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Stress and force measurement uncertainties in 3D granular materials
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Abstract. We have developed and employed a 3D particle stress tensor and contact force inference technique
that employs synchrotron X-ray tomography and diffraction with an optimization algorithm. We have used this
technique to study stress and force heterogeneity, particle fracture mechanics, contact-level energy dissipation,
and the origin of wave phenomena in 3D granular media for the past five years. Here, we review the technique,
describe experimental and numerical sources of uncertainty, and use experimental data and discrete element
method simulations to study the method’s accuracy. We find that inferred forces in the strong force network of
a 3D granular material are accurately determined even in the presence of noisy stress measurements.

1 Introduction

Determining inter-particle forces in 3D, opaque granu-
lar materials has been a major pursuit in soft matter
physics for decades. Techniques for determining inter-
particle forces include those leveraging photoelastic discs
[1], compliant grains imaged with X-ray tomography [2],
intra-particle speckle patterns combined with digital im-
age correlation [3], and sand grains analyzed with X-ray
computed tomography (XRCT) and 3D X-ray diffraction
(BDXRD) [4]. The combination of XRCT and 3DXRD
has been used in natural and synthetic particle packs to
study stress distributions [5], particle fracture mechanics
[6], energy dissipation [7], and wave propagation [8]. Al-
though prior work has described sources of experimental
uncertainties in stresses and inferred forces [9, 10], lim-
ited work has systematically examined uncertainty propa-
gation.

In this paper, we discuss stress and inferred force un-
certainties in 3D granular materials studied with XRCT
and 3DXRD. Uncertainties arise from (1) experimental
noise and (2) image processing and algorithmic uncertain-
ties. The first type of uncertainty arises from the reso-
lution limits of X-ray diffraction detectors and associated
raw data processing algorithms. These uncertainties cause
“noisy” particle strain and stress tensors, as well as miss-
ing particle stress tensors, and are the main focus of this
contribution. The second type of uncertainty arises from
algorithms employed in image processing, such as parti-
cle segmentation, and data processing. These uncertainties
bias inter-particle contact point locations and orientations
and may lead to the presence of false contacts or absence
of true contacts in the force inference procedure. These
latter uncertainties will be addressed in future work.
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2 Particle Strain and Stress

We have employed 3DXRD measurements at various syn-
chrotron radiation facilities, including the European Syn-
chrotron Radiation Facility (ESRF), the Cornell High En-
ergy Synchrotron Source (CHESS), and the Advanced
Photon Source (APS), each with unique X-ray area de-
tectors including the GE 41RT (APS, ESRF, CHESS) and
Dexela 2923 detectors (CHESS). Distinct data processing
algorithms including ImageD11 [11], heXRD [12], and
MIDAS [13] are used at these beamlines (ESRF, CHESS,
APS, respectively). In this section, we discuss possible
sources and magnitudes of noise in individual particles’
strain and stress tensor components.

To estimate the noise in each particle’s average stress
tensor, which is employed in calculating inter-particle
forces, we first identify noise in particle strain tensors. Un-
certainties in particle strain tensors arise from the finite
resolution of Bragg peaks on X-ray area detectors and the
propagation of peak position and magnitude uncertainties
through data processing algorithms (ImageD11, heXRD,
MIDAS). Strain tensor errors have been well character-
ized as close to 1x107™* for the detector geometries used
in our past work [14, 15]. We previously verified, by
examining the standard deviation of strain tensor compo-
nents in a packing of 360 single-crystal alpha-quartz par-
ticles that was not under external load (i.e., any apparent
strains were those due to measurement errors) [10], that
standard errors in diagonal and off-diagonal strain tensor
components are 1x10~* and 5x1073, respectively. We fur-
ther studied standard errors in stress tensor components of
the same single-crystal alpha-quartz particles by employ-
ing the known uncertainties in single-crystal stiffness ten-
sor components, C;;, of synthetic alpha-quartz [16]. By
computing the standard deviation of 400 possible stress
tensors per particle from these stiffness tensor uncertain-
ties, we found standard errors around 10 MPa and 5 MPa
for on- and off-diagonal stress tensor components [10], as
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Table 1. Strain and stress tensor standard deviations, o, for
quartz (SiO2) and sapphire (Al203), as described in text. Strain
in units of 107* and stress in units of (MPa).

l] O_(Gij)SiOZ 0'(0',']')5102 O'(Ejj)A1203 O_(O.ij)AIZOS
xx 1.01 11.0 1.31 46.1
yy LI12 12.1 0.98 50.9
zz 0.74 8.87 1.08 56.6
xy 0.68 7.09 0.81 22.7
xz 0.46 4.95 0.74 23.3
yz 0.31 391 0.74 23.3

shown in Table 1. The per-particle stress tensor compo-
nents are distinct from, but similar to, what would be ob-
tained from directly calculating a stress tensor by multi-
plying nominal alpha-quartz stiffness tensor components
with standard deviations of strain tensor components.

While the stress tensor component standard deviations
reported in Table 1 are often half as high as the mean stress
level in the samples studied in [4, 10], we note that the
stresses experienced by particles within the strong force
network tend to be much larger than the mean. We show
in section 3 that when the magnitude of noise in the stress
measurements is half of or one times the mean stress level
in the sample, the strong force network is minimally af-
fected by measurement noise. These strong forces are
the most salient for examining heterogeneity, fracture, and
other phenomena [4, 10].

Here, we repeat the procedure used to examine strain
and stress tensor noise in single-crystal sapphire data de-
scribed in [7]. We compute the standard deviation of par-
ticle strain tensors for more than 1,700 strain-free (before
mechanical loading) single-crystal sapphire particles us-
ing identical nominal lattice parameters for each particle.
The resulting strain tensor standard deviations are close to
those obtained for alpha-quartz (Table 1). Standard devi-
ations for stiffness tensor components of sapphire are not
available in [17]. We therefore examine the standard devi-
ation in the stress tensor components in the first load step
after beginning to strain the samples. Each particle’s strain
tensor in the strain-free state is subtracted from its strain
tensor computed after sample compression to eliminate
natural differences in lattice parameters between crystals
(e.g., due to defects). Therefore, stress tensor standard de-
viations in the first load step should provide insight into the
scatter of stresses caused by noise in the data acquisition
(in addition to some scatter due to natural sample hetero-
geneity). The resulting stress tensor component standard
deviations are around 50 MPa and 23 MPa for on- and
off-diagonal components, respectively, as shown in Table
1. These stresses are again similar to what would be ob-
tained from directly multiplying nominal stiffness tensor
components with standard deviations of strain tensor com-
ponents. We note that these uncertainties are very close to
quoted uncertainties from the developers of 3DXRD soft-
ware [14, 15].

3 Force Uncertainty

We now examine the errors in inter-particle forces ob-
tained through the optimization procedure proposed in [4].
Rather than study a specific experiment presented in previ-
ous papers, we study error propagation by using synthetic
discrete element method (DEM) data for which forces are
known exactly. Particle stresses are calculated directly
from inter-particle forces in DEM. Therefore, when the
average coordination number is approximately 8 or less,
forces are exactly determinable from DEM [4, 9]. We eval-
uate the propagation of errors as a function of the ratio of
stress tensor noise (added to the exact stress tensors) to
a macroscopic stress level. We first provide a brief re-
view of the force inference technique. We note that the
use of DEM restricts our attention to spherical particles.
However, particle stress measurements from 3DXRD and
force inference are each independent of particle shape and
rather a function of particle volume. We therefore expect
that while the nature of force transmission may change in
packings of angular particles, the results of our analyses
will not.

3.1 Force Inference Technique

The force inference technique involves three governing
equations: linear momentum balance, angular momentum
balance, and a force-stress relation. For a particle @ with
N¢ contacts with neighboring particles or system bound-
aries, momentum balance is given by

N?
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and the force-stress relation is given by
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where x{’ is the contact point, fY the force vector, ® the
tensor product, V,, the particle volume, and o, its stress
tensor. Equation 2 is derived using the divergence theorem
applied to the volume-average stress expression for a sin-
gle particle. Combining Eq. 1 into matrix form K., f = 0,
and Eq. 2 into matrix form Ky f = by, where K., and
K; contain only components of xf,i) , f contains all force
vectors, and b, contains V,0,, we minimize

f= mjjn(llezf = byll + AIKeg f112), 3)

where A is an optimal tradeoff parameter, chosen to weight
stress and equilibrium to an optimal extent to minimize

the cost function. Constraints to enforce f;’; < u f(%

(Coulomb friction) and f(% < 0, where fé’; is tangential
force, fﬂ is normal force, and u is inter-particle friction
coefficient, are often enforced. We perform minimization
in Matlab using CVX [18]. The stress tensor errors con-
sidered in this work affect the first of the two objective
functions in Eq. 3.
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Figure 1. (a) Stress-strain curve of DEM simulation. (b) Distri-
bution of o, in all particles at steps 2 and 3. The small colored
line at the bottom of the plot conveys the average over all parti-
cles at steps 2 and 3.

3.2 DEM Model and Force Inference Without Noise

We simulate the compression of a 594 monodisperse
spheres in a cylindrical geometry. The cylindrical parti-
cle packing was simulated in LIGGGHTS [19] using 1.4
mm diameter particles with Young’s modulus 1 GPa, Pois-
son’s ratio 0.2, inter-particle friction coefficient 0.4, resti-
tution coefficient 0.1, and a “hertz tangential history” con-
tact model [20].

Figure 1(a) shows the stress-strain curve and coordina-
tion number for the DEM simulation. Insets illustrate the
distribution of o, at steps labeled 2 and 3. Figure 1(b) il-
lustrates the distribution of o, at steps 2 and 3, illustrating
the spread of particle stresses. Figures 3(a) show the inter-
particle forces at steps 2 and 3. Force vectors are rendered
as lines, centered at contact points, oriented parallel to the
force vector, and scaled in width and length linearly with
contact force magnitude. These forces are employed to de-
termine particle stress tensors using Eq. 2. Stress tensor,
particle volume, and contact location information is then
used in the inter-particle force inference using Eq. 3. The
number of unknowns is the number of contacts times three
(5,937 for step 2 and 6,435 for step 3) and the number of
equations is 12 times the number of particles (7,128).

Force inference without noise results in a nearly exact
match with the actual forces. A small number of inferred
forces differ from the actual forces, with the average dif-
ference between inferred and actual forces being less than
1% of the mean force in the system. These differences
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Figure 2. (a) Normalized inferred force magnitude errors. (b)
Inferred force orientation errors.

likely reflect errors in the optimization procedure due to
machine precision.

3.3 Force Inference with Noise

Noise was introduced into each particle’s stress tensor at
steps 2 and 3 by adding a noise tensor, Tl with each di-
agonal component drawn from a separate normal distribu-
tion with mean zero and standard deviation &,/2 and each
off-diagonal components drawn from a normal distribution
with mean zero and standard deviation &,,/4 (preserving
symmetry). The same procedure was repeated for twice
these standard deviations. The use of normal distributions
is supported by our previous work [10] (e.g., by visual in-
spection of Fig. 3 in that reference). Force inference was
then performed using Eq. 3.

Figure 2(a) shows the normalized error in inferred
force magnitudes with noisy stresses. This error was cal-
culated by first computing the absolute value of force mag-
nitude error at each inter-particle contact and then dividing
by the mean force in the system. Three aspects of the result
are noteworthy. First, an increase in noise level relative to
the mean stress in the system increases errors in inferred
force magnitudes. Second, force inference in systems with
increasing coordination number (step 3 versus 2) do not
demonstrate an increase in force magnitude error. This in-
dicates that force inference error does not increase in sys-
tems for which the number of unknowns approaches the
number of equations. Finally, the most important observa-
tion from Fig. 2(a) is that the normalized error in inferred
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Figure 3. Forces at step 2 (left) and 3 (right) from DEM (a) and
inferred with two noise levels in (b) and (c).

force magnitude is generally smaller than the mean force,
and decreases as the ratio between the stress noise level
and the sample stress decreases. This finding supports the
notion that the statistics of the strong force network are in-
sensitive to noisy stress measurements, particularly as the
sample stress is increased relative to the noise level.

Figure 2(b) shows the orientation error for all inferred
forces shown in Fig. 2(a). The orientation error was cal-
culated by finding the angle between inferred and actual
forces. We find that orientation error increases only min-
imally as the noise level increases. Figure 3(b) and (c)
show the inter-particle forces inferred in the presence of
the two noise levels. Although noisy stresses cause errors
in inferred forces, careful inspection of the figures reveals
that the salient features of the force network, particularly
the strong force network, are still captured well.

4 Conclusion

We have shown that particle stress tensor noise is fixed
and is a function of the strain resolution of 3DXRD mea-
surements (hardware and algorithms). We have further
shown that the strong force network is accurately inferred
using the force inference procedure, and that errors in
force magnitude and orientation generally decrease as the
sample stress increases relative to the stress tensor noise
level. In our previous work, we have examined systems
in which the peak sample stress is slightly greater than

[21], two times [4], or even five times [6, 22] the noise
levels reported in Table 1, implying that results involving
the strong force network are generally accurate.

This work was supported by the U.S. National Science
Foundation CAREER Award No. CBET-1942096.
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