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ABSTRACT

Understanding root traits is essential to improve water uptake, increase nitrogen capture and accelerate
carbon sequestration from the atmosphere. High-throughput phenotyping to quantify root traits for deeper
field-grown roots remains a challenge, however. Recently developed open-source methods use 3D
reconstruction algorithms to build 3D models of plant roots from multiple 2D images and can extract root
traits and phenotypes. Most of these methods rely on automated image orientation (Structure from
Motion)[1] and dense image matching (Multiple View Stereo) algorithms to produce a 3D point cloud or
mesh model from 2D images. Until now the performance of these methods when applied to field-grown
roots has not been compared tested commonly used open-source pipelines on a test panel of twelve
contrasting maize genotypes grown in real field conditions[2-6]. We compare the 3D point clouds produced
in terms of number of points, computation time and model surface density. This comparison study provides
insight into the performance of different open-source pipelines for maize root phenotyping and illuminates
trade-offs between 3D model quality and performance cost for future high-throughput 3D root phenotyping.
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1. INTRODUCTION

Root phenotyping is essential to improve water uptake, nitrogen capture and carbon sequestration[7] [8-
12], but requires advanced methods to measure and quantify complex root architectures. With the
development of computer vision techniques, image-based root phenotyping with commodity cameras has
emerged as a cost efficient and accessible alternative to high-end imaging devices.

Established 2D image-based root phenotyping methods provide abundant trait measurements [13].
Examples include DIRT [14], archiDART [15], EZ-Root-VIS [16], GiA Roots [17] and RhizoVision [18].
2D imaging approaches can only capture partial information from dense and highly occluded 3D maize root
structures, however. As such, quantifying important traits such as crown root number and whorl number
and the distance remains challenging [19].

3D phenotyping methods are a promising option thanks to their ability to leverage multiple views of a given
scene to resolve highly occluded structures [20] [21-23]. One of the key challenges in 3D root phenotyping
method is to reconstruct a 3D representation of the root [19]. The available open-source image-based 3D
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reconstruction pipelines can process large sets of unordered and diverse images and generate a dense
colored point cloud model or a triangulated textured mesh [24]. However, the performance of each pipeline
varies dependent on the computing environment and the complexity of the object to be reconstructed. Here
we attempt to determine the suitability of available reconstruction pipelines for efficiently producing high-
quality models of field-grown maize root systems.

In this study, we compare commonly used open-source 3D reconstruction pipelines on a test panel of twelve
contrasting genotypes of field-grown maize roots. These methods include COLMAP [1] [2], VisualSFM
[3], OpenMVG [4], Meshroom [5] and Multi-View Environment (MVE) [6]. We compare the resulting
point cloud models on measures of visual quality, number and density of points, and computation time.

2. MATERIAL AND METHODS
2.1 Image dataset
Plants were grown at The Pennsylvania State University’s Russell E. Larson Agricultural Research Center
(40°42°40.915” N, 77°, 57°11.120°°W), characterized by a Hagerstown silt loam soil (fine, mixed, semi-
active, mesic Typic Hapludalf). Twelve genotypes were selected, including six inbred lines (B101, B112,
DKIB014, LH123HT, Pa762, PHZ51) and six hybrid lines (DKPB80 x 3IIH6, H96 x 31IH6, LH59 x
PHG29, Pa762 x 31IH6, PHG50 x PHG47, PHZ51 x LH59). These genotypes represent the extremes of
dense vs. sparse, large vs. small, and maximum and minimum number of whorls selected from a full
diversity panel published in Ref. [7]. We selected one plant from each genotype for this initial comparison,
yielding 12 total root samples.
We captured images of each root sample with a prototype imaging chamber conceptually introduced in [25]
(Fig. 1). Images were captured by ten cameras (Image Source DFK 33ux183 USB 3.0, 12mm focal length
V1228-MPY2 12 Megapixel Machine Vision Lens) arrayed around a central focal point. Image capture is
synchronized by a cluster of ten Raspberry Pi 4’s using a server-client design. For each sample, between
301 and 360 images with image resolution 5,472x3,648 were captured using a manual rotation stand.
Sample images for each genotype are shown in Figure. 1.

DKIBO15 DKPBBO0x3IIHG M HI96x31IHE

PHG50xPHG47

Figure 1. 3D root imaging chamber.

2.2 Methods

We tested the performance of the pipelines alone and in a number of combinations, including COLMAP,
COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom and OpenMVG+MVE [1, 2,
6, 24, 26-35]. 3D root models were computed by the five different pipelines on a Dell Workstation.
(OptiPlex 7080, 10th Generation Intel® Core™ i9-10900K, 20 MB Cache, 10 Cores, 20 Threads, 3.7 GHz
to 5.3 GHz, 125 W, 64 GB RAM, 4 x 16 GB, DDR4, M.2 2280, 1 TB hard drive, Gen 3 PCle x4 NVMe,
Class 40 SSD). In addition, we use a GPU to facilitate the computation when supported by the pipeline.
The GPU model installed on the DELL workstation is (GeForce RTX 2070 SUPER, NVIDIA Corporation
TU104, nvce: NVIDIA (R) Cuda compiler driver).

3. RESULTS AND DISCUSSION
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We compare the performance of five 3D reconstruction pipelines and combinations thereof. The tested
pipelines include COLMAP, COLMAP+PMVS (Patch-based Multi-view Stereo), VisualSFM, Meshroom
and OpenMVG+MVE. Overall, we computed 60 point cloud models of the field-grown maize roots.

We selected four genotypes for a
qualitative visual inspection and
comparison (Figure 2). COLMAP
and COLMAP+PMVS both achieve
good quality, including good model
completeness (high connectedness
of interior points). VisualSFM
tended to lose fine details at the
margins due to the limited number
of input images. Meshroom tended
to produce models with large
interior gaps. OpenMVG+MVE
tended to capture more fine details
than VisualSFM, but does not store
point color information.

In addition to a qualitative visual
inspection, we compare all sixty 3D
root models by computing the total
number of points and surface
density, as well as the recording
computation time cost, as shown in
Figure 3. On average, COLMAP
consumed almost 29-fold the
average time of OpenMVG+MVE
(5 times that of Meshroom), while
COLMAP+PMVS (substituting
PMVS for the dense reconstruction
step) was significantly faster,
consuming only 3 times that of
OpenMVG+MVE  in  average.
COLMAP+PMVS required
runtimes similar to VisualSFM. We used CloudCompare [36] to load each point cloud model and record
its number of points (via a feature in the web UI’s “Properties” tab). We also use another tool provided by
CloudCompare for computing geometric features to estimate the surface density of the point cloud models.
Surface density is defined here as the number of neighbors within a spherical neighborhood of radius R,
divided by the neighborhood surface = N / (Pi. *R?). We use the constant R = 0.005118 to compute the
surface density for each model. The comparison of number of points and surface density are shown in
Figure 3 and 4 respectively. COLMAP and OpenMVG+MVE produced the largest point sets, achieving on
average 94 and 49 times the number of points of Meshroom respectively. Meshroom produced the smallest
point clouds. COLMAP+PMVS and VisualSFM averaged 14 and 9 times more points than Meshroom,
respectively. COLMAP and VisualSFM produced models with the greatest surface density: COLMAP,
OpenMVG+MVE, COLMAP+PMVS and Meshroom achieves 94, 31, 14, 8 times of VisualSFM in
average.

COLMAP COLMAP + PMVS VisualSFM Meshroom OpenMVG+MVE

DKPBB0X3IIH6

H96X3IIH6

LH123HT

PHZ51

Figure 2. Visual comparison of four genotypes of models

4. CONCLUSION
By comparing the performance of all the 3D reconstruction pipelines and its combination in this study, we
found out that COLMAP, COLMAP+PMVS and VisualSFM are the three pipelines which can generate
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colored 3d root models directly. Although the computation time of COLMAP is 12-times slower than the
VisualSFM, COLMAP achieved 10 times greater number of points, and a 94 times higher surface density
in our test dataset. A combination of COLMAP+PMVS resulted in similar computation time with
VisualSFM, but the model quality achieved 2 and 14 times of VisualSFM in term of number of points and
surface density.

Our initial study is a good indicator, however further experiments are needed evaluate the quality of root
traits and whole root descriptors to a manually measured ground-truth for a larger amount of 3D models.
In that way, we will gain insight into the dependency of trait measurements on method accuracy.
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Figure 3. Comparison of time cost, number of points and surface density of 3D models
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