
 
 

Comparison of open-source image-based reconstruction pipelines 
for 3D root phenotyping of field-grown maize 

 
 

Suxing Liua,b,c, Wesley Paul Bonellia, Peter Pietrzyk a ,Alexander Buckscha,b,c 

 

aDepartment of Plant Biology, University of Georgia, Athens, GA, USA, 30605. 
bWarnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA, 
30605. 
cInstitute of Bioinformatics, University of Georgia, Athens, GA, GA, USA, 30605.  
 

 
ABSTRACT 

 
Understanding root traits is essential to improve water uptake, increase nitrogen capture and accelerate 
carbon sequestration from the atmosphere. High-throughput phenotyping to quantify root traits for deeper 
field-grown roots remains a challenge, however. Recently developed open-source methods use 3D 
reconstruction algorithms to build 3D models of plant roots from multiple 2D images and can extract root 
traits and phenotypes. Most of these methods rely on automated image orientation (Structure from 
Motion)[1] and dense image matching (Multiple View Stereo) algorithms to produce a 3D point cloud or 
mesh model from 2D images. Until now the performance of these methods when applied to field-grown 
roots has not been compared tested commonly used open-source pipelines on a test panel of twelve 
contrasting maize genotypes grown in real field conditions[2-6]. We compare the 3D point clouds produced 
in terms of number of points, computation time and model surface density. This comparison study provides 
insight into the performance of different open-source pipelines for maize root phenotyping and illuminates 
trade-offs between 3D model quality and performance cost for future high-throughput 3D root phenotyping. 
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1. INTRODUCTION 
Root phenotyping is essential to improve water uptake, nitrogen capture and carbon sequestration[7] [8-
12], but requires advanced methods to measure and quantify complex root architectures. With the 
development of computer vision techniques, image-based root phenotyping with commodity cameras has 
emerged as a cost efficient and accessible alternative to high-end imaging devices.  
Established 2D image-based root phenotyping methods provide abundant trait measurements [13]. 
Examples include DIRT [14], archiDART [15], EZ-Root-VIS [16], GiA Roots [17] and RhizoVision [18]. 
2D imaging approaches can only capture partial information from dense and highly occluded 3D maize root 
structures, however. As such, quantifying important traits such as crown root number and whorl number 
and the distance remains challenging [19].    
3D phenotyping methods are a promising option thanks to their ability to leverage multiple views of a given 
scene to resolve highly occluded structures [20] [21-23]. One of the key challenges in 3D root phenotyping 
method is to reconstruct a 3D representation of the root [19]. The available open-source image-based 3D 
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reconstruction pipelines can process large sets of unordered and diverse images and generate a dense 
colored point cloud model or a triangulated textured mesh [24]. However, the performance of each pipeline 
varies dependent on the computing environment and the complexity of the object to be reconstructed. Here 
we attempt to determine the suitability of available reconstruction pipelines for efficiently producing high-
quality models of field-grown maize root systems. 
In this study, we compare commonly used open-source 3D reconstruction pipelines on a test panel of twelve 
contrasting genotypes of field-grown maize roots. These methods include COLMAP [1] [2], VisualSFM 
[3], OpenMVG [4], Meshroom [5] and Multi-View Environment (MVE) [6]. We compare the resulting 
point cloud models on measures of visual quality, number and density of points, and computation time.  
 

2. MATERIAL AND METHODS 
2.1   Image dataset 
Plants were grown at The Pennsylvania State University’s Russell E. Larson Agricultural Research Center 
(40° 42’40.915” N, 77°, 57’11.120’’W), characterized by a Hagerstown silt loam soil (fine, mixed, semi-
active, mesic Typic Hapludalf). Twelve genotypes were selected, including six inbred lines (B101, B112, 
DKIB014, LH123HT, Pa762, PHZ51) and six hybrid lines (DKPB80 x 3IIH6, H96 x 3IIH6, LH59 x 
PHG29, Pa762 x 3IIH6, PHG50 x PHG47, PHZ51 x LH59). These genotypes represent the extremes of 
dense vs. sparse, large vs. small, and maximum and minimum number of whorls selected from a full 
diversity panel published in Ref. [7]. We selected one plant from each genotype for this initial comparison, 
yielding 12 total root samples. 
We captured images of each root sample with a prototype imaging chamber conceptually introduced in [25] 
(Fig. 1). Images were captured by ten cameras (Image Source DFK 33ux183 USB 3.0, 12mm focal length 
V1228-MPY2 12 Megapixel Machine Vision Lens) arrayed around a central focal point. Image capture is 
synchronized by a cluster of ten Raspberry Pi 4’s using a server-client design. For each sample, between 
301 and 360 images with image resolution 5,472×3,648 were captured using a manual rotation stand. 
Sample images for each genotype are shown in Figure. 1.  
 

 
Figure 1. 3D root imaging chamber. 

 
 
2.2   Methods 
We tested the performance of the pipelines alone and in a number of combinations, including COLMAP, 
COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom and OpenMVG+MVE [1, 2, 
6, 24, 26-35]. 3D root models were computed by the five different pipelines on a Dell Workstation. 
(OptiPlex 7080, 10th Generation Intel® Core™ i9-10900K, 20 MB Cache, 10 Cores, 20 Threads, 3.7 GHz 
to 5.3 GHz, 125 W, 64 GB RAM, 4 x 16 GB, DDR4, M.2 2280, 1 TB hard drive, Gen 3 PCIe x4 NVMe, 
Class 40 SSD). In addition, we use a GPU to facilitate the computation when supported by the pipeline. 
The GPU model installed on the DELL workstation is (GeForce RTX 2070 SUPER, NVIDIA Corporation 
TU104, nvcc: NVIDIA (R) Cuda compiler driver). 
 

3. RESULTS AND DISCUSSION 
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We compare the performance of five 3D reconstruction pipelines and combinations thereof. The tested 
pipelines include COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom 
and OpenMVG+MVE. Overall, we computed 60 point cloud models of the field-grown maize roots.  

We selected four genotypes for a 
qualitative visual inspection and 
comparison (Figure 2). COLMAP 
and COLMAP+PMVS both achieve 
good quality, including good model 
completeness (high connectedness 
of interior points). VisualSFM 
tended to lose fine details at the 
margins due to the limited number 
of input images. Meshroom tended 
to produce models with large 
interior gaps. OpenMVG+MVE 
tended to capture more fine details 
than VisualSFM, but does not store 
point color information. 
In addition to a qualitative visual 
inspection, we compare all sixty 3D 
root models by computing the total 
number of points and surface 
density, as well as the recording 
computation time cost, as shown in 
Figure 3. On average, COLMAP 
consumed almost 29-fold the 
average time of OpenMVG+MVE 
(5 times that of Meshroom), while 
COLMAP+PMVS (substituting 
PMVS for the dense reconstruction 
step) was significantly faster, 
consuming only 3 times that of 
OpenMVG+MVE in average. 
COLMAP+PMVS required 

runtimes similar to VisualSFM. We used CloudCompare [36] to load each point cloud model and record 
its number of points (via a feature in the web UI’s “Properties” tab). We also use another tool provided by 
CloudCompare for computing geometric features to estimate the surface density of the point cloud models. 
Surface density is defined here as the number of neighbors within a spherical neighborhood of radius R, 
divided by the neighborhood surface = N / (Pi. *R2). We use the constant R = 0.005118 to compute the 
surface density for each model. The comparison of number of points and surface density are shown in 
Figure 3 and 4 respectively. COLMAP and OpenMVG+MVE produced the largest point sets, achieving on 
average 94 and 49 times the number of points of Meshroom respectively. Meshroom produced the smallest 
point clouds. COLMAP+PMVS and VisualSFM averaged 14 and 9 times more points than Meshroom, 
respectively. COLMAP and VisualSFM produced models with the greatest surface density: COLMAP, 
OpenMVG+MVE, COLMAP+PMVS and Meshroom achieves 94, 31, 14, 8 times of VisualSFM in 
average.  
 
 

4. CONCLUSION 
By comparing the performance of all the 3D reconstruction pipelines and its combination in this study, we 
found out that COLMAP, COLMAP+PMVS and VisualSFM are the three pipelines which can generate 

 
    Figure 2. Visual comparison of four genotypes of models 
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colored 3d root models directly. Although the computation time of COLMAP is 12-times slower than the 
VisualSFM, COLMAP achieved 10 times greater number of points, and a 94 times higher surface density 
in our test dataset. A combination of COLMAP+PMVS resulted in similar computation time with 
VisualSFM, but the model quality achieved 2 and 14 times of VisualSFM in term of number of points and 
surface density.  
Our initial study is a good indicator, however further experiments are needed evaluate the quality of root 
traits and whole root descriptors to a manually measured ground-truth for a larger amount of 3D models. 
In that way, we will gain insight into the dependency of trait measurements on method accuracy.  

 

 

 
 

 
 

Figure 3. Comparison of time cost, number of points and surface density of 3D models 
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