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Abstract

The development of crops with deeper roots holds substantial promise to mitigate the consequences of climate change.
Deeper roots are an essential factor to improve water uptake as a way to enhance crop resilience to drought, to increase
nitrogen capture, to reduce fertilizer inputs, and to increase carbon sequestration from the atmosphere to improve soil or-
ganic fertility. A major bottleneck to achieving these improvements is high-throughput phenotyping to quantify root phe-
notypes of field-grown roots. We address this bottleneck with Digital Imaging of Root Traits (DIRT)/3D, an image-based 3D
root phenotyping platform, which measures 18 architecture traits from mature field-grown maize (Zea mays) root crowns
(RCs) excavated with the Shovelomics technique. DIRT/3D reliably computed all 18 traits, including distance between
whorls and the number, angles, and diameters of nodal roots, on a test panel of 12 contrasting maize genotypes. The com-
puted results were validated through comparison with manual measurements. Overall, we observed a coefficient of deter-
mination of r»>0.84 and a high broad-sense heritability of H2 ,.> 0.6 for all but one trait. The average values of the 18
traits and a developed descriptor to characterize complete root architecture distinguished all genotypes. DIRT/3D is a step
toward automated quantification of highly occluded maize RCs. Therefore, DIRT/3D supports breeders and root biologists
in improving carbon sequestration and food security in the face of the adverse effects of climate change.

Introduction roots exhibit shape diversity that is measurable as variation
in rooting angles, numbers of roots per type, length, or di-
ameter of roots within a root crown (RG; Lynch and Brown,
2012). An understanding of variation in RC architecture
facilitates breeding for favorable root characteristics to

Evaluating the information encoded in the shape of a plant
as a response to environments is essential to understand
the function of plant organs (Bucksch, 2011). In particular,
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improve yield in suboptimal conditions, including those
resulting from climate change (Lynch, 2013). Improving root
phenotypes through crop breeding and management holds
promise for improved food security in developing nations,
where drought, low soil fertility, and biotic constraints to
root function are primary causes of low yields, and also for
reducing the environmental impacts of intensive agriculture
by reducing the need for intensive fertilization and irrigation
(Lynch, 2019). Root traits also offer opportunities to improve
carbon sequestration (Paustian et al., 2016). These challenges
demand efforts across a range of disciplines, from mathe-
matics over computer science to plant biology and applied
fields like plant breeding and agronomy (Bucksch et al,
20173, 2017b).

A major interdisciplinary challenge in root biology is the
development of deeper rooting crop varieties. Deeper roots
promise a three-fold impact: they improve drought resil-
ience, lower fertilizer input, and decrease atmospheric car-
bon. Deeper roots improve drought resilience to stronger
and more frequently occurring droughts (Ault, 2020) by tap-
ping into water in deep soil domains (Lynch and
Wojciechowski, 2015). Nitrogen capture increases when
roots grow deeper because nitrogen diffuses into and accu-
mulates in deeper soil layers (Lynch, 2019). Deeper rooting
crops increase carbon sequestration (Smith et al, 2007)
mostly by depositing more organic residues in soils, thereby
replenishing carbon after harvest (Paustian et al, 1997). An
important tool in breeding deeper roots is the large-scale
automated evaluation of root traits in the highly occluded
RC architecture (Topp et al., 2016). Maize (Zea mays) in par-
ticular, with over 700 Mt of maize production worldwide
(Ranum et al, 2014), is a prime target for improving rooting
depth. However, measuring important root traits for deeper
rooting (Lynch and Wojciechowski, 2015) is hampered by
the availability of advanced root phenotyping methods on
the field-scale (Kuijken et al, 2015). Therefore, the research
community has pushed for the development of a root phe-
notyping system that operates under field conditions (Paez-
Garcia et al,, 2015).

Root phenotyping in the field remains a significant
challenge for root biology

The majority of existing phenotyping methods to evaluate
root architecture nondestructively emerged from laboratory
settings. These methods range from fully automatic
(Galkovskyi et al, 2012) to manually assisted (Lobet et al,
2011) and consider a variety of growth systems like gel cylin-
ders (lyer-Pascuzzi et al,, 2010), rhizotrons (Nagel et al., 2012;
Relldn-Alvarez et al, 2015; Bontpart et al, 2020), mesocosms
(Nagel et al, 2012), and germination paper (Falk et al,
2020). Root phenotyping under lab conditions necessitates
the use of constrained growth containers (Poorter et al,
2012; Bourgault et al, 2017), artificial growth media (Oliva
and Dunand, 2007), and environments that potentially alter
root system architecture (de Dorlodot, Bertin et al, 2005).
Therefore, it is essential to translate phenotyping
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experiments from the lab into repeatable field experiments
(Zhu et al,, 2011; Bucksch et al, 2014; Poorter et al, 2016).

In contrast, root phenotyping in the field is currently ei-
ther invasive or destructive. Invasive procedures record small
sections of the root with minirhizotron cameras placed in
the soil (Gray et al, 2013; Yu et al, 2019). These procedures
are incapable of recording the full root system. Therefore, in-
vestigating root system architecture in the field relies on the
destructive excavation of the RC developed in a real target
environment. Shovelomics is the standard field-ready proto-
col to excavate RCs in the field (Trachsel et al, 2011). It was
initially developed for maize and has undergone a constant
refinement by the root research community (Zheng et al,
2020). Other crops, including common bean (Phaseolus vul-
garis) and cowpea (Vigna unguiculata; Burridge et al., 2016),
wheat (Triticum aestivum; Slack et al, 2018; York et al,
2018), rapeseed (Brassica napus; Arifuzzaman et al, 2019),
and cassava (Manihot esculenta; Kengkanna et al, 2019)
have specialized shovelomics protocols in place. However,
the manual excavation of the RC, followed by visual scoring
and manual trait measurement, is difficult and subjective to
the researcher.

Digital imaging of root traits in 2D enabled
researcher independent large-scale analysis of field
data

In response, software to measure root traits in simple dig-
ital images became available. Approaches to record root
traits in the field use different methods in terms of soft-
ware platforms and imaging setups. According to the soft-
ware catalog “The quantitative plant” (Lobet, 2020),
Digital Imaging of Root Traits (DIRT) is the only online
platform (Das et al, 2015). The DIRT platform provides
image processing and storage for over 750 root research-
ers following an easy to reproduce imaging protocol. For
imaging, DIRT needs a tripod, a consumer camera, and a
black background with a white circle. Just recently, DIRT
enabled projects associated with root architecture and
micronutrient content (Busener et al, 2020) and trans-
lated traits from the lab to the field (Salungyu et al,
2020). More sophisticated and expensive imaging setups
use specialized tents (Colombi et al, 2015) and carefully
designed imaging boxes (Grift et al, 2011; Seethepalli et
al., 2019), along with computationally simple traits, for
use of personal computers. The user can, therefore,
choose a system that suits the project needs. Systems
generally vary in the number of instruments, tools, and
samples transported between the lab and field site, as
well as the cost of the imaging setup and hardware
requirements. However, all these systems share a single
obstacle: Resolving the highly occluded branches of a
dense 3D RC. The occlusion challenge arises when the 2D
image projection of the 3D branching structure “hides” in-
formation of branching locations. Hence, the branching
information is unrecoverable and lost (Bray and Topp,
2018).
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Unavailability of digital imaging of root traits in 3D
hampers breakthroughs in root biology

3D approaches are capable of resolving even highly occluded
branching structures (Bucksch, 2014). Gel systems were
among the first methods to measure fully resolved 3D root
systems of younger roots (Clark et al, 2011; Topp et al,
2013) and to capture some of their growth dynamics
(Symonova et al, 2015). The bottleneck of imaging and
measuring older root systems in constrained growth con-
tainers filled with soil, however, remained. Therefore, X-ray
computed tomography (CT) became a widely used tool to
phenotype roots in pots filled with soil and soil-like sub-
strates (Pfeifer et al, 2015; Gerth et al, 2021). These lab
developments revealed characteristics in maize root develop-
ment (Jiang et al, 2019). The X-ray CT approach is, in its
applications, comparable to magnetic resonance imaging
(MRI; Metzner et al, 2015). MRI also provides a 3D model
of the root (van Dusschoten et al, 2016) and can be used
for time-lapse imaging of growth processes (Jahnke et al,
2009). The benefits of both X-ray CT and MRI are substan-
tial and subject to scientific discussion (Fischer et al., 2016).
Similarly, neutron radiography can record root system archi-
tecture in soil filled growth containers (Moradi et al, 2011)
to quantify water uptake of different root classes in maize
(Ahmed et al., 2018). However, X-ray CT, MRI, and neutron
radiography do not meet the needs for large-scale field stud-
ies: First, both technologies restrict plant growth to the size
of a given growth container. The restriction to smaller sizes
is proportional to higher achievable resolution. Therefore, it
is common to observe an immature “pot phenotype” in-
stead of a relevant phenotype grown in field soils (Poorter
et al, 2012; Bourgault et al, 2017). Second, these three
methods can take about 30 min or more to collect root im-
aging data in soil. Extremes of several days are reported for
X-ray CT systems to achieve the resolution of root hairs
(Keyes et al, 2013; Sozzani et al, 2014). An additional con-
straint is the cost of constructing operating, and staffing
such facilities, few of which are devoted to root studies.

In response to these phenotyping limitations, we devel-
oped DIRT/3D as an automatic 3D root phenotyping system
for excavated RCs grown in agricultural fields. Our approach
consists of a developed 3D root scanner and root analysis
software. The 3D root scanner captures image data of one
excavated maize root in about 5 min. Our software uses the
image data to produce a colored 3D point cloud model and
to compute 18 root traits. The computed traits measure in-
dividual roots (IRs) and also characterize the complete RC.
IR traits include number, angle, and diameters of youngest
and second youngest nodal roots. Traits like eccentricity or
the distance between whorls characterize the RC. The com-
puted traits are known to be relevant and reported fre-
quently in literature as manual measurements (Saengwilai et
al, 2014; Zhan et al, 2019). We also introduce a 3D whole
root descriptor that encodes the arrangement of roots
within the RC with improved distinction compared to 2D
whole root descriptors.
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Results

DIRT/3D enables automatic measurement of 3D
root traits for field-grown maize

We developed DIRT/3D system to phenotype excavated RCs
of maize (Figure 1). The system includes a 3D root scanner
and a suite of parameter-free software that reconstructs
field-grown maize roots as a 3D point cloud model. The
software also contains algorithms to compute 18 root traits.

The 3D root scanner (Figure 2) utilizes 10 industrial cam-
eras mounted on a rotating curved frame (Figure 2A) to cap-
ture images from all sides of the maize root (Supplemental
Video SV1). Scanning of one maize root completes in 5 min.
After obtaining the image data, we reconstruct a 3D point
cloud of the RC. By analyzing thin level sets of the 3D point
cloud, DIRT/3D revealed traits behind multiple layers of
occlusions (detailed pipeline in Supplemental Figure S1). For
example, DIRT/3D measures the distance between the root
forming whorls and the number of nodal roots at young
nodes. DIRT/3D also tracks IRs within the RC, starting from
the stem down to the emerging lateral in the RC. Each indi-
vidually tracked root enables the measurement of numbers,
angles, and diameters at the IR level (Figure 1F).

We used a panel of 12 maize genotypes with 5-10 repli-
cates per genotype to validate the DIRT/3D pipeline. For
our validation trial, the 3D root scanner captured images at
pan intervals of 1 degree and tilt intervals of 10 degrees.
Figure 3 shows a visual comparison of the captured root ar-
chitectural variation between the genotypes.

Level set scanning enables extraction of traits from
3D root models

We developed a method to perform a top-down level set
scan of the 3D root model to compute 3D root traits. For a
vertically aligned model, we slice the 3D root model from
top to bottom at consecutive depth levels (Figure 4). The
number slices represent the constant imaging volume of the
scanner and therefore, vary by RC size. Two benefits result
from the fixed scanning volume. First, the transformation to
mm is constant, and second, the optimal slice thickness can
be determined experimentally for all roots. Therefore, all
parameters are constants in the algorithm. Here, a level set
image is the commonly used vertical 2D projection of each
slice onto a plane (Bucksch, 2011; Mairhofer et al, 2012;
Cochard et al, 2015; Dinas et al, 2015 Hyun et al, 2016)
representing the sequential distribution of roots into deeper
soil levels (Figure 4, B—E).

Ideally, each root is a closed circle in the level set plane.
However, some roots are under-sampled or affected by noise
such that the contours of some roots are disconnected. A
video sequence of all level set images would result in a flick-
ering effect. Therefore, we use a phase-based frame interpo-
lation technique (Meyer et al, 2015) to smooth the level
set image sequence. This method estimates transition
frames between the level set images, which is equal to an
up-sampling process of the 3D point cloud (Waki, 2016).

2202 YoIel\ Lg Uo 1sonb Aq 6€8/LE9/6EL/Z/28L/91IME/sAyd|d/woo dno-oiwepese//:sdny Wwoly papeojumoq


https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab311#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab311#supplementary-data
https://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiab311#supplementary-data

742 PLANT PHYSIOLOGY 2021: 187; 739-757

Liu et al.

DIRT/3D: 3D root phenotyping system

(A) Maize roots in the field (B) 3D root scanner prototype

£ - CYVERSE

/ : é g ) Online image data transfer and storage

) 3D root model reconstruction

(E) Automatic trait measurement for 3D root models

. Youngest - 2" youngest whorl distance
. Youngest nodal root angle

. Root system diameter

. Youngest nodal root diameter

. Stem diameter

. Youngest nodal root length

DU WN

(F) Six examples of overall 18 root traits

Figure 1 Schematic overview of DIRT/3D system. Field grown roots (A) excavated with the Shovelomics protocol (Trachsel et al,, 2011) are placed
in the 3D root scanner (B). The scanner, with 10 synchronized industrial cameras mounted on a curved frame, acquires about 2,000 images of the
root. The images are transferred to and stored in the CyVerse Data Store (Merchant et al,, 2016) (C). The 3D reconstruction is computed with
DIRT/3D’s structure-from-motion software (D) and vyields the resulting 3D root model (E). Overall, the analysis software calculates 18 root traits
from the 3D point cloud of the RC. The image in (F) shows examples for the trait classes, angle, diameter, and length. All developed hardware
designs are open and software methods are open source. Executables are available as a Singularity or Docker container (Kurtzer et al., 2017).

(A) 3D root scanner

(C) Fixture to place the root

.
- -
(D) Flexible camera shelves

Figure 2 3D root scanner prototype. (A) 3D root scanner captures images of an excavated maize root grown under field conditions. (B) The stepper mo-
tor rotates the curved metal frame with the mounted cameras around the root. (C) The fixture keeps the root in place during scanning. (D) The adjust-
able camera shelves allow for the free positioning of each camera. The CAD drawings of the 3D root scanner are available in Supplemental Figure S2.

Insufficient sampled locations of the root models are inter-
polated, which results in a smooth connection of formerly
disconnected contours on level set images (Zhao et al,
2018). A comparison of the original and smoothened se-
quence of level set images shows the increased density of
the 3D root model (Supplemental Figure S3).

The active contour snake model identifies IRs per
level set image

The image sequence of the smoothened level sets is the key to
compute the location and size parameters of IRs. Applying the

active contour snake model (Kass et al, 1988) to each level set
image results in a curve that circumscribes each IR in the level
set image (Mugerwa et al, 2019). Each curve contracts and
moves toward the closed boundaries of an IR by minimizing a
partial differential equation, where image boundaries represent
a low energy state for the active contour. The partial differen-
tial equations formulate a trade-off between an internal and
external energy term. The internal energy describes the conti-
nuity and smoothness of the contour to controls for curve
deformations, and an external energy that describes how well
the contour fits the IR (Zhao et al, 2018).
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Root image 3D root model Root structure Root image 3D root model Root structure

DKIB014

LH59XPHE29

y

Figure 3 The automatic DIRT/3D pipeline generates a detailed 3D point cloud of excavated roots. Examples show excavated maize RCs, their 3D
point cloud models and structure graphs from the test panel of 12 genotypes. Visual comparison of the 2D views of real roots and their respective
3D root models shows that root architecture, along with the color, is reconstructed (Supplementary Video SV2). All 3D models used in the article
are available as .ply file in Supplemental Data SD1.
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(A) Sliding plane

(B) level set image at top position

(C) level set image at middle position

Liu et al.

(D) level set result of (B)

(E) level set result of (C)

Figure 4 The level set image sequence for the estimation of root traits. (A) A sliding plane scans the 3D root model from top to bottom to acquire
a level set image sequence. The information content per level set image varies with depth and generally encodes the points at a pre-defined dis-
tance to the sliding plane. For example, at the top (B and D), only information about the stem appears in the level set image. At a middle position

(C and E), IRs are visible as additional circles.

Our algorithm initializes a circle around each IR in each
level set as an initial input to the minimization of the active
contour snake (Supplemental Figure S4). During the iterative
minimization of the energy function, we use a periodic
boundary condition to enforce a closed curve. The resulting
closed boundary curves represent first estimates of IRs and
used as input to compute a binary mask for each level set
image sequence using Otsu’s binarization method
(Moghaddam and Cheriet, 2012). We adopt the connected
components labeling method to distinguish and label each
closed-boundary object, representing IRs (Playne and
Hawick, 2018). The result of connected components labeling
is a multiple segmentation of IRs represented by colored
components (Figure 5).

However, maize roots intertangle and adhere to each
other, resulting in a complex system. In an image of the
level set sequence, the entanglement will be visible as one
connected component instead of two distinct components.
We use the watershed segmentation to segment the over-
lapping root (Supplemental Figure S5). The idea behind the
watershed algorithm is to interpret gray values in the image
as a local topography or elevation. The algorithm uses pre-
computed local minima to flood basins around them. The
algorithm terminates the flooding of a basin when the wa-
tershed lines of two basins meet. The Euclidean Distance
Transform of the image allows for direct detection of the lo-
cal minima (Fabbri et al, 2008). In that way, watersheds as-
sign each pixel to a unique component and allows the
distinction of entangled roots per level set image (Roshanian
et al, 2016).

A combination of Kalman filters and the Hungarian
algorithm tracks IRs

We developed an IR tracking method by adopting a com-
bination of Kalman filters and the Hungarian algorithm
(Sahbani and Adiprawita, 2016). The algorithm detects IRs
for consecutive level set images. Once IRs are detected,
the Hungarian algorithm matches the corresponding IRs
across the level set images. To improve the speed of the
Hungarian algorithm, we use a Kalman filter to predict
matching IRs in consecutive level set images (Figure 6).
Behind the scenes, the tracking algorithm builds a mathe-
matical model of expected depth development of the
root. In doing so, the algorithm uses the current position,
relative speed, and acceleration of IRs to predict their lo-
cation in the following level set image. As a result, we ob-
tain an initial root structure directly from the point cloud
(see Figure 3 for examples of all 12 genotypes). An anima-
tion and video showing the IR tracking process are avail-
able in Supplemental Video SV4.

Trace connection and back tracking to improve the
computed root structure

Under-sampled regions within the point cloud can re-
sult from left over soil that blocks the view into the RC.
Technically, this may lead to unconnected roots in the
3D model of the RC. As a solution to the disconnection
problem, we describe each root segment by its curva-
ture and Euclidean distance between every pair of adja-
cent roots and root segments. If two close-by root parts
have similar curvature value, we connect them by
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(A) Five sample images from smoothed level set image sequence

(B) Active snake results of (A)

Figure 5 Active contour snake method identifies IRs by analyzing connected components. (A) Five sample images from the smoothened level set
images are shown. (B) The corresponding results from the active contour snake method are shown. Each extracted IR is color-coded with con-
nected component labeling. The active contour snake model detects IRs in each level set image. A video showing the active contour snake evolv-

ing process is available in Supplemental Video SV3.

(A) 3D root model

(B) Individual root tracking

(C) Computed root structure

(D) root structure details: detected whorl locations

Figure 6 A combination of Kalman filters and the Hungarian algorithm tracks IRs in the RC. (A) 3D model of a field-grown maize root generated
by the DIRT/3D reconstruction. (B) Visualization of the tracking process of IRs from level set images. Two level set images are visualized with 50%
transparency to show the tracking of IRs in 3D space. (C) 3D visualization of the root structure graph consisting of all tracked trajectories of re-
solved nodal roots. (D) The structure graph data includes the detected whorls and the corresponding nodal roots. IRs are colored by depth relative

to the RC.

interpolating a curved connection between both seg-
ments. We accept two connected segments as a valid
solution if the newly connected segment does not devi-
ate from the interpolated curve. Once we connected all
root segments that fit the same curve, we adopt
the lterative Back-Tracking method (Liu et al, 2018)
to connect remaining root segments to the root

structure either as continuous curve or as a new
branching root.

During the sequential processing of all level set images, we
calculate the diameters of the minimal bounding circle that
covers all points in all level set images in a 2D projection.
Table 1 lists all 18 root architecture traits that DIRT/3D
computes.
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Table 1 Description of DIRT/3D traits

Liu et al.

Trait name Trait type Trait description Unit
Youngest to second youngest whorl distance RC Distance between the youngest and second youngest mm
whorl (Figure 1F).
Second youngest to third youngest whorl RC Distance between the second youngest and third youn- mm
distance gest whorl (not always detectable)
Youngest/second youngest nodal root angle IR Angle of the line fitted through 70% of the root length to degree
the horizontal plane (Figure 1F)
Youngest/second youngest nodal root IR Average diameters of the fitted circles of the Youngest/ mm
diameter second youngest nodal at the detected whorl locations
(Figure 1F)
Lateral root diameter IR Average diameter of roots that are not identified as nodal mm
roots.
Youngest nodal root length IR Average length of the B-splines fit to all recognized nodal mm
roots emerging at the youngest whorl (Figure 1F)
Number of youngest nodal roots/occluded RC Count of the nodal roots of the youngest root forming count
nodal roots whorl/all other nodal roots in the RC (Figure 1F)
Occupancy index of nodal roots at the youn- RC Sum of all youngest nodal roots/second youngest nodal ratio
gest and second youngest whorl roots diameters at the respective whorl location di-
vided by the stem perimeter
RC diameter RC Average of maximum diameters measured at 10 equidis- mm
tant depth intervals (Figure 1F)
RC eccentricity RC Ratio of the averages of minimum and maximum diame- count
ter of the roots system at consecutive depth intervals
(Figure 4)
RC density RC Average root area divided by the convex hull area at con- ratio
secutive depth intervals
Excavated RC depth RC The number of level set images multiplied by the level mm
set thickness (Figure 4)
RC projection radius RC The radius of the smallest enclosing circle, which is the mm
projection of all IRs closest to the convex hull of the
RC on the horizontal plane.
RC volume RC Sum of all roots volume computed from diameter and mm?>
length for each IR
Stem diameter - Diameter of the circle fit through a slice of the stem mm
(Figure 1F)

Traits describe either a RC characteristic or measure an IR within the RC.

3D root traits correlate at IR and RC level

To test the accuracy and precision of DIRT/3D, we corre-
lated the trait values measured automatically in the 3D
point clouds with manually measured traits of the RC. We
validated manually measurable traits such as RC diameter,
whorl distances, number of nodal roots at certain whorls,
nodal root angle, and root dry biomass with a precision
scale to correlate it with root volume. The correlation analy-
sis of all validated traits showed r> >0.84 and P < 0.001
(Figure 7, A-D are selected examples among 10 trait valida-
tions in Supplemental Figure S6). The results for the second
youngest and the third youngest whorl distance
(Supplemental Figure S6) indicate that at least 2 mm of
whorl distance is needed to identify whorls with our meth-
ods. The minimal whorl distance sets a technical limit to
distinguish the earliest whorls in the RC.

Broad-sense heritability suggests high repeatability
of the observed root trait values

Broad-sense heritability, H2 .. for all traits (Figure 8), is com-
puted as the ratio of total genetic variance to total pheno-
typic variance (Falconer, 1989) to demonstrate the

repeatability of the initial fields trial. For quantitative plant

traits, the broad-sense heritability across multiple varieties
eliminates the time-consuming steps of hybridization and
population development for determining H%_ . We ob-
served broad-sense heritability H2 . >0.6 for all traits except
youngest nodal root length, which indicates a strong genetic
basis for these traits. Nine of the computed traits resulted in
H2 2n>0.9 (Figure 8), which indicates that the calculated
traits show minimal variation within genotypes sampled
with the Shovelomics method. Note that the second youn-
gest and the third youngest whorl distance could not be in-
cluded into the heritability calculation because it is not

always detectable at the resolution of our system.

3D RC traits show consistent results compared to
DIRT 2D traits

We computed comparable RC traits with DIRT/2D from
images of the same roots used for the 3D analysis. Overall,
four traits are comparable between DIRT/3D and DIRT/2D
and 17 traits are only available with DIRT/3D. Three of the
four traits are aggregate traits that vary dependent on the
phenes composing them (Rangarajan and Lynch, 2021). Our
comparison is possible because the 2D and 3D images
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Figure 7 Correlation of automatic and manual trait measurements. All measured traits resulted in correlations of r* > 0.84 (See Supplemental
Figure S6). The figure above shows the examples of (A) the minimally occluded nodal root angle of the youngest whorl; (B) nodal root angle of
the second youngest whorl which is occluded by the nodal roots of youngest whorl; (C) the number of nodal roots nested inside the youngest
whorl; (D) RC volume extracted with the root tracing algorithm that generates the whole root descriptor correlated against manually weighed dry
biomass.
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Figure 8 Broad-sense heritability for 18 computed traits. Phenotypes vary between the individuals because of both environmental factors, the
genes that control traits, as well as various interactions between genes and environmental factors. We computed broad-sense heritability for all
3D traits in Table 1. All but one trait suggests a moderately to strong genetic basis to explain the observed inter-genotypic variation with H; ... >
0.6.

represent in our case the same IR. The four compared traits ~ 30 root traits distinguish genotypes in the test
resulted in highly similar correlations with the manually de- panel

termined ground truth and in similarly high broad-sense A principal component analysis (PCA) of 29 DIRT/2D traits
heritability (Table 2). The heritability of all DIRT/2D traits  suitable for maize RCs and the 18 DIRT/3D root traits show
can be found in Supplemental Data SD2. distinguishable clusters per genotype in the projection on
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Table 2 Comparison of DIRT/3D and DIRT/2D traits for the data set of 100 maize roots used in the 3D analysis before

Trait name DIRT/3D versus DIRT/2D R’ DIRT/3D R’ DIRT/2D H’ DIRT/3D H’ DIRT/2D
Youngest nodal root angle/top angle 0.8775 0.8377 0.9056 0.8920
RC diameter/median width 0.8878 0.8756 0.6415 0.6125
Excavated RC depth/root system depth 0.9126 0.9153 0.9537 0.9706
Stem diameter/stem diameter 0.8441 0.8602 0.8367 0.8346

the first and second principal component. In our test data
set, the first two principal components explain 48.7% of the
overall observed variance in DIRT/2D (Figure 9A), which
compares to 51.9% explained variance in DIRT/3D (Figure
9B). Both, 2D and 3D root traits also distinguished geno-
types by their normalized mean values (Figure 9, C and D).
We found that no single trait classifies all genotypes in 2D
and 3D. However, an analysis of variance test revealed that
the means of each pair of genotypes distinguishes in at least
three traits for DIRT/2D and four traits for DIRT/3D
(Supplemental Data SD2). For example, in DIRT/3D geno-
type PA762 and B101 show a significant difference with
traits such as nodal root diameter at the youngest whorl
and lateral root diameter. However, B101 and PHG50 X
PHG47 do not show separable mean values in the nodal
root angles. We excluded the whorl distance between the
second and the third youngest whorl from the analysis be-
cause the distance was not detectable for some genotypes.

Whole root descriptor distinguishes the unique
spatial arrangement of IRs for all genotypes

Figure 9C illustrates that D- and DS-values, which are sam-
ples of the D- and DS- curve, add strong discriminating
power to DIRT/2D. Therefore, we introduce a 3D variation
of the established D-curve for 2D images (Bucksch et al,
2014) as a whole root descriptor with improved differentia-
tion capabilities (Figure 10). We compute the descriptor
from the sequence of level set images derived from the
reconstructed 3D root models. For each level set image, we
compute the number of pixels that represent roots as a
measure for the area. We found that the accumulation of
root area across the level set images is an intrinsic character-
istic of each genotype (Supplemental Figure S7). The de-
scriptor is robust to outliers and measurement errors
because it relies on the cumulative distribution function
(CDF; Chun et al, 2000; Lee, 2001; Kyurkchiev, 2015). The
3D whole root descriptor distinguished the unique arrange-
ment of IRs for all 12 genotypes as a characteristic mean
curve (Figure 10B). In comparison, the 2D whole root de-
scriptor (Figure 10A) requires further downstream process-
ing of the curve shape to achieve comparable distinction
with derived descriptors like the DS-curve (Supplemental
Figure S7; Figure 9B; Bucksch et al,, 2014). While whole root
descriptors are powerful tools to capture the shape of a RC
or a branching structure in general, they also add value to
commonly used analysis methods. In Figure 10, C and D, we
added D/DS-values and CDF values, respectively, to the PCA
shown in Figure 9A and B. In both cases, an improvement

of the clustering is visible. For DIRT/2D, the overall explained
variance improved from 48.7% to 49.7% and for DIRT/3D
the overall explained variance improved from 51.9% to
53.2%.

Discussion

The presented 3D system to measure traits in highly oc-
cluded RCs is a significant advance in root phenotyping
because it measures highly occluded traits such as whorl
distances and number of nodal roots in dense maize RCs.
A main difference of the presented 3D system to other
3D systems, like X-ray and MRI, is that no special infra-
structure such as radiation protected rooms or specialist
training for personnel is required. Furthermore, the pre-
sented methods introduce a 3D whole root descriptor for
plant root architecture. For the test panel of 12 geno-
types, a minimum of four traits distinguished all geno-
types. In contrast, the whole root descriptor distinguished
all genotypes with one mathematical expression. With
these data, we have made significant progress on the
unaccomplished goal of phenomics to measure the com-
prehensive appearance of a continuously reshaping phe-
notype (Houle et al., 2010).

From a validation point of view, the top angle (r* =
0.87) and median RC width (©* = 0.88) published in the
2D DIRT system (Das et al,, 2015) show equally good cor-
relations with manual measurements as the comparable
nodal root angle of the youngest whorl (r* = 0.88) and RC
diameter (r* = 0.89) on a maize data set. Certainly, com-
parable results could be expected for the nodal root angles
of the second youngest whorl if occluding roots were me-
chanically removed from the RC. Here, we reproduced the
previously reported 2D correlations to a manually mea-
sured ground truth. For comparable traits, we found that
DIRT/3D and DIRT/2D achieved very similar and high cor-
relations (r* > 0.84) with the ground truth data. Broad-
sense heritability also showed high values of H> > 0.6 for
the compared DIRT/2D and DIRT/3D traits (Figure 10 E
and F). However, the presented 3D system extends the
availability of traits compared to DIRT/2D in two ways:
First, many occluded traits can be revealed without me-
chanical work and second, traits like nodal root number at
specific nodes or RC eccentricity can be estimated without
additional manual data collection. Nevertheless, some al-
gorithmic and technical challenges remain to exploit the
utility of 3D root phenotyping for breeders fully. To date,
standard calibration procedures for structure from motion
(SfM) scanners with multiple cameras are rare (Conte et
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Figure 9 Genotype differentiation of 12 maize genotypes. (A) PCA of

DIRT/2D traits suitable for maize RCs. (B) Improved maize root PCA using

DIRT/3D traits. Colors correspond in (A) and (B) to genotypes and points to measured RCs. We normalized all the mean trait values of computed
2D and 3D root traits from DIRT/2D (C) and DIRT/3D (D). Colored points denote the normalized mean values of the 18 root traits and error bars
correspond to the standard error (se) of the mean. The lines guide the reader visually to explore the phenotypic variation between genotypes of
the test panel. For example, the mean of genotype PA762 and B101 distinguishes in nodal root diameter of the youngest root forming whorl and
lateral root diameter in case of DIRT/3D; Genotype PHG50 X PHG47 and PA762 distinguish in the root projection radius. However, B101, PA762,

and PHG50 X PHG47 do not show distinguishing mean values in the n

al, 2018) and limit the achievable resolution to detect
nodes within the maize RC. Further research will focus on
the details of the photogrammetric calibration of the 3D
root scanner, which will allow for thinner cross-section

odal root angle of the youngest whorl.

slices during level set extraction. We believe that root
models of higher resolution will enable the reconstruction
of a more detailed root architecture to obtain measures of
all nodes in the maize RC.
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Figure 10 Comparison of 2D and 3D whole root descriptors of all 12 maize genotypes of the test panel. (A) Accumulating root width in 2D in-
stead of accumulating volume in 3D results in differences in the curve shape. Visually wavy, straight, and irregularly shaped curves can be distin-
guished. However, analyzing such shapes needs further downstream analysis of curve behavior such as with derived DS-curves (Supplemental
Data SD2). (B) The 3D descriptor encodes the spatial arrangement of IRs within the RC as a function of the excavation depth. We define the curve
of the cumulative RC area as the CDF of the area per level set for each genotype. The error bar denotes the st of the normalized root area. Each ge-
notype associates with a characteristic CDF curve (colored coded). All genotypes distinguish visually from each other in their curve characteristics.
(C) Sampling the D and DS curve at fractions of the excavated depth improves clustering of genotypes in the 2D PCA. (D) Adding the CDF curve
traits to the PCA results in visually clear distinction of the genotypes. (E) Broad sense heritabilities computed for the 18 DIRT/3D traits and (F)

broad sense heritabilities computed for DIRT/2D.
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We demonstrated the possibility to retrieve high geomet-
ric detail from field excavated RCs. We even argue that it
will be possible to obtain geometrically complete measure-
ments in the sense of Euclid’s definitions in Elements I-1V
and VI (Callahan and Casey, 2015). Local measurements of
length, diameter, and angle are sufficient to reconstruct ev-
ery solid 3D object if sampled at sufficiently high rates.
Again, research on the calibration technique used for SfM
scanners seems likely to be the limiting factor in achieving
the needed resolution. Assembling the complete geometrical
system of the RC will allow us to describe the whole RC and
its spatial arrangements in one single mathematical con-
struct. We presented a 3D whole root descriptor that is
methodologically similar to the D- and DS-curve for 2D
images (Bucksch et al, 2014). Here, we encoded root archi-
tecture as an aggregate of the extracted 3D root volume
and could reliably distinguish the roots of different geno-
types for a small diversity panel. While our approach varies
depending on the spatial arrangement of roots, it does not
encode the branching structure explicitly. An extension of
the presented whole root descriptor would enable the quan-
tification of morphological differences to understand the
variation of architecture arrangements. Besides, the compari-
son between plant species with similar topological organiza-
tion but different geometric growth such as varying patterns
of curvature along the root would be enabled.

The observed broad-sense heritability suggests a strong re-
peatability with H’ean >0.6 for all traits except nodal root
length of the youngest whorl (Figure 10E). Repeatability,
paired with near geometric completeness, indicates the pres-
ence of a local and global architecture control by genes.
Local control relates to phenes that assemble the architec-
tural phenome of roots as a set of mappable and locally
measurable traits (Lynch and Brown, 2012). However, it is
still an open question if a “global control phene” of root ar-
chitecture phenes exists (Jiang et al, 2019) unless we can
map whole root architectures that are geometrically com-
plete. A necessary step towards answering this question
from a mathematical point of view is to define a mathemat-
ical basis of locally controlled traits or phenes. Since phenes
are often mappable to genes (Yablokov, 1986), a mathemati-
cally independent basis formed by phenes would open ways
for the alternative hypothesis that roots have access to a
spectrum of architectures that acclimatize to their micro-
and macro-environments via their species-specific phenes.

Our system will improve its capabilities with more 3D
data becoming available that enables deep learning
approaches on the 3D root data. For example, the distinc-
tion of brace and crown roots instead of root forming
whorls depends on the detection of pigmentation on the
aerial nodal roots. As more 3D datasets become available,
deep learning networks can be trained to differentiate be-
tween crown and brace roots based on color and texture
differences that vary with environment and genotype. This
current data limitation demands careful planning of the ex-
cavation protocol and computing setup to distinguish brace
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and crown whorls, e.g. as the youngest or the second youn-
gest whorl. Therefore, we currently resolve five to six root
forming whorls dependent on the genotype. The number of
detected whorls is a resolution limited estimate assuming
two whorls formed during early root development. These
two early whorls cannot be distinguished given
the resolution limit of 2mm whorl distance. However, reso-
lution limits likely also apply to any other technology be-
cause the oldest whorls often remain even visually
indistinguishable.

Conclusion

Our 3D phenotyping system is an optical system to handle
highly occluded and mature RCs collected in the field. It is
worth noting that the time required to collect the imaging
data is around 5 min, which is similar than an X-ray scan at
a comparable resolution (Jiang et al, 2019). Unlike many
root phenotyping methods developed in controlled environ-
ments, our system measures maize roots grown under field
conditions. Our results demonstrate that some traits such as
root width achieve comparably good correlations with man-
ually measured ground truths and similar broad-sense heri-
tability values with 2D and 3D phenotyping systems.
However, we also demonstrated the added value of DIRT/
3D to reliably compute traits that are inaccessible in 2D
images. In particular, dense RCs like maize suffer from the
unavailability of detailed traits in 2D. Such traits include
whorl distances, the number, and angles of nodal roots
forming the youngest or the second youngest whorl. We val-
idated our system for the root trait classes of number, angle,
diameter, and length. Validation results demonstrate the re-
liability of our system with correlations of r* > 0.84 for all
traits and P < 0.001. From our analysis, we concluded that
DIRT/3D could extract 3D root traits accurately at the indi-
vidual and crown levels.

We also demonstrated that whole root descriptors im-
prove the capabilities for analyzing root phenotypes. Whole
root descriptors quantify the overall shape of the root and
allow for downstream shape analysis of different root shapes.
A second added value of whole root descriptors is to
strengthen cluster differentiation of PCA analyses. In our ex-
ample, we found strong evidence that whole root descrip-
tors improve genotype differentiation with PCA analysis.
The improvement is visible in the projection of the first two
principal components. Augmenting PCA analysis with whole
root descriptors resulted in explained variance of 49.7% in
DIRT/2D and 53.2% in DIRT/3D.

Both our software and hardware designs are an open and
inexpensive 3D root phenotyping solution. At the time of
publication, the complete system was developed for about
$6,000, which includes labor costs to produce the frame and
high-end cameras. We currently explore options to build the
complete 3D system for about $1,500-2,000 using cheaper
cameras and other means to produce the rotation stand.
Our open-source software is available to the whole plant
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science community on GitHub and can be deployed within
a platform-agnostic Singularity/Docker container to be exe-
cuted independently of the operating system (Supplemental
Data SD3; https://github.com/Computational-Plant-Science).
The use of Singularity/Docker containers will allow for inte-
gration with cyber-infrastructures such as CyVerse. These
containers can run on any high-performance computing sys-
tem that has the Singularity environment installed. The
scanner design is part of the publication (Supplemental
Figure S2) and can be reproduced, scaled and further devel-
oped by everyone.

The presented 3D system requires only one user interaction
to place the RC in the scanner. Placing the root in the scan-
ner could be replaced by a robot in future. Hence, we see our
system as a milestone towards automated root trait measure-
ments in the field. Our belief stems from ongoing develop-
ments in agricultural robotics that will excavate field roots
“on-the-go” (Shi et al, 2019) in the foreseeable future. In that
way, our system supports breeders and root biologists in the
development of crops with increased water uptake, more effi-
cient nitrogen capture, and improved sequestration of atmo-
spheric carbon to mitigate the adverse effects of climate
change without compromising on vyield gains.

Material and methods

Plant material

Plants were grown at The Pennsylvania State University’s
Russell E. Llarson Agricultural Research Center (40°
42'40915" N, 77°, 57'11.120"W) which has a Hagerstown silt
loam soil (fine, mixed, semi-active, mesic Typic Hapludalf).
Fields received fertilization with 190 kg nitrogen ha ' ap-
plied as urea (46-0-0). The sites had drip irrigation. The field
management supplemented nutrients other than nitrogen,
and applied pest management as needed. We planted seeds
using hand jab planters in rows with 76-cm row spacing, 91-
cm alleys, 23-cm plant spacing, 4.6-m plot length with 3.7-m
planted, or approximately 56,800 plants ha™'. We grew
plants in three-row plots and sampled only the middle row.
Planting occurred on June 5 2018, and sampling on August
25 2018, 81 d after planting. Two fields provided 1 ha of
space for four replicates.

Twelve maize (Zea mays) genotypes were selected based
on previous knowledge of their architectural variation and
sampling of a larger set of genotypes. The 12 genotypes in-
cluded six inbred lines (B101, B112, DKIB014, LH123HT,
Pa762, PHZ51) and 6 hybrid lines (DKPB80 x 3IIH6, H96 x
3IIH6, LH59 x PHG29, Pa762 x 3IIH6, PHG50 x PHG47,
PHZ51 x LH59). These genotypes represent the extremes of
dense versus sparse, large versus small, and maximum and
minimum number of whorls selected from a full diversity
panel. The lab of Shawn Kaeppler at the University of
Wisconsin provided the seeds. We selected 10 representative
plants for five of the genotypes (B112, Pa762, PHZ51,
DKPB80 x 3IIH6, H96 x 3lIH6), and 5 representative plants
of the remaining seven genotypes. Sampling followed the
shovelomics protocol (Trachsel et al, 2011), which
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minimizes variation by selecting similar representative archi-
tectures. Shoots were removed above all root-producing
nodes. We air-dried the roots on a greenhouse bench and
then transported the roots to the lab for imaging.

Obtaining the ground truth for root trait validation

Each RC was fixed on a board. We used a ruler to measure
the length and diameter of the RC. A second diameter was
measured orthogonal to the board plane to determine the ec-
centricity of the RC. We used a protractor to measure the
nodal root angles to the horizontal from four sides. The aver-
age angle of the four sides was taken to represents the rooting
angle for nodal roots forming respective whorls. To measure
root diameters and whorl distances, we used a steel vernier
caliper with a graduation of 0.02 mm. The same caliper was
used to measure maximum RC diameters. The dry weight of
the RCs was weighed with an ADAM Core Portable Compact
Balance CQT 202 (readability: 0.01 g linearity: 0.02 g).

3D root scanner

We designed a 3D root scanner (Figure 2A) to capture
images for 3D reconstruction of the root (Supplemental
Figure S2). A stepper motor (Nema 34 CNC High Torque
Stepper Motor 13 Nm with Digital Stepper Driver DM860,
Figure 2B) rotates a curved metal frame with 10 low cost
and highly versatile imaging cameras (Image Source DFK
27BUJ003 USB 3.0, 6-mm focal length and TCSL 0618 5MP
lens) around the clamped RC in a central fixture (Figure
2C). From the stepper motor, we chose 12,800 micro-step
resolutions to rotate in 1-degree steps (Figure 2B). The cam-
eras ship with the 1/2.3” Aptina CMOS MT9J003 sensor and
can achieve high image resolution at 3,856 x 2,764 (10.7
MP) up to 7 fps. We drilled 21 equidistant holes into the
curved frame to provide a flexible arrangement of each cam-
era. A rail track along the curved frame allows for fine ad-
justment of the camera tilt and pan direction without
compromising stability (Figure 2D). Cameras are then ar-
ranged along the curved frame to achieve a sampling of big-
ger and smaller root morphology that satisfy the Nyquist
theorem to prevent aliasing (Liu et al, 2009). In the case of
maize roots, more cameras are concentrated to image the
RC with high amounts of small occluded roots. Only two
cameras cover the stem part because the surface area of the
stem part usually has minimal to no conclusion, which guar-
antees good 3D reconstruction results.

A computing cluster of 10 Raspberry Pi 3 B+ synchronizes
the image capture of the 10 cameras using a server-client
design (Supplemental Figure S8). The synchronized cameras
of our 3D root scanner capture approximately 2,000 images
per maize root in about 5 min. The developed controller
software on the Raspberry Pi computing cluster synchro-
nizes the camera’s image capture and the stepper motor
movement. Once the stepper motor receives the “start
move” signal via the server unit, it moves all the cameras
into their designated positions. Then, all 10 cameras capture
images simultaneously. Each Raspberry Pi stores the image
initially on a SIM card. During the image capturing process,
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the stepper motor stands still and waits for the next “start
move” signal. The image data of all Raspberry Pi’s automati-
cally transfers to the CyVerse Data Store (Goff et al, 2017;
Merchant et al, 2016). Only the server unit stores informa-
tion about the CyVerse user account. It uses the iRods pro-
tocol (Ward et al, 2009) to transfer the images from each
client unit to the CyVerse Data Store. In the following, the
3D reconstruction uses the image data in the online storage
to generate the 3D point cloud of the RC. Alternatively, the
image data can be transferred manually to computers within
the same WiFi network.

Automatic reconstruction of the 3D root
model with structure-from-motion

Fast Fourier transform detects blurry images

The SfM method requires detected feature points to be visi-
ble in several camera views. However, pose inaccuracy me-
chanically inferred by the scanning device or false feature
matching may lead to incomplete reconstructions (Zheng
and Wu, 2015). As a result, not all feature points are triangu-
lated to generate 3D points. In our case, a small number of
images acquired with the 3D scanner appear dark or blurred
because of delayed image capture, frequency of surrounding
light sources or vibrations of the scanner (see Supplemental
Figure S9 for an example). We detect blurred images using
Fast Fourier transform to transform the image into the fre-
quency domain. The absence or low number of high frequen-
cies compared to the majority of images indicates a blurred
image. Removing blurred images results in higher confidence
for feature matches and therefore, improves model recon-
struction quality and point density in SfM approaches.

lllumination adjustment and content-based seg-
mentation to remove redundant information

We use a luminance-weighted gray world algorithm (Lam,
2005) to adjust and normalize illumination across all cap-
tured images. The root is automatically separated from the
background using a developed content-based segmentation
method (Supplemental Figure S10). The method analyzes
and compares color-space differences across all normalized
images and omits the redundant information of the back-
ground. Overall, the size of the image data reduces from
30% to 50% of the original size. In later steps of the pipeline,
the segmentation decreases the number of false feature
matches during the 3D reconstruction process as well as the
amount of data transmitted to online storage. The method
is fully automatic and parameter-free and uses parallel proc-
essing if available.

Improved feature matching to reduce computation
time and improve 3D point cloud resolution

Given the images of segmented roots, we chose the Visual
SfM method (Wu, 2011) as a basis to develop 3D recon-
struction software for roots. The computationally most ex-
pensive aspect of structure-from-motion algorithms is the
feature matching between image pairs. The amount and
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accuracy of the feature matching determines the quality and
resolution of the resulting 3D root model. In the original
version, Visual SfM performs a full pairwise image matching
to build a feature space across all possible image pairs. For
example, the number of permutations P calculates for r
images out of a set of n total images with the following
formula:

pr n!
no (n—r)!

However, the computation of feature matches generates a
large amount of false feature correspondences in the dense
root data. We found that image pairs that are not adjacent
in the spherical scanner space are particularly prone to in-
correct matching (Supplemental Figure S11). We observed
that the false feature matches occur predominantly between
the dense and thin roots of the RC. Therefore, we optimized
the feature matching process to be suitable for dense root
architectures.

The optimization in our algorithm generates a matching
pair list inside a specified sliding window (Supplemental
Figure S12). Sliding of the window allows for robust match-
ing among all permutations of image pairs. For example,
given an image set captured around the RC in the 1-degree
interval (360 images in total), we set the sliding window size
as 10% of the image size. The window size was found experi-
mentally and is the optimum for the 1-degree interval set-
ting of the scanner. The total number of permutations of
image pairs needed for feature matching is (3636—312” =
129,240 according to the formula above. For an image of
size 1,000 x 1,000, we set the sliding window size as
100x 100, the number of permutations of image pairs
needed will be reduced to (103;'3!2! = 2,450. In that way,
we need to compute only 1.89% 02 all permutations of im-
age pairs.

As a next step, we utilize the RANSAC (random sample
consensus) method to detect and remove the falsely
matched pairs. The RANSAC results usually contain only
highly distinctive features to track between consecutive
images. Given the locations of multiple matched feature
pairs in two or more images, we can produce an estimation
of the positions, orientations of cameras, and the coordi-
nates of the features in a single step using bundle adjust-
ment (Wu et al,, 2011).

Computing root traits from 3D models

We adopted a top-down level set scan of the 3D root model
to compute 3D root traits (Supplemental Figure S13). This
scanning process generates a thin vertical 2D slice or level
set image. We use a phase-based frame interpolation tech-
nique from video processing to smooth the image sequence.
We developed a method to extract IRs in each level set im-
age using the active contour snake model. Then we use the
watershed segmentation to segment the overlapping roots.
Given a smoothed and segmented level set image sequence,
we used a combination of Kalman filters and the Hungarian
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algorithm (Sahbani and Adiprawita, 2016) to track all IRs,
and build an embedded graph of the geometry of resolved
nodal roots at their respective nodes. This embedded graph
forms the basis to compute all 18 root architecture traits.
Nodal root traits are directly derived from the embedded
graph. In each level set image, we compute the lateral root
diameter as an average of the circular projections of point
cloud points that are not identified as nodal roots emerging
from a resolved node. For each level set image, we compute
the area covered by nodal roots of resolved nodes. This area
increases whenever nodal roots emerge from a whorl and
stays almost constant between whorls. If summarized as a
cumulative function of area (see Supplemental Figure S7)
the starting location in the level set image stack corresponds
to the starting point of a plateau in the cumulative
function.

Statistical analyses and used software
All statistics used python 3.7 and the modules NumPy 1.16
and SciPy 1.2.1 (Oliphant, 2007). Figures 7 and 10 used mat-
plotlib 3.2.1 (Hunter, 2007) for visualization of the statistics.
Figures 8 and 9 used Microsoft Excel Version 16.34 to visual-
ize trait and heritability data. Raw data are available in
(Supplemental Data SD3).

DIRT\2D traits were computed with the online platform
available at http://dirt.cyverse.org on May 4, 2021.

Supplemental data

The following materials are available in the online version of
this article.

Supplemental Figure S1. Flow diagram of the DIRT3D
software pipeline.

Supplemental Figure S2. Design plans of the 3D root
scanner.

Supplemental Figure S3. Smoothing of level set images
to improve tracking of individual roots.

Supplemental Figure S4. Detecting roots with active con-
tour snakes.

Supplemental Figure S5. Watershed segmentation to re-
solve occlusion effects.

Supplemental Figure S6. Validation of 10 traits against
manual ground truth.

Supplemental Figure S7. Principle of whole root
descriptor.

Supplemental Figure S8. Design of the Raspberry Pi clus-
ter in the 3D root scanner.

Supplemental Figure S9. Example of a blurred image.

Supplemental Figure S10. Contend based root object
segmentation.

Supplemental Figure S11. False feature matchings.

Supplemental Figure S12. Principle of the sliding
window.

Supplemental Figure S13. A top-down level set scan of
the 3D root model to compute 3D root traits.

Supplemental Video SV1. Video of the 3D root scanner
recording a maize root.
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Supplemental Video SV2. Video of a real root compared
to its reconstruction from various angles.

Supplemental Video SV3. Video of active contour snakes
detecting individual roots in level set images.

Supplemental Video SV4. Video subsequently detected
roots in a maize root system.

Supplemental Data SD1. Examples of 3D Root models in
ply format.

Supplemental Data SD2. Excel sheet containing all com-
puted quantitative data and manual measurements used in
the paper.

Supplemental Data SD3. Links to source code and exe-
cutable docker container.
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