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Abstract1

Multi-agent autonomous racing still remains a largely2

unsolved research challenge. The high-speed and close3

proximity situations that arise in multi-agent autonomous4

racing present an ideal condition to design algorithms which5

trade off aggressive overtaking maneuvers and minimize the6

risk of collision with the opponent. In this paper we study a7

two vehicle autonomous racing setup and present AutoPass8

- a novel framework for overtaking in a multi-agent setting.9

AutoPass uses the structure of an automaton to break down10

the complex task of overtaking into sub-maneuvers that11

balance overtaking likelihood and risk with safety of the ego12

vehicle. We present real world implementation of 1/10 scale13

autonomous racing cars to demonstrate the effectiveness of14

AutoPass for the overtaking task. Our results indicate that15

the overtake success ratio for the AutoPass framework is16

0.395 or 23 times more likely, compared to a purely17

reactive system at 0.017, while traditional ROS based path18

planners (depending on the navigation plugin used) are19

placed between 0.115 to 0.286.20

Introduction21

Demonstrating high-speed autonomous racing can be22

considered a grand challenge for multi-agent robotics, and23

for autonomous vehicles, and making progress in this arena24

has the potential to enable breakthroughs in agile and safe25

autonomy. To succeed at autonomous racing, an26

autonomous vehicle is required to perform both precise27

steering and throttle maneuvers in a physically-complex,28

uncertain environment, and by executing a series of29

high-frequency decisions. Autonomous racing is also30

slowly becoming a motorsport featuring head-to-head battle31

of algorithms. Roborace [1] is the Formula E’s sister series,32

which will feature fully autonomous race cars in the near33

future. Autonomous racing competitions, such as F1/1034

racing [2, 3], Autonomous Formula SAE, and Indy35

Autonomous Challenge are, both figuratively and literally,36

getting a lot of traction and becoming proving grounds for37

testing perception, planing, and control algorithms at high38

speeds and at the limits of controls.39

Most past research in autonomous racing has focused on a40

single-agent time-trial style of racing, i.e, a single41

autonomous racecar completes a lap in the shortest amount42

of time. Time-trial poses a number of challenges in terms of43

dynamic modeling, on-board perception, localization and44

mapping, trajectory generation and optimal control. Much45

less attention has been devoted to the multi-agent style of46

racing that we address in this paper. In addition to the47

aforementioned challenges, multi-agent autonomous racing48

also requires inferring the states of other agents, and49

opportunistic passing while avoiding collisions. Multi-agent50

autonomous racing provides the opportunity for testing51

ground for developing and testing more widely applicable52

non-cooperative multi-robot planning strategies.53

In this paper, we examine a two-agent autonomous racing54

setup to develop effective strategies for overtaking involving55

autonomous agents that know each other’s goals and56

constraints. The contributions of the paper are:57

1. We present AutoPass - an automaton-based framework58

for high-speed overtaking in a multi-agent59

autonomous racing setting. The AutoPass framework60

distills the overtaking maneuver into canonical61

sub-maneuvers such as approach, overtake trajectory62

synthesis, passing, and merge in front of the opponent.63

2. We present an energy management system model that64

accounts for boost energy depletion and recovery65

during the race - a feature common in many66

motorsports [4].67

3. We demonstrate the effectiveness of our approach and68

its ability to overtake safely on real F1/10 (one-tenth69
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scale) autonomous racing testbed [2] as well as on the70

ROS F1/10 autonomous racing simulator [3].71

Our control architecture is modular and can fit into the72

perception, planning, and control stack of any autonomous73

racecar.74

This paper is organized as follows: In Section 2, we present75

a detailed review of existing literature relevant to the76

problem of multi-agent autonomous racing. We then77

provide an overview of the Boost Energy system model in78

Section 3. The overtaking problem formulation is described79

in detail in Section 4, followed by the description of our80

novel AutoPass framework in Section 5. In Section 6, we81

evaluate the effectiveness of our proposed AutoPass82

framework in terms of successful overtakes for both83

simulated and real F1/10 autonomous racing testbed.84

Finally, we conclude the paper with a summary of the85

results and a brief discussion on future work in the86

conclusion Section 7.87

Related Work88

Autonomous Overtaking: Research on autonomous89

overtaking has focused mostly on freeway driving scenarios90

where the ego vehicle is tasked with safely changing lanes91

to pass a slower car. There have been several studies [5–7]92

on the best way to make this happen. In [5], authors present93

a method for overtaking a car using an optimal trajectory94

with an emphasis on passenger comfort. The work done95

in [8] demonstrates classical path planning approaches to96

autonomous overtaking. These methods were designed and97

tested for structured autonomous driving in dedicated lanes98

and well-defined passing behaviors, and not specifically for99

autonomous racing. Authors in [9] demonstrate deriving an100

overtake strategy from a non-linear model predictive101

controller, while works demonstrated in [10, 11] show102

data-driven approaches to solving autonomous overtaking in103

a simulated environment.104

Autonomous Racing: The work done in [12] presents a105

game approach to autonomous racing, while [13] presents a106

graph based trajectory planning for high speed racing at the107

limits of control. An example of data-driven approach to108

high-speed autonomous racing is demonstrated in [14]. For109

the purpose high speed autonomous racing as a part of our110

overtaking framework, however, we focus on the work111

described in [15] demonstrates how pure-pursuit can be112

used for high-speed autonomous racing, but it has several113

drawbacks, such as corner-cutting, which can lead to114

collisions with the racetrack boundary. The authors in [16]115

propose using a model predictive controller for a high-speed116

racing controller that overcomes the corner-cutting problem,117

but this requires significant off-board computation and is118

compute and memory intensive. The work shown in [17]119

demonstrates an online implementation of MPC in an120

embedded robotic control system that is both fast and121

reliable for high speed autonomous racing. However, these122

methods are not capable of autonomous overtaking, except123

for [16] which can track and avoid dynamic obstacles, but124

only in a reactive manner.125

Boost Energy Recovery and Management: Boost energy126

is used in real motorsport racing as an aid in overtaking.127

Examples include the Formula 1 Kinetic Energy Recovery128

Systems [18] and Motor Generator Units [4], and the129

Indycar’s Push-to-Pass system [19]. There is no related130

work in incorporating boost energy systems within131

autonomous racing overtaking approaches. This paper is132

among the first to address this problem.133

Consequentially, in this paper we attempt to address134

shortcomings of these related efforts by presenting a new135

framework that uses a high-speed MPC controller that is136

capable of autonomous overtaking using the F1/10 racecar137

testbed and also by incorporating a boost energy138

management system capable of both recovering and using139

the stored boost energy. The framework is implemented140

using an automaton that lends itself well to model checking141

and design by verification methods in the future; such142

verification is not included in the current work.143

Energy Management System144

Process 
Monitor

Energy 
Bank

Speed 
Boost 

Module

Energy 
Regen.
Module

Brake Effort Driver Control

Figure 1: High level architecture of the Energy Management System
(EMS).

In motorsport racing, overtaking involves using additional145

energy (boost) to move past an opponent. Racecars are146

fitted with dedicated boost energy control systems like the147

Variable Description Value
Time step q 0.1sec
Energy Bank T
Speed drain rate ∆U 1% of T for 1q
Max. speed umax

Speed boost uboost 25% of umax

Brake effort b 0A - 45A
Regeneration range B 5A - 60A
Regen. capture rate ∆T 0.1 for 1q

Table 1: The EMS control variables, with values during experiment.
Demand values are between 0 and the stated max; drain rates indi-
cated percentage from T for every q; A is current amperage; vmax

is continuous max speed.
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Figure 2: Overtake Stages for a Two Racecar Setup: the ego racecar (a) approaches the leading opponent, (b) chooses a feasible overtake trajectory,
(c) passes the opponent, and (d) safely merges in front of the opponent

F1 Motor Generator Unit (MGU) [4] and the Indycar’s148

Push-to-Pass system [19]. In some of the top motorsports,149

this boost energy has to be recovered by the racecar [4, 18]150

from its kinetic energy. In a similar manner, we created the151

Energy Management System (EMS) for our F1/10 [2]152

testbed to recover kinetic energy and provide boost energy153

to the racecar. The F1/10 testbed used in this paper has an154

electric drivetrain fitted with a motor controller155

(VESC [20]) capable of recovering, metering, and storing156

kinetic energy through regenerative braking. We created a157

virtual boost control system that allowed the F1/10 racecar158

to travel at a higher-than-maximum rated speed using the159

recovered energy for a fixed duration of time. The various160

parts of the EMS are shown in Figure 1. Energy recovery161

works by using the back-EMF from the axles to the motor,162

which is metered and stored in the main traction battery as a163

virtually separate entity (Energy Bank). When energy boost164

is necessary, the AEMS provides a dynamically controllable165

speed boost boost by drawing more power (peak power),166

which is subtracted from the Energy Bank. Normally the167

drivetrain is operated under continuous maximum power.168

Tq = Tq−1 + ∆T ; b ε B

vq = vq−1 + uboost;Tq = Tq−1 −∆U
(1)

The energy regeneration and utilization are governed by the169

Equation 1 and Table 1 provides a list of variables used by170

the AEMS. The variable Tq models regenerative braking,171

while vq models the dynamic boost energy utilized with172

proportional energy drain from the EMS.173

Problem Formulation174

Consider an ego racecar following a global raceline lagging175

an opponent racecar within its horizon. The objective for176

the ego racecar is to safely pass the leading opponent. The177

ego racecar approaches the opponent and generates a178

feasible overtake trajectory to pass the opponent; the ego179

racecar estimates its chance of a successful overtake, and if180

feasible, executes the overtake maneuver in the sequence181

shown in Figure 2, while utilizing the available boost182

energy for overtaking as needed. A summary of the four183

stages of an overtake maneuver is as follows:184

• Approach Opponent: The ego racecar approaches the185

leading opponent and generates multiple overtake186

trajectories to pass the opponent; the ego racecar187

estimates its chance of a successful overtake.188

• Begin Overtake: The ego racecar chooses a valid189

overtake trajectory (if one exists) and verifies whether190

it has enough boost energy to pass the opponent, if so,191

it starts the overtake maneuver.192

• Pass Opponent: The ego racecar passes the opponent193

and takes the lead while continuing to estimate if the194

overtake maneuver remains feasible on the current195

overtake trajectory.196

• Complete Overtake: The ego racecar clears enough197

distance in front of the opponent and attempts to take198

the lead position on the global raceline trajectory to199

continue the race. Otherwise the ego racecar abandons200

the overtake.201
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Figure 3: Approximated overtake geometry

Figure 3 provides an approximate geometry of this overtake202

maneuver. For the purpose of simplification, the ego racecar203

must not violate (a) the minimum rear separation distance204

DsepB and minimum frontal separation distance from the205

opponent (DsepF ), and (b) the minimum separation from206

the fender of the opponent during overtake (DsepL). The207

ego racecar must take the approximate path ABC (xtot)208

around the opponent, with the point B being on an overtake209

trajectory. Table 2 provides a brief description of notations210

used in this paper.211

Notation Description
xtot Total overtake path length
DsepL Lateral separation between racecars
DsepF Minimum front separation between racecars
DsepB Minimum rear separation between racecars
DFmin Minimum follow distance
DFmax Maximum follow distance

Table 2: List of notations used in AutoPass

The objective of the ego racecar is to safely pass the leading212

opponent. Assume the ego racecar is travelling at velocity213

(uego) and the opponent at (uopp) with a differential214

velocity of the ego w.r.t. the opponent at (δu). The ego215

racecar must travel along the path ABC (see Figure 3),216

which is the total overtake path length (xtot) calculated217

using Equation 2. Here, we assume DsepB and DsepF are218

the same. Additionally, in the right triangle ABD from219

Figure 3, AB is the hypotenuse, BD is the height which is220

DsepL and the base AD is the sum of the initial vehicular221

separation (DsepB) and the differential progress made by222

the opponent while the ego travels along the hypotenuse223

until it reaches the apex at B. We calculate the hypotenuse224

BC of the right triangle BDC in the similar method. Since225

DsepB and DsepF are similar, the right triangles ABD and226

BDC are the same as long as the opponent’s velocity does227

not change during the overtake maneuver, thus the total228

overtake path (xtot) is the sum of the hypotenuse AB and229

AC. Equation 2 explains this mathematically. Equation 2 is230

formulated in the moving frame of the opponent.231

δu = uego − uopp

AB = (AD2 +BD2)1/2

= ((DsepB + δu ∗ t)2 +D2
sepL)1/2

BC = (DC2 +AD2)1/2

= ((DsepF + δu ∗ t)2 +D2
sepL)1/2

xtot = AB +BC

= 2 ∗ ((DsepB + δu ∗ t)2 +D2
sepL)1/2

(2)

232

From Equation 2, (δu ∗ t) is the differential progress made233

by the ego racecar w.r.t. to the opponent during the time234

period t. A positive (δu) is necessary for a successful235

overtake i.e., the velocity of the ego racecar greater than the236

velocity of the opponent. It is also assumed that both the237

ego racecar and the opponent have non-zero velocities.238

The problem is to find an efficient and feasible way to use239

the boost energy during the overtake maneuver such that the240

likelihood of the completion of the maneuver can be241

computed ahead of time. For this, we compute the242

minimum value for uego + uboost (boosted speed) that243

would satisfy Equation 3. The boosted speed is the sum of244

the normal speed of the racecar and the temporary increase245

over the maximum continuous speed provided by the energy246

management system (EMS). The boosted speed247

(uego + uboost) is capped at (umax + uboost). The energy248

management system in section 3 and Table 1 provides more249

information about these variables and how they are250

controlled by the AutoPass framework.251

t = 2 ∗

√
D2

sepL

(uego + uboost)2 − u2
opp

t <= T

(3)

The value t is the boost energy budget (in terms of time)252

assigned to the overtake maneuver from the Energy Bank253

(T ). This means that the ego racecar has the time target t to254

reach the end of the overtake path. Figures 2 and 3 along255

with Table 1 provide more information about the variables.256

We have made the following assumptions in this paper: (a)257

the ego racecar is only tasked with overtaking an opponent258

and is not expected to defend its position if the opponent259

initiates an overtake, (b) the ego racecar is capable of260

accurately estimating the vehicle state of the opponent (incl.261

position, velocity, etc.), (c) the ego racecar is aware of the262

opponent’s racing strategy, and (d) we currently assume a263

two racecar setup i.e., one ego and one opponent racecar.264
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AutoPass Framework265

To fully implement the above sequence and to account for266

scenarios where an overtake may not be possible, current267

overtake becomes infeasible, or opponent attempts to block268

an overtake attempt, the ego racecar must continuously269

track the opponents state and accurately predict the270

opponent’s future state. The entire framework’s architecture271

is shown in Figure 4. The framework works simultaneously272

to (a) estimate ego and opponent states, (b) make decisions273

based on an overarching racing strategy, and (c) implement274

the chosen strategy on the ego racecar’s race controller. The275

three modules are connected to an overtake state machine (a276

finite state automaton) to precisely execute the correct277

racing behaviour before, during, and after an overtake278

attempt. The state machine (AutoPass automaton) is279

described in detail in the next sections.280

Overtake
State

Machine

Decision
Module

Race
Controller

State
Estimation

Module

Set/Reset
Logical
Flags

Monitor
Distance
Triggers

Check
Path

Feasibility

Raceline
Trajectory

Server

Pure-
Pursuit
Control

Process
Sync.
Node

Overtake
Path

Generator

Boost
Energy
Node

Ego
State

Estimation

Opponent
State

Estimation

Figure 4: Overtake Control Architecture, showing the various func-
tional modules and their interdependent relationships

State Estimation Module The observable states of the ego281

racecar and the opponent are estimated using a fast282

approximate particle filter [21]. These states include283

position in racetrack and absolute velocities, which helps284

extrapolating into the future to calculate future states as285

well. The ego racecar’s internal state estimation includes286

the B.E.M. and the overtake path generation. In our setup,287

the ego racecar produces several parallel trajectories to the288

main raceline equally spaced using the largest dimension of289

the ego and the opponent base footprint. The overtake290

trajectories are generated by projecting the global raceline291

by a constant offset from the geometric center of the292

racetrack. The offsets used in this paper is a multiple of293

DsepL. To judge the feasibility of the overtake paths, we294

checked for potential collisions with the racetrack bounds295

using a simple ROS occupancy grid search of the racetrack.296

Decision Module The ego racecar must maintain safe297

distances from the opponent in addition to the constraints298

imposed by the navigation stack. These are a set of distance299

triggers that help in calculating the logical inputs to the300

overtake state machine:301

• DFmin - the minimum follow distance, which is the302

closest the ego racecar is allowed to follow the leading303

opponent without risking collision or violating the ego304

racecar’s constraints.305

• DFmax - the maximum follow distance, which is the306

farthest the ego racecar is allowed to follow the307

leading opponent when in the follow state (more info308

next section) .309

• DsepF - the minimum frontal separation, which is the310

minimum distance the ego racecar must achieve311

between the front fender of the opponent and the rear312

fender of the ego during overtake to be allowed to313

merge in front of the opponent.314

• DsepB - the minimum rear separation, which is the315

absolute minimum distance between the front fender316

of the racecar and the rear fender of the opponent that317

the ego racecar must achieve to consider the current318

overtake abandoned.319

Race Controller The ego racecar is controlled by a robust320

Ackermann-steering adjusted pure-pursuit path planner [22]321

and a global trajectory server using costmap and occupancy322

grid layers from the Robot Operating System (R.O.S.). The323

trajectory server breaks down the given trajectory whether it324

is the reference raceline or the chosen overtake trajectory325

path into a set of equidistant waypoints that the pure-pursuit326

controller can use to navigate around the race track at high327

speeds. For our current implementation, we chose328

pure-pursuit over more sophisticated controllers such as the329

Model Predictive Controller described in [23] because of330

the ease of hardware implementation and computational331

simplicity. The pure-pursuit controller used in this paper332

may not be well suited for a full-scale racecar [24, 25]. Our333

decision to use the pure-pursuit controller over more334

sophisticated model-based controllers shown in [24, 25], is335

because (a) our F1/10 testbed [2] is based on a scaled336

radio-controlled (RC) car, and (b) our test race-track short337

and wide enough to reasonably accommodate the path338

tracking error and limitations of the pure-pursuit planner339

used. We have made the AutoPass framework modular in340

order to accommodate different race controllers (see341

Figure 4) as long as the necessary state information is made342

available from the race controller to the rest of the AutoPass343

framework. As can be seen in Figure 4, the right hand side344

is the race controller which comprises the following nodes345

that (a) monitor the pose of the ego racecar on the global346

raceline, (b) provide the synchronization signal for the other347

nodes in the AutoPass framework, and (c) provide steering348

and throttle commands to the vehicle controller. The scope349

of our work is focused on designing the architecture and350

algorithm for the overtake maneuver - which itself is351

decoupled from the low-level controller i.e. a different race352

controller such as MPC could be used in place of353

pure-pursuit. The race controller provides the timing signal354
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necessary to synchronize all the processes in the AutoPass355

framework. The race controller also monitors and corrects356

traction effort to overcome wheel-slips and over-steering.357

We chose an automaton to implement the AutoPass358

framework as it allowed us to easily verify our initial359

assumptions about how the overtake maneuver was to be360

structured, and in the future, we will use the automaton to361

model check our framework.362

The overtake state machine is defined as a tuple363

(P,M, I, δ), with P inputs, M states with I initial state,364

and δ = P ×M is the set of transitions or guard conditions.365

The state estimation module provides the input to the state366

machine.367

Figure 5 shows the AutoPass automaton and the guard368

conditions governing state transitions.369

Inputs370

Relative Path Progress (ygap)371

The distance ygap is the absolute path distance between the372

racecars. It is the product of difference between the indices373

of the corresponding racecar on the raceline and the path374

resolution (actual distance between successive waypoints).375

We calculate the path distance instead of the minimum376

distance between racecars due to the geometric377

complexities of the racetrack.378

ygap = argmin(yego − wi)− argmin(yopp − wi) (4)

In Equation 4, wi is a waypoint along the global raceline379

(or, reference trajectory) and the function argmin is380

calculating the index of the waypoint closest to the racecar’s381

base link (geometric center of racecar control - usually at382

the center of the rear axle).383

Overtake Flag (OTF ) The overtake flag (OTF ) is a384

boolean flag that checks if an overtake maneuver is feasible385

by comparing the resources requested for the overtake and386

the resources available to the race controller. It takes into387

account the feasibility of the list of overtake trajectories388

generated and chooses the best trajectory to execute the389

overtake using minimum amount of boost energy available.390

Position Match Flag (PMF ) This input is a boolean flag391

that is set when the relative path progress is zero for the first392

time during the attempted overtake maneuver to separate the393

trigger conditions between the overtake attempt and merge394

front maneuver.395

Safe Fall Back Flag (SFB) When an overtake attempt396

fails, the ego racecar is designed to transition to the the397

follow mode behind the opponent racecar, and the safe398

fallback flag is a boolean flag that is set True when all399

safety distance thresholds have been met.400

Normal 
Mode
𝑁

Follow 
Mode
𝐹

Overtake 
Mode
𝑂

Fall back 
Mode
𝐵

Merge Front 
Mode
𝑀

[𝛿1] [𝛿4][𝛿2]

[𝛿3]
[𝛿5]

[𝛿6]

[𝛿7]

[𝛿8] [𝛿9]

[𝛿10]

[𝛿12]

[𝛿11] [𝛿13]

[𝛿14]

Figure 5: The AutoPass automaton, showing the different states in-
volved in an overtake attempt and the transition (guard) conditions
between the states

States401

Normal Mode In this state, the ego racecar executes normal402

racing behavior on the raceline while within the same mode403

[δ1]. Two transitions are possible from this state to (a)404

Follow Mode and (b) Overtake Mode, as defined by guard405

conditions [δ2] and [δ3]406

δ1 :|ygap| < DFmin

δ2 :|ygap|ε[DFmin, DFmax]&!OTF

δ3 :|ygap|ε[DFmin, DFmax]&OTF

(5)

Follow Mode In follow mode, the ego racecar maintains a407

safe following distance from the opponent racecar while on408

the raceline [δ4] with two possible transitions to (a) Normal409

Mode and (b) Overtake Mode, as defined by guard410

conditions [δ5] and [δ6]411

δ4 :|ygap|ε[DFmin, DFmax]&!OTF

δ5 :|ygap| < DFmin

δ6 :|ygap|ε[DFmin, DFmax]&OTF

(6)

Overtake Mode In overtake mode, the racecar follows the412

selected overtake trajectory [δ7] while continuously413
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monitoring the progress of the overtake maneuver against414

the available controller resources with two possible415

transitions to (a) Merge Front Mode and (b) Fall Back416

Mode, as defined by the guard conditions [δ8] and [δ9]417

δ7 :OTF&!PMF

δ8 :OTF&PMF

δ9 :!OTF

(7)

Merge Front Mode In merge front mode, the ego racecar is418

tasked with merging back onto the main raceline in front of419

the opponent racecar [δ10] while maintaining a safe420

distance from the opponent racecar with two possible421

transitions to (a) Normal Mode and (b) Fall back Mode, as422

defined by the guard conditions [δ11] and [δ12]. The423

current design of the Merge Front mode assumes that the424

opponent is unable (incapable, too aggressive, etc.) to avoid425

a collision with the ego, thus forcing the ego to not violate426

its safety constraints and ultimately abandon an overtake.427

δ10 :|ygap| <= DsepF &OTF&PMF

δ11 :|ygap| > DsepF

δ12 :!OTF |!PMF

(8)

Fall Back Mode If the current overtake attempt becomes428

infeasible, the ego racecar transitions to the Fallback state.429

In this state, the ego racecar engages its full available430

braking power to prevent a collision with the opponent or431

the racetrack bounds [δ13]. The primary objective of the432

fallback state is to prevent an impending collision and then433

safely guide the ego racecar back to the global raceline434

[δ14] in the normal mode.435

δ13 :|ygap| <= DsepB&!SFB

δ14 :|ygap| > DsepB&SFB
(9)

The AutoPass framework is currently designed only to436

overtake an opponent and cannot defend the ego racecar’s437

position from an attempted overtake by an opponent. Each438

state’s output enables the different behaviours that make up439

the various overtake sequences. More information about the440

overtake sequences are described in the experiments441

section.442

Experiments & Results443

Experiment Setup We chose the F1Tenth racecar [2]444

platform for our experiments and conducted multiple tests445

using an indoor racetrack. We deployed two autonomous446

F1Tenth racecars in real world and the racing simulator [3].447

The opponent racecar was initialized in the lead position for448

all experiments, and each experiment was 25 laps long for449

different values of boost energy and opponent advantage,450

with a total of 225 laps across all different variables on the451

physical testbed and 600 laps in simulation leading to a total452

of 33 experiments covering all variables).453

The Ego Racecar was deployed with the AutoPass454

framework, while the Opponent Racecar was made to455

autonomously navigate the racetrack on the global raceline456

at high speeds using a pure-pursuit controller. Each racecar457

used a single 2D planar scanning LiDAR as the primary458

perception and navigation sensor with a feedback enabled459

motor and steering controller providing odometry data.460

Both LiDAR and odometry data were used by an online461

GPU particle filter [21] for fast and dependable localization462

at high speeds around the racetrack. To simplify the ability463

of the ego racecar in tracking the opponent, we enabled464

base link (which is the standard ROS name for the465

racecar’s main control frame) sharing across both racecar’s466

through a centralized control computer.467

Figure 6 shows two outcomes of the AutoPass framework468

implemented on the F1Tenth racecars. The left half of the469

figure shows the ego racecar attempting to overtake the470

opponent from the outside of the turn and running out of471

boost energy, thus abandoning the overtake attempt. The472

right half of the figure shows the ego racecar attempting to473

pass the opponent from the inside of the turn using the boost474

energy provided to successfully pass the opponent and475

continue on the global raceline. This behavior in Figure 6 is476

similar to those observed in real motorsport racing.477

Defined Overtake Sequences Figure 7[Left] provides the478

complete state transition sequence for the different overtake479

sequence labels described in this section. Each of the480

sequence labels define the outcome of an overtake attempt481

• High Speed Overtake: (best case scenario), when the482

ego racecar approaches the opponent at a high speed,483

it immediately attempts an overtake because an484

overtake trajectory exists and completes the overtake485

by merging in front of the opponent. The ego racecar486

uses very little boost energy in this case.487

• Normal Overtake: the ego racecar approaches the488

opponent and determines that an overtake is currently489

infeasible, so it follows the opponent until an overtake490

attempt is feasible and executes the overtake maneuver491

using the boost energy and successfully passes the492

opponent then merges in front of the opponent493

• Normal Abandoned Overtake: the ego racecar494

executes the Normal Overtake sequence because it495

estimated that the overtake was feasible but a496

recalculation with updated state information finds that497

the attempt is no longer feasible (eg: ego racecar uses498

the entire boost energy before the attempt is499

successful, the opponent manages to increase the500

lateral separation during the attempt etc.) forcing the501
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Figure 6: [Left] An abandoned overtake sequence; [Right] A successful overtake sequence. Yellow line is the trajectory trace of the ego racecar
and green line is the trace for the opponent racecar. The red bounding boxes show the sequence (1) overtake initiation, (2) pass attempt, and (3)
overtake result for both cases

State Traces

Figure 7: [Left]: Traces labels of valid state transitions (1) high speed overtake, (2) normal overtake, (3) normal abandoned overtake, (4) overtake
infeasible, and (5) hybrid abandoned overtake; [Right]: Overtake probability and attempts vs boost energy. Red trace is the overtake probability
and the Blue histogram is the size of the boost energy bank T

ego racecar to fallback behind the opponent declaring502

the overtake unsuccessful503

• Overtake Infeasible: The ego racecar approaches the504

leading opponent but an overtake attempt is infeasible505

and will continue to remain infeasible for an extended506

time (narrow racetrack, not enough boost energy etc.),507

thus making the ego racecar follow the opponent in508

perpetuity until an overtake attempt becomes feasible509

• Hybrid Abandoned Overtake: the ego racecar510

successfully passes the opponent in an overtake511

attempt but estimates that a merge-front maneuver512

might violate safety its constraints (e.g. when the513

opponent is overly aggressive and denies the ego an514

opportunity to complete the merge front maneuver by515

forcing an imminent collision between the racecars,516

etc.), thus the ego racecar abandons the current517

overtake attempt using all available braking effort to518

safely fallback behind the opponent. This trace is not519

frequently observed, but it shows the robustness of the520

AutoPass framework and its designed emphasis on521

vehicular safety522

Figure 7[Right] shows (a) the probability that an overtake523

may be successful for an experiment for the different values524

of boost energy available, and (b) the number of overtake525

attempts for the corresponding values of boost energy. The526

results from this figure show that the probability of a527

successful overtake proportionally increase with the528

available boost energy. An interesting note here is that the529

ego racecar attempts to overtake the most number of times530

when the probability of success is around 50%, and531

continues to decrease with higher boost energy values532

showing that the ego racecar attempts fewer overtakes, but533

successfully completes each attempt at the higher boost534

energy values. This is because, in our two car experiment535

setup, when an overtake attempt is guaranteed to be536

successful - and the racecar does successfully overtake an537

opponent, it returns to the Normal Mode and continues to538

race along the global raceline and is unlikely to encounter539
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the opponent until it leads the opponent by an entire lap.540

This situation is either likely to happen a long time into the541

future (depending on the opponent’s comparative542

disadvantage, and entirely unlikely if both racecars are the543

same) and, it may not occur again before the end of the race544

(in our case - 25 laps).545
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Figure 8: Time spent in each state vs opponent disadvantage

Figure 8 shows the amount of time the ego racecar spends546

in each state for a lap, averaged for all laps for different547

boost energy values and compared to a different opponent548

setup. When the ego racecar and opponent have the same549

max. rated velocities and the opponent starts in the pole550

position, the ego racecar attempts to overtake as seen in551

Figure 8[Right], and fails all the time, thus spending most552

of the time following the opponent. When the opponent is553

slightly disadvantaged in terms of the max. rated velocities554

(see Figure 8[Left, Middle]), the ego racecar is more likely555

to successfully overtake and merge in front of the opponent556

with only a small number of failures. The ego racecar557

spends equal amounts of time in both cases to pass the558

opponent and then merge in front of the opponent and less559

time following the opponent. This demonstrates that, when560

considering an equal or slightly disadvantaged opponent, a561

leading opponent on the global raceline will continue to562

lead the race and the inclusion of the Boost Energy563

Management system is necessary to perform the overtake564

since the overtake trajectories are often less efficient565

compared to the global raceline and the ego racecar needs566

the added performance boost to overcome this.567

Method Overtake
Attempts

Successful
Overtakes

Success
Ratio

Reactive Overtake 59 1 0.017
ROS Navigation 26 3 0.115
TEB Planner 14 4 0.286
AutoPass 43 17 0.395

Table 3: Comparison of AutoPass with other methods capable of
overtaking. Timed-Elastic Band (TEB) is a plugin to the ROS navi-
gation stack.

Table 3 shows the performance of the AutoPass framework568

compared to other model free approaches to autonomous569

overtake. We define the success ratio as the number of570

successful overtakes to the total number of attempted571

overtakes. This metric shows (a) the effectiveness of the572

method being tested (number of successful overtakes), and573

(b) the efficiency of the methods when planning an overtake574

maneuver (number of overtake attempts). A purely reactive575

system - such as the generic highway lane departure and576

pass systems where a vehicle will attempt to take a low577

weighted cost passing (overtake) trajectory - produces a578

success ratio of 0.017, while the AutoPass system produces579

a success ratio 0.395. The AutoPass framework also580

outperforms the standard ROS navigation stack (which has581

a 0.115 success ratio), and the more sophisticated TEB582

planner [26] (which has a 0.286 success ratio). This583

improvement is most likely because the ROS planners584

emphasized hard constraints of safety over mission585

objective and proved to be extremely risk averse, whereas586

AutoPass works with soft constraints for mission objective587

while maintaining comparable safety standards.588

Conclusion589

In this paper we presented AutoPass - a novel framework590

for overtaking in a multi-agent setting. AutoPass uses the591

structure of an automaton to break town the complex task of592

overtaking into sub-maneuvers that balance overtaking593

likelihood and risk with safety of the ego vehicle. We594

presented real world implementation of 1/10 scale595

autonomous racing using two F1Tenth cars to demonstrate596

the effectiveness of AutoPass for the overtaking task. Our597

results indicate that the overtake success ratio for the598

AutoPass framework is 0.395 or 23 times more likely,599

compared to a purely reactive system at 0.017, while600

traditional ROS based path planners (depending on the601

navigation plugin used) are placed between 0.115 to 0.286.602

Our future work on this project is three-fold: first, we are603

working on a method to formally verify the AutoPass604

automaton to ensure that we can accurately predict when a605

successful overtake will be feasible; second, we plan to606

incorporate additional racing strategies into the AutoPass607

framework (e.g., strategic overtake attempts at certain608

sections of a race-track); and finally, we will implement609

adversarial characteristics on the opponent to further610

improve the AutoPass framework to work under these611

conditions.612

613

References614

1. Global championship of driverless cars.615

url=https://roborace.com/, journal=Roborace.616

2. Matthew O’Kelly, Varundev Sukhil, Houssam Abbas,617

Jack Harkins, Chris Kao, Yash Vardhan Pant, Rahul618

Mangharam, Dipshil Agarwal, Madhur Behl, Paolo619

Burgio, et al. F1/10: An open-source autonomous620

cyber-physical platform. arXiv preprint621

arXiv:1901.08567, 2019.622

3. Varundev Suresh Babu and Madhur Behl. f1tenth.623

dev-an open-source ros based f1/10 autonomous624

9



racing simulator. In 2020 IEEE 16th International625

Conference on Automation Science and Engineering626

(CASE), pages 1614–1620. IEEE, 2020.627

4. Albert Boretti. Energy flow of a 2018 fia f1 racing car628

and proposed changes to the powertrain rules.629

Nonlinear Engineering, 9:28–34, 08 2019.630

5. Nikolce Murgovski and Jonas Sjöberg. Predictive631
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