Towards Multi-Agent Autonomous Racing with the
DeepRacing framework

Trent Weiss, John Chrosniak, and Madhur Behl
Department of Computer Science
University of Virginia
Charlottesville, VA, USA
{ttw2xk, jlc9wr, madhur.behl} @virginia.edu

Abstract—Multi-agent autonomous racing is a challenging
problem for autonomous vehicles due to the split-second, and
complex decisions that vehicles must continuously make during
a race. The presence of other agents on the track requires
continuous monitoring of the ego vehicle’s surroundings, and
necessitates predicting the behavior of other vehicles so the ego
can quickly react to a changing environment with informed
decisions. In our previous work we have developed the Deep-
Racing AI framework for autonomous formula one racing. Our
DeepRacing framework was the first implementation to use
the highly photorealisitc Formula One game as a simulation
testbed for autonomous racing. We have successfully demon-
strated single agent high speed autonomous racing using Bezier
curve trajectories. In this paper, we extend the capabilities of
the DeepRacing framework towards multi-agent autonomous
racing. To do so, we first develop and learn a virtual camera
model from game data that the user can configure to emulate the
presence of a camera sensor on the vehicle. Next we propose
and train a deep recurrent neural network that can predict
the future poses of opponent agents in the field of view of the
virtual camera using vehicles position, velocity, and heading
data with respect to the ego vehicle racecar. We demonstrate
early promising results for both these contributions in the game.
These added features will extend the DeepRacing framework
to become more suitable for multi-agent autonomous racing
algorithm development.

I. INTRODUCTION

Multi-agent autonomous racing still remains a largely
unsolved research challenge. The high-speed and close prox-
imity situations that arise in multi-agent autonomous racing
present an ideal condition to design algorithms which trade
off aggressive overtaking maneuvers and minimize the risk
of collision with the opponent.

Most past research in autonomous racing has focused
on a single-agent time-trial style of racing, i.e, a single
autonomous racecar completes a lap in the shortest amount
of time. Time-trial poses a number of challenges in terms
of dynamic modeling, on-board perception, localization and
mapping, trajectory generation and optimal control. Much
less attention has been devoted to the multi-agent style of
racing that we address in this paper. In addition to the afore-
mentioned challenges, multi-agent autonomous racing also
requires inferring the states of other agents, and opportunistic
passing while avoiding collisions. Multi-agent autonomous
racing provides the opportunity for testing ground for de-

veloping and testing more widely applicable non-cooperative
multi-robot planning strategies.

In our previous work [6, 5] we have developed the Deep-
Racing Al framework for autonomous formula one racing.
Our DeepRacing framework was the first implementation to
use the highly photorealisitc Formula One game as a simula-
tion testbed for autonomous racing. We have successfully
demonstrated single agent high speed autonomous racing
using Bezier curve trajectories. In this paper, we extend the
capabilities of the DeepRacing framework towards multi-
agent autonomous racing.

Our methods involve using the DeepRacing autonomous
formula one framework to collect data on how racing vehicles
interact over time. We then use a novel approach to extract
the relevant information from the data stream by filtering out
the historical data of vehicles that are not in view of the ego
vehicle. This is accomplished by creating a “virtual camera”
that represents the F1 game’s output images as a pinhole
camera model that maps the 3D positions of the other agents
to a pixel location in the 2D images. Using these data, we
then generate a deep learning model that predicts the future
waypoints of other vehicles given a history of their positions.

II. RELATED WORK

Several researchers have suggested methods for accurate
and reliable trajectory prediction of commercial vehicles.
[4] proposed a recurrent neural network encoder-decoder
framework that models how vehicles interact in complex and
dynamic scenes. [1] introduced a convolutional model that
uses raw sensor data to predict the trajectories and high-level
action of vehicles. [7] presented an LSTM-driven network for
predicting vehicle trajectories in urban environments given
sensor data and a detailed map with traffic regulations. [2]
and [8] discussed predicting future vehicle trajectories based
on instantaneous motion and an understanding of motion
patterns of freeway traffic. Our work builds upon these
methods by performing trajectory prediction in the domain
of multi-agent racing. We present a novel way of collecting
vehicle trajectory data from a photo-realistic racing simulator,
as well as a deep recurrent neural network for multi-agent
racing trajectory prediction.



III. PROBLEM FORMULATION

Our work aims to address two issues related to predicting
the future trajectories of other agents. The first issue involves
efficiently collecting data from a reliable source, which has
been partially solved by our DeepRacing framework. How-
ever, the video game that forms the basis of our framework
does not have a sensor model, but has only a fixed view
camera with unknown parameters. We thus demonstrate a
method on how to construct a sensor model using only the
provided fixed-view images to better simulate the vehicle
driving autonomously, accounting for vehicles at varying
distances and vehicles occluded from view.

The second issue relates to the state estimation of oppo-
nents during an autonomous race. Our previous work [6]
has solely focused on single-agent racing, in which the ego
vehicle is alone on the track. The high-speed and close
interactions involved with multi-agent racing necessitate the
future prediction of how other vehicles will interact with the
ego. We present a method for predicting the future trajectories
of other racing agents given historical data of their previous
behavior. To simulate the true conditions of a multi-agent
race, we must ensure that our vehicle is only able to predict
the trajectories of opponents that are within view of the
ego. Therefore, the problem of state estimation is inherently
related to the problem of constructing a virtual sensor model.

First we present the method used to construct the virtual
sensor model, followed by the methods and results for the
problem of state estimation.

A. Formula One Simulation Environment

In order to train our algorithm to predict the trajectories
of other vehicles, we need a reliable way to collect data
that contains information on how racing vehicles interact
over time. As described in our previous work, we utilized
our DeepRacing framework that has converted the official
Formula One video game released by Codemasters® into a
simulation environment for the collection of the necessary
data. The game is extremely photo-realistic, as shown in
Figure 2, and is based on high-fidelity simulated physics.

The game advertises a “fire-and-forget” stream of teleme-
try data containing a variety of information about the game’s
state over a User Datagram Protocol (UDP) network socket.
Each packet in the stream offers a snapshot of the game’s
state along with a timestamp for when the state was gen-
erated. The variables of interest to our problem include (1)
the positions of all vehicles, (2) the velocity vectors of all
vehicles, (3) the forward heading vectors of all vehicles, and
(4) the rightward heading vectors of all vehicles, where all
variables have three components (X, Y, and Z) expressed
in the world coordinate system of the track. Although other
information such as the steering angle, throttle pressure,
and brake pressure may also provide value to predicting
trajectories, we limited data usage to variables that an object
detection algorithm run through the vehicle’s camera could
reasonably predict.

In a separate process, we can also sample images from the
ego vehicle’s point of view over time, similar to what is seen

in Figure 2. These images simulate what an autonomous F1
vehicle will see during a race and are useful for constructing
a virtual “camera,” which is described in more detail in the
following section.

IV. VIRTUAL CAMERA SENSOR IMPLEMENTATION

A. Calibrating a Virtual Camera

We now present our method for estimating a projective
transformation from 3D points in the ego vehicle’s coordinate
system to a pixel position in the image plane of our infras-
tructure’s virtual camera. In this work, the “ego coordinate
system” refers to the conventional “base link” system. This
coordinate system is centered at the ego vehicle’s rear axle,
with it’s X direction vector pointing forward, Y pointing to
the left, and Z vector as the cross product of X and Y.

Ego

Fig. 1: The geometry of our camera model.

In essence, this problem boils down to estimating a pro-
jective transformation that maps a point, P € R?, in the ego
vehicles coordinate system to a pixel position, [u,v] € R2.
This projection, expressed graphically in figure 1, has two
can be decomposed into two components:

1) A euclidean transformation, R — R3, that maps points
in the ego coordinate system to points in a camera
coordinate system, with an origin at the camera’s optical
center, Z axis pointing normal the image plane, and X/Y
directions parallel to the rows and columns of the image
plane.

2) A projective transformation, R? — R2, that maps points
in the camera coordinate system into [u, v] pixels on the
image plane.



Component 1 in the above list is expressed mathematically
as:

Xc ifE
Ye|=[R T] ZE (1)
Zc e
1
XE
Where | Yg | is a point in the ego-centric coordinate system
ZE
Xc
and | Yo | is that same point transformed into the camera-

Z

centric c%ordinate system. Note that the conventional bottom
rowof [0 0 0 1] is left out of this euclidean transform.
This is because we are not composing this transformation
with any others, so the 3 x 4 matrix without the bottom
row is sufficient for this model. R € SO(3) and T € R3
are the rotation matrix and translation of the euclidean
transformation, respectively.

Component 2, the projective transformation onto the image
plane, is expressed as:

u fx 0 0 XC
ZC vl =10 fy 0 YC (2)
1 0 0 1| |zc

Where wu,v are the pixel coordinates of the 3D points
corresponding projection onto the image and f,, f, are the
focal lengths in the row and columns directions of the
image, respectively. It easy to verify that this formulation
corresponds to a typical projective transformation derived
from similar triangles:

X Y
u = fm C” v = fy C (3)
Zo Zc
Substituting in equation 1, we have our full camera model:
W] [fe 0 0 o
Zo|v| =0 f, O|[R T]|/° (4)
1 0 0 1 1E

Note that this model assumes no radial distortion and
assumes the optical center of the virtual camera lies exactly
at the center of the image. Fitting this model to experimental
data is now very easy with our DeepRacing framework. This
procedure has the following high-level steps.

1) Record a set of images from the F1 game
2) Label each image with the corresponding 3D positions
of all other agents visible in that image, expressed in
the ego coordinate system
3) Label each image with the corresponding 2D pixel
positions of each visible agent
4) Fit a camera model to these corresponding sets of pixel
positions and 3D points
Steps 1 and 2 can be done automatically with our Deep-
Racing API. Step 3 must be done by manually by labelling
a bounding box around each visible agent. Figure 2 shows
an example of such a labelled image. Step 4 is carried out

Fig. 2: An example calibration image. The goal is to fit a
camera model that can project 3D points in the ego coordinate
system to their corresponding pixel location in the F1 game’s
output image.

with PyTorch’s torch.optim library. Note that because we can
control both the aspect ratio and the size of the images the
game renders, it is readily observed that f, = % fy» where
W, H are the width and height of the image (in pixels),
respectively. Therefore, we define our camera model’s param-
eters to be f, (with f, computed from the image size), the
translation between the ego coordinate system and the camera
coordinate system, and a unit quaternion representing the
rotation between the ego coordinate system and the camera
coordinate system. We then “train” this camera model to
minimize the reprojection loss from the 3D point in the ego
coordinate system onto the image plane, defined as follows:

f2Xc
Pmodel = fngC 5)
Zc
u
lreprojection = || [Uj:::ll:| - pmodel” (6)
Where Zlabel] is the ground-truth labelled pixel location of
label

the other agent visible in the image, and p,, o4 1S computed
with the camera model parameters according to equations 1
and 5. Figure 3 shows the results of this model fit.

Fig. 3: After model fitting, we can map 3D points in the ego
vehicle’s coordinate system to 2D pixel locations in the game
images

V. STATE ESTIMATION FOR MULTI-AGENT RACING

The problem of trajectory prediction can be reduced to a
simple mapping problem, where given the context C' of a
vehicle’s previous actions and the future waypoints W of the
vehicle, we wish to find a mapping C' — W. Throughout the
next sections we will present how we formulate both C' and



80

B Vehicle 4

W Vehicle 8

B Vehicle 16

W Ego Vehicle
—— Virtual Camera FOV/
=== Track Boundaries

70

60

50

40

30

20

10

30 20 10 0 -10 -20 -30

Fig. 4: Results from virtual camera without accounting for
occluded vehicles (top) with in-game view for comparison
(bottom).

W, as well as the process of generating the mapping between
the two.

A. Data Processing

The data captured from our DeepRacing framework needs
slight modifications before being fed to the state estimation
neural network. First, we must structure the data such that
we have a context matrix C' and a waypoint matrix W as
previously discussed. The context matrix was constructed
by extracting the relevant information of a singular vehicle
at a timestamp ¢, as well as the same data at p previous
timestamps. Furthermore, there are twelve variables extracted
at each timestamp: being the X, Y, and Z components
of the variables discussed previously. Therefore, a single
context matrix C' will have the dimensions p x 12. A similar
procedure is conducted to generate the waypoint matrix W
with f future waypoints. The waypoint matrix, however,
only includes the future positions of the vehicle, and as
such a singular matrix will have the dimensions f x 3. This
process was repeated for each of the nineteen vehicles present
in a singular packet across all packets collected. Next, we
must translate the coordinate system of the collected data
from the global coordinate system to the ego coordinate
system, as all data captured during a race will come from the
perspective of the ego vehicle. The transformation process
is conducted using an Affine transformation that maps all
values in C' and W to values in the ego coordinate system at
the timestamp ¢ associated with the packet. The math behind

80

W Vehicle 8

= Ego Vehicle
—— Virtual Camera FOV
=== Track Boundaries

60

50

40

30

20

10

0

30 20 10 0 -10 -20 -30

Fig. 5: Results from virtual camera accounting for occluded
vehicles.

this transformation is beyond the scope of this paper, but [3]
provides a comprehensive demonstration of the intuition and
procedures behind the transformation. At this point, we have
structured all of the data appropriately and translated the data
to the coordinate system of the ego vehicle. However, we
want to ensure that our neural network only runs predictions
using the data associated with vehicle’s within the ego’s field
of view. To filter out the data of vehicles not present in
the ego’s field of view, we constructed a “virtual camera”
represented as a conical shape to detect which vehicles should
be visible by the ego at each timestamp ¢. The parameters of
the shape, e.g. base, height, radius, were tuned empirically
using the images collected from the DeepRacing API, shown
in Figure 4.

As seen in Figure 4, a major issue with the current fake
camera is that it captures vehicles that are obstructed from the
view of the ego. To filter out obstructed vehicles, we created
an algorithm that considers other agents as polar coordinates.
The algorithm flags vehicles as obstructed if they lie within
a threshold € of another vehicle and are radially further from
the base link of the ego. The results of the filtering algorithm
applied to the same packet as Figure 4 can be seen in Figure
5.

Figure 5 demonstrates that the algorithm was successfully
able to filter out the obstructed vehicles, and thus the data is
now ready for training a deep neural network.

B. State Estimation RNN

Using the data collected from our DeepRacing API and
processed using the aforementioned steps, we were able to
train a deep recurrent neural network (RNN) that generates
a mapping from the scene context C' to future waypoints
W. The model consists of three stacked Long Short-Term
Memory (LSTM) cells, with each cell having thirty-two units
in the hidden state. Other model structures were experimented
with, e.g. varying the number of LSTM layers and the size
of the hidden state, and the three-layer architecture with



m Vehicle 4
= Vehicle 8
®  Ego Vehicle 70

—— Past Waypoints

—— Future Waypoints

—— Predicted Waypoints

—— Virtual Camera FOV

== Track Boundaries

m \Vehicle 4

u  Vehicle 8

®  Ego Vehicle

—— Past Waypoints
—— Future Waypoints
—— Predicted Waypoints
—— Virtual Camera FOV 60
== Track Boundaries

m Vehicle 4
®  Vehicle 8
®  Ego Vehicle
—— Past Waypoints
—— Future Waypoints
—— Predicted Waypoints
—— Virtual Camera FOV
= Track Boundaries

nm}n‘,

SR

5 )iss fizsz

Fig. 6: Trajectory Predictions for 167 ms (left), 667 ms (center), and 1 s (right) for in-game scene (bottom).

InputLayer LSTM LSTM

LSTM Dense Reshape

input: output: — input: | output: — input: |

output:

—»  input ] output: | —m  input: ] output: |—m| input: | output:

[(None, 20, 12)] ‘ [(None, 20, 12)] (None, 20, 12) ‘ (None, 20, 32)

(None, 20, 32) ‘ (None, 20, 32)

(None, 20, 32) [ (None, 32) (None, 32) [ (None, 60) (None, 60) | (None, 20, 3)

Fig. 7: Architecture of our trajectory prediction network. The network consists of three stacked LSTM layers, with each
layer having a thirty-two dimensional hidden-state. Dropout layers (not pictured) with probabilities of 0.0002 were added
inbetween the stacked LSTM layers. The stacked LSTM layers feed into a fully-connected layer to format the predictions.

thiry-two hidden state units yielded the best results in terms
of training and validation set MSE. Dropout layers with a
dropout probability of 0.0002 were also added in between
the stacked LSTM cells. The final LSTM cell then feeds into
a fully-connected layer with a linear activation function to
generate the predicted future waypoints. A visualization of
the model structure is displayed in Figure 7.

The model was trained using the Adam optimizer with a
learning of 0.003, and mean squared error was used as a loss
function.

VI. RESULTS

For our experiments, we tested the performance of our
model for various sizes of the context matrix C' and the
waypoint matrix W. Specifically, we used five, twenty, and
thirty previous timesteps for context to predict the same
number of timesteps into the future. The packet sampling
rate runs at approximately 30 Hz, so these trajectories have
a prediction horizon of 167 ms, 667 ms, and 1 s, respectively.
The models were evaluated based on their training and
validation mean squared error (MSE) between the predicted
future waypoints from our model and the ground-truth future
waypoints. Each model was trained using 100 epochs and a
batch size of 32. The results for each model are presented
below in Table I.

Number of Packets (ms) | Training MSE (m?) | Validation MSE (m?)
5 (167) 94117 15.977
20 (667) 26.502 21.663
30 (1000) 30.657 37.635

TABLE I: Model Error Evaluation

As expected, the overall error of the model increases as it
attempts to predict farther into the future. Figure 6 visualizes
the performance of the model when predicting 167 ms, 667
ms, and 1 s into future.

The predicted vehicle trajectories in Figure 6 appear to
improve as the neural network is given more context. The
predictions generated when given 167 ms of context originate
behind and to the side of the ground-truth trajectories, and
the predictions made with 667 ms of context originate
outside of the track boundaries entirely. Our RNN model
clearly formulates better predicted trajectories when given
1 s of context. Although the predicted trajectories do not
overlap closely to the ground-truth waypoints, the model is
capable of predicting the general direction and shape of the
trajectories of other agents. This indicates that our RNN
model is correctly learning the other agents internal state
information, but requires sufficient measurements to correctly
predict future behavior from that state.



VII. CONCLUSION AND FUTURE WORK

In conclusion, we present a state estimation framework for
autonomous motorsport racing. This RNN-based model is can
estimate the future trajectories of other racing agent’s in the
ego agent’s field-of-view. As the need for agile autonomy
grows, it will be critical that autonomous agents understand
not just the current states of other agents, but also their future
intent. These trajectory predictions for the other agents in
the ego’s field-of-view represent a crucial piece of an agile
autonomous system.

Additionally, because the F1 game offers no camera model
out-of-the-box, we present an update to our DeepRacing API
that allows fitting a pinhole camera model for the F1 game’s
rendered images as a virtual camera. This will enable robotics
developers to pursue exciting lines of research in vision based
methods for autonomous racing as well as enable automatic
generation of training data for machine-learning models
for detection of F1 vehicles in an autonomous motorsport
context.

Future work would include extending this model to replace
the waypoint predictions with predicting the control points
for a Bezier curve as a canonical representation of another
agent’s trajectory. Our previous work [6] has indicated that
a deep learning model is significantly better at predicting
these control points over waypoints due to the dimensionality
reduction of using a parameterized curve to represent a
trajectory rather than a list of waypoints. Restricting the
prediction of the network to be all but the first control point of
the Bezier curve will guarantee that the predicted trajectory
for any particular agent start at the known initial position
that agent. Furthermore, we plan to explore more complex
RNN architectures to create a model that is better able to
understand the context of the provided scene.

REFERENCES

[1] Sergio Casas, Wenjie Luo, and Raquel Urtasun. Intent-
Net: Learning to Predict Intention from Raw Sensor
Data. 2021. eprint: arXiv:2101.07907.

[2] Nachiket Deo, Akshay Rangesh, and Mohan M. Trivedi.
“How would surround vehicles move? A Unified Frame-
work for Maneuver Classification and Motion Predic-
tion”. In: (2018). por1: 10.1109/TIV.2018.2804159.
eprint: arXiv:1801.06523.

[3] Don Fussell. Affine Transformations. URL: https://www.
cs.utexas.edu/users/fussell/courses/cs384g-fall2011/
lectures/lecture07- Affine.pdf.

[4] Namhoon Lee et al. DESIRE: Distant Future Predic-
tion in Dynamic Scenes with Interacting Agents. 2017.
eprint: arXiv:1704.04394.

[5] Varundev Suresh Babu Trent Weiss and Madhur Behl.
“Bezier Curve Based End-to-End Trajectory Synthesis
for Agile Autonomous Driving”. In: NeurIPS 2020
Machine Learning for Autonomous Driving Workshop.
2020.

[6]

Varundev Suresh Babu Trent Weiss and Madhur Behl.
“DeepRacing Al: Agile Trajectory Synthesis for Au-
tonomous Racing”. In: International Conference on
Intelligent Robotis and Systems (IROS): Workshop on
Perception, Learning, and Control for Autonomous Ag-
ile Vehicles. IEEE Robotics and Automation Society.
2020.

Shaobo Wang et al. “Vehicle Trajectory Prediction
by Knowledge-Driven LSTM Network in Urban En-
vironments”. In: Hindawi (Nov. 2020). URL: https://
downloads.hindawi.com/journals/jat/2020/8894060.pdf.
Wei Xiao, Lijun Zhang, and Dejian Meng. “Vehicle Tra-
jectory Prediction Based on Motion Model and Maneu-
ver Model Fusion with Interactive Multiple Models”. In:
SAE Technical Paper Series (2020). DOI: 10.4271/2020-
01-0112.



