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Abstract
Existing oblivious storage systems provide strong security

by hiding access patterns, but do not scale to sustain high

throughput as they rely on a central point of coordination.

To overcome this scalability bottleneck, we present Snoopy,

an object store that is both oblivious and scalable such that

adding more machines increases system throughput. Snoopy

contributes techniques tailored to the high-throughput regime

to securely distribute and efficiently parallelize every system

component without prohibitive coordination costs. These

techniques enable Snoopy to scale similarly to a plaintext

storage system. Snoopy achieves 13.7× higher throughput

thanObladi, a state-of-the-art oblivious storage system. Specif-

ically, Obladi reaches a throughput of 6.7K requests/s for two

million 160-byte objects and cannot scale beyond a proxy

and server machine. For the same data size, Snoopy uses 18

machines to scale to 92K requests/s with average latency

under 500ms.

CCS Concepts: • Security and privacy → Database and
storage security.

Keywords: Oblivious RAM, Scalability

1 Introduction
Organizations increasingly outsource sensitive data to the

cloud for better convenience, cost-efficiency and availabil-

ity [32, 54, 90]. Encryption cannot fully protect this data:

how the user accesses data (the “access pattern”) can leak

sensitive information to the cloud [13, 29, 38, 49, 51, 53].

For example, the frequency with which a doctor accesses a

medication database might reveal a patient’s diagnosis.
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Oblivious object stores allow clients to outsource data to

a storage server without revealing access patterns to the

storage server. A rich line of work has shown how to build

efficient oblivious RAMs (ORAMs), which can be used to

construct oblivious object stores [8, 14, 26, 34, 73, 83, 86, 92–

94, 102]. In order to be practical for applications, oblivi-

ous storage must provide many of the same properties as

plaintext storage. Prior work has shown how to reduce la-

tency [66, 83, 94], scale to large data sizes via data paral-

lelism [60], and improve request throughput [26, 86, 102].

Despite this progress, leveraging task parallelism to scale
for high-throughput workloads remains an open problem:

existing oblivious storage systems do not scale.

Identifying the scalability bottleneck. Scalability bottle-

necks are system components that must perform compu-

tation for every request and cannot be parallelized. These

bottlenecks limit the overall system throughput; once their

maximum throughput has been reached, adding resources to

the system no longer improves performance. To scale, plain-

text object stores traditionally shard objects across servers,

and clients can route their queries to the appropriate server.

Unfortunately, this approach is insecure for oblivious object

stores because it reveals the mapping of objects to parti-

tions [13, 38, 49, 51, 53]. For example, if clients query dif-

ferent shards, the attacker learns that the requests were for

different objects.

To understand why scaling oblivious storage is hard, we ex-

amine two properties oblivious storage systems traditionally

satisfy. First, systems typically maintain a dynamic mapping

(hidden from the untrusted server) between the logical layout

and physical layout of the outsourced data. Clients must look

up their logical key using the freshest mapping and remap

it to a new location after every access, creating a central

point of coordination. Second, for efficient access, oblivious

systems typically store data in a hierarchical or tree-like

structure, creating a bottleneck at the root [83, 93, 94].

Thus high-throughput oblivious storage systems are all

built on hierarchical [93] or tree-like [83, 94] structures and

either require a centralized coordination point (e.g., a query

log [14, 102] or trusted proxy [8, 26, 86, 92]) or inter-client

communication [10]. We ask: How can we build an oblivious
object store that handles high throughput by scaling in the
same way as a plaintext object store?
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Removing the scalability bottleneck. In this work, we

propose Snoopy (scalable nodes for oblivious object repos-

itory), a high-throughput oblivious storage system that scales

similarly to a plaintext storage system. While our system is

secure for any workload, we design it for high-throughput

workloads. Specifically, we develop techniques for grouping

requests into equal-sized batches for each partition regard-

less of the underlying request distribution and with mini-

mal cover traffic. These techniques enable us to efficiently

partition and securely distribute every system component

without prohibitive coordination costs.

Like prior work, Snoopy leverages hardware enclaves for

both performance and security [3, 66, 87]. Hardware en-

claves makes it possible to (1) deploy the entire system in a

public cloud; (2) reduce network overheads, as private and

public state can be located on the same machine; and (3)

support multiple clients without creating a central point

of attack. This is in contrast with the traditional trusted

proxy model (Figure 1), which can be both a deployment

headache and a scalability concern. Hardware enclaves do

not entirely solve the problem of hiding access patterns for

oblivious storage: enclave side channels allow attackers to

exploit data-dependent memory accesses to extract enclave

secrets [12, 42, 56, 58, 68, 89, 99, 103]. To defend against these

attacks, we must ensure that all algorithms running inside

the enclave are oblivious, meaning that memory accesses are

data-independent. Existing work targets latency-sensitive

deployments [3, 66, 87] and is prohibitively expensive for

the concurrent, high-throughput deployment we target. We

instead leverage our oblivious partitioning scheme to design

new algorithms tailored to our setting.

We experimentally show that Snoopy scales to achieve high

throughput. The state-of-the-art oblivious storage system

Obladi [26] reaches a throughput of 6,716 reqs/sec with av-

erage latency under 80ms for two million 160-byte objects

and cannot scale beyond a proxy machine (32 cores) and

server machine (16 cores). In contrast, Snoopy uses 18 4-core

machines to scale to a throughput of 92K reqs/sec with av-

erage latency under 500ms for the same data size, achieving

a 13.7× improvement over Obladi. We report numbers with

18 machines due to cloud quota limits, not because Snoopy

stops scaling. We formally prove the security of the entire

Snoopy system, independent of the request load.

1.1 Summary of techniques

Snoopy is comprised of two types of entities: load balancers
and subORAMs (Figure 1). Load balancers assemble batches

of requests, and subORAMs, which store data partitions, pro-

cess the requests. In order to securely achieve horizontal scal-

ing, we must consider how to design both the load balancer

and subORAM to (1) leverage efficient oblivious algorithms

to defend against memory-based side-channel attacks, and

(2) be easy to partition without incurring coordination costs.

Load BalancerLoad Balancer

subORAM

(a) ORAM in hardware enclave

(c) Snoopy

Trusted
Server

Untrusted
Cloud

(b) Trusted Proxy

subORAM subORAM

ORAM

Hardware
Enclave

Scalability
Bottleneck

Proxy

Figure 1. Different oblivious storage system architectures: (a)

ORAM in a hardware enclave is bottlenecked by the single ma-

chine, (b) ORAM with a trusted proxy is bottlenecked by the proxy

machine, and (c) Snoopy can continue scaling as more subORAMs

and load balancers are added to the system.

Challenge #1: Building an oblivious load balancer. To
protect the contents of the requests, our load balancer design

must guarantee that (1) the batch structure leaks no informa-

tion about the requests, and (2) the process of constructing

these batches is oblivious and efficient. Furthermore, we need

to design our oblivious algorithm such that we can add load

balancers without incurring additional coordination costs.

Approach. We build an efficient, oblivious algorithm that

groups requests into batches without revealing the mapping

between requests and subORAMs.We size batches using only

public information, ensuring that the load balancer never

drops requests and the batch size does not leak information.

Our load balancer design enables us to run load balancers

independently and in parallel, allowing Snoopy to scale past

the capacity of a single load balancer (§4).

Challenge #2: Designing a high-throughput subORAM.
To ensure that Snoopy can achieve high throughput, we

need a subORAM design that efficiently processes large

batches of requests and defends against enclave side-channel

attacks. Existing ORAMs that make use of hardware en-

claves [3, 66, 87] only process requests sequentially and are

a poor fit for the high-throughput scenario we target.

Approach. Rather than building batching support into an

existing ORAM scheme, we design a new ORAM that only

supports batched accesses. We observe that in the case where

data is partitioned over many subORAMs, a single scan amor-

tized over a large batch of requests is concretely cheaper than

servicing the batch using ORAMs with polylogarithmic ac-

cess costs [3, 66, 87], particularly in the hardware enclave



setting. We leverage a specialized data structure to process

batches efficiently and obliviously in a single linear scan (§5).

Challenge #3: Choosing the optimal configuration. The
design of Snoopy makes it possible to scale the system by

adding both load balancers and subORAMs. An application

developer needs to know how to configure the system to

meet certain performance targets while minimizing cost.

Approach. To solve this problem, we design a planner that,

given a minimum throughput, maximum average latency,

and data size, outputs a configuration minimizing cost (§6).

Limitations. Snoopy is designed specifically to overcome

ORAM’s scalability bottleneck to support high-throughput

workloads, as solutions already exist for low-throughput,

low-latencyworkloads [83, 94]. In the low-throughput regime,

although Snoopy is still secure, its latency will likely be

higher than that of non-batching systems like ConcurO-

RAM [14], TaoStore [86], or PrivateFS [102]. For large data

sizes and low request volume, a system like Shroud [60] will

leverage resources more efficiently. Snoopy can use a differ-

ent, latency-optimized subORAM with a shorter epoch time

if latency is a priority. We leave for future work the problem

of adaptively switching between solutions that are optimal

under different workloads.

2 Security and correctness guarantees
We consider a cloud attacker that can:

• control the entire cloud software stack outside the enclave

(including the operating system),

• view (encrypted) network traffic arriving at and within the

cloud (including traffic sent by clients andmessage timing),

• view or modify (encrypted) memory outside the enclaves

in the cloud, and

• observe access patterns between the enclaves and external

memory in the cloud.

We design Snoopy on top of an abstract enclave model where

the attacker controls the software stack outside the enclave

and can observe memory access patterns but cannot learn

the contents of the data inside the processor. Snoopy can

be used with any enclave implementation [9, 25, 57]; we

chose to implement Snoopy on Intel SGX as it is publicly

available on Microsoft Azure. Enclaves do not hide memory

access patterns, enabling a large class of side-channel attacks,

including but not limited to cache attacks [12, 42, 68, 89],

branch prediction [58], paging-based attacks [99, 103], and

memory bus snooping [56]. By using oblivious algorithms,

Snoopy defends against this class of attacks. Snoopy does not

defend against enclave integrity attacks such as rollback [74]

and transient execution attacks [19, 79, 88, 97, 98, 100, 101],

which we discuss in greater detail below.

We defend against memory access patterns to both data and

code by building oblivious algorithms on top of an oblivious

“compare-and-set” operator. While our source code defends

against access patterns to code, we do not ensure that the

final binary does, as other factors like compiler optimiza-

tions and cache replacement policies may leak information

(existing solutions may be employed here [39, 59]).

Timing attacks. A cloud attacker has access to three types

of timing information: (1) when client requests arrive, (2)

when inter-cloud processing messages are sent/received, and

(3) when client responses are sent. Snoopy allows the at-

tacker to learn (1). In theory, these arrival times can leak

data, and so we could hide when clients send requests and

how many they send by requiring clients to send a constant

number of requests at predefined time intervals [4]; we do

not take this approach because of the substantial overhead

and because, for some applications, clients may not always

be online. Snoopy ensures that (2) and (3) do not leak request

contents; the time to execute a batch depends entirely on

public information, as defined in §2.1.

Data integrity and protection against rollback attacks.
Snoopy guarantees the integrity of the stored objects in a

straightforward way: for memory within the enclave, we use

Intel SGX’s built-in integrity tree, and for memory outside

the enclave, we store a digest of each block inside the enclave.

We assume that the attacker cannot roll back the state of

the system [74]. We discuss how Snoopy can integrate with

existing rollback-attack solutions in §9.

Attacks out of scope. Webuild on an abstract enclavemodel

where the attacker’s power is limited to viewing or modify-

ing external memory and observing memory access patterns.

Any attack that breaks the abstract enclave model is out

of scope and should be addressed with techniques comple-

mentary to Snoopy. For example, we do not defend against

leakage due to power consumption [20, 69, 95] or denial-

of-service attacks due to memory corruptions [40, 50]. We

additionally consider transient execution attacks [19, 79, 88,

97, 98, 100, 101] to be out of scope; in many cases, these have

been patched by the enclave vendor or the cloud provider.

These attacks break Snoopy’s assumptions (and hence guar-

antees) as they allow the attacker to, in many cases, extract

enclave secrets. We note that, Snoopy’s design is not tied to

Intel SGX, and also applies to academic enclaves like MI6 [9],

Keystone [57], or Sanctum [25], which avoid many of the

drawbacks of Intel SGX.

We also do not defend against denial-of-service attacks; the

attacker may refuse queries or even delete the clients’ data.

Clients. For simplicity, in the rest of the paper, we describe

the case where all clients are honest. We make this simplifica-

tion to focus on protecting client requests from the server, a

technical challenge that motivates our techniques. However,

in practice, we might not want to trust every client with read

and write access to every object in the system. Adding access-

control lookups to our system is fairly straightforward and

requires an oblivious lookup in an access-control matrix to

check a client’s privileges for a given object. We can perform



this check obliviously via a recursive lookup in Snoopy (we

describe how this works in the full version [27]). Supporting

access control in Snoopy ensures that compromised clients

cannot read or write data that they do not have access to.

Furthermore, if compromised clients collude with the cloud,

the cloud does not learn anything beyond the public informa-

tion that it already learns (specified in §2.1) and the results

of read requests revealed by compromised clients.

Linearizability. Because we handle multiple simultaneous

requests, we must provide some ordering guarantee. Snoopy

provides linearizability [44]: if one operation happens after

another in real time, then the second will always see the

effects of the first (see §4.3 for how we achieve this). We

include a linearizability proof in the full version [27].

2.1 Formalizing security
We formalize our system and prove its security in the full

version [27]. We build our security definition on an enclave

ideal functionality (representing the abstract enclave model),

which provides an interface to load a program onto a net-

work of enclaves and then execute that program on an input.

Execution produces the program output, as well as a trace
containing the network communication and memory access

patterns generated as a result of execution (what the adver-

sary has access to in the abstract enclave model).

The Snoopy protocol allows the attacker to learn public

information such as the number of requests sent by each

client, request timing, data size (number of objects and object

size), and system configuration (number of load balancers

and subORAMs); this public information is standard in obliv-

ious storage. Snoopy protects private information, including

the data content and, for each request, the identity of the

requested object, the request type, and any read or write con-

tent. To prove security, we show how to simulate all accesses

based solely on public information (as is standard for ORAM

security [34]). Our construction is secure if an adversary

cannot distinguish whether it is interacting with enclaves

running the real Snoopy protocol (the “real” experiment) or

an ideal functionality that interacts with enclaves running

a simulator program that only has access to public infor-

mation (the “ideal” experiment) from the trace generated

by execution. We now informally define these experiments,

delegating the formal details to the full version [27].

Real and ideal experiments (informal). In the real exper-

iment, we load the protocol Π (either our Snoopy protocol or

our subORAM protocol, depending on what we are proving

security of) onto a network of enclaves and execute the ini-

tialization procedure (the adversary can view the resulting

trace). Then, the adversary can run the batch access protocol

specified by Π on any set of queries and view the trace. The

adversary repeats this process a polynomial number of times

before outputting a bit.

The ideal experiment proceeds in the same way as the real

experiment, except that, instead of interacting with enclaves

running Π, the adversary interacts with an ideal function-

ality that in turn interacts with the enclaves running the

simulator program. The adversary can view the traces gen-

erated by the simulator enclaves. The goal of the adversary

is to distinguish between these experiments.

Using these experiments, we present our security definition:

Definition 1. The oblivious storage scheme Π is secure if

for any non-uniform probabilistic polynomial-time (PPT)

adversary Adv, there exists a PPT Sim such that���Pr[RealOStoreΠ,Adv (λ)=1
]
−Pr

[
IdealOStoreSim,Adv (λ)=1

] ���≤negl(λ)

where λ is the security parameter, the real and ideal exper-

iments are defined informally above and formally in the full

version [27], and the randomness is taken over the random

bits used by the algorithms of Π, Sim, and Adv.

We prove security in a modular way, which enables future

systems to make standalone use of our subORAM design.

We note that our subORAM scheme is secure only if the

batch received contains unique requests (this property is

guaranteed by our load balancer). We prove the security of

Snoopy using any subORAM scheme that is secure under

this modified definition.

Theorem 1. Given a two-tiered oblivious hash table [16],
an oblivious compare-and-set operator, and an oblivious com-
paction algorithm, the subORAM scheme described in §5 is
secure according to Definition 1 where the adversary can only
submit unique requests.
Theorem 2. Given a keyed cryptographic hash function, an
oblivious compare-and-set operator, an oblivious sorting algo-
rithm, an oblivious compaction algorithm, and an oblivious
storage scheme, Snoopy, as described in §4, is secure according
to Definition 1.
All of the tools we use in the above theorems can be built

from standard cryptographic assumptions. We prove both

theorems in the full version [27].

3 System overview
To motivate the design of our system, we begin by describing

several solutions that do not work for our purposes.

Attempt #1: Scalable but not secure. Sharding is a straight-
forward way to achieve horizontal scaling. Each server main-

tains a separate ORAM for its data shard, and the client

queries the appropriate server. This simple solution is inse-

cure: repeated accesses to the same shard leaks query infor-

mation. For example, if two clients query different servers,

the attacker learns that they requested different objects.

Attempt #2: Secure but not scalable. To fix the above

problem, we could remap an object to a different partition af-

ter it is accessed, similar to how single-server ORAMs remap

objects after accesses [83, 94]. A central proxy running on a

lightweight, trusted machine keeps a mapping of objects to

servers. The client sends its request to the proxy, which then
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Figure 2. Secure distribution of requests in Snoopy. ➊The load

balancer receives requests from clients. ➋At the end of the epoch,

the load balancer generates a batch of requests for each subORAM,

padding with dummy requests as necessary.

accesses the server currently storing that object and remaps

that object to a new server [8, 92]. While this solution is

secure, this single proxy is a scalability bottleneck. Every

request must use the most up-to-date mapping for security;

otherwise, requests might fail and re-trying them will leak

when the requested object was last accessed. Therefore, all

requests must be serialized at the proxy, and so the proxy’s

throughput limits the system’s throughput.

Our approach. We achieve the scalability of the first ap-

proach and the security of the second approach. To efficiently

scale, we exploit characteristics of the high-throughput regime

to develop new techniques that allow us to provide security

without remapping objects across partitions. These tech-

niques enable us to send equal-sized batches to each parti-

tion while both (1) hiding the mapping between requests and

partitions (for security), and (2) ensuring that requests are dis-

tributed somewhat equally across partitions (for scalability).

3.1 System architecture
Snoopy’s system architecture (Figure 2) consists of clients

(running on private machines) and, in the public cloud, load

balancers and subORAMs (running on hardware enclaves).

All communication is encrypted using an authenticated en-

cryption scheme with a nonce to prevent replay attacks. We

establish all communication channels using remote attesta-

tion so that clients are confident that they are interacting

with legitimate enclaves running Snoopy [5].

The role of the load balancer is to partition requests received
during the last epoch into equally sized batches while provid-

ing security and efficiency (§4). In order to horizontally scale

the load balancer, each load balancer must be able to operate

independently and without coordination. The role of the

subORAM is to manage a data partition, storing the current

version of the data and executing batches of requests from

the load balancers (§5). Snoopy can be deployed using any

oblivious storage scheme for hardware enclaves [3, 66, 87] as

a subORAM. However, our subORAM design is uniquely tai-

lored to our target workload and end-to-end system design.

3.2 Real-world applications

Snoopy is valuable for applications that need a high-throughput

object store for confidential data, including outsourced file

storage [3], cloud electronic health records, and Signal’s pri-

vate contact discovery [61]. Privacy-preserving cryptocur-

rency light clients can also benefit from Snoopy. These allow

lightweight clients to query full nodes for relevant transac-

tions [63]. Maintaining many ORAM replicas is not enough

to support high-throughput blockchains because each replica

needs to keep up with the system state. As blockchains con-

tinue to increase in the throughput [85, 91], oblivious storage

systems like Obladi [26] with a scalability bottleneck simply

cannot keep up.

Snoopy can also enable private queries to a transparency

log; for example, Alice could look up Bob’s public key in a key

transparency log [2, 64] without the server learning that she

wants to talk to Bob. A key transparency log should support

up to a billion users, making high throughput critical [36].

4 Oblivious load balancer
In this section, we detail the design of the load balancer, fo-

cusing on how batching can be used to hide the mapping

between requests and subORAMs at low cost (§4.1), design-

ing oblivious algorithms to efficiently generate batches while

protecting the contents of the requests (§4.2), and scaling

the load balancer across machines (§4.3).

4.1 Setting the batch size

To provide security, we need to ensure that constructing

batches leaks no information about the requests. Specifically,

we must guarantee that (1) the size of batches leaks no in-

formation, and (2) the process of constructing batches is

similarly oblivious. We focus on (1) now and discuss (2) in

§4.2. For security, we need to ensure that the batch size B
depends only on public information visible to the attacker:

namely, the number of requests R and number of subORAMs

S , but not the contents of these requests. Therefore, we define
B as a function B= f (R,S) that outputs an efficient yet secure

batch size for R requests and S subORAMs. Each subORAM

will receive B requests. Because R is not fixed across epochs

(requests can be bursty), B can also vary across epochs.

In choosing how to define this function f , we need to (1)

ensure that requests are not dropped, and (2) minimize the

overhead of dummy requests. Ensuring that requests are

not dropped is critical for security: if a request is dropped,

the client will retry the request, and an attacker who sees a

client participate in two consecutive epochs may infer that

a request was dropped, leaking information about request

contents. Minimizing the overhead of dummy requests is

important for scalability. A simple way to satisfy security

would be to set f (R,S)=R; this ensures that even if all the

requests are for the same object, no request was potentially
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dropped. However, this approach is not scalable because ev-

ery subORAM would need to process a request for every

client request. We refine this approach in two steps.

Deduplication to address skew. When assembling a batch

of requests, the load balancer can ensure that all requests in a

batch are for distinct objects by aggregating reads and writes

for the same object (for writes, we use a “last write wins” pol-

icy) [26]. Deduplication allows us to combat workload skew.

If the load balancer receives many requests for object A and

a single request for object B, the load balancer only needs

to send one request for object A and one request for object

B. Deduplication simplifies the problem statement; we now

need to distribute a batch of at most R unique requests across
subORAMs. This reframing allows us to achieve security

with high probability for f (R,S)<R if we distribute objects

randomly across subORAMs, as we now do not have to worry

about the case where all requests are for the same object.

Choosing a batch size. Given R requests and S subORAMs,

we need to find the batch size B such that the probability that

any subORAM receives more than B requests is negligible

in our security parameter λ. Like many systems that shard

data, we use a hash function to distribute objects across

subORAMs, allowing us to recast the problem of choosing B
as a balls-into-bins problem [77]: we have R balls (requests)

that we randomly toss into S bins (subORAMs), and we must

find a bin size B (batch size) such that the probability that a

bin overflows is negligible. We add balls (dummy requests) to

each of the S bins such that each bin contains exactly B balls.

Using the balls-into-bins model, we can start to understand

how we expect R and S to affect B. As we add more balls to

the system (R ↑), it becomes more likely for the balls to be

distributed evenly over every bin, and the ratio of dummy

balls to original balls decreases. Conversely, as we add more

bins to the system (S ↑), we need to proportionally add more

dummy balls. We validate this intuition in Figure 3 and Fig-

ure 4. Figure 3 shows that as the total number of requests

R increases, the percent overhead due to dummy requests

decreases. Thus larger batch sizes are preferable, as they

minimize the overhead introduced by dummy requests. Fig-

ure 4 illustrates how adding more subORAMs increases the

total request capacity of Snoopy, but at a slower rate than

a plaintext system. Adding subORAMs helps Snoopy scale

by breaking data into partitions, but adding subORAMs is

not free, as it increases the dummy overhead.

We prove that the following f for setting batch size B guar-

antees negligible overflow probability in the full version [27]:

Theorem 3. For any set of R requests that are distinct and
randomly distributed, number of subORAMs S , and security
parameter λ, let µ = R/S , γ = −log(1/(S · 2λ)), andW0(·) be
branch 0 of the LambertW function [23]. Then for the follow-
ing function f (R,S) that outputs a batch size, the probability
that a request is dropped is negligible in λ:

f (R,S)=min(R, µ ·exp
[
W0

(
e−1(γ/µ−1)

)
+1

]
) .

Proof intuition. For a single subORAM s , let X1, ... ,XR ∈

{0,1} be independent random variables where Xi represents

request i mapping to s . Then, Pr[Xi =1]=1/S . Next, let the
random variable X =

∑R
i=1Xi represent the total number of

requests that hashed to s . We use a Chernoff bound to upper-

bound the probability that there are more than k requests to

a single subORAM, Pr[X ≥k]. In order to upper-bound the

probability of overflow for all subORAMs, we use the union

bound and solve for the smallest k that results in an upper

bound on the probability of overflow negligible in λ. In order

to solve fork , we coerce the inequality into a form that can be

solved with the LambertW function, which is the inverse re-

lation of f (w)=wew , i.e.,W (wew )=w [23]. When f (R,S)=R,
the overflow probability is zero, and so we can safely upper-

bound f (R,S) by R. We target the high-throughput case

where R is large, in which case our bound is less than R.

We now explain how Theorem 3 applies to Snoopy. For

security, it is important that an attacker cannot (except with

negligible probability) choose a set of requests that causes a

batch to overflow. Thus Snoopy needs to ensure that requests

chosen by the attacker are transformed to a set of requests

that are distinct and randomly distributed across subORAMs.

Snoopy ensures that requests are distinct through dedupli-

cation and that requests are randomly distributed by using

a keyed hash function where the attacker does not know

the key. Because the keyed hash function remains the same

across epochs, Snoopy must prevent the attacker from learn-

ing which request is assigned to which subORAM during

execution (otherwise, the attacker could use this informa-

tion to construct requests that will overflow a batch). Snoopy

does this by ensuring that each subORAM receives the same

number of requests and by obliviously assigning requests to

the correct subORAM batch (§4.2.2). Theorem 3 allows us to

choose a batch size that is less than R in the high-throughput

setting (for scalability) while ensuring that the probability

that an attacker can construct a batch that causes overflow is

cryptographically negligible. Thus Snoopy achieves security

for all workloads, including skewed ones.



The bound we derive is valuable in applications beyond

Snoopy where there are a large number of balls and it is

important that the overflow probability is very small for dif-

ferent numbers of balls and bins. Our bound is particularly

useful in the case where the overflow probability must be

negligible in the security parameter as opposed to an appli-

cation parameter (e.g. the number of bins) [7, 67, 77, 78].

4.2 Oblivious batch coordination

As with other components of the system, the load balancer

runs inside a hardware enclave, and so we must ensure that

its memory accesses remain independent of request content.

The load balancer runs two algorithms that must be obliv-

ious: generating batches of requests (§4.2.2), and matching

subORAM responses to client requests (§4.2.3).

Practically, designing oblivious algorithms requires ensur-

ing that the memory addresses accessed do not depend on

the data; often this means that the access pattern is fixed

and depends only on public information (alternatively, access

patterns might be randomized). The data contents remain en-

crypted and inaccessible to the attacker, and only the pattern

in which memory is accessed is visible. We build our algo-

rithms on top of an oblivious “compare-and-set” operator

that allows us to copy a value if a condition is true without

leaking if the copy happened or not.

4.2.1 Background: oblivious building blocks. We first

provide the necessary background for two oblivious building

blocks from existing work that we will use in our algorithms.

Oblivious sorting. An oblivious sort orders an array of n
objects without leaking information about the relative or-

dering of objects. We use bitonic sort, which runs in time

O(n log2n) and is highly parallelizable [6]. Bitonic sort ac-

cesses the objects and performs compare-and-swaps in a

fixed, predefined order. Since its access pattern is indepen-

dent of the final order of the objects, bitonic sort is oblivious.

Oblivious compaction. Given an array of n objects, each

of which is tagged with a bit b ∈ {0,1}, oblivious compaction

removes all objects with bit b=0 without leaking informa-

tion about which objects were kept or removed (except for

the the total number of objects kept). We use Goodrich’s al-

gorithm, which runs in timeO(nlogn) and is order-preserving,
meaning that the relative order of objects is preserved after

compaction [35]. Goodrich’s algorithm accesses array loca-

tions in a fixed order using a logn-deep routing network that
shifts each element a fixed number of steps in every layer.

4.2.2 Generating batches of requests. Generating fixed-
size batches obliviously requires care. It is not enough to

simply pad batches with a variable number of dummy re-

quests, as this can leak the number of real requests in each

batch. Instead, we must pad each batch with the right num-

ber of dummy requests without revealing the exact number of
dummy requests added to each batch. To solve this problem,
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Figure 5. Generating batches of requests at the load balancer.

we obliviously generate batches in three steps, which we

show in Figure 5: ➊we first assign client requests to sub-

ORAMs according to their requested object; ➋we add the

maximum number of dummy requests to each subORAM;

➌we construct batches with those extra dummies; and ➍we

filter out unnecessary dummies.

First (➊), we scan through the list of client requests. For

each client request, we compute the subORAM ID by hash-

ing the object ID, and we store it with the client request.

Second (➋), we append the maximum number of dummy

requests for each subORAM, B= f (R,S) to the end of the list.

These dummy requests all have a tag bit b=1. Third (➌), we

group real and dummy requests into batches by subORAM.

We do this by obliviously sorting the lists of requests, set-

ting the comparison function to order first by subORAM (to

group requests into subORAM batches), then by tag bit b
(to push the dummies to the end of the batches), and then

by object ID (to place duplicates next to each other). Finally

(➍), to choose which requests to keep and which to remove,

we iterate through the sorted request list again. We keep a

counter x of the number of distinct requests seen so far for

the current subORAM. We securely update the counter by

performing an oblivious compare-and-set for each request,

ensuring that access patterns don’t reveal when the counter

is updated. If x < B and the request is not a duplicate (i.e.

it is not preceded by a request for the same object), we set

bit b=1 (otherwise b=0). To filter out unnecessary dummy

requests and duplicates, we obliviously compact by bit b,
leaving us with a B-sized batch for each subORAM.

The algorithm is oblivious because it only relies on lin-

ear scans and appends (both are data-independent) and our

oblivious building blocks. The runtime is dominated by the

cost of oblivious sorting and compaction.

4.2.3 Mapping responses to client requests. Once we
receive the batches of responses from the subORAMs, we

need to send replies to clients. This requiresmapping the data

from subORAM responses to the original requests, making
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Figure 6.Mapping subORAM responses to client requests at the

load balancer.

sure that we propagate data correctly to duplicate responses

and that we ignore responses to dummy requests. We ac-

complish this obliviously in four steps, which we show in

Figure 6: ➊we merge together the client requests and the

subORAM responses and then sort the list; ➋we sort the

merged list to group requests with responses; ➌we propa-

gate data from the responses to the original requests; and

➍we filter out the now unnecessary subORAM responses.

The load balancer takes as input two lists: a list of subORAM

responses and a list of client requests. First (➊), we merge the

two lists, tagging the subORAM responses with a bitb=0 and
the client requests with b=1. Second (➋), we sort this com-

bined list by object ID and then, to break ties, by the tag bit b.
Breaking ties by the tag bit b arranges the data so that we can
easily propagate data from subORAM responses to requests.

Third (➌), we iterate through the list, propagating data in

objects with the tag bit b=0 (the subORAM responses) to the

following object(s) with the tag bit b=1 (the client requests).
As we iterate through the list, we keep track of the last object

we have seen withb=1, prev (i.e. the last subORAM response

we’ve scanned over). Then, for the current object curr, we
copy the contents of prev into the curr if b=0 for curr (it’s a
request). Any requests following a response must be for the

same object because every request has a corresponding re-

sponse and we sort by object ID. Note that dummy responses

will not have a corresponding client request. Finally (➍), we

need to filter down the list to include only the client requests.

We do this using oblivious compaction, removing objects

with the tag bit b=1 (the subORAM responses). Note that,

in order to respond to a request, we need to map a client

request to the original network connection; we can do this

by keeping a pointer to the connection with the request data.

This procedure is oblivious because it relies only on obliv-

ious building objects as well as concatenating two lists and

a linear scan, both of which are data-independent. As in the

algorithm for generating batches, the runtime is dominated

by the cost of oblivious sorting and oblivious compaction.

4.3 Scaling the load balancer
Our load balancer design scales horizontally; it is both cor-

rect and secure to add load balancers without introducing

additional coordination costs. Clients randomly choose one

load balancer to contact, and then each load balancer batches

requests independently. This is a significant departure from

prior work where a centralized proxy receives all client

requests and must maintain dynamic state relevant to all

requests [8, 26, 86, 92]. SubORAMs execute load balancer

batches in a fixed order, and within a single load balancer, we

aggregate reads and writes using a “last-write-wins” policy.

Adding load balancers eliminates a potential bottleneck,

but is not entirely free. Because (1) load balancers do not co-

ordinate to deduplicate requests and (2) subORAMs assume

that a batch contains distinct requests, subORAMs cannot

combine batches from different load balancers. Our subO-

RAM must scan over all stored objects to process a single

batch (§5). As a result, if there are L load balancers, each

subORAM must perform L scans over the data every epoch.

5 Throughput-optimized subORAM
Many ORAMs target asymptotic complexity, often at the

expense of concrete cost. In contrast, recent work has ex-

plored how to leverage linear scans to build systems that

can achieve better performance for expected workloads than

their asymptotically more efficient counterparts [28, 30]. We

take a similar approach to design a high-throughput subO-

RAM optimized for hardware enclaves. We exploit the fact

that, due to Snoopy’s design, each subORAM stores a rela-

tively small data partition and receives a batch of distinct

requests. In this setting, using a single linear scan over the

data partition to process a batch is concretely efficient in

terms of amortized per-request cost.

We draw inspiration from Signal’s private contact discov-

ery protocol [61]. There, the client sends its contacts to an

enclave, and the enclave must determine which contacts are

Signal users without leaking the client’s contacts. Their solu-

tion employs an oblivious hash table. The core idea is that the
enclave performs some expensive computation to construct

a hash table such that the construction access patterns don’t

leak the mapping of contacts to buckets. Once this hash ta-

ble is constructed, the enclave can directly access the hash

bucket for a contact without the memory access pattern re-

vealingwhich contact was looked up. Note that obliviousness

only holds if (1) the enclave performs a lookup for each con-

tact at most once, and (2) the enclave scans the entire bucket

(to avoid revealing the location of the contact accessed in-

side the bucket). With this tool, private contact discovery is

straightforward: the enclave constructs an oblivious hash ta-

ble for the client’s contacts and then scans over every Signal

user, looking up each Signal user in the contact hash table.

Signal’s setting is similar to ours: instead of a set of contacts,

we have a batch of distinct requests, and instead of needing



to find matches with the Signal users, we need to find the

stored objects corresponding to requests. However, Signal’s

approach has some serious shortcomings when applied to

our setting. First, their hash table construction takes O(n2)
time forn contacts. While this complexity is acceptable when

n is the size of a user’s contacts list (relatively small), it is pro-

hibitively expensive for batches with thousands of requests.

Second, they do not size their buckets to prevent overflow.

Overflows can leak information about bucket contents, and

attempting to recover causes further leakage [16, 55].

Choosing an oblivious hash table. We need to identify an

oblivious hash table that is efficient and secure in our setting.

A natural first attempt to solve the overflow problem is to

use the number of requests that hash to each bucket to set

the bucket size dynamically. This simple solution is insecure:

the attacker can infer the probability that an object was re-

quested based on the size of the bucket that object hashes to.

Instead, we need to set the bucket size so that the overflow

probability is cryptographically negligible. This provides the

security property we want, and is exactly the problem that

we solved in the load balancer, where we separated requests

into “bins” such that the probability that any “bin” overflows

is negligible. Using our load balancer approach also reduces

construction cost from O(n2) to O(n polylogn). However,
while this solutionworkswell at the load balancer, it becomes

expensive when applied to the subORAM. Recall that to

perform an oblivious lookup, we must scan the entire bucket

that might contain a request, and so we want buckets to be

as small as possible. Unfortunately, decreasing the bucket

size results in substantial dummy overhead. This overhead

was the reason for making our batches as large as possible

at the load balancer (Figure 3). In our subORAM, we want to

keep the dummy overhead low and have a small bucket size.

To achieve both these properties, we identify oblivious two-
tier hash tables as a particularlywell-suited to our setting [16].
Chan et al. show how to size buckets such that overflow re-

quests are placed into a second hash table, allowing us to

have both low dummy overhead and a small bucket size: for

batches of 4,096 requests, buckets in a two-tier hash table are

∼10× smaller than their single-tier counterparts. Construc-

tion now requires two oblivious sorts, one for each tier, but is

still much faster than Signal’s approach, both asymptotically

and concretely for our expected batch sizes. We refer the

reader to Chan et al. for the details of oblivious construction,

oblivious lookups, and the security analysis [16].

Processing a batch of requests. We now describe how to

leverage an oblivious two-tier hash table to obliviously pro-

cess a batch of requests (Figure 7). First (➊), when the batch

of requests arrives, we construct the oblivious two-tier hash

table as described above. To avoid leaking the relationship

between requests across batches, for every batch we sample

a new key (unknown to the attacker) for the keyed hash

function assigning objects to buckets. Second (➋), we iterate
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Figure 7. Processing a batch of requests at a subORAM.

through the stored objects. For each object obj, we perform
an oblivious hash table lookup. A lookup requires hashing

obj.id in order to find the corresponding bucket in both hash

tables and then scanning the entire bucket; this scan is nec-

essary to hide the specific object being looked up. For every

request req scanned, we perform an oblivious compare-and-

set to update either the req in the hash table or the obj in
subORAM storage depending on (1) whether req.id matches

obj.id, and (2) whether req is a read or write. By condition-

ing the oblivious compare-and-set on the request type and

performing it twice (once on the contents of req and once on

the contents of obj), we hide whether the request is a read
or a write.

Finally, we scan through every hash table bucket, marking

real requests with tag bit b = 1 and dummies with b = 0.

We then use oblivious compaction to filter out the dummies,

leaving us with real entries to send back to the load balancer.

6 Planner
Our Snoopy planner takes as input a data size D, minimum

throughput XSys, maximum latency LSys, and outputs a con-

figuration (number of load balancers and subORAMs) that

minimizes system cost. As the search space is large, we rely

on heuristics and make simplifying assumptions to approx-

imate the optimal configuration. We derive three equations

capturing the relationship between our core system param-

eters: the epoch length T , number of objects N , number of

subORAMs S , and number of load balancers B.

To estimate throughput for some epoch timeT , we observe
that, on average, we must be able to process all requests

received during the epoch in time ≤T (otherwise, the set of

outstanding requests continues growing). We can pipeline

the subORAM and load balancer processing such that the

upper bound on the requests we can process per epoch is

determined by either the load balancer or subORAM pro-

cessing time, depending on which is slower. Adding load

balancers decreases the work done at each load balancer,

but each subORAM must process a batch of requests from

every load balancer. Let LLB(R,S) be the time it takes a load

balancer to process R requests in a system with S subORAMs,

and let LS (R,S,N ) be the time it takes a subORAM to process

a batch of R requests with N stored objects. We then derive:

T ≥max[LLB(XSys ·T /B,S), B ·LS (f (XSys ·T /B,S),N )] (1)



Requests will arrive at different times and have to wait un-

til the end of the current epoch to be serviced, and so on

average, if the timing of requests is uniformly distributed,

requests will wait on average T /2 time to be serviced. The

time to process a batch is upper-bounded by T at both the

subORAM and the load balancer, and so:

LSys ≤ 5T /2 (2)

Let CLB be the cost of a load balancer and CS be the cost of

a subORAM. We then compute the system cost CSys:

CSys(B,S)=B ·CLB+S ·CS (3)

Our planner uses these equations and experimental data

to approximate the cheapest configuration meeting perfor-

mance requirements. While our planner is useful for select-

ing a configuration, it does not provide strong performance

guarantees, as ourmodel makes simplifying assumptions and

ignores subtleties that could affect performance (e.g. our sim-

ple model assumes that requests are uniformly distributed).

Our planner is meant to be a starting point for finding a con-

figuration. Our design could be extended to provide different

functionality; for example, given a throughput, data size, and

cost, output a configuration minimizing latency.

7 Implementation
We implemented Snoopy in ∼7,000 lines of C++ using the

OpenEnclave framework v0.13 [71] and Intel SGX v2.13.

We use gRPC v1.35 for communication and OpenSSL for

cryptographic operations. Our bitonic sort [6] and oblivious

compaction [35] implementations set the size of oblivious

memory to the register size. We use Intel’s AVX-512 SIMD

instructions for oblivious compare-and-swaps and compare-

and-sets. Our implementation is open-source [1].

Reducing enclave paging overhead. The size of the pro-
tected enclave memory (EPC) is limited and enclave memory

pages that do not fit must be paged in when accessed, which

imposes high overheads [72]. The data at a subORAM often

does not fit inside the EPC, so to reduce the latency to page in

from untrusted memory, we rely on a shared buffer between

the enclave and the host. A host loader thread fills the buffer

with the next objects that the linear scan will read. This

eliminates the need to exit and re-enter the enclave to fetch

data, dramatically reducing linear scan time. The enclave

encrypts objects (for confidentiality) and stores digests of

the contents inside the enclave (for integrity). This approach

has been explored in prior enclave systems [75, 76].

8 Evaluation
To quantify how Snoopy overcomes the scalability bottleneck

in oblivious storage, we ask:

1. How does Snoopy’s throughput scale with more compute,

and how does it compare to existing systems? (§8.2)
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Oblivious ✗ ✓ ✓ ✓

No trusted proxy ✓ ✗ ✓ ✓

High throughput ✓ ✓ ✗ ✓

Throughput scales with machines ✓ ✗ ✗ ✓

Table 8. Comparison of baselines based on security guarantees

(oblivious), setup (no trusted proxy), and performance properties

(high throughput and throughput scales).

2. How does adding compute resources help Snoopy reduce

latency and scale to larger data sizes? (§8.3)

3. How do Snoopy’s individual components perform? (§8.4)

4. Given performance and monetary constraints, what is the

optimal way to allocate resources in Snoopy? (§8.5)

Experiment Setup. We run Snoopy on Microsoft Azure,

which provides support for Intel SGX hardware enclaves

in the DCsv2 series. For the load balancers and subORAMs,

we use DC4s_v2 instances with 4-core Intel Xeon E-2288G

processors with Intel SGX support and 16GB of memory.

For clients, we use D16d_v4 instances with 16-core Intel

Xeon Platinum 8272CL processors and 64GB of memory. We

choose these instances for their comparatively high network

bandwidth. We evaluate our baselines Redis [82] on D4d_v4
instances, Obladi [26] on D32d_v4 for the proxy and D16d_v4
for the storage server, and Oblix on the same DC4s_v2 in-

stances as our subORAMs. For benchmarking, we use a uni-

form request distribution. This choice is only relevant for our

Redis baseline; the oblivious security guarantees of Snoopy

and other oblivious storage systems ensure that the request

distribution does not impact their performance. Unless oth-

erwise specified, we set the object size to 160 bytes (same as

Oblix [66]).

8.1 Baselines

We compare Snoopy to three state-of-the-art baselines: Ob-

ladi [26] is a batched, high-throughput oblivious storage

system, Oblix [66] efficiently leverages enclaves for oblivi-

ous storage, and Redis [82] is a widely used plaintext key-

value store. Each baseline provides a different set of security

guarantees and performance properties (Table 8).

Obladi. Obladi [26] uses batching and parallelizes RingO-

RAM [83] to achieve high throughput. While Obladi also

uses batching to improve throughput, its security model

is different, as it uses a single trusted proxy rather than a

hardware enclave. The trusted proxy model has two primary

drawbacks: (1) the trusted proxy cannot be deployed in the

untrusted cloud (desirable for convenience and scalability),

and (2) the proxy is a central point of attack in the system

(an attacker that compromises the proxy learns the queries

of every user in the system). Practically, using a trusted



proxy rather than a hardware enclave means the proxy does

not have to use oblivious algorithms. Designing an oblivi-

ous algorithm for Obladi’s proxy is not straightforward and

would likely introduce significant overhead. Further, Obladi’s

trusted proxy is a compute bottleneck that cannot be hori-

zontally scaled securely without new techniques, and so we

only measure Obladi with two machines (proxy and storage

server). We configure Obladi with a batch size of 500.

Oblix. Oblix [66] uses hardware enclaves and provides se-

curity guarantees comparable to ours. However, Oblix op-

timizes for latency rather than throughput; requests are se-

quential, and, unlike Obladi, Oblix does not employ batching

or parallelism. Like Obladi, Oblix cannot securely scale across

machines. We measure performance using Oblix’s DORAM

implementation and simulate the overhead of recursively

storing the position map (as in §VI.A of [66]).

Redis. To measure the overhead of security (obliviousness),

we compare Snoopy to an insecure baseline Redis [82], a pop-

ular unencrypted key-value store. In Redis, the server can

directly see access patterns and data contents.We benchmark

a Redis cluster using its own memtier benchmark tool [65],

enabling client pipelining to trade latency for throughput.We

expect it to achieve a much higher throughput than Snoopy.

8.2 Throughput scaling

Figure 9a shows that adding more machines to Snoopy im-

proves throughput. We measure throughput where the aver-

age latency is less than 300ms, 500ms, and 1s. We start with

4 machines (3 subORAMs and 1 load balancer) and scale to

18 machines (13 subORAMs and 5 load balancers for 1s la-

tency; 15 subORAMs and 3 load balancers for 500ms/300ms

latency). For 2M objects, Snoopy uses 18 machines to pro-

cess 68K reqs/sec with 300ms latency, 92K reqs/sec with

500ms latency, and 130K reqs/sec with 1s latency. Each ad-

ditional machine improves throughput by 8.6K reqs/sec on

average for 1s latency. Relaxing the latency requirement

improves throughput because we can group requests into

larger batches, reducing the overhead of dummy requests.

We generate Figure 9a bymeasuring throughput with differ-

ent system configurations and plotting the highest through-

put configuration for each number of machines. We start

with 4 machines rather than 2 because we need to partition

the 2M objects to meet our 300ms latency requirement due to

the subORAM linear scan (recall Equation (2) would require

a subORAM to process a batch in ≤ 120ms). Both the load

balancer and subORAM are memory-bound, as the EPC size

is limited and enclave paging costs are high (§7).

Snoopy achieves higher throughput thanOblix (1,153 reqs/sec)

and Obladi (6,716 reqs/sec) as we increase the number of ma-

chines. For 300ms, Snoopy outperforms Oblix with ≥5 ma-

chines and Obladi with ≥6 machines, and for 500ms and 1s,

Snoopy outperforms Oblix and Obladi for all configurations.

Oblix and Obladi beat Snoopy with a small number of ma-

chines for low latency requirements because our subORAM

performs a linear scan over subORAM data whereas Oblix

and Obladi only incur polylogarithmic access costs, allowing

them to handle larger data sizes on a single machine. Snoopy

can scale to larger data sizes by adding more machines (§8.3).

Comparison to Redis. To show the overhead of oblivious-

ness, we also measure the throughput of Redis for 2M 160-

byte objects with an increasing cluster size. For 15 machines,

Redis achieves a throughput of 4.2M reqs/sec, 39.1× higher

than Snoopy when configured with 1s latency. Because we

pipeline Redis aggressively in order to maximize throughput,

the mean Redis latency is <800ms.

Application: key transparency. Figure 9b shows through-
put for parameter settings that support key transparency

(KT) [2, 64] for 5 million users. Due to the security guaran-

tees of oblivious storage, an application’s performance does

not depend on its workload (i.e. request distribution), but

only on the parameter settings. In KT, to look up Bob’s key,

Alice must retrieve (1) Bob’s key, (2) the signed root of the

transparency log, and (3) a proof that Bob’s key is included

in the transparency log (relative to the signed root) [64]. This

inclusion proof is simply a Merkle proof. Thus, for n users,

Alice must make log
2
n+1 ORAM accesses (Alice can request

the signed root directly). Figure 9b shows that by adding

machines, Snoopy scales to support high throughput for KT.

At 18 machines (15 subORAMs and 3 load balancers), Snoopy

can process 1.1K reqs/sec with 300ms latency, 3.2K reqs/sec

with 500ms latency, and 6.1K reqs/sec with 1s latency. Note

that the throughput in Figure 9b is much lower than Figure 9a

because each KT operation requires 24 ORAM accesses.

Oblix as a subORAM. In Figure 10, we run Oblix [66] as a

subORAM instead of Snoopy’s throughput-optimized sub-

ORAM (§5). Snoopy’s load balancer design enables us to se-

curely scale Oblix beyond a single machine, achieving 15.6×

higher throughput with Snoopy-Oblix for 17 machines with

a max latency of 500ms (18K reqs/sec) than vanilla, single-

machine Oblix (1.1K reqs/sec). The spike in throughput be-

tween 8 and 9 machines is due to sharding the data such

that two instead of three layers of recursive lookups are re-

quired for every ORAM access. Snoopy-Oblix’s performance

also illustrates the value of our subORAM design; using

our throughput-optimized subORAM (Figure 9a) improves

throughput by 4.85× with 17 machines and 500ms latency.

8.3 Scaling for latency and data size

While Snoopy is designed specifically for throughput scaling

(§8.2), adding machines to Snoopy can have other benefits if

the load remains constant. We show how scaling can be used

to both reduce latency and tolerate larger data sizes under

constant load in Figure 11. Figure 11a illustrates how adding

more subORAMs enables us to increase the number of ob-

jects Snoopy can store while keeping average response time
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Figure 9. Snoopy achieves higher throughput with more machines. Boxed points denote

when a load balancer is added instead of a subORAM. Oblix and Obladi cannot securely

scale past 1 and 2 machines, respectively.
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Figure 10. Throughput of Snoopy using

Oblix [66] as a subORAM (2M objects,

160B block size). We measure throughput with

different maximum average latencies.
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Figure 11. (a) Adding more subORAMs allows for increasing the

data size while keeping the average response time under 160ms

(RTT from US to Europe). (b) Adding more subORAMs reduces

latency. Snoopy is running 1 load balancer and storing 2M objects.

under 160ms (the round-trip time from the US to Europe).

The number of subORAMs required scales linearly with the

data size because of the linear scan every epoch. Adding a

subORAM allows us to store on average 191K more objects,

and with 15 subORAMs, we can store 2.8M objects.

Figure 11b shows how adding subORAMs reduces latency

when data size and load are fixed: for 2M objects, the mean

latency is 847ms with 1 subORAM and 112ms with 15 subO-

RAMs. Adding subORAMs parallelizes the linear scan across

more machines, but has diminishing returns on latency be-

cause the dummy request overhead also increases when we

add subORAMs (Figure 3). As expected, Oblix achieves a sub-

stantially lower latency (1.1ms) because it uses a tree-based

ORAM and processes requests sequentially. Obladi achieves

a latency of 79ms with batch size 500.

8.4 Microbenchmarks
Breakdown of batch processing time. Figure 12 illustrates
how time is spent processing a batch of requests as batch

size increases. As batch size increases, the load balancer time

also increases, as the load balancer must obliviously generate

batches. The subORAM time is largely dependent on the data

size, as the processing time is dominated by the linear scan
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Figure 12. Breakdown of time to process one batch for different

data sizes (one load balancer and one subORAM).
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Figure 13. (a) Parallelizing bitonic sort across multiple threads.

(b) Parallelizing batch processing at the subORAM across multiple

enclave threads (batch size 4K requests).

over the data. The subORAM batch processing time jumps

between 2
15
and 2

20
objects due to the cost of enclave paging.

Sorting parallelism. In Figure 13a, we show how paralleliz-

ing bitonic sort across threads reduces latency, especially for

larger data sizes. For smaller data sizes, the coordination over-

head actually makes it cheaper to use a single thread, and so

we adaptively switch between a single-threaded and multi-

threaded sort depending on data size. Parallelizing bitonic

sort improves load balancer and subORAM performance.
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Figure 14. Optimal system configuration as throughput require-

ments increase for different data sizes (max latency 1s). Larger dot

sizes represent higher throughput requirements. We show a subset

of configurations from our planner in order to illustrate the overall

trend of how adding machines best improves throughput.

SubORAM Parallelism. Similarly, in Figure 13b, we show

how additional cores can be used to reduce subORAM batch

processing time. We rely on a host thread to buffer in the

encrypted data in the linear scan over the all objects in the

subORAM (§7), and we can use the remaining cores to par-

allelize both the hash table construction and linear scan.

8.5 Planner

In Figure 14, we use our planner to find the optimal resource

allocation for different performance requirements. Figure 14a

shows the optimal number of subORAMs and load balancers

to handle an increasing request load for different data sizes

with 1s average latency. To support higher throughput lev-

els, deployments with larger data sizes benefit from a higher

ratio of subORAMs to load balancers, as partitioning across

subORAMs parallelizes the linear scan over stored objects.

In Figure 14b, we show how increasing throughput require-

ments affects system cost for different data sizes. Increasing

data increases system cost: for ∼$4K/month, we can support

51.6K reqs/sec for 1M objects and 122.9K reqs/sec for 10K

objects. To compute these configurations, the planner takes

as input microbenchmarks for different batch sizes and data

sizes. Because we cannot benchmark every possible batch

and data size, we use the microbenchmarks for the closest pa-

rameter settings. Our planner’s estimates could be sharpened

further by running microbenchmarks at a finer granularity.

9 Discussion
Fault tolerance and rollback protection. Data loss in Snoopy
can arise through node crashes and malicious rollback at-

tacks. Many modern enclaves are susceptible to rollback at-

tacks where, after shutdown, the attacker replaces the latest

sealed data with an older version without the enclave detect-

ing this change [74]. Prior work has explored how to defend

against such attacks [11, 62]. Fault tolerance and rollback

prevention are not the focus of this paper, and so we only

briefly describe how Snoopy could be extended to defend

against data loss. All techniques are standard. Load balancers

are stateless; we thus exclusively consider subORAMs. We

propose to use a quorum replication scheme to replicate

data to f +r+1 nodes where f is the maximum number of

nodes that can fail by crashing and r the maximum number

of nodes that can be maliciously rolled back. Systems like

ROTE [62] or SGX’s monotonic counter provide a trusted

counter abstraction that can be used to detect which of the

received replies corresponds to the most recent epoch. The

performance overhead of rollback protection would depend

on the trusted counter mechanism employed, but Snoopy

only invokes the trusted counter once per epoch.

Next-generation SGX enclaves. While current SGX enclaves

can only support a maximum EPC size of 256MB, upcoming

third-generation SGX enclaves can support EPC sizes up

to 1TB [47]. This new enclave would not affect Snoopy’s

core design, but could improve performance by reducing the

time for the per-epoch linear scan in the subORAM. With

improved subORAM performance, Snoopy might need fewer

subORAMs for the same amount of data, affecting the con-

figurations produced by the planner (§8.5).

Private InformationRetrieval (PIR). Snoopy’s techniques
can also be applied to the problem of private information

retrieval (PIR) [21, 22]. A PIR protocol allows a client to re-

trieve an object from a storage server without the server

learning the object retrieved. One fundamental limitation of

PIR is that, if the object store is stored in its original form,

the server must scan the entire object store for each request.

Snoopy’s techniques can help overcome this limitation. We

can replace the subORAMs with PIR servers, each of which

stores a shard of the data. Our load balancer design then

makes it possible to obliviously route requests to the PIR

server holding the correct shard of the data. “Batch” PIR

schemes that allow a client to fetch many objects at roughly

the server-side cost of fetching a single object are well-suited

tor our setting, as the load balancer is already aggregating

batches of requests [43, 48]. Existing systems develop rele-

vant batching [4, 41] and preprocessing [52] techniques.

10 Related work

We summarize relevant existing work, focusing on (1) obliv-

ious algorithms designed for hardware enclaves, (2) ORAM

parallelism, (3) distributing an ORAM across machines, and

(4) balls-into-bins bounds for maximum load.

ORAMswith secure hardware. Existing research on obliv-
ious computation using hardware enclave primarily targets

latency. Oblix [66], ZeroTrace [87], Obliviate [3], Pyramid

ORAM [24], and POSUP [46] do not support concurrency.

Snoopy, in contrast, optimizes for throughput and leverages

batching for security and scalability. ObliDB [31] supports



SQL queries by integrating PathORAM with hardware en-

claves, but uses an oblivious memory pool unavailable in In-

tel SGX. GhostRider [59] and Tiny ORAM [33] use FPGA pro-

totypes designed specifically for ORAM. While no general-

purpose, enclave-based ORAM supports request parallelism,

MOSE [45] and Shroud [60] leverage data parallelism to

improve the latency of a single request on large datasets.

MOSE runs CircuitORAM [17] inside a hardware enclave

and distributes the work for a single request across multiple

cores. Shroud instead parallelizes Binary Tree ORAM across

many secure co-processors by accessing different layers of

the ORAM tree in parallel. Shroud uses data parallelism to

optimize for latency and data size; throughput scaling is still

limited because requests are processed sequentially.

Supporting ORAM parallelism. A rich line of work ex-

plores executingmultiple client requests in parallel at a single

ORAM server. Each requires some centralized component(s)

that eventually bottlenecks scalability. PrivateFS [102] and

ConcurORAM [14] coordinate concurrent requests to shared

data using an encrypted query log on top of a hierarchical

ORAM or a tree-based ORAM, respectively. This query log

quickly becomes a serialization bottleneck. TaoStore [86]

and Obladi [26] similarly rely on a trusted proxy to coordi-

nate accesses to PathORAM and RingORAM, respectively.

Taostore processes requests immediately, maintaining a local

subtree to securely handle requests with overlapping paths.

Obladi instead processes requests in batches, amortizing the

cost of reading/writing blocks over multiple requests. Batch-

ing also removes any potential timing side-channels; while

TaoStore has to time client responses carefully, Obladi can

respond to all client requests at once, just as in Snoopy.

PRO-ORAM [96], a read-only ORAM running inside an

enclave, parallelizes the shuffling of batches of

√
N requests

across cores, offering competitive performance for readwork-

loads. Snoopy, in contrast, supports both reads and writes.

A separate, more theoretical line of work considers the

problem of Oblivious Parallel RAMs (OPRAMs), designed to

capture parallelism in modern CPUs. Initiated by Boyle et

al. [10], OPRAMs have been explored in subsequent work

[15–18] and expanded to other models of parallelism [80].

Scaling out ORAMs. Several ORAMs support distributing

compute and/or storage across multiple servers. Oblivis-

tore [92] distributes partitions of SSS-ORAM [93] across

machines and leverages a load balancer to coordinate ac-

cesses to these partitions. This load balancer, however, does

not scale and becomes a central point of serialization. CU-

RIOUS [8] is similar, but uses a simpler design that supports

different subORAMs (e.g. PathORAM). CURIOUS distributes

storage but not compute; a single proxy maintains the map-

ping of blocks between subORAMs and runs the subORAM

clients, which bottlenecks scalability. In contrast, Snoopy

distributes both compute and storage and can scale in the

number of subORAMs and load-balancers. Moreover, Snoopy

remains secure when an attacker can see client response tim-

ing, unlike Oblivistore or CURIOUS [86].

Pancake [37] leverages a trusted proxy to transform a set of

plaintext accesses to a uniformly distributed set of encrypted

accesses that can be forwarded directly to an encrypted,

non-oblivious storage server. While this approach achieves

high throughput, the proxy remains a bottleneck as it must

maintain dynamic state about the request distribution.

Balls-into-bins analysis. Prior work derives bounds for

the maximum number of balls in a bin that hold with varying

definitions of high probability, but are poorly suited to our

setting because they are either inefficient to evaluate or do

not have a cryptographically negligible overflow probability

under realistic system parameters [7, 67, 77, 78]. Berenbrink

et al. [7] assume a sufficiently large number of bins to derive

an overflow probability n−c for n bins and some constant c
(Onodera and Shibuya [70] apply this bound in the ORAM

setting). Raab and Steger [78] use the first and second mo-

ment method to derive a bound where overflow probabil-

ity depends on bucket load. Ramakrishna’s [81] bound can

be numerically evaluated but is limited by the accuracy of

floating-point arithmetic, and we were unable to compute

bounds with a negligible overflow probability for λ ≥ 44.

Reviriego et al. [84] provide an alternate formulation that

can be evaluated by a symbolic computation tool, but we

were unable to efficiently evaluate it with SymPy.

11 Conclusion
Snoopy is a high-throughput oblivious storage system that

scales like a plaintext storage system. Through techniques

that enable every system component to be distributed and

parallelized while maintaining security, Snoopy overcomes

the scalability bottleneck present in prior work. With 18

machines, Snoopy can scale to a throughput of 92K reqs/sec

with average latency under 500ms for 2M 160-byte objects,

achieving a 13.7× improvement over Obladi [26].
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