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Autonomous Vehicles on the Edge:
A Survey on Autonomous Vehicle Racing

Johannes Betz, Hongrui Zheng, Alexander Liniger, Ugo Rosolia, Phillip Karle,
Madhur Behl, Venkat Krovi, Rahul Mangharam

The rising popularity of self-driving cars has led to the emergence of a new research field in the recent years: Autonomous racing.
Researchers are developing software and hardware for high performance race vehicles which aim to operate autonomously on the edge
of the vehicles limits: High speeds, high accelerations, low reaction times, highly uncertain, dynamic and adversarial environments.
This paper represents the first holistic survey that covers the research in the field of autonomous racing. We focus on the field of
autonomous racecars only and display the algorithms, methods and approaches that are used in the fields of perception, planning
and control as well as end-to-end learning. Further, with an increasing number of autonomous racing competitions, researchers
now have access to a range of high performance platforms to test and evaluate their autonomy algorithms. This survey presents a
comprehensive overview of the current autonomous racing platforms emphasizing both the software-hardware co-evolution to the
current stage. Finally, based on additional discussion with leading researchers in the field we conclude with a summary of open
research challenges that will guide future researchers in this field.

Index Terms—Autonomous systems, autonomous vehicles, intelligent vehicles, advanced driver assistance, simultaneous localization
and mapping, path planning, control

I. INTRODUCTION

WHAT aerospace engineering is to aviation, motorsport
is to automotive technology. For over a century now,

racing series such as Formula 1, Indy Car or the World Rally
Championship have served to inspire research and product
innovation to improve performance and safety in commercial
road vehicles. These developments include well-known ele-
ments such as the disc brake, the turbocharger or production
measures for fibre composites (e.g. carbon). In more recent
years, developments in the hybrid powertrain but also in the
connectivity (real-time measurement and transfer of vehicle
data) of the vehicles have emerged. With millions of dollars
of investment and prestige at stake, these developments target
towards a singular goal: The racecar must achieve the fastest
lap time and thus win the race at the end. With a vehicle
that moves at the dynamic limits of handling, that reaches
high velocities, that is designed for aerodynamic efficiency and
that consists of pure lightweight construction, traditionally the
target of the minimum lap time can only be achieved through
extremely novel, sophisticated and radical developments. But
the technical development of the racecar is only half of the
effort. In motorsport racing, it all boils down to the ability
of the driver to operate the racecar at its limits [1], [2].
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Expert race drivers are extremely proficient in pushing the
racecar to its dynamical limits of handling, while account for
continuously changing parameters such as tire wear, changing
brake bias, and engine maps from turn to turn, communicating
strategy and status with the team in the pits, and trying to
maintain track position or overtake fierce competitors all while
driving at speeds exceeding 300 km/h.

All of these facets manifest themselves in the innumerable
research and development challenges sought to be addressed in
the burgeoning field of autonomous vehicle racing. The current
state of the art of autonomous driving software – either from
commercial companies or researchers – is capable of operating
autonomously but only to a limited velocity. Everything that
we find in classic motorsport can also be found in autonomous
motorsport - with one difference: The racecar-driver is based
on software only. More or less this means that a highly
sophisticated autonomous driving software needs to replace
the human pilot and it should be capable of detecting other
vehicles, localize the vehicle position relative to the opponents
and the track while driving at high speeds, planning dynamic
trajectories to allow overtaking in adversarial environments,
and correcting at high frequency to the steering angle to
stay on the racetrack. Furthermore, the vehicle needs to
execute a performance assessment on its own by adjusting
the aerodynamics, energy distribution, differential settings or
brake balance settings based on tire wear, temperature and
weather. On this premise, an autonomous racecar exceeds the
requirements for the software to a wide extent in comparison
to a normal passenger car - which provides many learning
outcomes, research questions and new algorithmic develop-
ments [3], [4]. It is also worthy of note that the requirements
for autonomous racecars versus passenger vehicles can be
quite disparate - precluding a direct transplant of a complete
autonomous driving stack. Therefore, autonomous racing has
emerged as a field where advanced algorithmic approaches are
tested and then individually transferred to the development of
autonomous passenger vehicles - similar to classic motorsport.
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This paper provides the first survey of the state of the
art research in the field of autonomous vehicle racing. By
summarizing, classifying and evaluating the different software
and hardware developments we provide a holistic overview of
the research in this field. Finally, we discuss future research
directions by highlighting open questions and challenges in
autonomous racing.

A. Contributions

In this survey we present the efforts and the research that
was conducted in recent years in the field of autonomous
racing. This work has four main contributions:

1) With this paper we provide the first survey to compre-
hensively cover the topic of autonomous vehicle racing
for both software and hardware developments.

2) We provide an extensive review of all research papers
that developed new autonomy software for autonomous
racecars. By splitting this software review into subsec-
tions of perception, planning and control we display
in detail which methods and approaches were used.
We compare the different approaches to each other and
explain their algorithmic setup. Furthermore, we discuss
recent efforts made with methods from the field of
deep neural networks (DNN) and reinforcement learning
(RL) to achieve a partial or full end-to-end pipelines for
autonomous racing.

3) We display an overview of the current autonomous
racing competitions which provide hardware, a racing
environment as well as an organization (e.g. sports and
technical regulations). We compare the different racing
series and hardware against each other and give a holistic
overview for potential interested researchers.

4) Finally, we present a list of open research questions and
challenges in the field of autonomous racing. We discuss
that these open challenges can be applied to the field of
passenger cars, too, and provide opportunities for future
researchers to work on relevant research topics.

B. Preliminary Remarks

1) Definition: Autonomous Racing
Although the term of autonomous racing can be referred

to different applications (e.g. drone racing) we focus in this
paper only on research in the field of autonomous racing cars.
These racecars need to have four wheels, can either have
a combustion engine or electrical engine as a main power
unit, can be real racecars (e.g. Formula 1 car) or small-
scale vehicles (e.g. 1:10 scale). In addition, the software and
hardware surveyed here must have a clear connection to the
field of automobile racing. This means that the authors of
these papers either used a specific hardware that is acting
in a racing environment (e.g. racetrack, adversarial setup),
they used a specific simulation that displays a racecar within
an racing environment (e.g. racing game for PC) or their
research displays specific solutions for a racing problem (e.g.
driving fast autonomously around the racetrack). Although
some authors present results and algorithms for high speed
autonomous driving on the freeway this work is not covered

in this survey because neither the aspect of handling the
vehicles at the limits nor the adversarial context is given here
sufficiently.

2) Research Categorization

The field of autonomous racing provides plenty of devel-
opment and research categories. For this survey we want
to display both software and hardware efforts in the field
of autonomous racing and therefore we use the following
perception - planning - control pipeline [235] depicted in
Figure 1 to categorize the research papers.
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Fig. 1. Autonomous driving pipeline including both hardware and software
that provides the categorization for the survey in the field of autonomous
racing

Research and developments in the field of autonomous
racing hardware (sensors and vehicle hardware) are discussed
in Section III. Unfortunately, we have not seen any specific
developments of sensors for the purpose of autonomous racing
and therefore we heavily focus on the used racing vehicle
platforms. By presenting vehicle setups (sensors, computation
hardware, racing environment) we provide a clear overview
of which hardware is available for researchers. The biggest
part of this survey paper presents research and software in
the field of perception, planning and control in Section II.
In Subsection II-A perception, we cover all algorithms that
provide either a solution for mapping, localization or object
detection. In Subsection II-B planning we display global and
local trajectory and behavior planners. The final Subsection
II-C is used to present algorithms in the field of control and
displays the solutions for path and velocity tracking at the
handling limits. Unfortunately, there are many papers out there
that act on the intersection of planning and control. Those
papers have no clear distinction in which field they belong
and therefore we decided to categorize them in either one
of those field based on their focus. The method of DNNs
has become more and more popular in the recent years and
different authors proposed so called end-to-end approaches
that solve the autonomous driving task. These kind of tech-
niques are displayed in Subsection II-D. In addition, some
authors proposed evaluations with racecars, complete software
pipelines, modelling efforts and simulation environments for
autonomous racecars that do not fit in the proposed categories.
Those papers are listed in Subsection II-E. In summary, this
survey is covering all research papers in the field published
until the end of 2021.
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II. AUTONOMOUS RACING SOFTWARE

A. Perception

Perception provides the general term for all algorithms that
perceive the environment and derive knowledge about it. In
particular, perception includes detecting objects, detecting the
free space, mapping the environment as well as localizing the
autonomous vehicle. In an autonomous racing environment
we deal with high speeds and therefore the question arises:
How fast is too fast? Falanga et al. [54] tried to answer
this question for autonomous robots with an additional case
study on autonomous quadrocopters. The authors came to
the conclusion that the maximum latency an autonomous
system can tolerate to guarantee safety (not crashing in an
object) is related to the desired speed, the agility of the
system (e.g. the maximum acceleration it can produce) and
the perception parameter of the sensors (e.g. the the sensing
range). For autonomous racecars the same parameters can
be taken into account but no particular evaluation regarding
high speed perception for autonomous racecars has been done
yet. The current state of the art in the field of autonomous
racing perception is summarized, categorized and displayed
in Table I.

1

Inner and Outer 
Bounds With 

Curbs

Non Driveable Area:
Grass, Gravel etc.

Driveable Area:
Run-off Area

Walls

Walls

ObjectsDriveable Area:
Racetrack

Fig. 2. Racetrack with environmental specifics: Inner-and outer bounds,
racecar objects, walls and run-off area

A racetrack normally provides some specifics that can not be
found on normal streets. As depicted in Figure 2, a racetrack
consists of a single lane that is the main driveable space.
This lane is defined by an inner and outer bound that can
consists of additional curbs in the turns. On both left and
right side of the track there are zones consisting of grass,
gravel or tarmac (run-off area) where racecars can drive in an
evasive maneuver or if they miss the race line. The racetrack
is finally surrounded by walls. Depending on the racing series
these types of the racetrack features can vary (e.g. Formula E:
no gravel or grass). We define the fundamental problems for
autonomous racing perception as the following:

• High speed object detection.
• High speed localization and state estimation.
• Localization on wide areas without specific landmarks.
• Precise localization information necessary to achieve high

dynamic trajectory planning and control.

Although the racetrack provides a very simple structure with
a single driveable lane, the long distance to the walls and
non-existing landmarks make this environment quite difficult
to perceive. None of the displayed papers are using precre-
ated High-Defintion Maps (HD-Maps) that are known from
passenger autonomous driving development. An open-source
library [77] of racetracks provides a simple 2D-birds-eye-view
with inner and outer bounds (x-and y-Position) of about 30
racetracks around the world that can be used for planning
but not for localization. In Nobis et al. [134] an adaption
and enhancement of well-known simultaneous localization and
mapping (SLAM) algorithms (Google Cartographer [236],
GMapping) are displayed to create a map of large-scale
outdoor environments. Palafox et al. [142] use a vision-based
method to detect the free space when no lane lines are present
by only using camera images and depth information as input
for a DNN.

Most perception research for autonomous racing is listed in
the field of localization techniques. Although many research
vehicles are equipped with differential GPS (dGPS) that deliv-
ers a high localization accuracy, the goal of many autonomous
racing researchers is to deliver software based localization
solutions only. Both [25] and [68] are using a 1:10 scale
vehicle for their localization techniques. While Brunnbauer
et al. [25] use the camera to detect cones that create features
to enhance the odometry localization, Gotlieb et al. [68] map
the track with an onboard 2D-LiDAR and run a Robot Oper-
ating System (ROS) based Adaptive Monte Carlo Localization
(AMCL). The same AMCL approach is also used and adapted
by Stahl et al. [174] to run on the Roborace research vehicle.
By using pregenerated maps based on LiDAR data, the car
achieves a mean absolute lateral error of 0.086m at a velocity
of 150 km/h. A comparison to this work is done in [210] were
odometry, GPS and LiDAR data is fused in a Kalman Filter
(KF) based on a purely kinematic vehicle dynamics model to
achieve localization at high speeds. The Roborace vehicle is
also used for the localization research of Renzler et al. [155],
Zubaca et al. [220] and Schratter et al. [225]. To increase
the localization performance at high speeds the distortion of
the LiDAR measurement is analyzed and a compensation is
proposed in [155]. It is shown that this correction can be
implemented straightforward and has a high benefit for objects
moving at faster speeds. The work from Zubaca et al. [220]
presents an extended H∞ Filter (EHF) based on a kinematic
motion model assuming constant turn-rate and acceleration to
fuse LiDAR, IMU (inertial measurement unit), and vehicle
dynamic sensors’ measurements. The proposed EHF shows
slightly better estimation performance in high dynamic driving
scenarios in comparison to an extended Kalman Filter (EKF).
In [225] a complete process for both mapping an localization
on racetracks with the Normal Distributions Transform (NDT)
method is displayed. Based on this approach the Roborace
vehicle reaches up to 122 km/h and an average localization
error of 0.2 m. Massa et al. [127] are using two multi-
rate EKFs and an extend AMCL that exploits some a priori
knowledge of the environment on the Roborace vehicle.
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TABLE I
OVERVIEW OF RESEARCH IN THE FIELD OF AUTONOMOUS RACING PERCEPTION

Name and Reference Year Perception
Category

Method Sensor
Type

Tested on
Hardware

Racing
Series

Max. Speed
(km/h)

Nobis et al. [134] 2019 Mapping SLAM LiDAR Yes Roborace 30

Palafox et al. [142] 2019 Free Space
Detection

Semantic
Segmentation

Camera No Roborace -

Valls et al. [191] 2018 Localization SLAM, EKF LiDAR; Odometry Yes FSD 80
Brunnbauer et al. [25] 2019 Localization Cone Detection Camera Yes F1TENTH -

Gotlieb et al. [68] 2019 Localization AMCL LiDAR; Odometry Yes F1TENTH -
Stahl et al. [174] 2019 Localization AMCL LiDAR Yes Roborace 150

Wischnewski et al. [210] 2019 Localization Kalman Filter GPS; LiDAR;
Odometry Yes Roborace 150

Massa et al. [127] 2020 Localization EKF, AMCL LiDAR; Odometry Yes Roborace 200
Renzler et al. [155] 2020 Localization Distortion correction LiDAR Yes Roborace 90
Zubaca et al. [220] 2020 Localization H ∞ Filter LiDAR; Odometry Yes Roborace 60

Schratter et al. [225] 2021 Localization NDT LiDAR Yes Roborace 122
Gosala et al. [67] 2019 Localization SLAM LiDAR; Odometry Yes FSD 90

Andresen et al. [10] 2020 Localization GraphSLAM; Cone
Detection

Camera; LiDAR;
Odometry Yes FSD -

Srinivasan et al. [172] 2020 Localization RNN Odometry; Vehicle
Data Yes FSD 40

Le Large et al. [116] 2021 Localization Graph SLAM; EKF
SLAM LiDAR Yes FSD -

Peng et al. [147] 2021 Localization GraphSLAM; Cone
Detection

Camera; LiDAR;
Odometry Yes FSD -

Strobel et al. [179] 2020 Object Detection
& Localization YOLO v3 Stereo camera and

Monocular camera Yes FSD -

Dhall et al. [46] 2019 Object Detection YOLO v2 Camera Yes FSD -
De Rita et al. [45] 2019 Object Detection Tiny-YOLO; Proteins Camera Yes FSD -

Puchtler et al. [151] 2020 Object Detection SSD MobileNet v2 Camera Yes FSD -
Dodel et al. [47] 2021 Object Detection Dataset Camera Yes FSD -

The authors showed that the pose error heavily depends on the
car’s velocity, and varies in average from 0.1 m (at 60 km/h) to
1.48 m (at 200 km/h) laterally and from 1.9 m (at 100 km/h)
to 4.92 m (at 200 km/h) longitudinally.

For Formula Student Driverless (FSD) vehicles Le Large
et al. [116] show a comparison between GraphSLAM and
an EKF-SLAM. Based on their experimental analysis with
the FSD vehicle and the maps generated by the algorithms
they showed that GraphSLAM outperforms EKF-SLAM in
terms of accuracy. In [10], [67], [191] the localization and
mapping approaches for the FSD vehicle of the AMZ team
is presented. While in [67] only a LiDAR based SLAM was
used, the student team extended the work with an additional
LiDAR and camera based object detection for cones on the
track [10]. With this setup the team achieved a velocity of
10 m/s while doing mapping, localization and planning at the
same time with an RSME error of 0.29 m. On the same vehicle
a recurrent neural network (RNN) was applied [172] to derive
an accurate velocity estimation. By taking different vehicle
sensors (e.g. IMU, wheel encoder) into account this learning
based approach reached 15x better performance than an EKF
approach with an RSME of vx = 0.141 m/s and vy = 0.059 m/s.

The current state of the art in autonomous racing is heavily
based on single vehicle races. Therefore the subcategory of
object detection algorithms for high speed applications was not
given much attention. Nevertheless, in the FSD competition
teams need to detect both color and form of cones to let the
vehicle drive autonomously as depicted in Figure 3. In [45] a
case study with different convolutional neural network (CNN)
methods (Tiny-YOLO, Proteins) are done in comparison to a

YOLO v2 setup [46] to display the best approach for cone
detection in the FSD scenario. Strobel et al. [179] present
a combination of a YOLO v3 based object detection, pose
estimation, and time synchronization that uses data from both
stereo and monocular cameras. Furthermore, besides these
software focused developments the authors of [151] evaluated
the performance and energy consumption of popular, off-the-
shelf commercial devices for DNN inference in the formula
student context. Finally, to help and support other FSD teams
in their development, Dodel et al. [47] presented a collabo-
rative dataset for vision-based cone detection systems that is
open-source available.

Fig. 3. Exemplary cone detection in the Formula Student Driverless compe-
tition. The racetrack is defined by a left boundary (blue cones) and a right
boundary (yellow cones) which need to be detected by the teams.
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B. Planning

In the following subsection we cover algorithms that plan
trajectories for the autonomous race vehicle to drive around the
racetrack. Strategies that drive the vehicle end-to-end directly
from perception to actuation is excluded from this part and is
discussed with further details in Subsection II-D. We split the
discussion into the three following parts.

Global planning provides an optimal path, better known
as raceline (depicted in Figure 4), around the racetrack. In
the context of racing, global planning often optimize for the
lowest lap time. Therefore, when following this raceline, the
car drives an optimal path around the racetrack – under the
constraints of the raceline generation – as fast as possible.

1

Raceline

Turn In 
Point

Braking
Point

Acceleration
Late Apex

Early Apex
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e

Fig. 4. Theory of raceline (blue) and slow line (orange) on the racetrack.The
raceline provides the global fastest path around the complete racetrack.

Local planning (or motion planning) plans on a finer
granularity compared to global planning, usually under the
assumption that an optimal global trajectory is provided. Local
planners operate in a certain time horizon, and aim to avoid
obstacles while still provide a fast and reliable path that
does not deviate too much from the optimal global raceline.

Finally, behavioral planning provides information about the
high-level mission planning of the racecar. This can include
the decision making about overtaking maneuvers (overtaking
left/overtaking right/stay behind), the energy management
strategy, interaction with other vehicles and the reaction to
inputs from race control (e.g. flags, speed limits). As a
summary, Table II provides an overview of research efforts
in the field of planning for autonomous racing. We define the
fundamental problems for autonomous racing planning as the
following:

• Minimum-time optimization for a global optimal raceline.
• Long local planning horizon for recursive feasibility.
• Obstacle avoidance and vehicle reaction at high speeds.
• High re-planning frequency for real-time capability.
• Decision making under high uncertainty.
• Interaction planning with non-cooperative agents.

Global Planning
Research from the field of global planning can be roughly

divided into different strategies using the objectives of the
overall optimization: lap time, geometric properties of the race
lines, or energy spent. Racing, as a context for optimization,
provides a clear measure of quality in lap time tlap on

participating agents. So naturally lowering tlap is a popular
choice when it comes to global planning (Figure 5).

Shortest path: tlap=36.98 s
Minimum curvature: tlap= 33.72 s
Minimum time: tlap= 32.69 s

Fig. 5. Comparison of global optimal raceline algorithms based on shortest
path, minimum-curvature [76] and minimum-time [41] optimization, which
lead to different lap times tlap and trajectories.

A first category of global planning approaches is the usage
of variations of Evolutionary Algorithms (EAs) to optimize
for lap times. This approach is used in [22], [139], [152] with
different parameterizations of the search spaces. In these cat-
egory, an individual “gene” models a complete configuration
of the racing environment, and sometimes vehicle hardware
and software. The algorithms also require evaluation functions
to gauge the performance of an individual; here, this is the
simulated lap time given a configuration. Initially, a pool of
genes (referred to as a population) is created by sampling the
search space. Then, in each iteration of the algorithm, genes
are evaluated, and mutations are performed following different
strategies depending on the specific algorithm. Eventually,
the individuals in the population should converge, and a best
configuration for the global optimal raceline is found.

Another popular approach when optimizing for lap times as
the objective function is to form an optimal control problem
(OCP), usually non-linear. The OCP uses the race vehicle’s lap
times as the objective function, and respects constraints of the
geometry and friction limits µmax of the race track as well
as the dynamics and control limits of the racecar. Different
proposed approaches usually choose different vehicle dynamic
models, and different solvers to solve the optimization prob-
lem. Metz et al. [128] formulate an OCP where the objective
is the lap time, and solutions are found by quasi-linearization
with integral penalty functions, and splicing of constrained and
unconstrained arcs to form a two-point boundary value prob-
lem. Kelly et al. [104] use Sequential Quadratic Programming
(SQP) to solve the non-linear programming problem where
lap time is the objective. Rucco et al. [160] formulate an
OCP where the objective is the lap time. By reformulating
the objective with eliminating explicit time step terms, the
problem becomes a fixed-horizon free-endpoint problem. Pro-
jection operator-based Newton’s method is ultimately used for
the trajectory optimization. Theodosis et al. [186] initialize
the optimization problem with a path created by connecting
center line on the straights and clothoids between the center
lines. The sequential gradient based, non-linear optimization
then uses the lap time as the cost function to find an improved
global race line. Pagot et al. [141] present a non-linear model-
predictive framework to formulate a optimal control problem
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TABLE II
OVERVIEW OF RESEARCH IN THE FIELD OF AUTONOMOUS RACING PLANNING

Name and Reference Year Planning Category Method Tested on
Hardware Racing Series

Metz et al. [128] 1989 Global Planning Near time optimal control No -
Graghin et al. [23] 2008 Global Planning Optimization (Min. Curvature) No -

Kelly et al. [104] 2010 Global Planning Time optimal control No -
Cardamone et al. [36] 2010 Global Planning Optimization (Min. Curvature) No -
Quadflieg et al. [152] 2011 Global Planning CMA-ES (Min. time) No -
Theodosis et al. [185] 2011 Global Planning Multi-phase Geometric based Yes -
Theodosis et al. [186] 2012 Global Planning Non-linear Optimization (Min. time) Yes -

Rucco et al. [160] 2015 Global Planning Optimization (Min. time) No -
Bevilacqua et al. [22] 2017 Global Planning Particle Swarm Optimization No -

Kuhn [111] 2017 Global Planning Geometric methods No -
Dal Bianco et al. [43] 2018 Global Planning Optimal Control (Min. time) No -

Heilmeier et al. [76] 2019 Global Planning Optimization (Min. Curvature) Yes Roborace
Herrmann et al. [82], [83] 2019 Global Planning Optimization (Min time+energy) Yes Roborace

Herrmann et al. [84] 2020 Global Planning Optimization (velocity) Yes Roborace
Pagot et al. [141] 2020 Global Planning NMPC (Min. time) Yes -

Vazquez et al. [193] 2021 Global Planning Optimization (Min. time) + NMPC Yes FSD
Lovato et al. [125] 2021 Global Planning Apex-finding + Optimal control No -

Butz et al. [30] 2009 Local Planning CMA No -
Jeong et al. [92] 2013 Local Planning RRT* No -

Liniger et al. [117] 2014 Local Planning NMPC Yes 1:43
Liniger et al. [118] 2015 Local Planning Viability theory + MPC Yes 1:43
Anderson et al. [9] 2016 Local Planning MPC No -

Kapania et al. [100] 2016 Local Planning Convex Optimization Yes -
Williams et al. [203] 2016 Local Planning MPPI Yes Autorally

Buyal et al. [31] 2017 Local Planning Nonlinear MPC (NMPC) Yes Roborace
Funke et al. [61] 2017 Local Planning MPC Yes -
Arslan et al. [11] 2017 Local Planning CL-RRT# No -

You et al. [215] 2018 Local Planning Trail braking No -
Subosits et al. [180] 2019 Local Planning Convex Optimization Yes -

Stahl et al. [175] 2019 Local Planning Graph search + spline opt. Yes Roborace
Alcal et al. [8] 2020 Local Planning LPV-MPC No -

Bulsara et al. [29] 2020 Local Planning RRT+MPC Yes F1TENTH
Feraco et al. [55] 2020 Local Planning RRT + Stanley Yes FSD

Srinivasan et al. [173] 2021 Local Planning Holistically designed hierarchical controllers Yes FSD
Evans et al. [52], [53] 2021 Local Planning TD3 No F1TENTH

Kalaria et al. [229] 2021 Local Planning NMPC No -
Brüdigam et al. [232] 2021 Local Planning MPC + Gaussian No -

Bhargav et al. [230] 2021 Local Planning MPC No -
You et al. [216] 2021 Local Planning Trail braking No -

Wang et al. [233] 2021 Local Planning MPC + Deep-Koopman Yes F1TENTH
Jung et al. [223] 2021 Local Planning MPC + Game Theory No IAC

Loiacona et al. [124] 2010 Behavioral Planning Reinforcement Learning No -
Kloeser et al. [106] 2020 Global+Local Planning NMPC No -
O’Kelly et al. [139] 2020 Global+Local Planning CMA-ES + Spline opt. Yes F1TENTH

Williams et al. [204] 2017 Local+Behavior Planning Best response + MPPI Yes Autorally
Notomista et al. [135] 2020 Local+Behavior Planning Iterated Best Response + CBF No -

Wang et al. [199] 2020 Local+Behavior Planning Iterated Best Response No -
Sinha et al. [168] 2020 Local+Behavior Planning EXP3 + Dist. robust opt. Yes F1TENTH

Liniger et al. [122] 2020 Local+Behavior Planning Non-cooperative game Yes 1:43
Wang et al. [198], [200] 2021 Local+Behavior Planning Iterated Best Response + Spline opt. Yes -

Schwarting et al. [167] 2021 Local+Behavior Planning Belief-space Planning No -

where time is the objective. Vazquez et al. [193] formulate a
minimum-time optimal control problem by using the centerline
of the race track and discretize the continuous space dynamics.
Two regularization terms with slip angle cost and a control
input rate of change cost are also included in the objective
function for reducing the lap time. Hermann et al. [82]–[84]
formulate an optimal control problem where the lap time,
the path, the velocity profile and the energy consumption is
included in the objective function. By formulating a multi-
parametric SQP it is possible to find the optimal velocity plan
along a race line while not violating dynamic and energy
requirements of the drivetrain. Finally, the authors of [125]

devise a apex-finding method and calculates the optimal time
global race line by solving an OCP.

Some researchers show approaches of calculating the race
line by satisfying certain geometric properties. Usually, the
assumption that vehicles experience lateral acceleration that
results in lateral tire forces is made when it comes to au-
tonomous racing. It is then often desirable to minimize the
lateral acceleration to minimize the possibility of side slip. In
these cases, the aim is to find a race line with the minimum-
curvature overall. However, it is widely known that the least
curvature path is not the ideal path for a racecar which is
asymmetric in braking and acceleration and is operated in a
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combined slip range. Braghin et al. [23] create design and
solve a dynamic problem to find the best compromise between
the shortest track and the least curvature track based on the
vehicle’s dynamic behavior. Similarly, Cardamone et al. [36]
also try to find the compromise between the same conflicting
objectives, but use a Genetic Algorithm (GA) to find the best
weighting parameter between the two objectives. Heilmeier et
al. [76] extends the work of Braghin et al. [23] to solve a
quadratic optimization problem where constraints on vehicle
dynamics limits are set up to find the minimum-curvature
path around the race track. This approach is compared to the
minimum-time optimization of [41]. For the same racetrack
[76] achieves a laptime of tlap = 86.13 s while [41] is even
faster with tlap = 84.90 s. The advantage of the minimum-
curvature planning is obviously the reduced set of parameters
for the vehicle dynamics model and the faster calculation time.

Lastly, some approaches also choose to mimic the geometric
properties of a race line driven by human drivers. These
approaches often break a turn down into different sections
and require race lines to satisfy different properties in different
sections. Kuhn [111] mimics the behavior of a racecar driver
by defining the same important decision making points on the
track. It calculates the race line by first fixing the locations
of the following points: the braking points, turn-in points,
apex points, turn-out points, and accelerations points. Then a
piecewise rational spline function is used to interpolate all the
points and create a race line. Theodosis et al. [185] mimic the
three phase cornering technique used by professional drivers. It
first finds all straights along the track, and linking the straights
with curve structures. Then, each connecting curve is found
by combining clothoids and a circular arc. The parameters are
adjusted to minimize the overall curvature and ensure the path
is tangent to the following straight.
Local Planning

In local planning, the main objective is to plan the cars
motion for a fixed horizon by avoiding collisions with either
the environment or adversaries (Figure 6). There are three
main strategies:

1) Modifying the global plan via optimization.
2) Sample multiple dynamically feasible trajectories and

select the best one around obstacles.
3) Sample in the free space around obstacles to find a

feasible trajectory.

Global
Raceline

Opponent Motion
Prediction

Local Feasible 
Trajectory
x(t), y(t), v(t)

Non-Feasible
Trajectories

Fig. 6. Local trajectory planning on the racetrack: The vehicle needs
to prediction the opponents motion, plans a feasible trajectory around the
opponent and stick closely to the global raceline.

From the state of the art we could deduce that many
authors use Model Predictive Control (MPC) methods for
local trajectory planning. Although this method is control
technique, it is also suitable for planning a local trajectory.
In this section, we present work that is on the very thin and
fluid boundary between planning and control, but which is
mainly addressing the planning problem. Pure path tracking
with MPC is described later in Subsection II-C.

In the first category, the global plan is modified to allow
for obstacle avoidance. In these types of formulations, model
predictive controllers are usually utilized to optimize the global
plan. Upon encountering an obstacle or opponent vehicle,
the constraints or cost functions of the optimization problem
is modified, and a new motion plan is formulated. Ander-
son et al. [9] switch between two MPC modes to optimize
for minimum-time objective or maximum velocity objective
to mimic a professional driver. Kapania et al. [100] first find
the optimal velocity profile given a reference path, and then
updates the given path with the fixed velocity profile to find
the minimum-curvature path by solving a convex optimization
problem. Williams et al. [203] propose a sampling based MPC
that relies on path integral control for entropy minimization.
In [61] a planner is presented that is capable of mediat-
ing between conflicting objectives when performing collision
avoidance, vehicle stabilization, and path tracking. Subosits et
al. [180] present a real-time trajectory planning algorithm by
approximating a re-planning problem as a convex quadrati-
cally constrained quadratic problem (QCQP) with a simplified
point-mass model. Alcal et al. [8] reformulate the non-linear
vehicle dynamics in a Linear Parameter Varying (LPV) form.
This can then be used to create a convex optimization problem
which is easier to solve for search for a local path. Kalaria
et al. [229] use a nonlinear-MPC (NMPC) for local planning
where the objective consists of progress along the race line,
avoiding collision, and use drafting (reduce drag) to make
progress. Brüdigam et al. [232] use a Gaussian Process (GP) to
predict the opponent’s maneuver. These stochastic information
is then used in a Stochastic MPC to plan efficient overtaking
maneuvers.

In the second category, multiple motion primitives, or pro-
totype motion plans, are generated by forward simulating the
vehicle dynamics given the current state of the vehicle using
multiple different actuation input sequences. This usually
results in multiple splines or arcs to select from. In addition,
cost functions are used to give each primitive an attached
value. With a search for the best (lowest/highest) cost in these
primitives a final trajectory can then be chosen. Liniger et
al. [117], [118] generate a library of trajectories by forward
simulating the vehicle using a grid of vehicle velocities and
steering angles up to a certain horizon. Stahl et al. [175] prop-
agate the race track with a graph that covers the entire space.
The nodes are first placed equidistantly along cross sections
of the race track, then edges connecting nodes are created
by optimizing for cubic clothoids. This planner was tested on
the Roborace vehicle and achieved vmax = 223 km/h with an
update rate of 16.8 Hz on and NVIDIA Arm electrical control
unit (ECU). O’Kelly et al. [139] use a uniform grid of points
along the global race line as local goal points. Afterwards
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cubic clothoids are optimized to connect the vehicle’s current
state and the grid points which leads ultimately to planning a
local trajectory. Finally in [168] a set of local goal points in
front of the vehicle is sampled with the help of a normalizing
flow method. Again, cubic clothoids are optimized here to
connect the vehicle’s current state and the grid points to derive
a driveable trajectory.

In the third category, sampling-based methods are used.
These approaches randomly sample the free space around the
current state of the vehicle for goal states. Once a available
goal state is found, a motion plan is then generated connecting
the current state of the vehicle with the selected goal state.
By introducing randomness in the sampling process, these
algorithms are usually efficient, but do not provide guarantees
on their optimality. Jeong et al. [92] combine the rapidly-
exploring random tree (RRT*) method with a local steering
algorithm utilizing the dynamic model of the vehicle. Arslan et
al. [11] combine RRT with closed-loop prediction based on the
vehicle model, and incorporate relaxation methods for efficient
construction of a tree that guarantees asymptotic optimality.
Feraco et al. [55] combine RRT with Dubins curve to generate
dynamically feasible local plans. Finally, Bulsara et al. [29] use
RRT to find collision free reference paths in the free space.
Behavioral Planning

In behavior planning, the focus is usually on high-level
decision making on tasks such as selecting an appropriate
weighting of different objectives, or selecting plans that im-
pedes the progress of opponents. The research in this area
mainly focuses on two different strategies:

1) Assigning multiple cost functions with weighting and
selecting the plan with the lowest overall cost.

2) Combine the local planner with game theoretic methods.

In the first category, cost functions are used that represent
specific racing values like progress along the track, proximity
to the obstacles, effort for control inputs and the deviation
from optimal global plan. An overall cost is then found by
combining all cost functions for each candidate local trajec-
tory. Cost functions could also incorporate hard constraints
by eliminating unqualified plans. Finally, the trajectory with
the minimum overall cost is chosen to be the local trajectory.
Liniger et al. [117] use the prototype trajectory without
collision and makes the largest progress along the track. This
approach is then extend in [118] by applying viability kernels
on the track which only generates viable trajectories. O’Kelly
et al. [139] assign cost functions representing proximity to
the global plan, collision with the environment to prototype
trajectories and select the best one. Finally, Sinha et al. [168]
assign cost functions for progress along the track, overall
curvature, maximum velocity, and collision with predicted
opponent motion to all prototype trajectories.

In the second category, game theoretic approaches are used
to usually find the best action in a two or multiple player
game. The continuous motion planning problem is usually
transformed into a step-by-step game where each player is
allowed to make a “move” one by one. These approaches
usually incorporate the concept of regret to try to find the
best response for winning the racing game either immediately

or in the long run. Williams et al. [204] combine a best
response model of the opponent behavior with variation of
MPC by including predicted opponent trajectories into the cost
of other vehicles. Notomista et al. [135] propose sensitivity-
enhanced Nash equilibrium seeking, which uses iterated best
response algorithm to optimize for a trajectory in a two car
racing game. In [199] a iterated best response with Nash
equilibrium approximation is used to plan receding horizon
trajectories. This technique helps to maximally advance the
racecar along the track while taking into account opponent’s
intentions and responses. Sinha et al. [168] build a library of
opponent prototypes offline and uses the EXP3 algorithm to
solve for a multi-armed bandit problem to approximate the
current opponent by using the library. Liniger et al. [122]
repeat the multi-player game in a receding horizon fashion,
which results in a sequence of coupled games. With this
non-cooperative game approach the authors could show that
the vehicles create blocking maneuvers although the risk of
a collision gets higher. Wang et al. [200] use sensitivity
enhanced iterated best response to seek convergence to the
Nash equilibrium in the joint trajectory space for all agents.
Finally, Schwarting et al. [167] use local iterative Dynamic
Programming (DP) in belief space to solve a continuous
Partially Observable Markov Decision Process (POMDP).

C. Control

In the previous subsection, we discussed how to compute
either a global or local trajectory on the racetrack. The
trajectory includes both a path (x(t), y(t) - position) and
velocity profile v(t) which provides the reference information
for the lateral and longitudinal control. In what follows, we
provide control methodologies that leverage such a reference
trajectory to compute control actions to navigate the car along
the waypoints. The goal is to reduce the lateral and heading
error to stay as close to the reference line and to reduce the
velocity error to be as fast as possible (Figure 7).

Reference
Trajectory
x(t), y(t), v(t)

Driven Trajectory
Lateral 

Error e

𝛿
v

Heading Error ѱ

Fig. 7. Control task in an autonomous racecar. The goal is to reduce lateral
and heading error while following a global optimal raceline as a reference
trajectory.

At this level of abstraction, the control actions are usually
the steering angle δ and a throttle or brake request (accelera-
tion commands along) that are sent to low-level controllers for
actuating the motor and the brakes. We denote xref(t) as the
state associated with the reference trajectory at time t, and our
goal is to design a controller policy π that, given the current
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state of the vehicle at time t, denoted as x(t), and the reference
state xref(t), computes the control input u(t).

Table II-C gives an overview of the papers that address the
control problem for autonomous racing. The control papers try
to address the issue of ”handling at the limits” and follow the
raceline/reference trajectory as accurate as possible. We define
the fundamental problems for autonomous racing control as
the following:

• High accurate path tracking for low lateral errors.
• High accurate path tracking for low heading errors.
• High accurate velocity tracking for fast lap times.
• Stable vehicle behavior at high accelerations.
• Exact modelling of the nonlinear vehicle behavior.
• High control frequency for real-time high speed driving.

For a better overview and understanding of the different types
of control research we decided to split the papers into six
subsections.
Classic Control

Firstly, we survey papers that cover classical and well-
known principles in the field of path and velocity tracking.
Ni and Hu [131] present a path following controller for their
FSD vehicle. Their overall controller architecture consists
of longitudinal, lateral and yaw controllers that operate the
vehicle on a predefined G-G diagramm (maximum lateral and
longitudinal acceleration.) In both [183] and [182] we see
the usage of a simple lookahead controller that provides path
tracking at high speeds event at the limits of tire adhesion.
In [109] an autonomous racing controller is presented that
uses the vehicle’s centre of percussion (COP) to design a
feedforward and feedback steering. This showed how to sim-
plify the equations of motion and highlights the challenge of
controlling a vehicle with highly saturated tires. Furthermore,
a special focus on path tracking at the tire/vehicle limits
is presented in the work of [57], [98], [110], [112]. While
the research of [110] and [57] displays the usage of a G-
G diagram to display controllers that operate the vehicle at
the limits, Laurense et al. [113] presents a slip angle-based
control strategy to maintain the front tires at a certain slip
angle to create the maximum tire forces. A special focus on
longitudinal control (speed control) is shown in [108], [112],
[146]. Laurense et al. [112] presents a control framework
for full tire-force utilization with slip-angle based steering
control, combined with explicit control of the path-tracking
dynamics through longitudinal speed feedback to achieve a
better path tracking. In [146] a model-free nonlinear controller
for longitudinal speed control is presented. In this approach, a
dynamic reconstruction of information on the vehicle’s motion
concerning the inputs acting on the system with sensor data is
displayed. With this its possible to reconstruct the maximum
longitudinal tire forces for current states which can be used
for accurate speed tracking. Finally, in both [195] and [196]
additional sensitivity analysis of path controlling at the limits
and high sideslip maneuvers are displayed.
Model Predictive Control

The second and most-popular strategy used to synthesis
autonomous racing controller is Model Predictive Control. In
MPC a sequence of control actions is computed by forecasting

the future trajectory of the vehicle over a short time window. In
particular, given the state of the system xt, an MPC solves a
Finite Time Optimal Control Problem (FTOCP) to compute
an optimal sequence of states {x∗t , . . . , x∗t+N} and inputs
{u∗t , . . . , u∗t+N−1} over a fixed horizon N . In autonomous
racing the objective of the optimal control problem is to either
track a global reference trajectory or to minimize the lap time.
Upon computing such sequence of optimal states and actions,
the first control action u∗t is applied to the system and the
process is repeated at the next time step based on the updated
state xt+1. MPC-based methodologies are the main method
behind several autonomous racing controller which have been
implemented on real vehicles. The advantages of MPC are
that 1) forecast is used to act proactively and to 2) feedback is
naturally incorporated in the controller that repeatedly updates
the optimal trajectory. Notice that when the planning horizon
N is short, the planned trajectory may not account for the
future behavior of the system and as a result the controller
may take shortsighted control actions. However, computing
such quantities that exactly approximate the cost and constraint
beyond the prediction is challenging. In practical applications
it is preferred either to use a long prediction horizon [119] or
to approximate these quantities based on historical data [159].
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Fig. 8. Qualitative comparison of an LQR, MPC and Tube MPC controller in
an autonomous racing setup based on [213]. While the MPC is outperforming
the LQR controller, it can be seen the the Tube-MPC is not violating any
dynamical constraints e.g. the maximum lateral and longitudinal acceleration.

In [203] a sampling based MPC algorithm is derived. This
so called Model Predictive Path Integral Control (MPPI)
algorithm is using the methodology of path integral control
that derives an optimal control based on stochastic sampling
of trajectories. It is demonstrated that this approach explicitly
provides a formula for the controls over the entire time
horizon and that it relaxes the usual condition between control
authority and noise required in path integral control. The
authors use this fundamental control approach and enhance
it with additional decision maker [62], game theory [206],
DNNs [49] and reinforcement learning [205] methods to derive
further improvements.

Carrau et al. [37] present at sparse Randomized MPC
(SRMPC) approach that is based on a Stochastic MPC. This
approach is used to deal with model uncertainty at high
speeds and high accelerations. While driving with the vehicle
it collects data along the track which is then used to identify
the model uncertainty probabilistically. This tightens the con-
straints for the MPC automatically while still having the size
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TABLE III
OVERVIEW AND CATEGORIZATION OF RESEARCH PAPER IN THE FIELD OF CONTROL FOR AUTONOMOUS RACING

Name and Reference Year Control Category Method Tested on
Hardware

Racing
Series

Voser et al. [195] 2010 Classic Control Controller Analysis Yes -
Kritayakirana et al. [108] 2010 Classic Control Feedforward Longitudinal Controller Yes -

Talvala et al. [183] 2011 Classic Control Lookahead control Yes -
Kritayakirana et al. [109],

[110] 2012 Classic Control COP feedforward and feedback steering Yes -

Kapania et al. [98] 2015 Classic Control Feedback-feedforward steering controller Yes -
Park et al. [144] 2015 Classic Control Convex optimization Yes -

Laurense et al. [112], [113] 2017, 2018 Classic Control Slip angle-based control strategy Yes -
Ni et al. [131], [132] 2017, 2019 Classic Control Controller Framework Yes FSD

Fu et al. [57] 2018 Classic Control Maximize GG Diagram Yes FSD
Chatzikomis et al. [38] 2018 Classic Control Torque Vectoring Yes Roborace

Wachter et al. [196] 2020 Classic Control Controller Analysis No -
Pedone et al. [146] 2020 Classic Control Model-free nonlinear control No -
Sukhil et al. [182] 2021 Classic Control Adaptive Lookahead for Pure Pursuit Yes F1TENTH

Beal et al. [16] 2012 Model Predictive Control Model Predictive Envelope Control Yes -
Williams et al. [203] 2015 Model Predictive Control Model Predictive Path Integral Control (MPPI) No -

Carrau et al. [37] 2016 Model Predictive Control sparse Randomized MPC Yes 1:43 car
Verschueren et al. [194] 2016 Model Predictive Control Nonlinear MPC (NMPC) No -

Drews et al. [49] 2017 Model Predictive Control MPPI + CNN No -
Liniger et al. [119] 2017 Model Predictive Control sparse Randomized MPC No 1:43 car

Williams et al. [204],
[206]–[208] 2017, 2018 Model Predictive Control MPC+ Game Theory, MPC + RL, Sampling

based MPC No AutoRally

Novi et al. [136] 2019 Model Predictive Control Hierarchial Nonlinear MPC (NMPC) No -
Liniger et al. [121] 2019 Model Predictive Control MPC + Viability Theory Yes 1:43

Brown et al. [24] 2020 Model Predictive Control Nonlinear MPC (NMPC) Yes -
Liu et al. [123] 2020 Model Predictive Control Standard MPC No FSD
Alcal et al. [7] 2020 Model Predictive Control Linear Parameter Varying MPC (LPV-MPC) Yes -

Gandhi et al. [62] 2021 Model Predictive Control Robust MPPI (RMPPI) No AutoRally
Pour et al. [150] 2021 Model Predictive Control Linear Parameter Varying MPC (LPV-MPC) No -

Wischnewski et al. [213] 2021 Model Predictive Control Tube MPC (TMPC) No Roborace
Li et al. [224] 2021 Model Predictive Control NMPC + MIQP No -

O Kelly et al. [139] 2020 Optimization CMA-ES No F1TENTH
Kapania et al. [99] 2015 Learning Based Control PD-ILC, Q-ILC Yes -
Brunner et al. [27] 2017 Learning Based Control Learning MPC (LMPC) No 1:10

Rosolia et al. [156]–[159] 2017, 2020 Learning Based Control Learning MPC (LMPC) No -
Ji et al. [93] 2018 Learning Based Control DNN + backstepping variable structure control Yes FSD

Bujarbaruah et al. [28] 2018 Learning Based Control Adaptive MPC No -
Hewig et al. [86] 2018 Learning Based Control NMPC + Gaussian Process No 1:43 car

Wagener et al. [197] 2019 Learning Based Control Dynamic Mirror Descent MPC (DMD-MPC) No AutoRally
Kabzan et al. [96] 2019 Learning Based Control NMPC + Gaussian Process Yes FSD

Wischnewski et al. [211]
[212] 2019 Learning Based Control Controller + Gaussian Process; recursive

Least-Mean-Squares algorithm Yes Roborace

Vallon et al. [190] 2020 Learning Based Control Learning MPC (LMPC) No -
Jain et al. [90] 2020 Learning Based Control MPC + Gaussian Process No F1TENTH

Kapania et al. [101] 2020 Learning Based Control PD-ILC, Q-ILC Yes -

Van Niekerk et al. [192] 2020 Learning Based Control Receding Horizon Control + Gaussian
Processes No -

Xiao et al. [228] 2021 Learning Based Control Controller DNN + No F1TENTH
Hindiyeh et al. [87] 2014 Drifting Control Controller Framework Yes -

Goh Jet al. [63]–[65] 2016-2019 Drifting Control Controller Framework Yes -
Zubov et al. [222] 2019 Drifting Control Controller Framework No Roborace

Joa et al. [94] 2020 Drifting Control Controller Framework No -
Cai et al. [32] 2020 Drifting Control Deep Learning No -

and structure of a standard MPC problem. The optimization
problem is solved in 20 ms for a 1:43 and the results show
that for a desired violation the controller achieves faster lap
times and fewer constraints violations than a standard MPC
algorithm. [119] is building on top of this approach and
enhancing it with disturbance feedback policies to optimize
over the state feedback matrices.

In order to capture the nonlinear dynamics of the vehicle and
tires a nonlinear MPC (NMPC) can be designed and modelled
[24]. Although this is computationally expensive, with the help

of nonlinear optimization solver like FORCES PRO [241]
these type of optimizations can be solved in real-time on
the vehicle. In [136] a hierarchical NMPC is presented that
consists of two controllers: Firstly, a high-level NMPC with
point-mass model that simplifies the vehicle dynamics and is
constraint by the tire G–G diagram. Secondly, a low-level
NMPC with a high-fidelity model uses the output (velocity
profile) of the first NMPC as a terminal constraint. This
method helps to reduce the prediction horizon and therefore
calculate the vehicle dynamics in real-time. Furthermore, this
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approach was improved in [193] with a simpler vehicle model
to run on a FSD vehicle.

Li et al. [224] use a NMPC with a minimum-time objective
and a collision-avoidance constraint. By applying a Mixed
Integer Quadratic Programming (MIQP) method a control
strategy is created that is optimized regarding the safety and
the laptime. The authors conclude that for such an approach
the prediction horizon needs to be large enough for creating
feasible results although this leads to a higher computation
time and is therefore non real-time capable. The authors of
[121] combine a low-level MPC with a viability kernel that
efficiently generates finite look-ahead trajectories to maximize
the progress of the car. At the same time the viability kernel
creates trajectories that remaining recursively feasible with
respect to static obstacles. The authors apply this algorithm to
both a simulation where the effects of various design choices
and parameters are identified and showed that a hierarchical
controller can be improved by incorporating the viability
kernel in the trajectory planning phase.

Beal et al. [16] use estimations of the friction coefficient and
vehicle sideslip to define state constraint and unstable vehicle
behaviors. This information is utilized in an model predictive
envelope controller to create a region of stable vehicle motions.
With this approach it is possible to operate the vehicle on
the handling and stability limits. Similarly, Wischnewski et al
[213] and Williams et al. [208] present a Tube-MPC (TMPC)
approach where nonlinear effects and external disturbances are
taken into account of the MPC design. By approximating a
tube of reachable sets over the prediction horizon the vehicle
guarantees a space of constraint satisfaction. Finally, because
tuning the parameters of a controller is time-consuming and
needs experience from experts some researches try to auto-
matically tune the parameters with optimization techniques.
In [139] the superoptimization toolchain TUNERCAR is pre-
sented which is using a Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) to optimize both vehicle hardware
parameters (center of gravity, mass) and control parameters
(P-, I-, D-parameters) of the car. The evaluation is based on
the laptime of the car and the algorithm shows the capability
of reducing the laptime driven by the car by optimizing these
parameters.
Learning Based Control

An additional control strategy to improve the tracking of a
reference trajectory is to leverage Iterative Learning Control
(ILC) based methodologies [5]. ILC methods are useful for
applying them to an autonomous race vehicle, since the vehicle
is running on the race track repeatedly for multiple laps. In
this case the tracking error and vehicle data from previous laps
can be used to compute a feedforward correction term that
improves the path and velocity tracking performance signifi-
cantly (Figure 9). ILC-based strategies for autonomous racing
have been successfully implemented on full-size vehicles [99],
[101].

In [27], [156]–[159] a Learning MPC (LMPC) is proposed
which is an optimization and data-driven framework to make
the car faster every lap and therefore reduce the laptime. The
optimal control problem of the MPC is enhanced in a way
so it tries to compute a solution by solving at time t of each
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Fig. 9. Qualitative demonstration of a learning-based control approach based
on [99]. For each new lap the car is decreasing the tracking error by applying
a higher correction steering angle for each vehicle movement.

lap the finite time constrained optimal control problem. This
creates a convex optimization problem which can be solved
with respective solvers. The authors show that the LMPC finds
a faster trajectory for each new lap while maintaining the set
constraints.

Hewing et al. [86] present an learning-based cautious
NMPC which aims to learn from vehicle sensor data with
Gaussian Processes to improve the vehicle dynamics model.
The GP model is used for regression to identify uncertainties
and a mismatch in the vehicle dynamics model parameters
based on measurement data. The NMPC is extended with this
learning model and reformulated in a stochastic setting which
improves the performance and safety of the vehicle at the same
time. Furthermore, the authors implement this approach on
a FSD vehicle in [96] and demonstrate the implementation
and experimental validation of this kind of learning-based
control approach. Finally, Jain et al. [90] were using the same
approach but only with an extended kinematic vehicle model
for the MPC to proof, that this type of learning-based control
can also leverage the usage of simplified vehicle models.

Because of the control system quality and unmodelled
effects, it is well known that there is a gap between the planned
and the driven trajectory. This gap is unknown and depended
on the environment the vehicle is driving in. To mitigate this
gap, [211] presents a learning control approach on the method
of Gaussian Process for a nonlinear regression. This GP learns
online, while driving, how big this gap is and then tries close
it over the time by using a so called scale-factor. This scale-
factor serves as an optimization variable that tries to maximize
longitudinal and lateral accelerations each lap.

Finally, the authors of [93] proposed a control scheme that
consists of a robust steering controller and a DNN. While
the path tracking is done via backstepping variable structure
control (BVSC) the DNN is integrated to estimate nonlinear
functions, e.g. the uncertainty of tire cornering stiffness.
Drifting Control

Although it is not following an optimal raceline, racing
head-to-head or striving for the fastest laptime, the field of
autonomous drifting is a special subcategory for autonomous
racing. Here, the researchers show algorithms that are able
to maneuver the car autonomously beyond the stable han-
dling of limits and stabilize the car in a point of high slip
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angle. In [87] a successive loop structure is presented as a
controller that tracks only the vehicles sideslip based on the
yaw rate as a control input. Goh et al. [63]–[65] present a
controller framework that is able to drift autonomously with
the vehicle while tracking a predefined reference path. This
enables drifting maneuvers at special references path, e.g. a
circle or figure of 8. The authors using a single track vehicle
model [63] and experiment with different variations of control
values (sideslip [63], rotation of the vehicle’s velocity vector
to track the lateral error [64], [65]) to reach a sideslip angle
of up to -40 degree with speeds up to 45 km/h on a real test
vehicle. Finally, Joa et al. [94] present a 3-level structure for
a drift controller. Firstly, they designed a supervisor which
determines rate and rear longitudinal slip ratio for the drift
maneuver. Secondly, a upper-level controller calculates lateral
force (front) and longitudinal force (rear) for tracking the
planned vehicle motion. Finally, a low-level controller converts
the commands (forces) defined by the upper-level controller
into control inputs for the vehicles (throttle, steering angle).
With this setup the authors derived a steady state drifting on
a real test vehicle.

D. End-to-End

The previous subsections described in detail which research
efforts in the fields of perception, planning and control have
been achieved for autonomous racing. Besides that, researchers
have tried to set up partial or full end-to-end approaches to
master the autonomous racing task. As displayed in Figure 10,
in the context of autonomous driving end-to-end means that
either partial modules or all software modules are completely
replaced with data-driven approaches like a DNN.

1

Classic Autonomous Driving Software Pipeline

VehiclePerception Planning ControlSensors

VehicleSensors

VehicleSensors

Partial End-to-End

End-to-End

Control

Fig. 10. Classic autonomous driving software pipeline in comparison to partial
and full end-to-end software pipeline.

The partial end-to-end approach aims towards replacing or
combining modules with a DNN. This has the advantage that
the DNN provides a low-dimensional intermediate representa-
tion of the racetrack (e.g. a trajectory) that can be then used in
a classic control systems (e.g. PID-Controller). In contrast to a
full end-to-end system the final actuator output (steering angle,
throttle position) is not predicted directly. On the one hand the
field of autonomous racing provides a perfect proving ground
for end-to-end approaches: clear driveable area, no signage
(e.g. traffic lights), one class of objects, clear objective for
training (fastest laptime). On the other hand, when using end-
to-end systems large data sets are needed to train the DNNs.

This data must contain a wide variety of situations so that the
DNN achieves a good level of performance. Similar to other
DNN applications the generalization and performance of these
systems are the biggest issues. In addition to these common
known issues, we define the following main problems for end-
to-end autonomous racing:

• Open to question system architecture design: partial vs.
full end-to-end.

• Difficulty to learn the vehicle dynamics parameter -
especially the nonlinear vehicle and tire dynamics.

• Training purely in simulation environments lead to
simulation-to-reality gap.

• High amount of various data necessary for training the
artificial networks.

• Out of distribution events can cause drastic failure cases:
Driving at high speeds is rare and thus learning how to
correctly react is difficult

In the following we present research efforts that use end-to-
end approaches for autonomous racing which are summarized
in categories in Table IV.

Perez et al. [148] derives the control commands based on
a rule-based evolutionary strategy. Although the car is driving
successfully around the racetrack and follows a raceline the
controller is only able to handle low speeds. In both [161],
[163] the authors propose two fuzzy controllers for calculating
the steering angle and computing the target speed of the car
based on sensor information in the TORCS simulator [237]. In
Olivera et al. [140] Bayesian optimization (BO) is used to find
a control policy that minimises the time per lap while keeping
the vehicle on the racetrack. The BO helps to search more
efficiently over high-dimensional policy-parameter spaces an
outperforms other evolutionary algorithms.

A solution for a partial end-to-end approach is presented
in [201], [202] and [226]. The DeepRacing Framework is
an end-to-end simulation environment and virtual testbed for
training and evaluating algorithms especially for autonomous
racing. In [202] three versions to control the racecar are
presented: Pixel to control, pixel to waypoints, pixel to curves.
It was shown that a partial end-to-end approach that provides
parameterized trajectories based on a DNN outperforms a
full end-to-end approach in terms of laptime and failures.
[114] shows the combination of MPC and CNNs to create
a perceptual attention-based predictive control algorithm.
With this, the MPC learns how to place attention on relevant
areas of a visual input, which allows the vehicle to detect
unsafe conditions faster. Drews at al. [50] are providing a
framework that combines DNN based road detection as well
as MPC to drive aggressively using only the sensor data from
a monocular camera, IMU, and wheel speed sensors on the
AutoRally vehicle. By combining CNNs and a Long Short
Term Memory (LSTM) network the car is able to learn a local
cost map representation of the track based on the camera input.
This enables a global position estimation with a particle filter
against a schematic map at high speeds. The local trajectory
planning is afterwards done with the MPC. The authors of
[126] provide an evaluation about the image sizes for a full
end-to-end approach on a 1:10 scale vehicle. Based on their
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TABLE IV
OVERVIEW AND CATEGORIZATION OF ADDITIONAL SOFTWARE IN THE FIELD OF END-TO-END APPROACHES FOR AUTONOMOUS RACING

Name and Reference Year End-to-End Category Topic Method Tested on
Hardware

Racing
Series

Perez et al. [148] 2008 Optimization Optimal Control Policy Evolutionary Algorithm No -
Salem et al. [161]–[163] 2017, 2018 Optimization Optimal Control Policy Fuzzy Logic No -

Korkmaz et al. [107] 2018 Optimization Optimal Control Policy Fuzzy Logic No -
Oliveira et al. [140] 2018 Optimization Vision based Planning Bayesian Optimization No -

Lee et al. [114] 2019 Deep Learning Vision based Planning MPC + CNN Yes AutoRally
Weiss et al. [201], [202] 2020 Deep Learning Vision based Planning CNN, RNN No -

Tatulea et al. [184] 2020 Deep Learning trajectory planning NMPC & DNN No F1TENTH
Weiss et al. [226] 2021 Deep Learning Trajectory Prediction RNN No -
Drews et al. [50] 2019 Deep Learning Localization CNN, LSTM, + MPC Yes AutoRally

Mahmoud et al. [126] 2020 Deep Learning Vision based Planning CNN, LSTM Yes Donkey Car
Wadeka et al. [231] 2021 Deep Learning Vision based Planning CNN No IAC

Perot et al. [149] 2017 Reinforcement Learning Vision based Planning Advantage actor-critic No -
Jaritz et al. [91] 2018 Reinforcement Learning Vision based Planning Advantage actor-critic No -

De Bruin et al. [44] 2018 Reinforcement Learning Vision based Planning Q-Learning+ State
representation Learning No -

Remonda et al. [153] 2019 Reinforcement Learning Vision based Planning DDPG No -
Niu et al. [133] 2020 Reinforcement Learning Vision based Planning DDPG No -

Gückiran et al. [70] 2019 Reinforcement Learning Vision based Planning SAC, Rainbow DQN No -
Fuchs et al. [58] 2021 Reinforcement Learning Vision based Planning SAC No -

Chisari et al. [40] 2021 Reinforcement Learning Vision based Planning SAC + policy output
regularization Yes 1:43 car

Lee et al. [115] 2021 Reinforcement Learning Vision based Planning Bayesian Deciscion
Making Yes AutoRally

Pan et al. [143] 2021 Reinforcement Learning Vision based Planning Imitation Learning Yes AutoRally
Cai et al. [33] 2021 Reinforcement Learning Vision based Planning Imitation Learning Yes 1:20 car

Schwarting et al. [166] 2021 Reinforcement Learning Vision based Planning Model based RL No -
Brunnbauer et al. [26] 2021 Reinforcement Learning Vision based Planning Model based RL Yes F1TENTH

Song et al. [169] 2021 Reinforcement Learning Vision based Planning
+ Overtaking

SAC + 3-stage
curriculum learning No -

Gundu et al. [72] 2019 Reinforcement Learning Model-free optimal
control

Q Learning +
Soft-Actor Critic No -

Ivanov et al. [89] 2020 Reinforcement Learning Verification Variation of Algorithms Yes F1TENTH

experiments the authors show that by decreasing the image size
as an input for the end-to-end pipeline the car can drive faster
and has a higher response time. Another evaluation for the
usage of end-to-end algorithms is done by Wadekar et al. [231]
in an simulation environment. The authors explored different
data collection strategies with the goal of reaching high speeds
and stable driving with the racecar. They conclude that even
in the racetrack setup a high diversity and high amount of
training data is necessary to achieve decent results.

Beside these plain usage of DNNs in the software pipeline,
additional research efforts were done in the field of reinforce-
ment learning. The autonomous racecar is seen as an agent
that interacts with its environment in a continuous form. At
each timestep t the agent fulfills an action at that leads to
a reward rt as well as an observations of all environment
states st. Based on the reward rt the agent tries to maximize
the sum of the rewards over time and therefore can learn
a specific behavior in this environment. Autonomous racing
researchers that develop RL algorithms are using either the
F1TENTH Gym [137], the Roborace Simulator [78], the
SVL Simulator [73] or TORCS [237]. All these simulation
environments have an openAI Gym [240] interface that was
created for the setup of RL developments. Both [149] and [91]
address the problem of autonomous racing by applying the
method of Advantage Actor-Critic (A3C) to a simulation rally
racing game. A complete framework for the training of the
autonomous agents in a distributed system with different tracks

and road conditions is presented as well as the RL method for
achieving the end-to-end driving. They generate reasonable
results with a fast and reliable vehicle maneuver, especially on
different road conditions, but the approach fails to generalize
well. To create a better generalization for different racetracks
de Bruin et al. [44] provide a combination of Q-Learning and
state representation learning to display that this combination
learns policies quicker and generalize better to new racetracks
then single RL. Both [153] and [133] use the method of Deep
Deterministic Policy Gradient (DDPG) to explore the usage
of RL in autonomous racing in the TORCS simulation. In
both experimental setups DDPG is specially enhanced for
the usage on the racetrack and shows good learning and
execution results. The application of Soft Actor Critic (SAC)
with enhancement and variations is displayed in [40], [70],
[169]. While [70] is only using a simulation, Chisari et al. [40]
are applying this approach to 1:43 small-scale vehicles and
compare the SAC method to a MPC path planner – the MPC
outperforms the RL method. The work from Fuchs and Song
et al. [58], [169] is using the racing game Gran Turismo as
both a training and evaluation environment. While in [58] the
framework for training the RL agents is presented Song et
al. [169] uses and enhances this approach not only to drive
with a single vehicle but also with multiple agents. They
show that their RL agent is capable of driving fast, following
the raceline and overtaking other agents without crashing.
Finally, Schwarting et al. [166] and Brunnbauer et al. [26]
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present model-based reinforcement learning approaches which
can learn competitive visual control policies through self-play
in imagination (World Models idea [242]). Especially in [26]
it is shown that model-based RL approaches outperform non-
model based methods. In addition, the authors display the sim-
to-real transfer by testing the trained agent on a F1TENTH
vehicle. The vehicle shows good generalization on unknown
tracks but no high performance (e.g. low laptime) because of
oscillating steering.

E. Applied Autonomous Racing Studies

In the final subsection all applied autonomous racing studies
are displayed that clearly do not belong in the previous
sections II-A-II-D. These research papers provide Evaluations
that run either simulator studies or overall analysis in the field
of autonomous racing. In addition, the efforts of Complete
Software Stack developments are displayed here. In order to
achieve the vehicle’s driving dynamics limits, there must be in-
depth knowledge of the driving dynamics behaviour and thus
sufficiently good vehicle dynamic modeling. In the category
of Modelling the research that shows all vehicle dynamic
modelling efforts for later usage in either trajectory planner or
control algorithms is displayed. Finally, we present Simulation
efforts and environments for autonomous racecars. A summary
and overview of the research in those categories can be found
in Table V.
Evaluations

To gain more knowledge in the field of racing different
researchers conducted studies with race drivers or racecars.
Kegelmann et al. [103] did a study with real (vintage) racing
cars and collected vehicle and position data from their runs on
the racetracks. By examining the statistical dispersion of the
vehicles race lines, the author displayed a quantification of the
the repeatability of professional racecar driver performance. In
addition, they concluded that different driving styles (combi-
nation of path and velocity) can lead to similar lap times.
In [164] the raceline trajectory information (dGPS data) from
a test vehicle is collected to derive a path fitting algorithm
that is describing a raceline. Based on this setup the race
lines can be analyzed in-depth and results for autonomous
raceline planning can be derived. A direct comparison between
autonomous racecar against a human race driver is both done
in [154] and [80]. Remonda et al. [154] conduct this study
in a simulator environment and compared the lap times,
telemetry data and the performance level of a human race
driver against a pure autonomous racing software based on
RL. By doing this the researchers were able to analyze which
features have the most impact on the drivers performance.
Those features where used afterwards to enhance the RL
approach. In contrast, Hermansdorfer et al. [80] conduct a real
world study by comparing an autonomous racing stack on the
Roborace vehicle against a professional Formula 2 driver to
find indications where the autonomous car fails to meet the
performance level of the human race driver. The main reasons
are that the human driver is detecting the vehicle limits (tire
limits) more accurate, bringing the vehicle more often beyond
the limit (higher slip angle) and is applying both brakes later

and throttle earlier. Finally in [21] an evaluation about a crash
of an autonomous racecar is displayed.
Complete Software Stack

Although many researchers are just deploying a single algo-
rithm for testing and evaluation, to fully run an autonomous
vehicle a complete software stack consisting of perception,
planning and control algorithms is necessary. Therefore, many
publications aim towards designing a holistic autonomous
software stack that describes the individual software com-
ponents, the methods, the transfer of messages from one
module to the other and a final evaluation on real hardware
or simulation. In [6], [39], [42], [59], [96], [130], [188],
[217] the efforts of developing an autonomous racing software
stack for FSD vehicles are presented. Based on the tasks in
the FSD competitions (Section III) these cars need to map
the environment, localize themselves, plan the path on the
fly and follow the path fast and reliable. The teams provide
different concepts to solve those individual tasks and display
at the same time the underlying computation hardware of the
their autonomous race vehicles. In addition, the teams provide
insights in the middleware (e.g. ROS) as well as computations
times of their algorithms. In contrast to the FSD efforts the
publications [19], [20], [35] show their autonomous racing
software stacks for running the Roborace vehicle. In [20] the
research is aiming towards a software that can operate in a
multi-vehicle scenario and therefore displays a dynamic local
trajectory planner as a main component. In addition, to achieve
high dynamic trajectory planning maneuvers the team displays
a Performance Assessment Module that is observing the con-
troller and the tires while adjusting parameters accordingly.
Caporale et al. [35] display a holistic planning and control
stack that has a real-time NMPC as main backbone to track a
pre-planned racing line as well as a mapping and localization
approach for high speed driving.
Modelling

The modelling of the vehicle dynamics behavior of the
racecar is an essential part in the field of autonomous racing.
Either these models are used in the simulation environments
or model-based trajectory planning/control design approaches.
The current state of the art provides many variations of
vehicle dynamics modeling such as single track model, double
track model or full vehicle model. The more complicated the
vehicle dynamics model, the more parameters are needed.
Unfortunately not all of those parameters are available in detail
for a vehicle and so different methods for estimating these
parameters are proposed - especially for nonlinear vehicle pa-
rameters like the tires. In [214] the design of the standard joint-
state Unscented Kalman Filter (UKF) is presented to estimated
vehicle dynamics parameters of a model car both in simulation
and with experimental data. The experimental results show
satisfactory estimates of the model parameters. Unfortunately
the tuning process of this algorithm is time consuming and
can only be implemented offline. Park et al. [145] describe the
region of feasible tire forces mathematically with constraints
on the limits of actuation. They conclude in their work that
with reasonable assumptions, the border of feasible tire forces
can be displayed by an ellipse and circle for a wheel with
steering and braking actuators. The papers [81], [88], [170],
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TABLE V
OVERVIEW AND CATEGORIZATION OF APPLIED RESEARCH AND DEVELOPMENT STUDIES IN THE FIELD OF AUTONOMOUS RACING

Name and Reference Year Applied Studies Category Topic/Methods Tested on
Hardware

Racing
Series

Samper et al. [164] 2014 Evaluation Path Analyzation Yes -
Kegelman et al. [103] 2016 Evaluation Simulator Study Yes -
Remonda et al. [154] 2021 Evaluation Simulator Study No -

Betz et al. [21] 2019 Evaluation Crash Analysis - Roborace
Hermansdorfer et al. [80] 2020 Evaluation Race Driver vs. Car - Roborace

Bak et al. [13] 2020 Evaluation Path Planner Stress Tester No F1TENTH
Funke et al. [60] 2019 Complete Software Stack Framework Yes Racecar
Culley et al. [42] 2019 Complete Software Stack Framework Yes FSD

Funk et al. [59] 2017 Complete Software Stack Framework Yes FSD
Tian et al. [187] 2018 Complete Software Stack Framework Yes FSD
Chen et al. [39] 2019 Complete Software Stack Framework Yes FSD

Zadok et al. [217] 2019 Complete Software Stack Simulation No FSD
Kabzan et al. [96] 2020 Complete Software Stack Framework Yes FSD

Nekkah et al. [130] 2020 Complete Software Stack Framework Yes FSD
Tian et al. [188] 2020 Complete Software Stack Framework Yes FSD

Betz et al. [19], [20] 2019 Complete Software Stack Framework Yes Roborace
Caporale et al. [35] 2019 Complete Software Stack Framework Yes Roborace

You et al. [214] 2017 Modelling UKF Yes AutoRally
Williams et al. [209] 2019 Modelling Deep Learning Yes AutoRally

Park et al. [145] 2017 Modelling Modelling Yes -
Spielberg et al. [170] 2019 Modelling Deep Learning Yes -

Ignat et al. [88] 2020 Modelling Deep Learning Yes Roborace
Hermansdorfer et al. [81] 2021 Modelling Deep Learning Yes Roborace

Wymann et al. [237] 2005 Simulation TORCS Simulator No -
Jiang et al. [4] 2021 Simulation Carla Simulator No -

Guodong et al. [73] 2020 Simulation SVL Simulator Yes F1TENTH, IAC
Babu et al. [12] 2020 Simulation F1TENTH Simulator Yes F1TENTH

Stahl et al. [177] 2020 Simulation Scenario Creation - Roborace
Herman et al. [78] 2021 Simulation Roborace Simulator Yes Roborace

[209] are using learning based approaches by applying DNNs
to identify the model parameters. All of these works show
that DNNs can learn and identify the vehicle parameters more
accurately than a purely parametric model. In addition, the
researchers showed that the DNNs can generalize better than
a purely non-parametric model especially when it comes to
capturing the unknown dynamics. This makes the usage of
DNNs ideal for real-world applications where collecting data
from the full state space for a vehicle is not feasible and
when different environment dynamics (e.g. icy road) need to
be captured in the model.
Simulation

The final paragraph in this subsection displays all simulation
efforts that have been done in the field of autonomous racing.
Wymann et al. [237] are the authors of TORCS - The Open
Racing Car Simulator. This lightweight 3D simulator provides
different race tracks, different cars, NPC opponents as well
as a sophisticated vehicle physics model. This simulator is
used for research in the field of control, trajectory planning,
game theory and RL and is therefore providing a solution
for autonomous race engineers. Roborace released its own
simulation environment that is enhanced with an openAI Gym
interface especially for classical control or RL tasks [78] which
they called Learn-to-Race (L2R). The simulation environment
provides a racetrack, sophisticated vehicle physics simulation
as well as a wide variety of sensors. The SVL Simulator [73] is
a 3D end-to-end autonomous vehicle simulation platform that
provides different maps, vehicles, sensor modelling, weather
simulation, APIs to well-known open source software stacks

(e.g. Autoware.Auto, Baidu Apollo) and the possibility of a
distributed simulation. The SVL Simulator is offering both a
3D-vehicle model of the F1TENTH and the Indy Autonomous
Challenge vehicle with different racetracks (Figure 11).

Fig. 11. F1TENTH vehicle in the SVL simulator [73] on a 1:10 scale version
of the Indianapolis Motor Speedway.

For the F1TENTH vehicle different simulation environment
exist. Babu et al. [12] present a ROS and Gazebo based
autonomous racing simulator that is providing different maps,
visualizations and model physics. The advantage here is access
to the ROS community that enables the integration of robotics
packages. Another F1TENTH simulator is the F1TENTH
Gym [138] that provides a lightweight, 2D-simulation with
an openAI Gym interface. Based upon the Carla Simulator
[239] the authors of [234] present an Autonomous System
Operations (AutOps) and continuous integration (CI) and
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testing framework to evaluate the software in the context of
autonomous racing. Especially for the evaluation of trajectory
planning maneuvers in a multi vehicle environment Stahl et
al. [177] display an open-source graphical user interface that
allows the fast generation of multi vehicle race scenarios.
These dedicated scenarios (e.g. overtaking maneuvers) can be
used to evaluate the trajectory planner or safety assessment
algorithms in an autonomous racing stack.

III. AUTONOMOUS RACING HARDWARE: VEHICLES AND
COMPETITIONS

The previous section gave an overview on the efforts in the
field of algorithm and software development for autonomous
racing vehicles. Almost all of the papers provided an eval-
uation of their proposed methods in an specific simulation
environment. About half of the papers did additional evalua-
tions on real vehicle hardware. This hardware is ranging from
(powerful) passenger sports cars, specific research vehicle
prototypes, small-scale race vehicles or real racing cars. In
the following section we provide an overview of currently
available hardware and racing competitions (Table VI) that
are available for researchers.

A. Small-Scale Autonomous Racing Vehicles

The first type of autonomous racing vehicles are so called
small-scale or reduced-scale vehicles. These racecars were
mainly developed for the purpose of testing the new developed
autonomous racing software. Those racecars are normally de-
rived from remote controlled (RC) cars and therefore provide
an electrical engine and a battery as a main powertrain unit.
Those vehicles are then modified with additional hardware
(sensors, ECUs), are constructed and maintained by a team
of students and researchers and usually costs a few hundred
to a few thousands of dollars. Although these are small-scale
vehicles, they reach high speeds and accelerations for their
size and therefore can be compared to real racecars.
1:43 vehicles

In the ORCA (Optimal RC Racing) 1 project researchers
from the ETH Zurich developed a test bed consisting of a
race track, an infrared camera based tracking system and
modified 1:43 cars, in order to apply research in the field of
MPC algorithms at high speeds and in real-time. A vision
system captures the cars on the track and estimates both
positions and velocity of each car. This information is then
sent to a specific control platform where the MPC controller
calculates the control inputs for the cars. This information
is then sent via Bluetooth to the embedded cars where the
control input is actuated. The research published with this
1:43 cars is heavily in the field of planning and control. As
a result the researchers displayed new developments in the
field of MPC [37], [86], [117]–[120], game theory [122] and
reinforcement learning [40].

1https://control.ee.ethz.ch/research/team-projects/autonomous-rc-car-
racing.html

1:10 vehicles
In the next bigger size researchers use modified 1:10 scale

RC cars for their autonomous racing research. In the last years
different institutions released their documentation for both
hardware and setup of these 1:10 vehicles and so currently
versions like the Berkeley Autonomous Racecar2, the MIT
Racecar [102], the MuSHR racecar [171], the RoSCAR [74] or
the F1TENTH [137], [138] vehicle from from the University
of Pennsylvania exists. The sensor setup on these cars is
interchangeable and so it is possible to apply monocular
cameras (e.g. Raspberry Pi, OpenCV OAK-1), stereo cameras
(e.g. ZED, ZED2, Intel Realsense d435i, OpenCV OAK-D),
2D LiDARs (Hokuyo 10LX, Hokoyu 20LX), IMU, indoor
GPS or wheelspeed sensors. As a main computation platform
these vehicles use embedded GPU systems like the Nvidia
Jetson (Models: TX1, TX2, NX, AGX Xavier, Nano). This
gives the possibility to speed up the inference of DNNs.
With the F1TENTH vehicle an additional, annual autonomous
racing competition was launched where students, researchers
and hobbyists can race against each other. The competitions
consists of a single vehicle time trial and a head-to-head two
vehicle race with knockout phase. In addition to these in-
person competitions virtual competitions are organized to test
the software of the developers. Similar competitions, where
those kind of racecars or variations of it are used, are the
DiYRobocar events or the Amazon DeepRacer [14], [15]
competitions. The research published with these 1:10 cars is
spread completely over all topics in perception [25], [68],
planning [95], [228] and control [27], [29], [89], [90], [141],
[159], [184], [233]. In recent years these type of vehicles got
more important for optimization pipelines [139], [168], the
application of RL techniques [26], [52], [53] and the evaluation
of game theory methods [198], [200]. In addition, the 1:10
vehicles are used for education purposes [6], [12], [51],
[102] to teach students hands-on fundamentals of autonomous
driving.

1:5 vehicles
A special version of an autonomous small-scale vehicle is

the so called AutoRally [66] vehicle, a 1:5 scale autonomous
racecar developed by a team of researchers from Giorgia Tech.
The AutoRally autonomous vehicle platform is based on a
RC trophy truck (length: 1 m, width: 0.6 m, mass: 22 kg)
with a top speed of ∼ 90 km/h. The AutoRally vehicle uses
two monocular cameras (Point Grey Flea3 FL3-U3-13E4C-
C color) as a main sensors to perceive the environment, has
an IMU for acceleration measurements and hall-effect sensors
to measure the wheel speeds. In addition, this vehicle has a
GPS receiver (Hemisphere P307) integrated which provides an
absolute position at 20 Hz with an accuracy of approximately
2 cm under ideal conditions with Real-Time Kinematic (RTK)
corrections that are derived from a GPS base station. The main
computation unit consists of standard consumer computer
components (Intel i7-6700 -3.4 GHz quad-core, 32 GB DDR4,
Nvidia GTX-750ti SC) which are modular and reconfigurable

2www.barc-project.com/projects
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TABLE VI
AUTONOMOUS RACING HARDWARE: OVERVIEW OVER DIFFERENT AVAILABLE HARDWARE AND RACING COMPETITIONS AVAILABLE FOR RESEARCHERS

F1TENTH3 EV Grand Prix
Autonomous4

Formula Student
Driverless5

Indy Autonomous
Challenge6 Roborace7

Vehicle
Image

Vehicle Type Small Scale
1:10

Reduced Scale
1:3

Reduced Scale
1:1.5

Real Racecar
Indy Light Chassis

Real Racecar
LMP Chassis

Vehicle
Parameters

Length: 0.53 m
Width: 0.28 m
Mass: 3.5 kg

Length: 1.5 m
Width: 1.4 m
Mass: 110 kg

Vehicle parameters are
based on the teams

design choices

Length: 4.9 m
Width: 1.9 m
Mass: 750 kg

Length: 4.7 m
Width: 2.0 m

Mass: 1200 kg

Powertrain
Electrical Engine

AWD
Engine: 230 W
Battery: 55 Wh

Electrical Engine
RWD

Engine: Teams choice
Battery: Teams choice

Electrical Engine
AWD/RWD

Engine: Teams choice
Battery: Teams choice

Combustion Engine
RWD

Engine: 335 kW
6 speed sequential

Electrical Engine
RWD

Engine: 270 kW
Battery: 40 kWh

Maximum
Speed ∼72 km/h ∼ 100 km/h

Depends on
components choices

∼ 120 km/h
Depends on

components choices

∼290 km/h ∼250 km/h

Sensor Setup
Monocular camera

Stereocamera
2D LiDAR
Indoor GPS

Sensor setup based
on team choice:

Monocular camera
Stereocamera

Radar
2D LiDAR
3D LiDAR
(RTK) GPS

Sensor setup based
on team choice:

Monocular camera
Stereocamera

Radar
2D LiDAR
3D LiDAR
(RTK) GPS

6x Monocular camera
4x Radar

3x 3D LiDAR
(RTK) GPS

4x Monocular camera
2x Long Range Radar
2x Short Range Radar

5x 3D LiDAR
(RTK) GPS

Computation
Unit

Nvidia Jetson Nano
Nvidia Jetson NX

Nvidia Jetson AGX

Teams choice Teams choice

Intel Xeon E 2278 GE
– 3.30 GHz, 1x Nvidia

Quadro RTX 8000,
64GB Ram

Nvidia Drive PX2
Speedgoat Mobile

McLaren ECU

Software ROS
ROS2

Autoware.Auto

Teams choice Teams choice ROS2
Autoware.Auto

Teams choice

Competitons
Several competitions a
year, competitions in

different countries
One Race, USA only

Several competitions a
year, competitions in

different countries
Two Races, USA only

One championship
with several races,

USA & UK
Single/Multi
Vehicle Race

Multi Vehicle
2 Cars

Single Vehicle Single Vehicle Single Vehicle
Multi Vehicle (2 Cars)

Single Vehicle
Multi Vehicle (2 Cars)

Real Race
Competition

Type
Time Trial

Head to Head Racing
Time Trials

Acceleration
Skidpad

Autocross
Trackdrive
Efficiency

Business, Cost, Design

Time Trial
Overtaking Competition

Time Trial
(with virtual objects)

Virtual Race Yes No No Yes No
Simulation

Environments
F1TENTH Gym

F1TENTH Simulator
SVL Simulator

- Formula Student
Driverless Simulator

Ansys Simulator
SVL Simulator

Roborace Simulator

Related
Papers

[6], [12], [25], [26],
[29], [52], [53], [68],

[89], [90], [95],
[137]–[139], [168],
[184], [200], [228]

-

[10], [39], [45]–[47],
[55], [59], [67], [93],

[96], [97], [116],
[123], [130]–[132],
[151], [173], [179],
[187]–[189], [191],
[193], [217], [218]

[223], [227], [231]

[3], [19]–[21], [31],
[34], [35], [38], [41],
[76], [78]–[84], [88],
[127], [134], [142],
[155], [174]–[178],

[210]–[213],
[220]–[222], [225]

and are all connected on a Mini-ITX motherboard.
This brings the AutoRally setup closer to real passenger
vehicles and allows a high computation power. The research
published with the AutoRally car is in the field of planning
[11], [115], [204], [215], [216] and control [50], [62], [114],
[197], [203], [205]–[209], state estimation [56], [214] and
the application of deep neural networks for perception and

3www.f1tenth.org
4www.evgrandprix.org/autonomous/
5www.fsaeonline.com

planning [50], [143] with an overall special focus on low
friction surfaces.
eV Grand Prix Autonomous

In 2021 a new racing competition called eV Grand Prix
Autonomous started in the USA. Student teams need to acquire
a standardized electric go-kart chassis and are then allowed
to modify the vehicle. The teams can change the complete
electric drivetrain and integrate new components, e.g. battery,

6www.indyautonomouschallenge.com
7www.roborace.com
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electrical engine, inverter. In addition, the teams can choose
their own sensor setup (camera, radar, LiDAR, (RTK) GPS,
IMU) to create an autonomous vehicle. Furthermore, the
teams develop the software that drives the autonomous go-kart
around the racetrack. The current race setup consists of single
vehicle time trial laps. Because the eV Grand Prix autonomous
is still in its early stage there was no research published with
these kind of vehicles so far.
Formula Student Driverless

Since 2017 student teams can develop a driverless vehicle
for the Formula Student Driverless competition. The students
can choose on their own how to design and equip the vehicle
with both powertrain or autonomous driving hardware. There-
fore different setups with different computation platforms
(e.g. consumer hardware, Nvidia Drive PX hardware, Nvidia
Jetson hardware) and sensors setups (monocular cameras, 3D
LiDAR) exist. The cars compete in different single vehicle
competitions: Acceleration (driving 75m straight with standing
start), skid pad (two congruent circles with a diameter of
18.25m), autocross (racing on closed loop track with unknown
layout), track drive and efficiency (racing 10 laps on a track
with additional efficiency scoring based on the consumed
energy). In addition to these pure driving competitions the cars
are then judged in an additional business plan (business idea
of the vehicle), design (judgement of hardware and software)
and cost (financial planning an manufacturing) competition.

The research published with the Formula Student cars is
spread completely over all topics in object detection [45]–
[47], [151], [179], localization [10], [67], [116], [172], plan-
ning [55], [173], [193] and control [57], [93], [96], [123],
[131], [132] with a focus on holistic software pipelines [39],
[48], [59], [97], [130], [187], [188], [191], [217], [218] with
adjustments for the specialities of the FSD competition.

B. Real Autonomous Race Vehicles

The small-scale vehicles offer a low-cost and easy to set
up platform for researchers. In addition, only a small space is
needed to run the vehicles and therefore these kind of small
scale vehicles are very attractive for research in the field of au-
tonomous racing. Unfortunately because of the scaling there is
still a mismatch between those vehicles and real racecars. This
has not only to do with the performance (vmax, along,max,
alat,max) but also with the kind of sensors or computation
units these vehicles equipped with. Furthermore, a real racecar
has a different dynamic behavior because of the stiffness of
the chassis. Based on this some companies/institutions decided
do develop real autonomous race vehicles which are explored
in further detail. There was an additional development of an
autonomous dragster [17], [18], the application of which, apart
from in these papers, has not taken place elsewhere and is
therefore not be considered in the further discussion.
Roborace

Roborace is a UK based company that developed different
autonomous racecars (Devbot 1.0, Devbot 2.0, Robocar). The
Robocar was only used for internal Roborace events and both
Devbot 1.0 and 2.0 where provided to interested university
teams and companies for their research. The Devbot 2.0 is

based on a Le Mans Prototype (LMP) chassis and is a rear
wheel drive, fully electric racecar. The vehicle is equipped
with camera, LiDAR and radar sensors and two main ECUs
(Nvidia PX2, Speedgoat Mobile Target Machine) to run the
autonomous software. The goal of this vehicle development
efforts is to provide both a vehicle platform and an annual
competition where teams can compete against each other. The
teams only need to develop the software, the hardware setup
is equal for all teams. In 2018 single vehicle time trials were
executed, in 2019 the so called Season Alpha provided dif-
ferent race formats (single vehicle, multi vehicle, localization)
on racetracks in Europe. In 2020/2021 Roborace Season Beta
started with seven university teams competing against each
other in single-vehicle races (time trials). A special software
from Roborace called Metaverse provides virtual static and
dynamic objects on the track that needed to be avoided by
the teams - otherwise they get time penalties for hitting these
objects. The university teams used the Roborace vehicles for
their research and provided plenty of published papers in the
field of localization and motion estimation [127], [155], [174],
[210], [220], [225], mapping [134], [142], planning [34], [41],
[76], [79], [83], [84], [174], [176], [178] and control [31],
[38], [211]–[213], [222] as well as energy management [82],
[83] and holistic software stack development [3], [19]–[21]. In
addition, the Roborace vehicle was used to derive some new
simulation [75], [77], [78] and scenario environments [177],
vehicle dynamics modelling [81], [88] and autonomous racing
benchmarks [80].
Indy Autonomous Challenge

In 2020 the Indy Autonomous Challenge (IAC) was
launched as a successor of the DARPA Grand Challenge and
DARPA Urban Challenge. The IAC racecar is based on an
Indy Lights chassis and is a rear wheel drive racecar powered
by a combustion engine with 6 gear sequential transmission.
The IAC vehicle is equipped with camera, LiDAR and radar
sensors for perception and has one main ECU to run the
autonomous software. The IAC provides universities both the
vehicle platform and several competition types. The teams only
need to develop the software, the hardware setup is equal for
all teams. As a main middleware ROS2 is used. The IAC chal-
lenge consists of a single vehicle race around the Indianapolis
Motor Speedway in October 2021 and a two vehicle head-to-
head race on the Las Vegas Motor Speedway in January 2022.
The aim is to drive 290 km/h with those vehicles and therefore
the teams need to develop a high performance autonomous
software stack that executes perception, planning and control.
Since the IAC competition just finished its competition only
a few papers [223], [227], [231] have been published so far.

IV. OPEN RESEARCH QUESTIONS AND CHALLENGES

In the previous sections we provided a detailed overview
of all the efforts that have been made in the field of au-
tonomous racing for both software and hardware. The goal
of all this research efforts is to contribute to the development
of safer autonomous passenger vehicles and the possibility to
derive knowledge for the development of new and advanced
autonomous driving algorithms. Although the state of the art is
quite extensive, there are still some open and unsolved research
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questions where the field of autonomous racing can support,
help and leverage the development of future autonomous driv-
ing algorithms. Based on additional discussions with leading
researchers in the field we present a list of challenges in the
field that determine open research questions:
Challenge 1 - Autonomous high speed perception: None
of the previous work is covering high speed object detection
or providing a detailed insight in different fusion techniques
for high speed localization. The current state of the art
presents standard SLAM or object detection methods that
are then adapted to the field of autonomous racing. We are
currently missing methods, techniques and algorithms that
are especially made for high speed driving where increased
motion blur occurs and sensor synchronization becomes more
important. A reliable detection distance above 100 m is
required. This can be achieved by decreasing the computa-
tional delay, an enhancement in the sensor fusion performance
(camera+Radar+LiDAR) and with an increase of the object
detection quality. When it comes to vision-based localization
we see successful research in the field of drone racing which
can be adapted and applied to the field of autonomous racing.
Besides that there is currently no public dataset for high speed
driving. However, the availability of rich data is essential for
the development of comprehensive perception algorithms for
this speed range.
Challenge 2 - Multi vehicle trajectory planning: Most of the
displayed papers are dealing with a single vehicle setup and
only a handful of researchers tried to address multi vehicle
scenarios (>3 vehicles). Dynamic local trajectory planning
at high speeds with multiple vehicles (e.g. for overtaking) is
difficult and not covered completely in the state of the art
and displays therefore a grand challenge for future research.
The trajectory planning method must be capable of finding
a path in a non-convex environment that is collision free,
recursive feasible, incorporating dynamic vehicle constraints
and is executable in real-time. Both the path and the velocity
must be planned while taking the vehicle dynamics into
account to leverage the current tire performance of the vehicle.
We see this either as a chance for creating new types of
methods and algorithms for trajectory planning or as a test
environment for new heuristics that decrease the computational
heavy calculations.
Challenge 3 - Multi vehicle interaction: The interaction with
other vehicles is an essential part of racing especially when
it comes to head-to-head racing (e.g. overtaking, blocking).
This interaction is covered with game theory approaches
in some of the work but is not explored extensively. This
interaction provides the need for new prediction algorithms
that can deal with the high uncertainty of the opponents
movements/behavior in the less structured environment of the
racetrack. Hence the prediction of surrounding objects can not
rely on lane information or traffic rules, but has to be based
on a comprehensive understanding of interactive scenarios.
Besides that a fundamental aspect of future state prediction
is that it is inherently stochastic, as agents cannot know
each other’s motivations, so multiple modalities have to be
considered. We seek a model of the future that can provide
both (1) a weighted, thrifty set of discrete trajectories that

covers the space of likely outcomes and (2) a closed-form
evaluation of the likelihood of any trajectory. In addition,
there are no sophisticated behavior planners that can derive
critical interaction based maneuvers for competing in a race
environment. The goal is to enable a tight coupling between
reason about the influence of the surrounding agents on the
ego systems trajectory and maintaining full capabilities of the
ego systems vehicle dynamics.
Challenge 4 - Adversarial driving: The racetrack enables
the testing of the capabilities of an adversarial vehicle that is
exploring and evaluating the risk of future actions by planning
and performing high risk maneuvers. This kind of research
enables knowledge for autonomous cars that need to operate
in highly crowded multi vehicle and multi passenger scenarios
while minimizing the possibility of a freezing robot problem.
This research heavily includes the calculation of risk for a
perceived environment, a risk evaluation as well as new high
precision local behavioral and trajectory planning algorithms.
Challenge 5 - Real-time vehicle dynamics modelling: Au-
tonomous vehicles that operate on the limits of handling need
to have an exact knowledge about the current vehicle dynamics
state. One crucial factor hereby is the tire which is creating
the road-vehicle contact (friction value) which is changing
drastically with aerodynamics (downforce), road conditions
(tarmac), weather conditions (rain, snow) and the current
vehicle maneuver (load shift due to braking, acceleration).
The existing high model uncertainty due to external influences
combined with strongly non-linear effects in tire and vehicle
dynamics represents a challenge for both motion planning and
control (e.g. MPC) algorithms. Available models approximate
the vehicle dynamics to a certain degree but are computa-
tionally demanding, especially when it comes to tire models.
Current research efforts try to calculate the dynamical behavior
of the vehicle with the help of artificial neural networks to be
computationally faster then classical physical models.
Challenge 6 - Balancing safety and performance: The
current work is heavily exploring the limits of an autonomous
vehicle from a software and hardware perspective with the
goal to drive fast. When it comes to a racing scenario we
have to make a trade off between safety (not crashing the
car), high performance (staying close to the opponent), energy
management and making decisions while not violating the
handling limits (stay behind opponent, overtake in particular
turn). This setup creates the need for software that explores
the trade-off between safety and performance. This software is
then coupled with motion and behavioral planners and decides
which actions to take next. In addition, the current state oft
the art does not cover the safety aspects of the autonomous
racecar in particular and therefore we have an open research
area where algorithms need to be derived that evaluate and
balance both safety and performance of the vehicle.
Challenge 7 - Autonomous racing regulations and rule-
book: Although the community currently consists of many
different racing series with different cars we have no agree-
ment on the driving rules for autonomous racecars. Although
this can be declared as less research and more a community
effort, when it comes to autonomous driving a rulebook based
definition for racecars could be helpful. This leads to general
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guidelines researchers can rely on when developing their
algorithms. Ultimately, this leads to software that is compliant
for specific racecar competitions.
Challenge 8 – Overall software application: Besides the
development of particular algorithms for autonomous racing
in each part of the software stack, the in-depth analysis of
the overall software performance is a research field that is
rarely covered. The synchronization of modules and the appli-
cation of real-time conditions can reduce the overall latency
significantly. Additionally, the delay of sensors and actuators
influence both reaction time and vehicle performance. Unfortu-
nately, these need to be considered in the development of a full
software stack for autonomous racing. The optimal scheduling
of software execution steps and an efficient management of the
CPU and GPU usage by orchestration and hypervisor methods
are additional research fields for the software development.
Challenge 9 - Autonomous high speed hardware: All
platforms discussed in this survey are relying on standard
consumer hardware (e.g. ECUs, sensors). There is currently no
hardware existing that is aiming towards high speed driving or
that was made particularly for autonomous racecars regarding
computational demand as well as for vibration and shock
resistance. Especially when we have a closer look to execution
times displayed in the listed papers we see that some of the
algorithms can be executed faster if particular hardware would
exist.

V. SUMMARY AND CONCLUSIONS

This survey paper presents a comprehensive overview of
the current state of the art in the field of autonomous vehicle
racing. By discussing the previous and ongoing research
efforts in this field we were able to demonstrate what kind of
algorithms were developed to derive autonomous high speed
driving on the racetrack. By splitting this paper into different
sections for perception, planning and control we showed the
individual achievements derived by researchers to establish
the autonomous driving task for a racecar. Furthermore, we
displayed and categorized research in the field of end-to-
end algorithms, vehicle dynamics modelling and simulation
environments. This survey aims towards a holistic review in
the field of autonomous racing so additionally all hardware de-
velopments and autonomous racing platforms that are available
are explained in detail. Some of these vehicles are connected
to regularly competitions that provide an additional platform
for researchers to test and evaluate the performance of their
software. In total this survey is covering 233 papers in the field
of autonomous vehicle racing. Furthermore, in the last four
years we saw an increase of papers in this field (Figure 12.

Undoubtedly, the field of autonomous racing is an emerging
field in intelligent vehicles, robotics and transportation system
that is attracting more and more interest from researchers.
Although we see an overweight of research in the field
of planning & control, emerging fields like reinforcement
learning are easily applicable to autonomous racing. Based
on these results we derived a list of open research challenges
for autonomous racing. This list can be used as a guideline
for future researchers which can participate in the displayed
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Fig. 12. Evaluation: Published paper in the field autonomous racing from
2009 until the end of 2021.

autonomous racing competitions. Finally, the list of papers
surveyed in this paper are uploaded to a Github repository
and updated on a regular basis so other researchers have an
easy, open-source and structured access to the papers in the
field of autonomous racing.
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APPENDIX

TABLE VII
LIST OF ABBREVIATIONS

Abbreviation Definition
A3C Advantage Actor-Critic
AMCL Adaptive Monte Carlo Localization
AWD All Wheel Drive
BVSC Backstepping Variable Structure Control
BO Bayesian Optimization
CI Continuous Integration
CMA Covariance Matrix Adapation
CMA-ES Covariance Matrix Adapation Evolutionary Strategy
CNN Convolutional Neural Network
CPU Central processing unit
COP Center of Percussion
DDPG Deep Deterministic Policy Gradient
DMD-MPC Dynamic Mirror Descent MPC
DNN Deep Neural Network
DP Dynamic Programming
EA Evolutionary Algorithm
ECU Electrical Control Unit
EHF H∞ Filter
EKF Extended Kalman Filter
ES Evolutionary Strategy
FSD Formula Student Driverless
G-G Maximal Lateral and Longitudinal Accelerations
GA Genetic Algorithm
GP Gaussian Process
GPS Global Positioning System
GPU Graphical Processing Unit
HD High Definition
IAC Indy Autonomous Challenge
ILC Iterativ Learning Control
IMU Inertial Measurement Unit
KF Kalman Filter
L2R Learn-to-Race
LMP Le Mans Prototype
LMPC Learning Model Predictive Control
LSTM Long Short Term Memory
LPV Linear Parameter-Varying
MIQP Mixed Integer Quadratic Programming
MPC Model Predictive Control
MPPI Model Predictive Path Integral Control
NDT Normal Distribution Transform
NMPC Nonlinear Model Predictive Control
NPC Non Playable Character
OCP Optimal Control Problem
PID Proportional Integral Derivative Controller
POMDP Partially Observable Markov Decision Process
QCQP Convex Quadratically Constrained Quadratic Problem
RC Remote Controlled
ROS Robot Operating System
RL Reinforcement Learning
RRT Rapidly-exploring random tree
RTK Real-Time Kinematic
RNN Recurrent Neural Network
RWD Rear Wheel Drive
SAC Soft Actor Critic
SQP Sequential Quadratic Programming
SRMPC sparse Randomized MPC
SSD Single Shot Detection
UKF Unscented Kalman Filter
TMPC Tube MPC
SLAM Simultaneous Localization and Mapping
YOLO You Only Look Once (DNN)
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