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Abstract

Trichomes show 47 morphological phenotypes, while literature
reports only two root hair phenotypes in all plants. However,
could hair-like structures exist below-ground in a similar wide
range of morphologies like trichomes? Genetic mutants and
root hair stress phenotypes point to the possibility of unchar-
acterized morphological variation existing belowground. For
example, such root hairs in Arabidopsis (Arabidopsis thaliana)
can be wavy, curled, or branched. We found hints in the liter-
ature about hair-like structures that emerge before root hairs
belowground. As such, these early emerging hair structures
can be potential exceptions to the contrasting morphological
variation between trichomes and root hairs. Here, we show a
previously unreported ‘hooked’ hair structure growing below-
ground in common bean. The unique ‘hooking’ shape distin-
guishes the ‘hooked hair’ morphologically from root hairs.
Currently, we cannot fully characterize the phenotype of our
observation due to the lack of automated methods for pheno-
typing root hairs. This phenotyping bottleneck also handicaps
the discovery of more morphology types that might exist below-
ground as manual screening across species is slower than
computer-assisted high-throughput screening.
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Introduction
A classic definition of trichome and root hair distin-
guishes both by above- [1] and below-ground [2] func-
tions and differences in genetic make-up [3]. These
often-microscopic extensions of the outermost tissue
layer of the shoot and root, play an essential role in a
plant’s survival. Both help to build resilience against
abiotic stresses [**4], provide defense against biotic
www.sciencedirect.com
stresses [5] and resistance against physical forces [6], to
name the most commonly reported functions. Moreover,
trichome and root hair form endophytic relationships
with microbes to exchange carbon and fix nitrogen [7,8].
Yet, trichomes associate with above-ground functions,
and root hairs associate with below-ground functions.

Trichomes and root hairs also share genes with similar
molecular mechanisms in overlapping differentiation
pathways [**9e11] to produce specific patterns of
emergence from the epidermis [12]. However, they
differ in their morphological variation despite their

overlapping genetic pathways and similar functions.
Table 1 lists known structure-function relationships for
trichomes and root hairs. The large variety of morpho-
logical phenotypes in trichomes link to different plant
functions [13]. In contrast, root hairs are predominantly
reported as straight tubular extensions in all plants [14].
Therefore, we ask in this review if similar morphological
variation could exist in root hairs and if the pointers to a
much larger variety of root hair morphologies might hide
in plain sight. We next identify the technological bot-
tlenecks that inhibit the discovery of morphological

variants of root hair and report on a hair-like structure
below-ground that exhibits unique ‘hooked’ morphology
in common bean (Phaseolus vulgaris).
The huge morphological variation in
trichomes and their associated functions
Trichomes are epidermal appendages emerging on the
aerial organs of a plant. The presence of glands at the tip
of trichomes defines two general types (Figure 1a). If
present, glands secrete secondary metabolites that
define the glandular trichome type [15]. In contrast, the
non-glandular trichome type has no such secretory ca-
pabilities [**4].

Further classification of trichome morphology defines
sub-types for glandular and non-glandular types. The

sub-types are powerful tools to identify plant species
because they exhibit a tremendous species-specific
morphological diversity [16]. As such, trichomes can
be short, long, uni- or multicellular and uni-, bi or
multiseriate. Both, tubular and branched morphologies
are typical for trichomes. Additionally, the observed non-
tubular configurations can exist in a wide variety of
morphologies represented by 47 morphologies ranging
from stellate, hooked, and cup-shaped to forked or tri-
furcate [17].
Current Opinion in Plant Biology 2021, 64:102151

mailto:bucksch@uga.edu
http://www.sciencedirect.com/journal/current-opinion-in-plant-biology/64/C
https://doi.org/10.1016/j.pbi.2021.102151
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbi.2021.102151&domain=pdf
www.sciencedirect.com/science/journal/13695266
www.sciencedirect.com/science/journal/13695266


Table 1

Overview of known structure–function relations for epidermal hairs. The smaller number of discovered functions for root hairs indicates
the potential for more below-ground morphologies.

Location Function Hair Type Structural Variation

Resilience against abiotic stresses Above-ground Sequestration of toxic metals Trichome Morphology
Below-ground Nutrient/water uptake under stress Root Hair Length/Density

Defense against biotic stresses Above-ground Chemical defense against pests Trichome Morphology
Above-ground Physical defense against pests Trichome Morphology
Below-ground Chemical defense against microbes Root Hair Exudate composition

Resistance against physical forces Above-ground Regulation of leaf temperature Trichome Morphology
Above-ground Protection from ozone Trichome Morphology
Above-ground Protection from UV radiation Trichome Morphology

Other vital plant functions Above-ground Guide for pollinators Trichome Morphology
Above-ground Nutrient and water uptake Trichome Morphology
Below-ground Nutrient mobilization under deficiencies Root Hair Exudate composition
Below-ground Release of carbon into the rhizosphere Root Hair Exudate composition

Figure 1

Known morphologies of hair-like plant structures. (a) Comparison of frequently reported morphological phenotypes. Glandular and non-glandular
trichomes (green color) collectively can be classified into 47 morphological phenotypes [17]. The two most commonly reported morphological phenotypes
of root hair (brown color) are shown. (b)(i)Human-induced mutations and (ii) stress conditions that cause atypical and sparsely reported root hair
phenotypes which hint towards potentially uncharacterized below-ground phenotypes.

2 Cell Biology
Functionally, glandular trichomes protect against ozone

stress [18] and aid in the sequestration of toxic metals
[19]. The secreted exudates also provide active means
for insecticidal effects in defense against pests. For
example, terpenes secreted in tomatoes (Solanum
habrochaites) affect the feeding behavior of aphids [20].
Current Opinion in Plant Biology 2021, 64:102151
Leaf peltate trichomes in cork trees (Millingtonia
hortensis) accumulate non-volatile phenols to protect
young shoots from damage by insects and pathogens
[21]. Glandular trichomes prevent the settling of leaf-
hoppers in Medicago sativa by diet rejection [22] and
show insect antifeedant activity in camphorweed
www.sciencedirect.com
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(Heterotheca subaxillaris) [23]. We refer to Schuurink et al.
[24] for an extensive review of the biological functions
of glandular trichomes.

Non-glandular trichomes associate with functions
different from glandular trichomes. As such, they can
protect against ultraviolet radiation [**4] and act as
guide pollinators [25]. In epiphytes, they even fulfill

functions of nutrient and water absorption [26]. The
morphology of non-glandular trichomes enables physical
defense against insects compared to the chemical de-
fense by glandular trichomes [27]. Hooked non-
glandular trichomes are effective in trapping pests
[28]. For example, they trap aphids in their hooks during
walking or feeding in common bean (P. vulgaris) even-
tually, causing death by starvation or injury. We refer to
Bar et al. for a detailed review of the defense mecha-
nisms in non-glandular trichomes [13].

However, there is no rule without exception, and special
trichome phenotypes with characteristics of both glan-
dular and non-glandular types have been observed on
the leaves of some species in the Lamiaceae family [29].
Unsurprisingly, glandular, and non-glandular trichomes
have some identical functions. Both contribute towards
regulating leaf temperature to decrease water loss
through reflection and reducing leaf wetness thus,
affecting transpiration [30].
Is variation in root hair morphology absent
or just uncharacterized?
Root hairs are the below-ground counterpart of tri-
chomes at the plantesoil interface, which interact with
the surrounding rhizosphere [31]. They are unicellular
epidermal modifications of root trichoblasts that grow in
the elongation zone of the root tip [32]. The restriction

to unicellular architecture might be a biological reason
for less morphological variation in root hairs compared to
the wide variety reported for trichomes. One non-
straight phenotype is the curled morphology of root
hairs in legumes. Also known as shepherd’s crook, its
function is to trap rhizobacteria to form root nodules as
means to fixate nitrogen [33]. Besides the reported
shepherds crook, root hair studies focus predominantly
on the change in root hair length as the morphological
variation of individual root hairs. Other reported phe-
notypes describe changes like density, which associate

with a population of root hairs [34] or changes in the
composition of exudates released into the soil.

Root hairs change their individual length and population
density to acclimatize to nutrient limitations [35]. For
example, phosphorus stress triggers longer and denser
root hair growth in the topsoil. In Arabidopsis, additional
root hairs emerge from atrichoblasts. These extra root
hairs appear at locations that do not conform with known
emergence patterns from the trichoblasts in the
www.sciencedirect.com
epidermis [36]. Other nutrient limitations elicit a
similar response [37]. As such, manganese stress in-
duces additional root hairs on the epidermis [38], while
higher magnesium levels progressively decrease root hair
development [39]. Potassium deficiency stimulates an
increase in root hair length and density in a variety of
agriculturally important crops such as pea (Pisum sati-
vum), barley (Hordium vulgare), and rye (Secale cerale)
[40]. Similarly, maize genotypes with longer hairs
perform better in low phosphorus conditions [41].
Phosphorus uptake is also positively correlated with
basal root hair length and density in common bean [42].
Root hairs further respond to drought. Longer and
denser root hairs developed in tall fescue plants over 14
days in moderate drought conditions [43]. The often
observed duality of simultaneous change in root hair
length and density led to the explanation that root hairs
increase the surface area of the root [44] in response to
nutrient or water stress.

Similar to glandular trichomes, root hairs play an
essential role in the release of exudates. For example,
johnsongrass (Sorghum halepense) releases the phytotoxic
compound sorgoleone to gain a competitive advantage
by slowing the growth of neighboring plants [45].
Another example is the sensitive root hair of touch-me-
not (Mimosa pudica) that releases sulphur when the roots
get surface contact with skin or soil [46]. Root hairs also
increase substrate availability for consumption by mi-
croorganisms in the vicinity of the root by releasing

organic compounds [47]. The length and density of
basal root hairs in common beans correlate positively
with root exudates, which facilitate phosphorus uptake
[42]. Root exudates also mobilize nutrients by
increasing the phosphatase activity in the rhizosphere
[48]. Unsurprisingly, drought, nutrient deficiencies, and
salt stress associate with altered exudate compositions.
For example, drought shifted the exudate composition
in holm oak (Quercus ilex) towards secondary metabolites
(71%) compared to non-drought conditions in which
primary metabolites were dominant (81%) [49]. Exu-
dates also help to alleviate nutrient stresses. For

example, malate helps to cope with phosphorus-
deficient conditions in Arabidopsis [50]. Furthermore,
salt stress in Phragmites Australis shows a 24-fold increase
in amino acid content in exudates compared to the
control experiment [51].
The rare but special morphologies of root
hairs raise questions
There is little evidence in the literature for hair-like
extensions below-ground other than the straight,
tubular or the shepherd’s crook phenotype. Human-
induced mutations, certain stress conditions [34], and
the phase of early root development point at the pos-
sibility of additional morphological phenotypes in indi-
vidual hairs. Root hair mutants in Arabidopsis are
Current Opinion in Plant Biology 2021, 64:102151
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examples of such morphological variants (Figure 1b(i)).
For example, long and branched (lrx1), short and
branched (bristled1), short with either a wide base,
curled or branched (cen1/2/3, scn1), wavy (rhd3), stunted
and swollen (keule) hair types in Arabidopsis [52]. Other
examples of such morphological phenotypes are short
(rth1/2/3) [53] in maize (Zea mays), short (Osrhl1 Osrhl2)
[54] and stunted (OsexpA17) [55] in rice (Oryza sativa),
branched (scarn) [56], swollen (crinkle) [57], short
(LjSRH), petite (LjPRH), and variable root hair length
(LjVRH) in birdsfoot trefoil (Lotus japonicus) [58].
Moreover, the scarn and crinkle phenotypes in L. japonicus
fail to establish legume-rhizobia symbiosis.

These morphological phenotypes are pointers to more
root hair variation because they are known stress re-
sponses in natural environments. For example, root hair
branching increases the absorptive surface area under Fe

stress in Arabidopsis [59] and under progressive
drought, up to 8.27% of all root hairs were branched [60]
(Figure 1b(ii)). Besides abiotic stress responses, hair-
like structures exist in early root development. When a
seedling navigates its way, penetrating the ground, it is
devoid of root hairs. Yet, hair-like structures emerge on
the young root instead to fulfill root hair functions [61]
to support seedling establishment [62] and geotropism
[63]. In terrestrial plants, they may protect against
herbivory and increase water uptake [64]. Recent
research also discusses the ecological importance of

hypocotyl hairs in swamp paperback (Melaleuca ericifolia).
As such, the phenotype of hypocotyl hairs is significantly
longer than observed for root hairs (w20 mm � 30 mm
vs. w5 mm � 15 mm) [65]. Similarly, collet hairs
develop on the hypocotyl-radicle junction in Arabidopsis
during the first few days of development. Collet hairs
differ in patterning such that every epidermal cell de-
velops into a collet hair in contrast to the alternate
patterning of root hairs [66]. These early hair-like
structures contribute to biological functions such as
anchorage and uptake from the soil under non-limiting

conditions, which are important for survival [67].
Searching for more morphological variation
in root hairs
Plant trichomes exhibit 47 variants of functionally
relevant morphological phenotypes. These 47 pheno-
types compare to only two relevant morphological phe-
notypes in root hairs among all plants e either tubular-
straight or the shepherd’s crook. Nevertheless, sparsely
found mutant studies in lab experiments indicate that
root hairs have the potential for more morphological
phenotypes. Prior research has shown that morphology
can alter under abiotic stresses, which raises the ques-
tion of why these root hair phenotypes do not occur in
non-limiting conditions. One can argue that the collet

and hypocotyl hairs, which only exist during early
development, should be classified as root hairs.
Current Opinion in Plant Biology 2021, 64:102151
However, these hair-like structures indeed constitute an
exception in morphological variation below-ground.

It seems unlikely to find unreported root hair pheno-
types that mirror the diversity and generality present in
trichomes. Yet, from our literature research, we hy-
pothesize that a species-specific likelihood for unre-
ported hair-like morphologies below-ground exists. The
similarity of the genetic make-up and the environmental
cues altering root hair and trichome phenotype support

our hypothesis. It seems likely that the reason for the
sparse coverage of early hair-like morphologies lies in
their transitory characteristic. As such, hypocotyl hairs
disappear within a few weeks after germination [61].
Consequently, they were either being overlooked or
mistaken for root hairs and for that reason may have
remained understudied across species.

Common bean (P. vulgaris) caught our attention for a
first hypothesis forming test because its hooked leaf
trichomes could serve as a template for early below-
ground hairs with undiscovered morphology. In a first
observation, we found ‘hooked’ hairs during early root
development in common beans (Figure 2). The
observed ‘hooking’ morphology is visually distinct from
the shepherd’s crook observed during nodulation. The
observation was first made in a hydroponics set-up and

replicated in simple vermiculite-perlite and soil-based
growth systems.

We cannot exclude the possibility of an uncharac-
terized phenotype because of these hair-like struc-
tures’ below-ground location. Their location on the
young root right above the first emerging basal roots

makes it hard to think of these hair-like structures as
trichomes that grow out of the ground during devel-
opment. However, it is impossible to distinguish the
observed hair-like structure from a trichome visually.
Our inability to visually differentiate a trichome from
the ‘hooked hair’ raises questions about the function
and classification of the newly observed phenotype. Is
it a below-ground trichome or a root hair phenotype? Or
is it an intermediate phenotype between root hair and
trichome? Hooked hairs are the first structures to
emerge below-ground on the young root within the first

3e5 days after planting for our growth system
(Supplemental Material 1). We observed that hooked
hairs emerge before root hairs. However, the number of
days until hooked hairs emerge most likely varies with
environmental conditions which can affect the growth
rate of seedlings (Supplemental Material 2). Tri-
chomes, on the contrary, can be observed above-ground
on the stem after the cotyledons emerge from below
the soil. Location (root/shoot transition zone vs. tap/
basal roots vs. stem/leaves) and stage of development
differentiate the observed hooked hair from root hair

and trichome. However, phenotypic characterization of
the morphology to distinguish the hooking shape and
www.sciencedirect.com

www.sciencedirect.com/science/journal/13695266


Figure 2

Distinction between hair-like structures. Location and emergence of hooked hair, root hair, and trichome in common bean and an example image
taken under the microscope with 10x resolution. Important to recognize are the differences between hooked hairs, root hairs, and trichomes in traits like
morphology and length distribution. Notably, the hooked hair-like structures will stay below ground during development.
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form quantitatively demands new technological de-
velopments in root hair phenotyping.
The technological barrier to discovering
new hair-like phenotypes
Phenotyping is the quantitative characterization of
plant traits [*68] which is inherently difficult for root
hairs due to their underground location and microscopic
size. Characterizing root phenotypes is a challenging
task in itself [*69], but root architecture is multiple
scales larger than the cellular scale of a root hair.
Bridging multiple scales of organization has been iden-
tified as a challenge in the phenotyping community [70]
and only very few research projects have developed tools

to phenotype root hairs. Semi-automated software
plugins like Root Hair Sizer [71] are available in ImageJ
[72] to measure root hair length. To our best knowledge,
only one other software exists for quantifying root hair
growth in soil-grown roots in the form of an R script
which implements a logistic regression model for
measuring root hair area from images [73]. However,
none of these tools has the automatization level needed
to discover new morphological phenotypes in root hairs
and other hair-like structures. Thus, to date, root hair
analysis is a tedious manual process for simple traits like

length and density.

As such only a limited amount of software supported
phenotyping studies for root hairs exists. For example,
www.sciencedirect.com
root hair length was measured in ImageJ in a study
investigating the effects of soil properties on root hairs
in barley (Hordeum vulgare L.) [74]. Another study
measured root hairs manually using a micrometer scale
under a light microscope to characterize the response of
canola (Brassica napus) to salinity stress [75]. However,
quantifying and interpreting the newly observed hooked
hair phenotype requires tools to evaluate curvature,

area, and perimeter of root hairs in addition to length.
Such a characterization is infeasible manually because of
the number of samples needed to obtain statistically
significant results. Root hair phenotyping is, therefore, a
technological barrier to evaluate stress responses, vari-
ation, and patterning. As such, discovering and investi-
gating hair-like phenotypes below-ground requires
technology to facilitate high-throughput analysis of
thousands of microscopy images.
Discussion
We hypothesized in our literature review that below-
ground epidermal extensions other than the well-
known straight and tubular, and the shepherd’s crook
phenotypes of root hairs could exist. Yet, their
morphological variation is most likely limited to spe-
cific plant species and less diverse than the variation

observed for trichomes. Our review identified abiotic
stresses as a potential natural trigger for branched and
curved phenotypes. Early root development was iden-
tified as an understudied area where non-tubular
Current Opinion in Plant Biology 2021, 64:102151
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phenotypes might exist in some plant species. We
tested this idea by investigating early root development
in common beans. As hypothesized, we observed a
previously unreported hooked hair that grows below
ground on common bean seedlings. We believe that the
observation is species-specific because we did not
observe the hooked hair phenotype in soybean (Glycine
max) (Supplemental Material 3).

We could not find initial answers in literature to why
root hairs have less morphological variation than tri-
chomes. However, we will investigate the newly
observed hair-like structures for their ability to respond
to abiotic stresses for their potential to function as a root
hair in early development. For example, we could not
exclude experimentally the possibility that a hooked
hair could nodulate like a straight and tubular root hair.
Therefore, we plan to combine these functional studies
with detailed geometric characterization of the hooked

hairs’ morphology to statistically distinguish its shape
from trichomes. Together, our planned studies might
yield insight into the fitness benefits of morphological
variation in hair-like structures below ground.

We identified automated phenotyping methods as an
essential tool to distinguish the observed hooked hairs
from root hairs and trichomes. However, there is a
substantial lack of methods and tools to characterize the
morphology of hair-like structures. Currently, no tool
exists with the capability to quantify the shape and form

of single cell elongations. This lack of automated high-
throughput tools also handicaps efficient large-scale
and high-throughput screening to discover rare pheno-
types and their characterization at various develop-
mental stages and across possible combinations of
stresses. It could be that these hair-like structures play a
beneficial role in plant survival during early develop-
ment [67]. We believe that such uncharacterized mor-
phologies can be discovered by developing new high-
throughput phenotyping methods that automate the
measurement of hair-like structures in thousands of
microscopy images.
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