer overtakes, but
successfully completes each attempt at the higher boost
energy values. This is because, in our two car experiment
setup, when an overtake attempt is guaranteed to be
successful - and the racecar does successfully overtake an
opponent, it returns to the Normal Mode and continues to
race along the global raceline and is unlikely to encounter
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the opponent until it leads the opponent by an entire lap.
This situation is either likely to happen a long time into the
future (depending on the opponent’s comparative
disadvantage, and entirely unlikely if both racecars are the
<ame) and it mav not acenr acain hefore the end of the race

Percentage Time Spent in Each State

100
I

Opponent Disadvantage Opponent Disadvantage
(20%) (10%)

B Follow M Overtake

No Opponent
Disadvantage

W Normal M Merge-in-Front M Fallback

Figure 8: Time spent in each state vs opponent disadvantage

Figure 8 shows the amount of time the ego racecar spends
in each state for a lap, averaged for all laps for different
boost energy values and compared to a different opponent
setup. When the ego racecar and opponent have the same
max. rated velocities and the opponent starts in the pole
position, the ego racecar attempts to overtake as seen in
Figure 8[Right], and fails all the time, thus spending most
of the time following the opponent. When the opponent is
slightly disadvantaged in terms of the max. rated velocities
(see Figure 8[Left, Middle]), the ego racecar is more likely
to successfully overtake and merge in front of the opponent
with only a small number of failures. The ego racecar
spends equal amounts of time in both cases to pass the
opponent and then merge in front of the opponent and less
time following the opponent. This demonstrates that, when
considering an equal or slightly disadvantaged opponent, a
leading opponent on the global raceline will continue to
lead the race and the inclusion of the Boost Energy
Management system is necessary to perform the overtake
since the overtake trajectories are often less efficient
compared to the global raceline and the ego racecar needs
the added performance boost to overcome this.

Method Overtake  Successful Sucpess
Attempts  Overtakes ~ Ratio
Reactive Overtake | 59 1 0.017
ROS Navigation 26 3 0.115
TEB Planner 14 4 0.286
AutoPass 43 17 0.395

Table 3: Comparison of AutoPass with other methods capable of
overtaking. Timed-Elastic Band (TEB) is a plugin to the ROS navi-
gation stack.

Table 3 shows the performance of the AutoPass framework
compared to other model free approaches to autonomous
overtake. We define the success ratio as the number of
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successful overtakes to the total number of attempted
overtakes. This metric shows (a) the effectiveness of the
method being tested (number of successful overtakes), and
(b) the efficiency of the methods when planning an overtake
maneuver (number of overtake attempts). A purely reactive
system - such as the generic highway lane departure and
pass systems where a vehicle will attempt to take a low
weighted cost passing (overtake) trajectory - produces a
success ratio of 0.017, while the AutoPass system produces
a success ratio 0.395. The AutoPass framework also
outperforms the standard ROS navigation stack (which has
a 0.115 success ratio), and the more sophisticated TEB
planner [26] (which has a 0.286 success ratio). This
improvement is most likely because the ROS planners
emphasized hard constraints of safety over mission
objective and proved to be extremely risk averse, whereas
AutoPass works with soft constraints for mission objective
while maintaining comparable safety standards.

Conclusion

In this paper we presented AutoPass - a novel framework
for overtaking in a multi-agent setting. AutoPass uses the
structure of an automaton to break town the complex task of
overtaking into sub-maneuvers that balance overtaking
likelihood and risk with safety of the ego vehicle. We
presented real world implementation of 1/10 scale
autonomous racing using two F1Tenth cars to demonstrate
the effectiveness of AutoPass for the overtaking task. Our
results indicate that the overtake success ratio for the
AutoPass framework is 0.395 or 23 times more likely,
compared to a purely reactive system at 0.017, while
traditional ROS based path planners (depending on the
navigation plugin used) are placed between 0.115 to 0.286.
Our future work on this project is three-fold: first, we are
working on a method to formally verify the AutoPass
automaton to ensure that we can accurately predict when a
successful overtake will be feasible; second, we plan to
incorporate additional racing strategies into the AutoPass
framework (e.g., strategic overtake attempts at certain
sections of a race-track); and finally, we will implement
adversarial characteristics on the opponent to further
improve the AutoPass framework to work under these
conditions.
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