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ABSTRACT: A sample of 198 supercells are investigated to determine if a radar proxy for the area of the storm midlevel

updraft may be a skillful predictor of imminent tornado formation and/or peak tornado intensity. A novel algorithm, a

modified version of the Thunderstorm Risk Estimation from Nowcasting Development via Size Sorting (TRENDSS) al-

gorithm is used to estimate the area of the enhanced differential radar reflectivity factor (ZDR) column in Weather

Surveillance Radar–1988 Doppler data; the ZDR column area is used as a proxy for the area of the midlevel updraft. The

areas ofZDR columns are compared for 154 tornadic supercells and 44 nontornadic supercells, including 301 supercells with

tornadoes rated EF1, EF2, and EF3; 8 supercells with EF41 tornadoes also are analyzed. It is found that (i) at the time of

their peak 0–1-km azimuthal shear, nontornadic supercells have consistently small (,20 km2) ZDR column areas, while

tornadic cases exhibit much greater variability in areas; and (ii) at the time of tornadogenesis, EF31 tornadic cases have

largerZDR column areas than tornadic cases rated EF1/2. In addition, all eight violent tornadoes sampled haveZDR column

areas. 30 km2 at the time of tornadogenesis. However, only weak positive correlation is found between ZDR column area

and both radar-estimated peak tornado intensity and maximum tornado path width. Planned future work that focuses on

mechanisms linking updraft size and tornado formation and intensity is summarized and the use of the modified TRENDSS

algorithm, which is immune to ZDR bias and thus ideal for real-time operational use, is emphasized.
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1. Introduction

Operational forecasters face a number of challenges in at-

tempts to skillfully ‘‘nowcast’’ (i.e., 0–1-h forecasts) the tor-

nado life cycle. Here, we break up the life cycle simply into

tornadogenesis, tornado intensification, and tornado dissipa-

tion. Difficulty in understanding and prediction in any of these

stages derives from the small spatiotemporal scales over which

relevant processes are thought to occur, which makes them

difficult to observe. Most research efforts have focused on

determining the likelihood for supercell tornado formation,

given the severe impacts strong and violent tornadoes, which

largely occur in supercells (Smith et al. 2012), can have on

people and property. Unfortunately, knowledge of the super-

cell tornadogenesis process is incomplete (e.g., Markowski

and Richardson 2009), and while tornado-supportive envi-

ronments may be identified (e.g., Rasmussen and Blanchard

1998; Thompson et al. 2003; Markowski et al. 2003; Parker

2014; Coffer et al. 2019), they are general and inexact. In ad-

dition, tornadic and nontornadic supercells contain largely the

same appearance via traditional radar variables (e.g., Trapp

1999; Klees et al. 2016), which is troublesome when weather

radar is the most readily available real-time convective storm

observational tool. There is some preliminary support for dif-

ferentiating between tornadic and nontornadic supercells using

polarimetric radar data (e.g., Kumjian and Ryzhkov 2008a;

French et al. 2015; Van Den Broeke 2020; Homeyer et al.

2020), particularly recently in Loeffler et al. (2020), who found

statistically significant differences in a polarimetric signature

in a large sample of supercell cases.

There has been comparatively less focus in the literature on

nowcasting tornado intensification and dissipation. Regarding

the latter, the reader is referred to Marquis et al. (2012) for a

summary of dissipation mechanisms and French and Kingfield

(2019) and Segall et al. (2021) for how those mechanisms may

be translated to radar ‘‘fingerprints’’ for use in nowcasting

tornado dissipation.

Regarding the former, there is some skill in using envi-

ronmental approaches to better predict conditions favorable

for more intense tornadoes (e.g., Thompson et al. 2012;

Coffer et al. 2019), especially in combination with radar data

(Smith et al. 2020b). But there are not simple radar signatures

or behaviors known to skillfully predict peak tornado inten-

sity. Complicating matters, data from rapid-scan radars pro-

vide evidence that tornado intensity can vary over short time

scales and in height (e.g., French et al. 2014; Griffin et al.

2019; McKeown et al. 2020), and processes supporting tor-

nado intensification and their relationship to genesis pro-

cesses are poorly understood (e.g., Marquis et al. 2016).

Recent work also has provided evidence that the intrinsic

modeling predictability of supercell tornado intensity is low,

even in environments that are strongly supportive of torna-

does (Markowski 2020). Therefore, after a tornado forms,

forecasters are largely left to monitor near-real-time, near-

surface tornado intensity estimates and have few tools with

which to predict peak tornado intensity as a tornado forms.

Yet it is important for forecasters to monitor tornado evo-

lution to optimize information to the public and emergency

management. Peak intensity information in particular may be
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used in impact-based warnings, which have been shown to be

an effective communication tool in hazardous weather situ-

ations (Ripberger et al. 2015; Casteel 2016).

Current tools available to assess tornado intensity usingWSR-

88D data aremostly diagnostic. Radial velocity within a tornadic

vortex signature (TVS) can be used to estimate current intensity

(e.g., Burgess et al. 2002) but assumes a number of approxima-

tions (Wood and Brown 1997; Snyder and Bluestein 2014).

Radar data can be combined with other observational data to

develop probability-based intensity assessments (e.g., Smith

et al. 2015, 2020a; Thompson et al. 2017). Estimates of tornado

intensity also can be developed using radar data in algorithms

(e.g., Kingfield and LaDue 2015). The height of the polarimetric

tornadic debris signature (TDS; Ryzhkov et al. 2005) has been

used in concert with velocity data to estimate tornado intensity

(Gibbs 2016). Other approaches combined previous work into a

statistical model to assess near-real-time tornado intensity

(Cohen et al. 2018). However, most of these approaches require

information about a tornado, typically some measure of low-

level rotation, that already has formed. In addition, because

estimates of rotational velocity will suffer at greater ranges from

the radar, so will efforts to use rotational velocity to assess tor-

nado intensity potential (e.g., Smith et al. 2015). Recently,Gibbs

and Bowers (2019) did display some skill in anticipating signifi-

cant tornado damage using WSR-88D rotational velocity com-

bined with mesocyclone depth information, though skill scores

were still highest using data from right before the onset of

significant damage.

One possibility for tornado intensity prediction derives from

work in Trapp et al. (2017; hereafter T17). They argued using

theory and model simulations, that wider storm updrafts should

lead to bothwider and stronger tornadoes based on conservation

of angular momentum arguments. In modeling simulations, T17

found support for their hypothesized relationships via strong

linear correlations among updraft area, downdraft area, mid-

level mesocyclone area, near-ground mesocyclone area, and,

importantly, near ground vertical vorticity (e.g., Fig. 1a). In ad-

dition, updraft area was strongly influenced by vertical wind

shear, which is consistent with past (Kirkpatrick et al. 2009) and

more recent work (e.g., Warren et al. 2017; Marion and Trapp

2021; Peters et al. 2019).

Seeking out observational support for the T17 hypothesis is

complicated by the difficulty in observing supercell updrafts

and/or mesocyclones in conventional remote sensing data. T17

found in their simulations that there should be a strong rela-

tionship between the area of a satellite-observed overshooting

top (OT) and midlevel updraft area, and concluded that OTs

may be used to predict tornado intensity. In a follow-up study of

30 tornadic storms, Marion et al. (2019) found large differences

between theOT area of storms with tornadoes rated EF31 and

those rated EF0–2 (Fig. 1b), though only nine EF31 tornadic

storms were sampled. Likewise, they found relationships be-

tween OT area and tornado wind speeds associated with the

surveyed EF scales, even after accounting for uncertainties in

the wind speed estimates.

Most relevant to this study is Sessa and Trapp (2020), who

used WSR-88D data in 102 tornado-producing convective

storms to relate the approximate low-level mesocyclone width

prior to tornadogenesis (via radial velocity data) to peak tor-

nado intensity. They found a robust and significant relation-

ship, particularly in supercells, between averaged (in both

height and time) mesocyclone width and tornado intensity

estimated both via EF scale (Fig. 1c) and maximum sum of the

inbound and outbound radial velocities (DV) in the tornadic

FIG. 1. (a) Scatterplot showing relationship between supercell

midlevel (z5 6.25 km) updraft area (km2) and near-ground vertical

vorticity (s21) from CM1 experiments over a range of hodograph

radii (m s21).Adapted fromTrappet al. (2017). (b)Box-and-whisker

plot of observed overshooting top area (OTA; km2) vs tornado EF

scale rating for 30 tornadic supercells. Adapted fromMarion et al.

(2019). (c) Box-and-whisker plot showing the relationship be-

tween the total average pre-tornadic mesocyclone width (km)

and EF rating of the resultant tornado for 49 discrete supercells.

The mean is represented by the3 and the median by the bar. The

top and bottom of the box represent the third and first quartiles

with exclusive medians, respectively, and the top and bottom

whiskers represent the minimum and maximum values, respec-

tively. Adapted from Sessa and Trapp (2020).
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vortex signature (TVS). The authors also found strong linear

relationships between mesocyclone width and estimated tor-

nado width and pathlength. The combination of prior theo-

retical and modeling support with these observational studies

provides motivation to further refine relationships between

supercell updraft area proxies and peak tornado intensity,

ideally in a large number of cases.

However, other studies offer criticism of and/or evidence

countering the T17 hypothesis. Coffer and Markowski (2018)

performed 30 simulations using composite environmental pro-

files in supercells observed in the second Verification of the

Origins of Rotation in Tornadoes Experiment (VORTEX2;

Wurman et al. 2012) and found highly variable updraft widths

and much weaker correlations among the same parameters

studied in T17 despite only subtle changes to the environmental

profile. In response, Trapp et al. (2018) updated their simula-

tions using finer grid spacing (similar to that used in Coffer and

Markowski 2018) and again found strong linear correlations

between updraft size and near-surface vertical vorticity. They

argued that their greater range of bulk shear profiles better re-

flected the true range seen in tornadic environments compared

to those in Coffer and Markowski (2018). Other recent studies

have not found strong relationships between updraft width and

near-surface vortex intensity in simulated supercells (Fischer

and Dahl 2020; Goldacker and Parker 2021).

We are not aware of any work that has focused on moving

beyond traditional radar variables and products derived therein

to examine the use of polarimetric radar data to predict peak

tornado intensity. Despite disagreement in the literature, we

believe that the results from T17,Marion et al. (2019), and Sessa

and Trapp (2020) introduce one possibility to do so: using col-

umns of enhanced differential radar reflectivity factor (ZDR) as

an updraft proxy. Elevated ZDR above the 08C level adjacent to

or collocated with updrafts have been observed repeatedly in

convective storms (e.g., Illingworth et al. 1987; Conway and

Zrnić 1993; Ryzhkov et al. 1994; Brandes et al. 1995), including

in supercells (e.g., Loney et al. 2002; Kumjian and Ryzhkov

2008b; Kumjian et al. 2010; Snyder et al. 2013). The signature

results from the lofting of large rain drops (ZDR . 0 dB) by the

storm updraft above the 08C level where there is otherwise

typically dry snow aggregates withZDR near 0 dB (e.g., Kumjian

et al. 2014). An updraft that is wider and larger should then also

have a greater area over which the lofting process occurs leading

to a larger ZDR column, assuming that its vertical velocities are

large enough to loft hydrometeors over the extended area.

Indeed, ZDR column area was one of several ‘‘metrics’’

tested by Van Den Broeke (2017) to examine if there were

differences among tornadoes of different intensities, among

other tornado subgroups. In that study, ZDR column areas in

significantly tornadic storms were larger than in weakly tor-

nadic storms. However, only seven EF31 tornadoes were an-

alyzed and ZDR column areas were averaged over variable

time increments (30–901 min). Most importantly, the study

did not examine whether ZDR column area was predictive of

tornado intensity differences.

Previous studies also have found correlations between updraft

strength and heights of ZDR columns (Kumjian et al. 2014), and

Picca et al. (2010) found correlations between ZDR column

height and width and lagged low-level ZH. Potential opera-

tional utility of the signature led to the development of an

automated ZDR column algorithm for WSR-88D use (Snyder

et al. 2015). More recent work has found that ZDR columns

may be used operationally to distinguish between severe and

nonsevere storms, particularly for wind and hail (Kuster et al.

2019). Also, while there is no explicit evidence that ZDR col-

umn heights may be used to distinguish between tornadic and

nontornadic supercells (Picca et al. 2015; Kuster et al. 2019;

Van Den Broeke 2020), Van Den Broeke (2020) found dif-

ferences in the areas of ZDR columns between ‘‘pre-tornadic’’

and nontornadic supercells, though the study again utilized

averaging areas for each case over several, and different

numbers of volumes.

Neither ZDR column width nor area has specifically been

evaluated for potential operational predictive utility for tor-

nado intensity. The dual-polarization upgrade of theWSR-88D

completed in 2013 provides the potential to analyze the ZDR

columns associated with a large number of tornadic storms to

determine if a proxy for updraft width may be able to skillfully

predict tornado intensity. Also, preliminary evidence in Van

Den Broeke (2020) combined with the known relationship

between vertical wind shear and updraft size motivates us to

also explore if ZDR columns may be larger in tornadic super-

cells compared to nontornadic supercells. Indeed, though it

was not the focus of their study, Coffer and Markowski (2018)

found generally larger midlevel mesocyclone and updraft areas

in their tornadic supercell simulations compared to their non-

tornadic supercell simulations (see their Fig. 4). This paper

serves as one in an ongoing series of climatological studies of

WSR-88D polarimetric characteristics of supercells (French

and Kingfield 2019; Loeffler et al. 2020; Tuftedal et al. 2021;

Segall et al. 2021). Section 2 discusses data and methods.

Section 3 presents comparisons of ZDR column areas in su-

percells with tornadoes of varying intensities and for tornadic

versus nontornadic supercells. Results and their implications

are summarized and discussed in section 4.

2. Data and methods

a. Case selection

A priority of this study was to analyze a sufficient number of

supercell cases per interval (i.e., ideally 301 tornadic cases for

each EF scale bin and 301 nontornadic supercells) in order to

establish or refute a true signal in the relationships between

ZDR column area, the tornadogenesis process, and tornado

intensity. First, in order to accrue a sufficient number of cases

for the tornado intensity part of the study, a storm mode da-

tabase compiled by the Storm Prediction Center (SPC) for

years 2013–17 (Smith et al. 2012) was interrogated for torna-

does that formed between 20 and 60 km in range from aWSR-

88D site so that intensity estimates via DV calculations were

confined to the lowest ;500-m layer. The initial group of

cases was then manually analyzed to eliminate cases in which

the cyclic tornadogenesis/mesocyclogenesis process was ob-

served and the tornado in question was not the first tornado in a

‘‘family,’’ so that complications from the presence of multiple
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updrafts (e.g., Dowell and Bluestein 2002) could be mitigated.

The remaining cases were then separated out by EF scale

and refined.

In this study, we examined ZDR column areas separately for

tornadoes rated EF1, EF2, EF3, and EF41. EF0 tornadoes

were not analyzed, owing to the likelihood of large underrate

biases in strong tornadoes over open country (e.g., Alexander

2010; Bluestein et al. 2018; Wurman et al. 2021). Our meth-

odology provided sufficient samples of EF1 and EF2 cases that

contained an identifiable ZDR column. However, the afore-

mentioned criteria left only 17 (3) EF3 (EF41) cases, so 2018–

20 data also were interrogated, and the 60-km range restriction

was relaxed to 100 km for EF31 cases. The additional three

years of data and longer range criterion yielded an additional

15 (5) cases for a total of 33 (8) cases. The EF1–2 cases were

analyzed chronologically until a similar number of cases were

reached; analysis from 2013 to 2016 brought in 36 EF1 super-

cells and analysis from 2013 to 2017 led to 32 EF2 supercells.

Therefore, a total of 109 tornadic supercell cases with ZDR

columns were analyzed. Subsequent analysis also included

45 cases in which no ZDR column was identified at the analysis

times. Cases were not ‘‘pre-screened’’ for the presence of a

ZDR column, and ‘‘no-column’’ cases were included only from

the set that already had been analyzed (e.g., only no-column

cases from 2013 to 2016 were included for EF1 cases).

The initial pool of nontornadic cases is the same one as that

detailed in Loeffler et al. (2020) and Tuftedal et al. (2021).

Cases were chosen using a 2015 SPC database that associated

each severe report (severe criteria hail and wind, tornado)

with a storm mode. Supercells that were not associated with a

tornado and within 20–60 km of a WSR-88D were included for

possible analysis. All nontornadic cases were then manually

verified to have a midlevel mesocyclone and lack a TDS. The

restrictions led to a total of 44 nontornadic storms used in this

study, including cases both with and without ZDR columns.

The location of cases in the United States (Fig. 2) shows a

weighting toward cases in the southern plains and Deep

South. This is especially true in this study as we required our

set of cases to have nearly equal numbers of EF1–3 cases, and

the more intense tornadoes in particular tend to occur in

these locations. Therefore, the sample of cases analyzed

herein does not represent the surveyed tornado intensity

distribution in the United States as a whole. Most cases an-

alyzed (91%) were separated from other cases by at least one

hour in time and/or were far enough away from each other

that they were scanned by different WSR-88D systems, thus

our analysis is not biased by clusters of storms that formed in

close proximity to each other.

b. Calculation of ZDR column area

To identify regions where a ZDR column is located, this

study employs a modified approach to that used in Segall et al.

(2021). In their study, ZDR column regions were defined using

the copolar cross correlation coefficient at lag zero (rHV).0.8

and ZDR .1.0 dB in the scan nearest to 1 km above the 08C
level as defined by the 13-km Rapid Refresh (RAP; Benjamin

FIG. 2. Map of all tornadic and nontornadic supercell cases used in this study. The tornadic cases are color coded

by surveyed EF scale intensity and the location marks the approximate tornadogenesis location from Storm Data.

For the nontornadic cases, the location is that of the peak 0–1-km azimuthal shear at the analysis time used in this

study (i.e., the tornadogenesis failure time). The location of the WSR-88D used for each case and its 100-km range

ring also are shown.
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et al. 2016) analysis grid. They corrected for potential ZDR

biases through the use of external target methods calculated at

the WSR-88D Radar Operations Center (Richardson et al.

2017). These methods compare observed ZDR values to light

rain, dry snow, and Bragg scatter conditions with intrinsic ZDR

values to estimate the bias. While these techniques can help

offset a biasedZDR, they are imperfect, particularly in the case of

the light rain technique (Richardson and Lee 2019). An alterna-

tive originates fromKingfield and Picca (2018), who introduced a

Thunderstorm Risk Estimation and Nowcasting Development

from Size Sorting (TRENDSS) algorithm. TRENDSS cal-

culates the standard score of unique ZH–ZDR relationships

for each radar elevation scan to identify positive ZDR out-

liers. This highlights regions where hydrometeor size sorting

is occurring and can indicate the location of an updraft.

Given that a ZDR bias is typically uniform across the radar

scanning range, the calculation of standardized ZDR anom-

alies would incorporate this bias and render the output im-

mune to miscalibration.

This study extends the methodological work of Segall et al.

(2021) by taking a TRENDSS analog approach to identifying

ZDR column regions. For each elevation angle of radar data, a

sample of ZDR bins was collected that met the following three

criteria: 1) rHV . 0.8 to remove potential nonmeteorological

scatterers, 2) ZDR , 6 dB to remove possible biological scat-

terers, and 3) the radar bin was in a region between 1 km below

and 5 km above the 08C level as defined from the 13-km RAP.

For each ZDR bin collected in the set, the standard score was

calculated using the mean and standard deviation (SD) of ZDR

from the entire sample set, which only included data that met

the aforementioned criteria. The result is a field of ZDR

anomalies with each bin corresponding to the number of SDs

from the mean for each elevation angle.

Region growing allows for neighboring elements in an image

exceeding some value to be joined together into a new group

(Lakshmanan 2012). We apply this technique to combine

spatially connecting regions exceeding either 1 or 2 SDs into a

new radar image and assign each cohesive group of bins with a

unique identifier. Once each region is defined, the area of each

region is calculated as the sum of the areas of each radar bin

that comprises that region and it is plotted in the same polar

coordinate space as the other radar moments for that elevation

angle and time. Similar to Segall et al. (2021), we defined the

ZDR column of interest as the location nearest to the main

updraft of the thunderstorm being examined on the radar scan

closest to 1 km above the 08C level. The latter criterion ensured

this version of TRENDSS is focused on updraft identification

instead of raindrop size sorting in an environment with non-

zero storm-relative flow.

To compare the modified TRENDSS approach to a more

standardZDR column identificationmethod, we also determined

ZDR column regions using the Segall et al. (2021) approach for a

subset of 44 tornadic cases (Fig. 3). There are very high linear

correlations between the Segall et al. (2021) methodology and

both the one and two SDmodified TRENDSS approach. For

larger columns, the SD1 (SD2) tends to have larger (smaller)

column areas than the traditional method. Given the high

correlations between methods and the TRENDSS approach

immunity toZDR biases, the results presented herein will use

the TRENDSS methodology. And because we sometimes

had to throw out cases because of melting layer interference

from large columns (see section 2c), we chose to use the SD2

approach.

Some previous studies have analyzed updraft width proxies

instead of updraft area proxies.We developed an algorithm for

determiningZDR column area rather than width because of the

tendency for ZDR columns to be amorphous, which makes

width determination difficult. Though updraft area and width

are related, this study is not directly measuring proxies for

updraft width. Similarly, the calculations of area often included

2–3 adjacent areas in the column region. In this study, the

column area is the summed total of the individual areas,1 which

we believe better captures the updraft size compared to taking

the maximum contiguous area value. In addition, one may

wonder if updraft area varies with height. The use of ZDR

columns limited us to observations above the 08C level to

FIG. 3. Comparison betweenZDR column area calculations using

ZDR values of 1 dB and larger and that using the modified

TRENDSS algorithm. Two versions of the TRENDSS algorithm

are employed, one defines aZDR column as havingZDR values that

are at least one standard deviation above the baseline (blue) and

the second defines a ZDR column as having ZDR values that are at

least two standard deviations above the baseline (orange). The

Pearson correlation coefficients and the sample size for each of the

two comparisons are shown in the bottom right.

1 Summing individual areas together has to be done manually

and is the subjective part of using this version of TRENDSS.

Outside of melting layer interference, in most cases, it was not

difficult to identify that multiple large areas were clearly part of the

ZDR column. And in cases when it was not obvious if a smaller area

was part of the ZDR column (see section 2c), it is unlikely that the

decision noticeably affected the overall area of the ZDR column

used in our analyses.
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approximate the size of the updraft, and the higher in the storm

above the 08C level we used, the fewer cases there were in

which a ZDR column could be identified. Also, results from

supercell simulations have shown little change in the actual

supercell updraft area with height above 3 km (e.g., Peters et al.

2019). An example of the algorithm output for a tornadic case

from 19 July 2018 (Figs. 4a–c) is shown (Fig. 4d).

c. Data quality control

The calculation of ZDR column area in this study required

data from two polarimetric variables: ZDR and rHV. The

former variable is susceptible to potentially large errors ow-

ing to the effects of differential attenuation and biases.

Differential attenuation is of limited concern in this study,

owing both to the use only of S-band radar data, which has

low attenuation coefficients, and the focus of data analysis

above the melting layer where there are smaller areas of large

ZH and ZV. As discussed in section 2b, the development of

the modified TRENDSS product explicitly renders ZDR bias

moot, eliminating the serious concerns about real-time use of

ZDR data in analyzing quantifiable fields. The use of S-band

data in this study also mitigates concerns about the use of

ZDR as a drop size proxy given the likelihood that impactful

resonance effects on ZDR are seen only in data from higher-

frequency systems (X and C band).

However, there still were several cases that were deemed

unusable in this study, beyond the aforementioned criteria.

The most common reason why cases could not be analyzed was

because the algorithm connected the ZDR column within a

storm to an area of enhanced ZDR associated with the melting

layer (e.g., Fig. 5a). In such cases, using higher elevation angles

often would bring the height of the analysis to well above 1 km

FIG. 4. Example of the modified TRENDSS algorithm identification of a ZDR column using the two standard

deviation approach discussed in the text for an EF3 tornadic case on 19 Jul 2018. (a) Radar reflectivity factor (dBZ),

(b) ZDR (dB), (c) copolar correlation coefficient, and (d) ZDR column area (km2) from the modified TRENDSS

algorithm. The area representative of the ZDR column is enclosed by a circle; the area value is also shown in (d).
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above the 08C level, and so those cases were not analyzed.

A second common reason cases were not analyzed is the effects

of artifacts in the data consistent with nonuniform beam filling

(NBF; e.g., Fig. 5b), where reduced rHV values led to the col-

umn area being reduced. Less frequently, there were multiple

distinct columns without a clear indication of which was best

associated with the supercell, or a noisy ZDR field that made

accurate identification of a ZDR column too prone to large

error to use in this study.

d. Statistical significance testing

The Wilcoxon rank sum test, a nonparametric test, is often

used to provide statistical context to the results of two sets of

data without assuming an underlying distribution. For our

purposes, it is used to help quantify whether two sets of

supercell ZDR column area data derive from the same pop-

ulation distribution. In this study, the test uses a continuity

correction. It also is directional for the intensity portion of the

study because we know of no reason to expect thatZDR column

areas would be smaller for tornadic cases and smaller for

stronger tornadoes (see section 3). The test is not directional

for the tornadogenesis portion of the study. Statistical signifi-

cance levels of 1% (p# 0.01) are emphasized. While the test is

often stated as comparing the medians of two distributions,

p values also are affected by spread when there are differences

in the variances of two distributions (e.g., Hart 2001), as is the

case in this study (see section 3a). Even small differences in

spread, skewness, and sample size between two samples can

FIG. 5. Example cases that were not analyzed for this study owing to (a) melting layer interference for a tornadic

supercell case on 23 Feb 2019 and (b) nonuniform beam filling for a tornadic supercell case on 27 Dec 2015. The top

panel in (a) showsZDR (dB) and the bottom panel isZDR column area (km2); the top panel of (b) shows the copolar

correlation coefficient and the bottom panel is ZDR column area (km2). The circles enclose the most likely location

of the ZDR column in the opinion of the authors. The arrows in (a) denote enhanced areas of ZDR in the melting

layer, and in (b) areas of likely nonuniform beam filling.
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muddle interpretation of statistical tests when using most rank

transformation approaches (Fagerland and Sandvik 2009).

As a result, we encourage cautious interpretation of statistical

tests herein and emphasize a holistic view of results. Also, in

both sections, we provide the common language effect size

(CLES; McGraw and Wong 1992), which gives the probability

that a random value from one population will be greater than a

random value from a second population.We used an improved

version that does not assume a normal distribution and ac-

counts for ties between pairs (Vargha and Delaney 2000).

3. Observations of ZDR column areas

In this study, we used the development of an automated tool

for ZDR column area calculations to test two hypotheses about

supercells:

1) Tornadic and nontornadic supercells exhibit substantial

overlap in their ZDR column areas at the time immediately

prior to tornadogenesis and tornadogenesis failure, owing

to the complicated multilayered nature of the tornado-

genesis process.

2) Weakly tornadic supercells (EF1) exhibit significantly

smaller ZDR column areas than those in strong (EF2–3)

and violent (EF41) tornadoes at the time just prior to and

at the time of tornadogenesis.

a. Tornadogenesis

In this section, the ZDR column areas of tornadic and non-

tornadic supercells are compared. For nontornadic cases, in-

stead of choosing a time at random for case analysis or averaging

data from several times, we used the time of peak 0–1-km azi-

muthal shear (Mahalik et al. 2019) during the time each non-

tornadic case was within the 20–60-km range as the analysis time

(e.g., Loeffler et al. 2020; Tuftedal et al. 2021). Based on previous

work, and to accurately assess whether predictive2 skill is sup-

ported, the cases were analyzed for the first volume in which the

time of the scan used to estimate ZDR column area occurs

(i) after the tornado start time in Storm Data for tornadic cases

and (ii) after the peak 0–1-km azimuthal shear in nontornadic

cases; we refer to this volume asT.We also analyzed one volume

prior to the T volume (T 2 1), which represents the first scan

prior to tornado formation or peak 0–1-km azimuthal shear. The

durations ofWSR-88Dvolumes vary, so the timedifference from

estimated tornado onset to the time of the scan used to estimate

ZDR column area averaged 1156 s (2153 s) for T (T 2 1) but

was as large as 1370 s (2386 s). We acknowledge inherent

errors using estimated start times from Storm Data (e.g., Witt

et al. 1998); cases with obvious low-level TVSs prior to this

time were adjusted to the appropriate volume, but in practice

this only amounted to a one-volume adjustment in a small

subset of cases.

A comparison of all 107 tornadic and 30 nontornadic cases

exhibiting ZDR columns provides ostensibly strong evidence

that tornadic supercells contain ZDR column areas that are

larger than those in nontornadic supercells imminently prior to

tornadogenesis (Fig. 6a). Thedifference inmean (median) between

tornadic [36 (31.4) km2] and nontornadic cases [10.6 (7.6) km2] is

large, though there are still a number of tornadic cases that

contain small (,20 km2) areas. A hypothesis that the two sets

of cases derive from the same distribution can be rejected at

the 1% level, though small p values are likely influenced by

the much larger spread in the tornadic case distribution and

the differing sample sizes. There are also two additional im-

portant caveats to these results: (i) the tornadic cases were

not chosen at random, but designed to reach an approxi-

mately equal number of EF1–3 cases, and (ii) cases in which

no organized ZDR column (area . 1 km2) could be identified

were not included.

To address the first caveat, the EF1 cases, the weakest

surveyed tornadoes in our sample were isolated and com-

pared with the nontornadic cases (Fig. 6b). Again, while the

ZDR column areas in EF1 cases are generally less than that

in the whole set of tornadic cases, these results also are ev-

idence of different underlying distributions. To address the

second caveat, cases in which there was no identifiable ZDR

column or one with an area less than 1 km2 were included,

again for all tornadic and all nontornadic cases (Fig. 6c). The

introduction of ‘‘no-column’’ cases brings the median value

for tornadic cases down substantially (no-column preva-

lence in supercells is discussed in section 3b). The tornadic

cases still comprise a distribution of areas much larger than

that for the nontornadic cases though subject to the same

variance influences. Finally, we address both caveats si-

multaneously, so that nontornadic cases are compared to

only EF1 tornadic cases, including no-column cases in both

sets (Fig. 6d). In this case, the hypothesis that the two un-

derlying distributions are the same cannot be rejected.

However, all 11 observations of large (i.e., .40 km2) areas

occur in EF1 cases.

The same analysis was run for one volume later, the first

volume in which the relevant ZDR column scan used occurred

after the estimated time of tornadogenesis (Fig. 7). The results

are very similar to that using the T 2 1 volume, and evidence of

substantial separation between the distributions of areas for the

two sets of cases (Figs. 7a–c). But again, when comparing non-

tornadic cases to EF1 cases and including no-column cases, the

separation is substantially reduced (Fig. 7d). The similarity in area

distributions betweenT2 1 andT volumes is evidence that there

are not large organized changes in ZDR column areas leading up

to the time of tornadogenesis or peak 0–1-km azimuthal shear.

One additional shortcoming of this study is the use of the EF

scale to estimate tornado intensity. As already discussed, the

most prominent downside of such an approach is the near

certainty that some tornadoes will be underrated in intensity if

they occur over open land; recent work has demonstrated that this

effect is likely large (Wurman et al. 2021). Another approach,

2 This study does not address whether ZDR column areas

provide a real-time assessment of current tornado intensity. In ad-

dition to the possibility of tornadic debris contamination ofZDR for

ongoing tornadoes, the mechanisms hypothesized in T17 neces-

sarily require a time lag. In addition, a number of studies discussed

in section 2 have already established more direct methods to esti-

mate ongoing tornado intensity.
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albeit also imperfect (e.g., Snyder and Bluestein 2014), is to use

peak TVS DV in WSR-88D radial velocity data to estimate tor-

nado intensity. For the tornadic cases with ZDR columns, the

entirety of the tornado life cycle was manually examined and the

peak DV recorded.3 We compared nontornadic cases to the 30

tornadic cases with ZDR columns at time T 2 1 that had the

weakest peak DV (Fig. 8). There is a distinction between the two

sets of cases: a mean/median of 10.6/7.6 (20.8/25.8) km2 for the

nontornadic (weakly tornadic) cases. Therefore, in the cases

sampled for this study, conditioned on there being a measurable

ZDR column, tornadic cases, even weakly tornadic cases, have

somewhat larger and more variable ZDR column areas than

nontornadic cases in the time just prior to tornadogenesis or tor-

nadogenesis failure.

Examples of a nontornadic and tornadic case with ZDR

column areas closest to the medians in Fig. 6a are shown

(Fig. 9). The tornadic case (EF1) has a relatively large ZDR

column summed area of 31.4 km2 (Fig. 9a) made up of three

FIG. 6. Box-and-whisker plots comparing ZDR column areas (km2) of (a) nontornadic cases and tornadic cases

with aZDR column, (b) nontornadic cases and EF1 cases with aZDR column, (c) all nontornadic cases and tornadic

cases, and (d) all nontornadic cases and EF1 cases. All comparisons use data from the firstZDR column scan prior to

the tornadogenesis time in StormData or the time of peak 0–1-km azimuthal shear. The box encloses the 25th–75th

data percentiles, the thin black linemarks themedian, and the whiskers encompass the rest of the values unless they

are more than 1.5 times removed from the interquartile range, in which case they are plotted as outliers. Color-

coded sample sizes and the p value for rejecting the hypothesis that both sets of data derive from the same un-

derlying population appear in the top-right corner. The common language effect sizes for the right-hand column

being larger than the left-hand column are 0.87 in (a), 0.81 in (b), 0.70 in (c), and 0.55 in (d).

3 For ;10 cases, peak DV could not be reliably calculated, typi-

cally because there was not a definitive TVS identified in two

consecutive volumes, and we believe potential errors to be too high

using one TVS observation as indicative of peak TVS intensity.
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individual adjacent areas. This case was representative of

most cases in which there was separation between the en-

hanced ZDR associated with the column and that associ-

ated with the melting layer (red arrows in Fig. 9). The

nontornadic case, in contrast, has a much smaller column

area of 6.9 km2 (Fig. 9b) made up of only one area, though

again displaced from the area likely representative of the

melting layer.

b. Tornado intensity

We now use our novel algorithm to compare the ZDR col-

umn areas among 153 tornadoes of different surveyed EF scale

ratings. The times analyzed, T2 1 and T, are the same as those

discussed in section 3a. Themean andmedian range of theZDR

column observations increased with EF scale given the need to

look at farther ranges to collect sufficient numbers of the rel-

atively rare EF31 cases. Cases at farther ranges use lower el-

evation angles, and therefore more horizontally oriented slices

to get to the appropriate height level, in addition to the case

radar gates being larger. Pearson correlation coefficients be-

tween range and ZDR column area indicated either no or weak

linear relationships: EF1 (0.04), EF2 (0.28), EF3 (0.31), and

EF4 (0.17); correlations were much smaller when including no-

column cases. Regardless, we cannot rule out minor range

impacts on calculated areas.

TheZDR column areas for the 108 tornadic cases in which the

supercell in question had an identifiable ZDR column at time

T are separated by EF scale and compared (Fig. 10a). There is a

clear separation in ZDR column areas between the EF1–2 tor-

nado cases (smaller areas) and the EF31 tornado cases (larger

areas). However, the distribution spreads are large on all ZDR

column areas, especially EF3 cases, in which the 25th–75th

percentiles encompass values from;30 to 70km2. There also is

almost no separation between the areas of the weakest surveyed

sets of tornadoes, EF1 (median of 26.5 km2) and EF2 (median of

24.1 km2). Statistical testing was performed in a variety of ways

FIG. 7. As in Fig. 6, but all comparisons use data from the first ZDR column scan after the tornadogenesis time in

Storm Data or the time of peak 0–1-km azimuthal shear. The common language effect sizes are 0.87 in (a), 0.86 in

(b), 0.70 in (c), and 0.58 in (d).
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to add context to the results. A hypothesis that the distributions

come from the same underlying populations can be rejected at

the 1% level for: EF3 versus EF1 cases, EF3 versus EF2 cases,

and EF31 versus EF1/2 cases. However, that same hypothesis

cannot be rejected in this dataset for EF2 versus EF1 cases.

The general pattern of distributions was similar when in-

cluding cases in which no ZDR column was identified (Fig. 10b):

the EF31 cases are much more likely to have large areas

(.40km2) than the EF1–2 cases and we can reject hypotheses of

the same underlying populations for the same sets as above. The

inclusion of no-column cases reduces the EF1 median value to

lower than that for EF2 cases, but there are not significant dif-

ferences between the two sets.

The same data were analyzed, but for one volume scan prior,

at time T 2 1. A comparison of cases only with ZDR columns

(Fig. 10c) and including no-column cases (Fig. 10d) lead to

similar results. In both cases, p values of ,0.01 provide sta-

tistical support for the distributions of EF31 cases being sig-

nificantly different and resulting from different populations

compared to EF1/2 cases, just as they were for time T. For the

full set of cases in particular (Fig. 10d), (i) there is greater

separation among all four sets of cases at time T2 1 compared

to time T and (ii) the larger areas in the EF2 cases compared to

EF1 cases is significant at the 5% level, but not the 1% level.

Overall, the results of Fig. 10 and the accompanying statistical

tests are significant evidence that supercells with larger ZDR

columns at or just after tornadogenesis tend to bemore intense

than those with smaller ZDR columns, consistent with similar

proxy work inMarion et al. (2019) and Sessa and Trapp (2020).

As discussed in section 3a, the use of the EF damage scale

for tornado intensity is likely to strongly underestimate true

near-ground tornado intensity. As a result, we next evaluate

tornado intensity by using the peak DV measured at the lowest

observed radar level for each case in which (i) there was a ZDR

column identified at time T and (ii) a TVS was identified in at

least two separate volume scans (n 5 98; Fig. 11a). There is a

weak positive linear correlation (0.32) between peak DV and

ZDR column area, though with several outliers. A Spearman

rank correlation, which is less sensitive to such outliers, is higher

at 0.44.We also divided the 98 cases into thirds by their peakDV
value and compared the ZDR column areas at time T (Fig. 11b).

The weakest two DV groups have a similar distribution of ZDR

column areas, and the distribution of cases with the strongest

peak DV have statistically larger areas than the weak and

moderate cases; these results somewhat mirror the EF case re-

sults seen in Figs. 10a,b. The same analysis was conducted for the

T 2 1 volume data (Figs. 11c,d), and the plots exhibit similar

trends as those seen for time T. However, there is more sepa-

ration between weak and moderate cases at time T 2 1, which

againmirrors the greater separation betweenEF1 andEF2 cases

seen in Figs. 10c,d; the moderate case distribution is larger than

the small case distribution at the 5% level but not the 1% level.

Examples of tornadic cases withZDR column areas closest to

the medians in Fig. 10d are shown (Fig. 12). As surveyed in-

tensity of the tornadoes increases from EF1 (Fig. 12a) to EF2

(Fig. 12b) to EF3 (Fig. 12c) to EF4 (Fig. 12d), so does the

median-caseZDR column area approximated by the algorithm,

from 6.4 to 20.4 to 33.8 to 56.7 km2, respectively.

Finally, we can use our data to estimate how prevalent a lack

of an identifiable ZDR column is in our sets of cases. However,

using only the cases shown in Figs. 7 and 10 could bemisleading

because of the cases that did contain ZDR columns but were

precluded from analysis because of the other data quality is-

sues discussed in section 2c. Once accounting for all cases that

had a ZDR column but were excluded for other reasons

(Table 1), 16/54 (30%) of nontornadic cases and 45/220 tor-

nadic cases (20%) lacked a ZDR column. However, again the

overall tornadic versus nontornadic sample is skewed because

the presence of a ZDR column also has a clear dependance on

peak surveyed tornado intensity. Tornadoes rated EF31 not

only have larger ZDR column areas, but they also are far less

likely to lack a ZDR column (8% of cases) than nontornadic or

weakly tornadic (33%) cases at time T. So while there is little

evidence to support large differences in ZDR column preva-

lence between weakly tornadic and nontornadic cases, there is

an indication that a lack of a ZDR column may be associated

with a lower chance of imminent formation of tornadoes

rated EF31.

4. Summary and discussion

Results from a large sample of tornadic and nontornadic

supercells provide some evidence in support of both of our

hypotheses, but with caveats. A polarimetric radar data proxy

for the midlevel updraft area, the ZDR column area ;1 km

above the 08C level, may be used at and just before tornado

formation to differentiate weaker tornadoes from stronger

tornadoes based on surveyed intensity. In addition, we find that

nontornadic cases containZDR column areas that are similar to

but less variable than those from supercells producing EF1

FIG. 8. As in Fig. 6, but comparing the ZDR column areas of

nontornadic cases and the 30 tornadic cases with the weakest peak

DV in the TVS associated with the tornado. The common language

effect size is 0.8.
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FIG. 9. Example of (a) a tornadic case from 30 Nov 2016 and (b) a nontornadic case from 11 Jun 2015, both

examined in this study. For each case, shown are (top) ZDR (dB), (middle) the modified TRENDSS ZDR column

area output (km2), and (bottom) the 0.58 radial velocity (m s21) at genesis and genesis failure time. The summed

column areas are shown for the three individual areas used in (a) and the one area used in (b), all of which are

enclosed by circles. The red arrows point to areas likely marking the melting layer.
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tornadoes. Also, the probability of there not being a ZDR

column at the time of tornadogenesis decreases with increasing

surveyed tornado intensity, but is similar between nontornadic

and weakly tornadic cases.

The first result is largely consistent with recent results. The

theoretical work of T17 combined with this study and three

previous observational studies (Van Den Broeke 2017; Marion

et al. 2019; Sessa and Trapp 2020), all with distinct techniques

to estimate updraft/mesocyclone size, provides strong evidence

that the relationship between updraft size and tornado inten-

sity hypothesized in T17 is real and robust. One difference in

this study is that the relationship between ZDR column area

and radar-estimated tornado intensity is not as strong as pre-

sented in the aforementioned studies. This may be a function of

the different features, as each case analyzed in Marion et al.

(2019) and Sessa and Trapp (2020) identified the updraft proxy

(an OT or mesocyclone, respectively), whereas not every case

in this study had a ZDR column despite the supercell, by defi-

nition, having an updraft. In addition, this study did not ex-

amine EF0 cases, which mitigated underrate bias concerns, but

also likely leaves out the weakest tornadoes, which may oth-

erwise enhance correlations. This study also did not average

updraft size data over several time periods as in some other

studies.

We have not thus far described efforts to determine if

mechanisms hypothesized to be responsible for the link between

updraft width and tornado intensity in past studies are sup-

ported in this study. One possibility is to analyze estimated

tornado path widths. Part of the T17 hypothesis is that the

larger updraft/mesocyclone leads to tornadoes that are wider,

which have previously been shown to have higher tornado

damage intensity (Brooks 2004). And Sessa and Trapp (2020)

FIG. 10. Box-and-whisker plots comparing ZDR column areas (km2) of (a) tornadic cases with a ZDR column at

timeT, (b) all tornadic cases at timeT, (c) tornadic cases with aZDR column at timeT2 1, and (d) all tornadic cases

at time T 2 1. Color-coded sample sizes appear in the top-right corner. The mean distance from the radar to the

tornado is 41, 43, 63, and 73 km for the set of cases with tornadoes rated EF1, EF2, EF3, and EF4, respectively. The

common language effect sizes for EF1/2 vs EF31 cases are (a) 0.74, (b) 0.78, (c) 0.71, and (d) 0.77, respectively.
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found evidence that this relationship held in their analysis of

40 supercell cases (see their Fig. 17). For the subset of tor-

nadic cases that contained information about peak tornado

width, we compared the recorded values with updraft area at

time T (Fig. 13a). In this case, there is a lack of linear signal,

either using Pearson (0.13) or Spearman (0.16) correlation

coefficients. Dividing cases into bins of peak surveyed widths

of,500, 500–1000, and 10001 yd and comparingZDR column

areas provides some separation for the latter category, albeit

with a very small number of cases (Fig. 13b), and a hypothesis

that the distributions are the same cannot be rejected. The

same general relationships hold for time T 2 1 (not shown).

What do we make of this discrepancy? It may be that there

is a more direct relationship between low-level mesocyclone

width and tornado width than there is with midlevel updraft

width given the hypothesizedmechanisms in T17. However, we

also consider the likely large error bars inherent in using

damage to estimate tornado diameter. In fact, we question if

such a relationship has the support of strong evidence, es-

pecially in light of recent work. Wurman et al. (2021) show

that there is essentially no relationship between radar-derived

estimates of tornado width and radar-derived intensity es-

timates (see their Fig. 4), which provides additional uncer-

tainty about the pathways hypothesized in T17. So while our

results are broadly consistent with what is hypothesized in

T17, we lack sufficient data to attach the results to the T17

mechanisms.

The latter results introduce a number of additional

questions that motivate future work. The past observational

studies that have quantified estimates of supercell updraft

FIG. 11. Comparisons of ZDR column areas with radar-estimated peak tornado intensity. (a),(c) Scatterplots of

ZDR column area (km2) vs maximumDV in the TVS associated with the tornado at times T and T2 1, respectively,

and (b),(d) box-and-whisker plots of ZDR column area in evenly divided thirds of maximum DV in the TVS as-

sociated with the tornado at times T and T2 1, respectively. For (a) and (c), the Pearson and Spearman correlation

coefficients appear at the bottom right and for all plots, and sample sizes are provided. The common language effect

sizes for weak vs strong cases are 0.8 in (b) and 0.82 in (d).
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size in a rigorous manner, Marion et al. (2019) and Sessa and

Trapp (2020), did not examine nontornadic cases. T17 did

comment that their ideas also could be related to tornado-

genesis when tornadoes result from contraction of a meso-

cyclone. However, evidence of the ubiquity of ‘‘bottom-up’’

tornadogenesis (e.g., French et al. 2013), and the focus of

recent literature on (i) the importance of processes like

dynamic lifting on low-level mesocyclone development

(e.g., Markowski and Richardson 2014; Coffer and Parker

2017), and (ii) the link between very near-ground environ-

mental conditions and tornadogenesis (e.g., 0–500-m SRH;

Coffer et al. 2019), may belie such a process. In addition, the

T17 mechanism is likely to require a time lag (Trapp et al.

2018) while we investigated ZDR column area just prior to

tornadogenesis.

Another possibility we consider is how the near-storm envi-

ronment (NSE) may link updraft area to both tornadogenesis

and peak tornado intensity. BothWarren et al. (2017) and Peters

et al. (2019) found in simulation studies that larger updraft area

results from stronger deep-layer vertical wind shear that enhance

stormmotions and storm-relative low-level flow (this can also be

seen in other simulation data, for example, from Coffer and

Markowski 2018). Peters et al. (2020) deconstructed the role of

SRH in a combined proximity sounding and simulation study,

FIG. 12. As in Fig. 9, but for tornadic cases rated (a) EF1 from 4 Jun 2014, (b) EF2 from 24 Feb 2018, (c) EF3 from 25Apr 2014, and (d) EF4

from 17 Nov 2013.

TABLE 1. Contingency table of ZDR column identification for nontornadic supercell cases, and supercells that produced tornadoes rated

EF1, EF2, EF3, and EF41 at time T.

Survey

Column? NT EF1 EF2 EF3 EF41 Total

Yes 38 (70%) 61 (67%) 65 (84%) 41 (91%) 8 (100%) 213 (78%)

No 16 (30%) 29 (33%) 12 (16%) 4 (9%) 0 (0%) 61 (22%)

Total 54 90 77 45 8 274
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finding that the most relevant part of SRH for low-level rota-

tion is streamwise vorticity while storm-relative flow is more

important for, among other quantities, supercell stormmode and

updraft area. Based on these studies, work is ongoing using the

modified TRENDSS algorithm, WSR-88D radial velocity data,

and NSE data to determine if the relationship among midlevel

updraft area, low-levelmesocyclone area, and tornado formation

and intensity can be explained through shared environmental

pathways. May, for example, strong tornadoes and large mid-

level updrafts be correlated through their mutual relationship to

large SRH (i.e., streamwise vorticity for tornadoes and SR flow

for updraft area)? We hope these efforts and others help to

clarify the mechanisms responsible for linkages found in this

study and previous works.

Finally, based on study results, we issue the following pre-

liminary guidelines to forecasters:

d for a supercell not currently producing a tornado, if the radar

volume does not contain a ZDR column or has a small ZDR

column (,10km2) within two elevation angle scans of the 08C
level, there is a low risk of imminent EF31 tornado formation;

d for a supercell not currently producing a tornado, if the radar

volume contains a ZDR column with an area. 40 km2 within

two elevation angle scans of the 08C level, there is an

increased risk of imminent tornado formation compared to

a situation in which column area , 40 km2;
d once a supercell tornado has formed, if the corresponding

radar tornadogenesis volume does not contain an identifiable

ZDR column or has a small ZDR column (,10 km2) within

two elevation angle scans of the 08C level, there is a low risk

of the tornado reaching EF31 intensity; and

d once a supercell tornado has formed, if the corresponding

radar tornadogenesis volume contains a ZDR column with

an area .40 km2 within two elevation angle scans of the

08C level, there is an increased risk of the tornado reaching

EF31 intensity compared to a situation in which the

column area , 40 km2.

Despite some apparent differences in the column areas of

tornadic and nontornadic supercells, we believe the utility of

ZDR column areas in tornadogenesis forecasting overall to be

highly conditional, which can be seen in our guidelines (i.e.,

both EF31 tornadoes and 401 km2 areas are rare events).

We only recommend its use in concert with all relevant

forecasting information because of the small separation of

areas between nontornadic cases and weakly tornadic cases

(Fig. 6d). In addition, we lack a satisfactory mechanism with

evidence to explain updraft areal differences between tor-

nadic and nontornadic cases. Similarly, for peak intensity, the

unrepresentative tornado intensity sample used in this study

means that even though a large percentage of EF31 cases

have large column areas, the overall low relative frequency of

EF31 cases means that there would be a large number of false

alarms if large column areas were used without putting the

information in context of other relevant NWP and observa-

tional data. With a column area signal now firmly established,

future work should take a more skill-score-oriented approach

to its use. In addition, though we analyzed a large number of

cases, our focus was establishing an overall link and we did

not examine potential regional differences, such as those that

may result from the impact of differing common NSEs.

The guidelines assume a forecaster has the ability to estimate

ZDR column area in real time. We believe the immunity to ZDR

bias and the partially automated detection and area calculation

in the modified TRENDSS algorithm makes it an attractive

option for real-time operational use. Drawbacks include the use

of modeled estimates of the 08C height level, melting layer

FIG. 13. Comparisons of ZDR column areas with surveyed peak tornado width. (a) Scatterplot of ZDR column

area (km2) vs maximum surveyed tornado width at time T, and (b) box-and-whisker plots comparing ZDR column

area for narrow (,500 yd),moderate (500–1000 yd), andwide (.1000 yd) surveyed tornadoes at timeT. For (a), the

Pearson and Spearman correlation coefficients appear at the top right and the sample sizes are provided in both

(a) and (b).
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intrusion or NBF, potential difficulty of updraft isolation when

rapid cyclic tornadogenesis is occurring, and some subjectivity

involved in determiningwhich area ‘‘clusters’’ belong to theZDR

column. Also, viability for usage at long ranges is unknown,

though therewere no obvious issues implementing the algorithm

for the EF31 cases that occurred at 60–100-km range and, be-

cause the ZDR column occurs;31 km in height, we believe the

algorithm should be operable at ranges beyond 100 km. Finally,

broadly speaking, more work is needed to determine just how

effectivelyZDR column area represents updraft area (i.e., what is

the influence of vertical velocity on ZDR column areas?).

In addition, one also may wonder about the applicability of

our results to QLCS mesocyclonic tornadoes. Marion et al.

(2019) and Sessa and Trapp (2020) found that updraft width

was related to tornado intensity in QLCSs, but the signal in

the latter study was weaker in QLCSs than in supercells. And

recently, Marion and Trapp (2021) simulated tornadic-like

vortices in QLCSs and found that low-level mesocyclone area

was related to tornado intensity, but they cautioned that

intensity also was modulated by other factors. Given these

results and the relatively short life cycles and unsteady nature

of updraft cores in Marion and Trapp (2021), we are not

confident that an approach using ZDR columns, which is a

midlevel updraft proxy, would yield beneficial results oper-

ationally in QLCSs.

Another potential problem in using TRENDSS in real time

is the continued increase in use of supplemental adaptive

intravolume low-level scans (SAILS; Chrisman 2013) and

multiple elevation scan option SAILS (MESO-SAILS; Daniel

et al. 2014) in severe storm nowcasting, which increases the

time between elevated scans that would likely be used to

identify the ZDR column. For volume coverage pattern (VCP)

212, this activation has increased total volume scanning times

from 255 s with no SAILS to 290 s with SAILS, and up to 343 s

with MESO-SAILS. For the 198 analyzed cases in our study,

the VCP used by the radar was VCP 12 or 212 for 98% of cases

(Fig. 14a). VCP 215 was added operationally in 2018 and was

used in one case. The remaining three cases used VCP 21, VCP

FIG. 14. Bar graphs showing annual trends in radar scanning patterns usage for the cases an-

alyzed in this study. (a) VCP usage and (b) SAILS version usage for VCP 12, 212, and 215.
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121, and VCP 211. VCPs 12/212 supported the selection of

SAILS since 2014 and MESO-SAILS since 2015 and VCP 215

supported SAILS only during the study period. In cases analyzed

since 2015, 88% (127/144) of cases had a radar scanning with

SAILS/MESO-SAILSactivated (Fig. 14b).However, we believe

the modified TRENDSS algorithm is very much usable under

these circumstances given the results discussed in section 3, and

their general lack of sensitivity to whether theT orT2 1 volume

was used. Nonetheless, other applications of storm updraft

proxies that depend on frequent mid and upper-level supercell

data and/or vertically coherent data collectionmay be negatively

impacted by use of SAILS or MESO-SAILS.

We encourage continued work optimizing the best combina-

tions of radar-based tools to nowcast tornadogenesis and in-

tensity (e.g., Gibbs and Bowers 2019). In addition to having

indirect confirmation of a relationship betweenmidlevel updraft

area and low-level mesocyclone width, having redundant radar

nowcasting tools for tornado intensity prediction may be valu-

able given potential advantages and drawbacks of usingmidlevel

data. Possible examples of the former include storms at great

range from all radar origins and mesocyclones with variable or

indeterminate width. Examples of the former include afore-

mentioned issues of melting layer interference, NBF, and

attenuation. There may be improved peak tornado intensity

predictive capability using some combination of OTA, ZDR

column area, and low-level mesocyclone width that requires

future work to optimize. All of these factors are in addition to

near-storm environmental considerations and other remote

sensing-based nowcasting techniques (e.g., Sandmæl et al. 2019;
Loeffler et al. 2020; Smith et al. 2020b), which we believe may

together provide robust prediction of tornado formation and

peak tornado intensity.
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