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a b s t r a c t

Continuum modeling of granular media is made possible by the existence of a length scale at and
above which grain-resolved properties can be meaningfully homogenized. Progress has been made
in identifying such length scales relevant to local structural properties such as porosity. However, a
systematic analysis of scales above which different mechanical properties can be homogenized has
yet to emerge. Here, X-ray tomography and 3D X-ray diffraction data are examined to identify such
length scales. The data was obtained in-situ in compressed granular materials with rigid and flexible
confinement. The experimental data are supplemented with validated discrete element simulations
which examine different system sizes and different boundary conditions. Our study reveals a hierarchy
in the length scales of granular solids, with lengths governing structural variables being the shortest,
lengths of stress variables being intermediate, and lengths of energy dissipation being the longest.
All structural and mechanical length scales obey a power law based on the theory of Geostatistics,
implying that the length scales can be found by analyzing samples significantly smaller than the length
scales themselves. The length scales are also found to be sensitive to boundary conditions, implying
that they are extrinsic features of granular media.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Granular materials react to deformation through complex in-
eractions of kinematics [1,2] and force chains [3,4]. Despite these
omplexities, continuum mechanics is effectively employed to
redict their macroscopic behaviors [5–7]. This is possible be-
ause of the existence of an length scale above which collective
rain-resolved properties and processes can be meaningfully cap-
ured through homogenized, macroscopic variables [8,9]. This
ssumption of scale separation is captured through the existence
f a representative volume element (RVE), a material volume that
ncompasses a sufficient number of material constituents such
hat it can be assigned a homogenized property representative
f lower length scales [10–14]. The assumption of scale separa-
ion has led to marked advances in modeling and interpreting
eterogeneous solids (a review is provided in [15]), including for
olymers [16–18], metals [19], composites [20–22], alloys [23,24],
oncrete [25–27], geomaterials [28–31], ceramics [32], and even
edia with multi-physics [33–36].

∗ Corresponding author at: Hopkins Extreme Materials Institute, Johns
opkins University, Baltimore, MD 21218, USA.

E-mail address: rhurley6@jhu.edu (R.C. Hurley).
ttps://doi.org/10.1016/j.eml.2021.101590
352-4316/© 2021 Elsevier Ltd. All rights reserved.
In granular mechanics, identifying the RVE size has been a
topic of extensive research. Research has focused on under-
standing the behaviors and predicting the effective properties
of particle systems [37–42] and has expanded with the rise of
homogenization methods for multi-scale analysis [39,43–52].
Prior research was based on micro-structural measurements
(e.g., [53,54]) and numerical computations (e.g., [55,56]) with a
focus primarily on structural properties such as porosity and grain
size distribution. Prior studies suggest that the RVE size varies
from one material to another and also depends on the property
under consideration, with distinct sizes identified for geometrical
and elastic properties [33,54,55]. Despite these intriguing find-
ings, prior studies have several limitations. First, they are based
on numerical idealizations [54,55] and focus on specific boundary
conditions [55]. Second, the scale assessment in these studies
is based on non-objective metrics, which may explain some
contradictory findings [54,55]. Finally, RVE sizes for mechanical
quantities such as stress and energy remain under-explored [33].

The present study provides an investigation into the length
scales governing granular media. Our study is based primarily
on a unique dataset that includes microstructural observations
made through in-situ X-ray tomography and 3D X-ray diffrac-

tion [57]. These X-ray methods enabled characterization of the

https://doi.org/10.1016/j.eml.2021.101590
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inematic (strain and motion), kinetic (stress), and combined
nergy fields arising during mechanical loading. We focus on
ddressing the scale question under quasi-static loading. High-
ate loading may result in wave propagation with its own char-
cteristic size (e.g., solitary waves which have a characteristic
idth of 5 grain diameters [58] and shock waves which have
characteristic size of several grain diameters [59–61]), but is
xcluded from our analysis. We focus on several structural and
echanical properties including volume fraction, fabric, stress,
nd energy dissipation. Experimental measurements and RVE
izes are used to validate a discrete element method (DEM) model
hat is employed to investigate the following questions: (1) Can
VE measurements conducted on small systems be used to com-
ute length scales for larger systems? (2) Are RVE-sizes intrinsic
depending only on grain properties) or extrinsic (depending on
oundary conditions) features of granular materials? We em-
loy the theory of geostatistics [62] and makes use of its RVE
efinition: an observation volume that maintains stationary prob-
bility density functions when sampled across space. Geostatistics
nables objective assessment of RVE sizes through correlation
unctions and a volume expansion method. Alternative methods
or quantifying RVE sizes from 3D imaging have been advanced
n other areas of materials science (e.g., [63]).

The remainder of this paper is organized as follows. Section 2
rovides a summary of the theory of geostatistics. Section 3
escribes the experimental data. Section 4 discusses the imple-
entation of the theory of geostatistics for the RVE size determi-
ation. Section 5 presents numerical simulations based on DEM
imulations that are used to demonstrate a power law for length
cales and to examine the sensitivity of RVE sizes for boundary
onditions. The paper concludes with a summary and discussion
f the findings.

. Geostatistics

The theory of geostatistics provides a method of assessing
he spatial homogeneity of random processes [62,64]. The theory
as been applied to solids to characterize spatial fluctuations of
aterial properties [35,65,66] and to infer macroscopic quan-

ities from microscopic observables [13]. Geostatistics aims to
etermine an RVE size, which is a volume size that guarantees
egularity and reproducibility and is the length scale above which
property of interest can be homogenized. In this statistical

pproach, a material’s properties are assumed to arise from an
nderlying random process [62,67]. The random process has to
ulfill conditions of stationarity and ergodicity [68]. Stationarity
mplies that the statistics of the considered property are indepen-
ent of sampling location. Ergodicity implies that the statistics
f a process averaged over an infinite domain coincide with the
tatistics of sufficiently-large subdomain samples [62].
In ergodic systems, characteristic lengths can be evaluated

hrough the relationship

= lim
v→∞

v var{z(v)}, (1)

here v is the sampling size, z(v) is the property of interest
omputed over the sample volume, var{z(v)} is the variance of
(v) over all samples at size v, and A is a material constant
ssociated with the length scale of fluctuation. Convergence of
q. (1) requires that an increase of sample volume is balanced by
commensurate reduction of the variance. In this regard, it has
een argued that the trends of variance evolution can be used to
nspect homogeneity [64]. In particular, the decay of the variance
n samples of different sizes can be expressed as a function of the
olume through

ar{z(v)} =
A

, (2)

vb

2

where b indicates the rate of variance reduction as a function
of the sampling size. Empirical studies show that statistically
homogeneous media exhibit asymptotic decay of the variance
characterized by b ≥ 1 [64]. Heterogeneous media display a
ower decay rate with 0 < b < 1. These ideas have previ-
usly been applied in the studies of heterogeneous and multi-
hysics solids [10,35,66], tumor tissues (e.g. [69,70]), and image
nalysis [71].
The evolution of b in Eq. (2) as a function of v provides a

asis for identifying the transition from statistical heterogeneity
o statistical homogeneity. In the homogeneous regime, where
he sample is large enough to be considered an RVE and b ≥ 1,
q. (2) provides an estimate of property variance at a given v.
his methodology is applied to the experimental data discussed
n the following section to characterize the RVE size for various
tructural, kinetic and kinematic variables.

. Experiments

The experiments were conducted at the European Synchrotron
adiation Facility, beamline ID11, and are described in detail
n [57]. Testing was performed on two samples of single-crystal
uby particles with diameters between 140 µm to 150 µm (San-
oz Fils SA), a mean particle diameter, D50, of 145 µm, and

uniform roughness below 0.008 µm. In the first specimen (A),
particles were poured into a 1.5 mm inner-diameter aluminum
cylinder and compressed between 1.5 mm diameter steel platens.
This specimen was subjected to 13 successive quasi-static load
steps, and the readings from the load cell are reported in Fig. 1.
The sample was loaded in compression in steps 1–7, unloaded in
steps 8–9, and reloaded in steps 10–13. In the second specimen
(B), particles were assembled in a polymer sleeve submerged
in a fluid-filled pressure cell, and compressed between 1.5 mm
diameter steel platens. The sleeve provided more freedom for the
particles to move laterally as compared to specimen A. Sample
B was first subjected to three hydrostatic load steps, raising the
pressure in the cell to 3 MPa through increments of 1 MPa. The
sample was then loaded quasi-statically via axial compression in
steps 5–14 with lateral pressure held constant at 3 MPa. The load
cell reading relative to its value at the end of hydrostatic loading
is reported versus load step in Fig. 1b. The stiffness of the polymer
sleeve did not permit lateral stresses to decrease to a pressure of
3 MPa and instead constrained the granular sample, leading to
higher lateral stresses. Experiment B featured global stress ratios
similar to experiment A [57]. Experiment B, however, displayed
distinct kinematics, as particles were permitted and observed to
move significantly in lateral directions.

Between sample strain increments in each experiment, the
loading platen displacement was fixed while in-situ X-ray com-
puted tomography (CT) and 3D X-ray diffraction (3DXRD) mea-
surements were made by rotating the specimen 180◦ and 360◦,
espectively. Transmission radiographs were used to reconstruct
T images with (1.54)3 µm3 per voxel at each load step. CT

images were processed to segment grains and measure contact
orientations and particle kinematics across load steps. Diffraction
patterns were analyzed to identify particle strain tensors, ori-
entations, and stress tensors using techniques described in [72].
CT and 3DXRD datasets were combined to quantify inter-particle
forces and energy dissipation due to frictional slip and twist at
each inter-particle contact, as described in [57] (also see [73,74]).
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Fig. 1. (a) Schematic illustration of a synchrotron experiment with in-situ X-ray tomography and X-ray diffraction. (b) Load cell measurements from tests on granular
systems with rigid and flexible confinement. Inset figures show CT images of the initial microstructure of the two samples. Each sample measures 1.5 mm in diameter.
Initial sample heights are 1.42 mm (rigid confinement) and 1.35 mm (flexible confinement). (c) Homogenized grain-resolved stresses inferred from X-ray diffraction
measurements in both samples.
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4. Structural- and mechanical-property variograms

The methodology discussed in Section 2 is employed to char-
acterize the RVE sizes associated with contact fabric, pore/grain
volume fraction, mean and deviatoric stresses, mechanical fabric,
and energy dissipation. From the stresses extracted from 3DXRD
data, the mean, p, and deviatoric stresses, q, are computed for
each particle as:

p =
1
3
σijδij, (3)

q =

√
3
2
sijsij, (4)

where σij is the Cauchy stress tensor, δij is Kronecker delta, and
ij = σij −pδij is the deviatoric stress. From the forces and contact
orientations extracted from CT and 3DXRD data, texture fabric, F ,
nd mechanical fabric, Fm, are computed for a specific sampling
olume as:

=
1
N

N∑
i=1

n ⊗ n, (5)

and

Fm =
1

N⟨Fn⟩

N∑
i=1

Fnn ⊗ n, (6)

here n is the contact normal vector at contact i, Fn is the
ormal force magnitude, ⟨Fn⟩ is the mean normal force magnitude
ver the sample, N is the number of contacts included in one
ampling volume, and ⊗ is the dyadic tensor product (see [57] for
nformation on how forces and normal vectors were calculated).
he fabric tensors’ deviators, computed analogously to Eq. (4) by
eplacing σij by the fabric tensors, are used to calculate the vari-
nce evolution associated with the texture and the mechanical
abrics.

The elastic potential energy at contact i is calculated from the
ormal and tangential contact forces and kinematics as suggested
3

in [57,75]:

E i
n =

4(3/4fn)5/3

15(E∗)2/3(R∗)1/3
, (7)

E i
t =

(ft )2(1 + ν)(2 − ν)
8Ea

, (8)

where fn and ft are the normal and tangential contact forces,
∗

= E/(2(1 − ν)), E is Young’s modulus, ν is Poisson ratio,
nd 1/R∗

= 1/R1 + 1/R2, with R1 and R2 being the contacting
articles’ radii computed as the spherical equivalent radius based
n particle volume in CT images. E and ν are taken to be 350 MPa
nd 0.2, respectively, representative of the ruby particles used in
xperiments [57]. a is the contact radius that is equal to

√
R∗d,

with d being the particle overlap quantified from the difference
between the distance of contacting particles’ centers and the sum
of their radii.

All quantities (volume fraction, stress, fabric, and energy) are
‘‘rendered’’ onto distinct voxelized images with the same size
as the segmented CT reconstructions for each load step of each
experiment. For volume fraction, the voxelized images are bina-
rized images in which particles are given a value of one and voids
are given a value of zero. For mean and deviatoric stress, values
for each grain are assigned to voxels belonging to the grains for
which they are computed; voxels corresponding to voids are zero.
For contact quantities including texture, mechanical fabric, and
energy dissipation, a single voxel defining the associated contact
point is assigned the value of the contact quantity; other voxels
are zero.

Variograms portray the variance in a homogenized property
as a function of sampling volume. To compute variograms for our
data, we first tessellate the domain of interest within each ren-
dered voxelized image into non-overlapping cubic subdomains
of equal size. The homogenized property of interest in a subdo-
main is computed by averaging the value of all pixels, including
voids, within that subdomain. The variance of homogenized prop-
erties across all subdomains is then calculated. The process is
repeated for increasing subdomain sizes and the variance across
all subdomains of a given volume is reported in the variograms.
The reported variance is normalized by the point-variance for
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Fig. 2. Variograms of grain-volume fraction, f , and mean stress, p, computed for granular systems confined with (Upper, Sample A) rigid walls and (Lower, Sample
) flexible walls, displayed at selected loading steps. The variograms are normalized by the corresponding point-variance (the variance computed across all voxels
n the ‘‘rendered’’ images described in the text). Variograms’ asymptotes and their decay rate are illustrated. The variograms were computed for three domains of
ifferent sizes 260-, 240-, and 220-voxel (Appendix A).
Fig. 3. RVE size as a function of the estimated standard deviation computed at step #6 for Sample A (left) and Sample B (right).
c

M

the property and domain of interest; the point-variance is the
variance computed for all voxels in the ‘‘rendered’’ images.

Variogram analysis was conducted on a portion of the vox-
elized image created for each experimental sample at each load
step. The portion of the images to be analyzed were identified
as those in which the characteristics of the variance are not
affected by the mechanical response at the boundaries (see Ap-
endix A). The main sources of boundary-related heterogeneity
n specimen A emerged only in regions near to the upper and
ower boundaries. In specimen B, lateral boundaries also gen-
rated boundary-related heterogeneity. Statistical homogeneity
as observed for a cubic portion of around 2/3 of the dimensions
f each specimen. In the following, ‘‘specimen’’ indicates this
solated cubic domain in each sample.

A subset of variograms computed for solid volume fraction
nd mean stress by tessellating three cubic regions with sizes
60-, 240-, and 220-voxel side-length (see Appendix A), along
ith fits to their tails, are shown in Fig. 2. These variograms
isplay a clear transition from slow to faster variance decay, with
decay exponent that is equal to or greater than one, indicating
omogeneity.
4

4.1. Model-based interpretation of RVE size

Model fitting was carried out to identify the transition in b
from values indicating statistical heterogeneity (i.e., b <1) to
those indicating statistical homogeneity (i.e., b ≥ 1). Fitting was
onducted by minimizing a mean squared error function:

SE =

n∑
i=1

(
var −

A
vb

)2

. (9)

where var is the sampling variance. Optimization is performed
in Matlab using the ‘‘fminsearch’’ function with b and A as op-
timization variables. A straightforward implementation of this
strategy was systematically conducted for most variograms. Prior
to calculating b using Eq. (9), variograms were smoothed through
the Matlab function ‘‘smooth’’ which is based on weighted linear
least squares and a second degree polynomial model, with a
regression window of 30% of data points. Manual fitting, however,
was necessary for variograms with stronger fluctuations that
were not eliminated by this smoothing approach. Fluctuations in
the tail of variograms emerge because of the decaying number
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b

Fig. 4. RVE size evolution along loading computed for (from bottom to top)
structural fabric, phase-volume fraction, mechanical fabric, deviator stress, mean
stress, and energy dissipation. The volume is determined for a 1.0% standard
deviation.

of sub-domains considered when v increases. Manual fitting was
onducted by adjusting fitting parameters until the power-law
urve visually aligned with the variogram tail (see Appendix B).
The relationship between the RVE size and the standard de-

iations of properties, as estimated using Eq. (2), is illustrated in
ig. 3 for load step 6 in both experiments. The standard devia-
ion in this figure is the square root of the normalized variance
hown in Fig. 2. The reported results include standard devia-
ions calculated for volume fraction, mean stress, and energy
issipation using Eq. (2). We choose a standard deviation of
% as our definition of an RVE size, although other standard
eviations may be chosen with similar qualitative results. In
ig. 4, we report the 1% RVE sizes as multiples of D50. Average
VE sizes across all load steps for each experiment are approxi-
ately 4, 5, 9, 10, 12, and 20 ×D50 for structural fabric, volume

raction, mechanical fabric, deviatoric stress, mean stress, and
nergy dissipation, respectively. Both granular systems feature
early constant RVE sizes throughout the experiments, even dur-
ng the cycle of unloading–reloading executed on specimen A.
urthermore, despite differences in the lateral confinement of the
wo specimens, the characteristic lengths are comparable. These
esults suggest that characteristic lengths of granular systems
re quantitatively ordered into a hierarchy, with structural prop-
rties (fabric, volume fraction) being the shortest, mechanical
roperties (mechanical fabric and stresses) being intermediate,
nd plastic properties (energy dissipation) being the longest. This
inding was also discussed qualitatively in [57] using the expo-
ents of exponential fits to probability distributions, but without
roviding quantitative RVE sizes.

. Scale law and extrinsic effects

This section addresses two main questions: (1) Can RVE sizes
e identified from samples smaller than the sizes themselves?
5

Table 1
Contact model used in DEM simulations.
Definition Ruby Quartz

Young’s modulus [GPa] 350 70
Poisson Ratio 0.2 0.2
Particle–particle friction coefficient 0.25 0.2
Particle–wall friction coefficient 0.05 0.05
Restitution coefficient 0.7 0.7

(2) Are RVE sizes intrinsic properties, depending only on grain
properties, or extrinsic properties, depending on grain properties
and boundary conditions? DEM simulations with mechanical and
statistical predictions validated against the experimental mea-
surements discussed in the previous section are used to address
these questions.

5.1. DEM model and validation

DEM simulations of uniaxial, confined compression are per-
formed in LIGGGHTS [76]. Four sample sizes are studied, but the
sample used for validation against experimental data includes
about 900 spherical particles. All samples are prepared in a cylin-
drical geometry with the cylinder axis aligned vertically. The
experimental particle-to-cylinder diameter ratio is 1:10. The DEM
simulations use bi-disperse particles with ± 10% diameter vari-
ation to avoid crystallization, similar to the grain size variation
in experiments. The cylindrical walls have the same grain prop-
erties. Particles are generated randomly within the cylinder and
then compressed to about 1 MPa by moving horizontal platen,
having the same properties as the particles, downwards. Once
compressed, each sample has a height to diameter ratio between
1 and 1.5, similar to experiments, and is then held at a fixed
volume while kinetic energy is dissipated out of the system via
damped particle motion.

The contact model includes linear-elastic, normal and tan-
gential springs, with Coulomb type friction ("Hertz Tangential
History’’ contact model [77]). Particles’ elastic moduli and friction
coefficients are taken to be representative of the ruby parti-
cles used in experiments. The model parameters are detailed
in Table 1. Loading is applied by displacing a horizontal platen
downwards at a strain rate of 10−5 until a desired nominal strain
level is reached.

Statistical analysis, following the procedure discussed in pre-
vious sections, suggests that DEM simulations offer opportunities
for further statistical analysis. The macroscopic response and
characteristic lengths (volume fraction, stresses, energy), as well
as their hierarchy, obtained from the DEM simulation with 900
particles are consistent with those characterized in the exper-
iments, as shown in Fig. 5a–b. We note that our analysis also
shows that the identified length scales are insensitive to elastic
properties of the grains. To reduce the computational costs, the
following analysis is therefore based on quartz-like, instead of
ruby-like, properties (Table 1).

5.2. Scale power law

The focus of the following analysis is on examining the ques-
tion of whether RVE sizes can be estimated in samples smaller
than the sizes themselves by using power-law extrapolation. Var-
iograms are generated for three simulation sizes, containing 2,000
(small), 20,000 (medium), and 40,000 (large) particles, and over-
laid with one another to examine whether the decay of variance is

similar in each case. The three simulation sizes, from smallest to
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Fig. 5. Comparison of (a) macroscopic response and (b) characteristic lengths associated with 1% standard deviation between Sample A and a DEM simulation of the
ame uniaxial compression test, demonstrating accuracy at capturing characteristic lengths using DEM simulations.
Fig. 6. Statistical analysis of structural and mechanical properties in granular systems with different sizes (described in the text) studied with DEM in cylindrical
niaxial strain geometry, showing that all variograms collapse into a single curve that obeys a power low. (a) Volume fraction, (b) mean stress, (c) deviatoric stress,
d) texture fabric, (e) mechanical fabric, and (f) energy dissipation.
argest, correspond to particle-to-cylinder diameter ratios of 1:10,
:20, and 1:30, respectively. The specimens are subjected to uni-
xial compression and analyzed following procedure discussed in
ection 5.1.
The results of the RVE analysis based on DEM (Fig. 6) indi-

ate that the tails of variograms for all sample sizes collapse
6

onto a single curve. This suggests that homogeneous systems
(b ≥ 1) obey a power law that allows one to determine RVE
sizes from samples smaller than the RVE size itself. One simply
needs to use the power law obtained from analysis of vari-
ograms in the homogeneous regime (b ≥ 1) to estimate the RVE
size.
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. Length-scale sensitivity to extrinsic factors

This section focuses on the question of whether RVE hierarchy
nd sizes are intrinsic or extrinsic properties. DEM simulations
f simple shear are employed for this purpose. The setup of
he DEM simulation is shown in the inset to Fig. 7. The simple
hear simulation is inspired by [78] and is based on a rectangular
pecimen with 40 D50 (length) × 20 D50(width) × 20 D50 (height),
nd the same grain size and grain size distribution adopted in the
imulations from Section 5.1. The simulation involves more than
12,000 particles. Periodic boundary conditions are imposed on the
lateral sides. The upper and lower walls consist of rigidly con-
nected particles with size and distribution similar to the system’s
bulk. The friction coefficient between the walls and particles is
set to 0.9 to enhance surface friction [79]. Loading is conducted
through the following protocol. The bottom wall is fixed in the
vertical direction. The top wall is displaced downwards at a fixed
rate until the vertical reaction stress between it and the particles
has reached 10 MPa. This pressure is maintained throughout
the simulations by treating the top wall as a rigid body and
integrating its position in the same manner as particle positions
are integrated, but by assuming the wall is subjected to a constant
downward vertical force. Shearing is implemented by displacing,
in opposite directions, the top and the bottom walls in the shear
(length) direction, at a rate (defined as the relative shear velocity
divided by the specimen height at the beginning of the shearing
stage) of γ̇ = 0.1. The simulation is characterized by an inertial
number, I = γ̇ d50/

√
(Pρ) ∼ 10−6, where ρ is the material

ensity. This value indicates quasi-static conditions [80].
Three deformation intervals are selected for RVE analysis

marked with circles in Fig. 7), in which the properties of volume
raction, mean stress, deviatoric stress, and energy dissipation are
tudied. Energy dissipation is studied for increments of about

= 0.01. The selected intervals are located in the steady
hearing stage, i.e., when deviatoric stress has reached a steady
tate. The analysis was conducted, as previously discussed, on
ubdomains to avoid boundary effects. The subdomains were
dentified by decreasing the investigated domain until homo-
eneity was consistently recovered (see for experimental data
escribed in Appendix A). The subdomains covered almost the
ntire vertical dimension and 2/3 of the horizontal dimensions of
he full simulation domain.

Results are illustrated in Fig. 8 along with the variograms of
he first three steps in the simulations of uniaxial (‘‘oedometric’’)
ompression with rigid walls, discussed in Section 5.1. Energy
issipation variograms for simple shear simulations suffered from
oorly identified point-variance (variance when v = 1 voxel)
ecause of strong fluctuations. The variograms were therefore
ormalized by the variance associated with a sampling volume
f nearly 10 voxels, a size at which the variogram has displayed
learer trends. This shift does not affect variogram decay and has
minimal effect on the estimated RVE size.
The variograms in Fig. 8 display intriguing features. Although

he variograms in both cases eventually display a variance decay
s fast as or faster than the volume growth (b ≥ 1), vari-
grams associated with simple shear involve extended ranges
f reduced decay (b < 1) for stresses and energy dissipation.
olume-fraction variograms are nearly the same in the uniax-
al and shear cases. The differences in the variogram behavior
ndicate that simulated systems possess different kinetic and
inematic length scales depending on the boundary conditions.
he dependency on boundary conditions suggests that the length
cales are extrinsic properties of the material. Power-law fitting
as conducted (Fig. 8) and the computed structural, kinetic, and
inematic RVE sizes for 1% standard deviation are reported in
ig. 9. The results reveal non-negligible increases in the stress
7

Fig. 7. Deviatoric stress response of a DEM simulation of simple shear test.
Circles indicate three intervals of γ = 0.01 used for analysis. Colors in inset do
not correspond particle properties.

and energy dissipation RVE-sizes for simple shear, as compared to
uniaxial compression. Although the RVE sizes differ between the
two loading conditions, the length-scale hierarchy is remarkably
maintained. The structure-to-stress scale ratio doubled for the
case of simple shear, while the stress-to-energy dissipation scale
ratio appears to be comparable between the two loading condi-
tions. This change may stem from the emergence of periodic, long
force chains, which are known signatures of steady state simple
shear flow in granular materials [81].

7. Conclusions

The concept of a representative volume element or RVE,
widely used in continuum-based idealizations of granular media,
has been examined in this study. A range of structural, kinetic,
and kinematic grain-scale properties were examined to identify
the existence, size, and hierarchy of RVEs. The study is based
on laboratory measurements of specimens compressed under
various boundary conditions and monitored by combined X-
ray tomography and the 3D X-ray diffraction. Specimens with
rigid and moderately flexible lateral boundaries were considered.
DEM simulations were also used to confirm that RVE sizes could
meaningfully be extracted from systems smaller than the RVE size
itself and that RVE sizes were extrinsic features of a system that
depend on boundary conditions. The most significant findings of
this study are:

1. RVE sizes have been quantified for contact fabric, pore/grain
volume fraction, mean and deviatoric stresses, mechanical
fabric, and energy dissipation.

2. RVE sizes follow a hierarchy: structural lengths associated
with porosity and fabric are the shortest, kinetic lengths
associated with stresses are intermediate, and kinematic
(energy-dissipation) lengths are the longest.

3. The length scales obey power laws that can be obtained
from systems smaller than the length scales themselves, as
validated by DEM.

4. The RVE sizes are extrinsic properties of granular me-
dia, as granular systems under different boundary con-
ditions displayed different kinetic and kinematic length
scales. Despite the differences in amplitude, the hierarchy
of the length scales appears to be maintained in different
boundary conditions.

5. The length scales are state independent, as the RVE-sizes
appear to be nearly invariable with the evolution of load-

ing.
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Fig. 8. Statistical analysis of structural and mechanical properties in granular systems with different boundary conditions, showing extrinsic characteristics of kinetic
and kinematic length scales. The variograms correspond to three selected deformation intervals indicated by circles in Fig. 7.
Fig. 9. RVE sizes associated with 1% standard deviation for uniaxial oedometric
ompression and simple shear simulations, revealing influences of boundary
onditions on kinetic and kinematic length scales.

The findings of this research provide insight into the length
cales dictating the constitutive properties of granular media.
hese findings support the development of microstructure- and
echanism-based constitutive models, as well as micro-to-macro
omogenization methods. Our findings reveal that experiments
erformed on granular materials containing 103 grains are statis-
ically valid for predicting structural and constitutive properties
t much larger scales.
The identification of an RVE is conventionally constrained by

wo bounds: a lower bound at which the RVE is sufficiently
arge to represent homogenized behavior, and an upper bound set
8

by field-scale spatial property fluctuations. Our analysis focused
on the lower bound. Dedicated studies are needed to address
the identification of the upper bound, primarily to support the
integration of local heterogeneity in numerical analyses of spa-
tial processes [82–84]. Our study quantified length scales under
confined and unconfined uniaxial compression and simple shear.
Triaxial compression under variable confining pressure should be
performed in the future to help us understand any dependencies
of the length scales on the stress state. Experiments involving
cycles of loading–unloading and including variable deformation
rates may be performed in the future to reveal any history-
and rate-dependencies of the length scales. A small number of
samples and small sample sizes were used in this study due to
current experimental constraints. A larger number of samples and
samples of a larger size should be used in future work to provide
further validation and extension of the results presented here.
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Fig. 10. Sensitivity analyses of analysis domain showing stability of variogram characteristics for a domain of interest with size equal to Size 2. The analysis presented
ere is for step #10.
Fig. 11. Variograms of energy dissipation with manual fitting for the experimental triaxial compression. b = 1 in all cases.
ppendix A. Wall friction effects

Boundary effects generate heterogeneous kinematic and ki-
etic fields in the periphery of our granular specimens. Excluding
his region from the analysis domain is necessary for material-
ased assessments of homogeneity and characteristic lengths that
re insensitive to particle-boundary interactions. To identify this
egion, we examine cubic subdomains of with varying sizes cen-
ered at the mid-height of each specimen. For each cubic subdo-
ain size, the statistical analysis discussed in the main text was
pplied by tessellating this domain. The domain of interest was
dentified as the largest subdomain size for which homogeneity is
btained in variograms of grain volume fraction. Fig. 10 illustrates
he size of cubic subdomains with reference to a cross-section of
ample A. The volume fraction variograms computed for subdo-
ain sizes of 320- (Size 1), 260- (Size 2), and 220-voxels (Size
9

3) are reported in Fig. 10. In both experiments, the variogram
characteristics are stable and do not feature heterogeneous tails
as long the subdomain is Size 2 or smaller. This subdomain is used
for analysis in the main text.

Appendix B. Variograms with manual fitting

This section illustrates a set of variograms for which fitting
was conducted manually. Figs. 11, and 12, 13 show fitting con-
ducted manually for energy dissipation variograms computed for
experimental samples A, B, and the DEM simulation of rigidly-
confined uniaxial compression, respectively. The case of step 7
and 8 are in Fig. 12 are associated with unloading steps and
excluded from the analysis.
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Fig. 12. Variograms of energy dissipation with manual fitting for the experimental uniaxial compression. b = 1 in all cases.
Fig. 13. Variograms of energy dissipation with manual fitting for uniaxial compression DEM simulation. b = 1 in all cases.
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