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ABSTRACT

Answering complex questions about textual narratives requires reasoning over
both stated context and the world knowledge that underlies it. However, pre-
trained language models (LM), the foundation of most modern QA systems, do
not robustly represent latent relationships between concepts, which is necessary
for reasoning. While knowledge graphs (KG) are often used to augment LMs with
structured representations of world knowledge, it remains an open question how
to effectively fuse and reason over the KG representations and the language con-
text, which provides situational constraints and nuances. In this work, we propose
GREASELM, a new model that fuses encoded representations from pretrained
LMs and graph neural networks over multiple layers of modality interaction op-
erations. Information from both modalities propagates to the other, allowing lan-
guage context representations to be grounded by structured world knowledge, and
allowing linguistic nuances (e.g., negation, hedging) in the context to inform the
graph representations of knowledge. Our results on three benchmarks in the com-
monsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical ques-
tion answering (i.e., MedQA-USMLE) domains demonstrate that GREASELM
can more reliably answer questions that require reasoning over both situational
constraints and structured knowledge, even outperforming models 8 x larger.!

1 INTRODUCTION

Question answering is a challenging task that requires complex reasoning over both explicit con-
straints described in the textual context of the question, as well as unstated, relevant knowledge
about the world (i.e., knowledge about the domain of interest). Recently, large pretrained language
models fine-tuned on QA datasets have become the dominant paradigm in NLP for question answer-
ing tasks (Khashabi et al., 2020). After pretraining on an extreme-scale collection of general text
corpora, these language models learn to implicitly encode broad knowledge about the world, which
they are able to leverage when fine-tuned on a domain-specific downstream QA task. However,
despite the strong performance of this two-stage learning procedure on common benchmarks, these
models struggle when given examples that are distributionally different from examples seen during
fine-tuning (McCoy et al., 2019). Their learned behavior often relies on simple (at times spurious)
patterns to offer shortcuts to an answer, rather than robust, structured reasoning that effectively fuses
the explicit information provided by the context and implicit external knowledge (Marcus, 2018).

On the other hand, massive knowledge graphs (KG), such as Freebase (Bollacker et al., 2008), Wiki-
data (Vrandec¢i¢ & Krétzsch, 2014), ConceptNet (Speer et al., 2017), and Yago (Suchanek et al.,
2007) capture such external knowledge explicitly using triplets that capture relationships between
entities. Previous research has demonstrated the significant role KGs can play in structured rea-
soning and query answering (Ren et al., 2020; 2021; Ren & Leskovec, 2020). However, extending
these reasoning advantages to general QA (where questions and answers are expressed in natural
language and not easily mapped to strict logical queries) requires finding the right integration of
knowledge from the KG with the information and constraints provided by the QA example. Prior

'All code, data and pretrained models are available at https://github.com/snap-stanford/
GreaseLM.
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Figure 1: GREASELM Architecture. The textual context is appended with a special interaction
token and passed through N LM-based unimodal encoding layers. Simultaneously, a local KG of
relevant knowledge is extracted and connected to an interaction node. In the later GREASELM lay-
ers, the language representation continues to be updated through LM layers and the KG is processed
using a GNN, simulating reasoning over its knowledge. In each layer, after each modality’s repre-
sentation is updated, the representations of the interaction token and node are pulled, concatenated,
and passed through a modality interaction (MlInt) unit to mix their representations. In subsequent
layers, the mixed information from the inferaction elements mixes with their respective modalities,
allowing knowledge from the KG to affect the representations of individual tokens, and context from
language to affect fine-grained entity knowledge representations in the GNN.

methods propose various ways to leverage both modalities (i.e., expressive large language models
and structured KGs) for improved reasoning (Mihaylov & Frank, 2018; Lin et al., 2019; Feng et al.,
2020). However, these methods typically fuse the two modalities in a shallow and non-interactive
manner, encoding both separately and fusing them at the output for a prediction, or using one to
augment the input of the other. Consequently, previous methods demonstrate restricted capacity to
exchange useful information between the two modalities. It remains an open question how to effec-
tively fuse the KG and LM representations in a truly unified manner, where the two representations
can interact in a non-shallow way to simulate structured, situational reasoning.

In this work, we present GREASELM, a new model that enables fusion and exchange of informa-
tion from both the LM and KG in multiple layers of its architecture (see Figure 1). Our proposed
GREASELM consists of an LM that takes as input the natural language context, as well as a graph
neural network (GNN) that reasons over the KG. After each layer of the LM and GNN, we design
an interactive scheme to bidirectionally transfer the information from each modality to the other
through specially initialized interaction representations (i.e., interaction token for the LM; interac-
tion node for the GNN). In such a way, all the tokens in the language context receive information
from the KG entities through the interaction token and the KG entities indirectly interact with the
tokens through the interaction node. By such a deep integration across all layers, GREASELM en-
ables joint reasoning over both the language context and the KG entities under a unified framework
agnostic to the specific language model or graph neural network, so that both modalities can be
contextualized by the other.

GREASELM demonstrates significant performance gains across different LM architectures. We
perform experiments on several standard QA benchmarks: CommonsenseQA, OpenbookQA and
MedQA-USMLE, which require external knowledge across different domains (commonsense rea-
soning and medical reasoning) and use different KGs (ConceptNet and Disease Database). Across
both domains, GREASELM outperforms comparably-sized prior QA models, including strong fine-
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tuned LM baselines (by 5.5%, 6.6%, and 1.3%, respectively) and state-of-the-art KG+LM models
(by 0.9%, 1.8%, and 0.5%, respectively) on the three competitive benchmarks. Furthermore, with
the deep fusion of both modalities, GREASELM exhibits strong performance over baselines on ques-
tions that exhibit textual nuance, such as resolving multiple constraints, negation, and hedges, and
which require effective reasoning over both language context and KG.

2 RELATED WORK

Integrating KG information has become a popular research area for improving neural QA systems.
Some works explore using two-tower models to answer questions, where a graph representation
of knowledge and language representation are fused with no interaction between them (Wang et al.,
2019). Other works seek to use one modality to ground the other, such as using an encoded represen-
tation of a linked KG to augment the textual representation of a QA example (e.g., Knowledgeable
Reader, Mihaylov & Frank, 2018; KagNet, Lin et al., 2019; KT-NET, Yang et al., 2019). Others re-
verse the flow of information and use a representation of the text (e.g., final layer of LM) to provide
an augmentation to a graph reasoning model over an extracted KG for the example (e.g., MHGRN,
Feng et al., 2020; Lv et al., 2020). In all of these settings, however, the interaction between both
modalities is limited as information between them only flows one way.

More recent approaches explore deeper integrations of both modalities. Certain approaches learn to
access implicit knowledge encoded in LMs (Bosselut et al., 2019; Petroni et al., 2019; Hwang et al.,
2021) by training on structured KG data, and then use the LM to generate local KGs that can be
used for QA (Wang et al., 2020; Bosselut et al., 2021). However, these approaches discard the static
KG once they train the LM on its facts, losing important structure that can guide reasoning. More
recently, QA-GNN (Yasunaga et al., 2021) proposed to jointly update the LM and GNN represen-
tations via message passing. However, they use a single pooled representation of the LM to seed
the textual component of this joint structure, limiting the updates that can be made to the textual
representation. In contrast to prior works, we propose to make individual token representations in
the LM and node representations in the GNN mix for multiple layers, enabling representations of
both modalities to reflect particularities of the other (e.g., knowledge grounds language; language
nuances specifies which knowledge is important). Simultaneously, we retain the individual structure
of both modalities, which we demonstrate improves QA performance substantially (§5).

Additionally, some works explore integrating knowledge graphs with language models in the pre-
training stage. However, much like for QA, the modality interaction is typically limited to knowl-
edge feeding language (Zhang et al., 2019; Shen et al., 2020; Yu et al., 2020), rather than designing
interactions across multiple layers. Sun et al. (2020)’s work is perhaps most similar, but they do not
use the same interaction bottleneck, requiring high-precision entity mention spans for linking, and
they limit expressivity through shared modality parameters for the LM and KG.

3  PROPOSED APPROACH: GREASELM

In this work, we augment large-scale language models (Devlin et al., 2019; Liu et al., 2019; Lan
et al., 2020; Liu et al., 2021) with graph reasoning modules over KGs. Our method, GREASELM
(depicted in Figure 1), consists of two stacked components: (1) a set of unimodal LM layers which
learn an initial representation of the input tokens, and (2) a set of upper cross-modal GREASELM
layers which learn to jointly represent the language sequence and linked knowledge graph, allowing
textual representations formed from the underlying LM layers and a graph representation of the KG
to mix with one another. We denote the number of LM layers as IV, and the number of GREASELM
layers as M. The total number of layers in our model is N + M.

Notation. In the task of multiple choice question answering (MCQA), a generic MCQA-type dataset
consists of examples with a context paragraph ¢, a question ¢ and a candidate answer set A, all
expressed in text. In this work, we also assume access to an external knowledge graph (KG) G that
provides background knowledge that is relevant to the content of the multiple choice questions.

Given a QA example (¢, ¢,.A), and the KG G as input, our goal is to identify which answer a € A is
correct. Without loss of generality, when an operation is applied to an arbitrary answer, we refer to
that answer as a. We denote a sequence of tokens in natural language as {wy, ..., wr}, where T is
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the total number of tokens, and the representation of a token w; from the ¢-th layer of the model as

h(e) We denote a set of nodes from the KG as {ey, ..., e }, where .J is the total number of nodes,

and the representation of a node e; in the /-th layer of the model as e( )

3.1 INPUT REPRESENTATION

We concatenate our context paragraph ¢, question ¢, and candidate answer a with separator tokens
to get our model input [¢; ¢; a] and tokenize the combined sequence into {wy, ..., wr}. Second, we
use the input sequence to retrieve a subgraph of the KG G (denoted Ggp,), which provides knowledge
from the KG that is relevant to this QA example. We denote the set of nodes in Gy as {e1,...,e5}.

KG Retrieval. Given each QA context, we follow the procedure from Yasunaga et al. (2021) to
retrieve the subgraph Gy, from G. We describe this procedure in Appendix B.1. Each node in Ggy,
is assigned a type based on whether its corresponding entity was linked from the context c, question
q, answer a, or as a neighbor to these nodes. In the rest of the paper, we use “KG” to refer to Ggyp.

Interaction Bottlenecks. In the cross-modal GREASELM layers, information is fused between both
modalities, for which we define a special interaction token w;y,; and a special interaction node e;,
whose representations serve as the bottlenecks through which the two modalities interact (§3.3). We
prepend w;,; to the token sequence and connect e;,,; to all the linked nodes Vijinkeq in Gup-

3.2 LANGUAGE PRE-ENCODING

In the unimodal encoding component, given the sequence of tokens {wins, w1, ..., wr}, we first
sum the token, segment, and positional embeddings for each token to compute its /=0 input repre-

sentation { hggi, h(o) e hg,? ) }, and then compute an output representation for each layer ¢:

Z)} LM- Layer({hgfml) he Y ---7h¥71)}) (D

for{ =1,....N

nl

znt7

where LM-Layer(-) is a single LM encoder layer, whose parameters are initialized using a pretrained
model (§4.1). We refer readers to Vaswani et al. (2017) for technical details of these layers.

3.3 GREASELM

GREASELM uses a cross-modal fusion component to inject information from the KG into language
representations and information from language into KG representations. The GREASELM layer
is designed to separately encode information from both modalities, and fuse their representations
using the bottleneck of the special interaction token and node. It is comprised of three components:
(1) a transformer LM encoder block which continues to encode the language context, (2) a GNN
layer that reasons over KG entities and relations, and (3) a modality interaction layer that takes the
unimodal representations of the interaction token and interaction node and exchanges information
through them. We discuss these three components below.

Language Representation. In the /-th GREASELM layer, the input token embeddings
{thX;M 2 h(NH Do , h(TN+€_1)} are fed into additional transformer LM encoder blocks that
continue to encode the textual context based on the LM’s pretrained representations:

(N+£) h(N+é) h(N+£ } = LM- Layer({h

int

(N+6—1) h(NJrZ v h%N+£71)}) @)

int

ford=1,....M

(h

where h corresponds to pre-fused embeddings of the language modality. As we will discuss below,

because hf\[je ! will encode information received from the knowledge graph representation, these

late language encoding layers will also allow the token representations to mix with KG knowledge.
Graph Representation. The GREASELM layers also encode a representation of the local KG Gy
linked from the QA example. To represent the graph, we first compute initial node embeddings

{e(o) ceey ef,o)} for the retrieved entities using pretrained KG embeddings for these nodes (§4.1).
The initial embedding of the interaction node e, , is initialized randomly.
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Then, in each layer of the GNN, the current representation of the node embeddings

{egfw 1), (€= 1) ef] } is fed into the layer to perform a round of information propagation

between nodes 1n the graph and yield pre-fused node embeddings for each entity:
{eln-e. . ey} = GNN({ef; Vel ey ™) 3)

wnt? wnt

ford=1,....M

where GNN corresponds to a variant of graph attention networks (Velickovi€ et al., 2018) that is a
simplification of the method of Yasunaga et al. (2021). The GNN computes node representations

éy) for each node e; € {e1,...,e s} via message passing between neighbors on the graph.

é§»‘) = fn( > asjmsj> + e(e 1 (4)
¥

es E./\/'ej U{e;

where N, represents the neighborhood of an arbitrary node e;, m; denotes the message one of its
neighbors e, passes to e;, o is an attention weight that scales the message m;, and f, is a 2-layer
MLP. The messages ms; between nodes allow entity information from a node to affect the model’s
representation of its neighbors, and are computed in the following manner:

ro = fr(Tsjy Ws, u;) (5) my; = frn (e, ug, 7y) (6)

where u,,u; are node type embeddings, 7; is a relation embedding for the relation connecting
es and e;, f, is a 2-layer MLP, and f,, is a linear transformation. The attention weights «;
scale the contribution of each neighbor’s message by its importance, and are computed as follows:

a5 = (%Y, uy) (7) ki = fulel ™V, uy, ) ®)
Tk exp(7s;)

_ 4k Qg = P\Vsj (10)

Vsj = VD ) sj ZeSGNer{ej} exp(7sj)

where f, and f, are linear transformations and u,, u;, 7s; are defined the same as above.

As discussed in the following paragraph, message passing between the interaction node e;,,; and the
nodes from the retrieved subgraph will allow information from text that e;,; receives from w;,; to
propagate to the other nodes in the graph.

Modality Interaction. Finally, after using a transformer LM layer and a GNN layer to update token
embeddings and node embeddings respectively, we use a modality interaction layer (MlInt) to let
the two modalities fuse information through the bottleneck of the interaction token w;,; and the

interaction node e;,;. We concatenate the pre-fused embeddings of the interaction token izggt and
5(1)

interaction node €;,.,

pass the joint representation through a mixing operation (MlInt), and then split

the output post-fused embeddings into hgfl)t and egfl)t:

[h(é) (f)] MInt([h(o ~(4)]) (11)

int? znt int? znt

We use a two-layer MLP as our MInt operation, though other fusion operators could be used to mix
the representation. All the tokens other than the interaction token w;,,; and all the nodes other than
the interaction node e;,; are not involved in the modality interaction process: w® = w® forw e
{wy,...,wr}ande® = é¥ fore € {ey,...,e;}. However, they receive information from the in-
teraction representations hﬁfjt and el(-fl)t in the next layers of their respective modal propagation (i.e.,
Eqgs. 2, 3). Consequently, across multiple GREASELM layers, information propagates between both
modalities (see Fig. 1 for visual depiction), grounding language representations to KG knowledge,
and knowledge representations to contextual constraints.

Learning & Inference. For the MCQA task, given a question ¢ and an answer a from all
the candidates A, we compute the probability of a being the correct answer as p(a | ¢,¢)

exp(MLP(thfo), eff\;t[), g)), where g denotes attention-based pooling of {e(M) | e; €
{e1,...,es}} using hEm ") as a query. We optimize the whole model end-to-end using the cross

entropy loss At inference time, we predict the most plausible answer as arg max,c 4 p(a | ¢, c).
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Dataset Example

A weasel has a thin body and short legs to easier burrow after prey in a what?
(A) tree (B) mulberry bush (C) chicken coop (D) viking ship (E) rabbit warren

Which of these would let the most heat travel through?
OpenbookQA  (A) a new pair of jeans (B) a steel spoon in a cafeteria
(C) a cotton candy at a store (D) a calvin klein cotton hat

CommonsenseQA

A 57-year-old man presents to his primary care physician with a 2-month
history of right upper and lower extremity weakness. He noticed the weakness
when he started falling far more frequently while running errands. Since then,
he has had increasing difficulty with walking and lifting objects. His past
medical history is significant only for well-controlled hypertension, but he says
MedQA-USMLE that some members of his family have had musculoskeletal problems. His right
upper extremity shows forearm atrophy and depressed reflexes while his right
lower extremity is hypertonic with a positive Babinski sign. Which of the
following is most likely associated with the cause of this patients symptoms?
(A) HLA-BS haplotype (B) HLA-DR?2 haplotype
(C) Mutation in SOD1 (D) Mutation in SMN1

Table 1: Examples of the MCQA task for each of the datasets evaluated in this work.

4 EXPERIMENTAL SETUP

We evaluate GREASELM on three diverse multiple-choice question answering datasets across two
domains: CommonsenseQA (Talmor et al., 2019) and OpenBookQA (Mihaylov et al., 2018) as com-
monsense reasoning benchmarks, and MedQA-USMLE (Jin et al., 2021) as a clinical QA task.

CommonsenseQA is a 5-way multiple-choice question answering dataset of 12,102 questions that
require background commonsense knowledge beyond surface language understanding. We perform
our experiments using the in-house data split of Lin et al. (2019) to compare to baseline methods.

OpenbookQA is a 4-way multiple-choice question answering dataset that tests elementary scientific
knowledge. It contains 5,957 questions along with an open book of scientific facts. We use the
official data splits from Mihaylov & Frank (2018).

MedQA-USMLE is a 4-way multiple-choice question answering dataset, which requires biomed-
ical and clinical knowledge. The questions are originally from practice tests for the United States
Medical License Exams (USMLE). The dataset contains 12,723 questions. We use the original data
splits from Jin et al. (2021).

4.1 IMPLEMENTATION & TRAINING DETAILS

Language Models. We seed GREASELM with RoBERTa-Large (Liu et al., 2019) for our exper-
iments on CommonsenseQA, AristoRoBERTa (Clark et al., 2019) for our experiments on Open-
bookQA, and SapBERT (Liu et al., 2021) for our experiments on MedQA-USMLE, demonstrating
GREASELM'’s generality with respect to language model initializations. Hyperparameters for train-
ing these models can be found in Appendix Table 7.

Knowledge Graphs. We use ConceptNet (Speer et al., 2017), a general-domain knowledge graph,
as our external knowledge source G for both CommonsenseQA and OpenbookQA. It has 799,273
nodes and 2,487,810 edges in total. For MedQA-USMLE, we use a self-constructed knowledge
graph that integrates the Disease Database portion of the Unified Medical Language System (UMLS;
Bodenreider, 2004) and DrugBank (Wishart et al., 2018). The knowledge graph contains 9,958
nodes and 44,561 edges. Additional information about node initialization and hyperparameters for
preprocessing these KGs can be found in Appendix B.2.

4.2 BASELINE METHODS

Fine-tuned LMs. To study the effect of using KGs as external knowledge sources, we compare
our method with vanilla fine-tuned LMs, which are knowledge-agnostic. We fine-tune RoOBERTa-
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Table 2: Performance comparison on Commonsense QA in-house split (controlled experiments).
As the official test is hidden, here we report the in-house Dev (IHdev) and Test (IHtest) accuracy,
following the data split of Lin et al. (2019). Experiments are controlled using same seed LM.

Methods IHdev-Acc. (%) IHtest-Acc. (%)
RoBERTa-Large (w/o KG) 73.1 (£0.5) 68.7 (£0.6)
RGCN (Schlichtkrull et al., 2018) 72.7 (£0.2) 68.4 (+£0.7)
GceonAttn (Wang et al., 2019) 72.6 (£0.4) 68.6 (£1.0)
KagNet (Lin et al., 2019) 73.5 (£0.2) 69.0 (+0.8)
RN (Santoro et al., 2017) 74.6 (£0.9) 69.1 (£0.2)
MHGRN (Feng et al., 2020) 74.5 (£0.1) 71.1 (£0.8)
QA-GNN (Yasunaga et al., 2021) 76.5 (£0.2) 73.4 (+£0.9)
GREASELM (Ours) 78.5 (£0.5) 74.2 (£0.4)

Table 3: Test Accuracy comparison Table 4: Test accuracy comparison to public Open-
on OpenBookQA. Experiments are BookQA model implementations. *UnifiedQA (11B
controlled using the same seed LM  params) and T5 (3B) are 30x and 8x larger than our model.

for all LM+KG methods. Model Acec. # Params
Model Acc. ALBERT (Lan et al., 2020) + KB 81.0 ~235M

- HGN (Yan et al., 2020) 81.4 >355M
AristoRoBERTa (no KG)  78.4 AMR-SG (Xu et al., 2021) 816  ~36IM
+ RGCN 74.6 ALBERT + KPG (Wang et al., 2020)  81.8 >235M
+ GeonAttn 71.8 QA-GNN (Yasunaga et al., 2021) 82.8 ~360M
+RN 75.4 T5" (Raffel et al., 2020) 83.2 ~3B
+ MHGRN 80.6 T5 + KB (Pirtoaca) 85.4 >11B
+ QA-GNN 82.8 UniﬁedQA* (Khashabi et al., 2020) 87.2 ~11B
GREASELM (Ours) 84.8 GREASELM (Ours) 84.8 ~359M

Large (Liu et al., 2019) for CommonsenseQA, and AristoRoBERTa? (Clark et al., 2019) for Open-
bookQA. For MedQA-USMLE, we use a state-of-the-art biomedical language model, SapBERT (Liu
et al., 2021), which is an augmentation of PubmedBERT (Gu et al., 2022) that is trained with entity
disambiguation objectives to allow the model to better understand entity knowledge.

LM+KG models. We also evaluate GREASELM’s ability to exploit its knowledge graph augmen-
tation by comparing with existing LM+KG methods: (1) Relation Network (RN; Santoro et al.,
2017), (2) RGCN (Schlichtkrull et al., 2018), (3) GconAttn (Wang et al., 2019), (4) KagNet (Lin
et al., 2019), (5) MHGRN (Feng et al., 2020), and (6) QA-GNN (Yasunaga et al., 2021). QA-GNN
is the existing top-performing model under this LM+KG paradigm. The key difference between
GREASELM and these baseline methods is that they do not fuse the representations of both modal-
ities across multiple interaction layers, allowing the representation of both modalities to affect the
other (§3.3). For fair comparison, we use the same LM to initialize these baselines as for our model.

5 EXPERIMENTAL RESULTS

Our results in Tables 2 and 3 demonstrate a consistent improvement on the CommonsenseQA and
OpenbookQA datasets. On CommonsenseQA, our model’s test performance improves by 5.5% over
fine-tuned LMs and 0.9% over existing LM+KG models. On OpenbookQA, these improvements are
magnified, with 6.4% over raw LMs, and 2.0% over the prior best LM+KG system, QA-GNN. The
boost over QA-GNN suggests that GREASELM’s multi-layer fusion component that passes infor-
mation between the text and KG representations is more expressive than LM+KG methods which do

20penbookQA provides an extra corpus of scientific facts in a textual form. AristoRoBERTa is based off
RoBERTa-Large, but uses the facts corresponding to each question, prepared by Clark et al. (2019), as an
additional input along with the QA context.
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Table 5: Performance of GREASELM on the CommonsenseQA TH-dev set on complex questions
with semantic nuance such as prepositional phrases, negation terms, and hedge terms.

Model 0# Pre[;ositionzal Phrgses A Neg;ziromn I-![e‘:e(:iel

n 210 429 316 171 59 83 167

RoBERTa-Large 66.7 723 76.3 743 69.5 63.8 70.7
QA-GNN 76.7 762 79.1 749 814 66.2 76.0
GREASELM (Ours) 757 793 804 772 84.7 69.9 78.4

not integrate such sustained interaction between both modalities. We also achieve competitive re-
sults to other systems on the leaderboard of OpenbookQA (Table 4), posting the third highest score.
However, we note that the T5 (Raffel et al., 2020) and UnifiedQA (Khashabi et al., 2020) models are
pretrained models with 8 x and 30x more parameters, respectively, than our model. Among models
with comparable parameter counts, GREASELM achieves the highest score. An ablation study on
different model components and hyperparameters is reported in Appendix C.1.

Quantitative Analysis. Given these overall performance improvements, we investigated whether
GREASELM'’s improvements were reflected in questions that required more complex reasoning.
Because we had no gold structures from these datasets to categorize the reasoning complexity of
different questions, we defined three proxies: the number of prepositional phrases in the questions,
the presence of negation terms, and the presence of hedging terms. We use the number of preposi-
tional phrases as a proxy for the number of explicit reasoning constraints being set in the questions.
For example, the CommonsenseQA question in Table 1, “A weasel has a thin body and short legs to
easier burrow after prey in a what?” has three prepositional phrases: fo easier burrow, after prey, in
a what, which each provide an additional search constraint for the answer (n.b., in certain cases, the
prepositional phrases do not provide constraints that are needed for selecting the correct answer).
The presence of negation and hedging terms stratifies our evaluation to questions that have explicit
negation mentions (e.g., no, never) and terms indicating uncertainty (e.g., sometimes; maybe).

Our results in Table 5 demonstrate that GREASELM generally outperforms RoBERTa-Large and
QA-GNN for both questions with negation terms and hedge terms, indicating GREASELM handles
contexts with nuanced constraints. Furthermore, we also note that GREASELM performs better than
the baselines across all questions with prepositional phrases, our measure for reasoning complexity.
QA-GNN and GREASELM perform comparably on questions with no prepositional phrases, but
the increasing complexity of questions requires deeper cross-modal fusion between language and
knowledge representations. While QA-GNN’s end fusion approach of initializing a node in the
GNN from the LM’s final representation of the context is an effective approach, it compresses the
language context to a single vector before allowing interaction with the KG, potentially limiting the
cross-relationships between language and knowledge that can be captured (see example in Figure 2).
Interestingly, we note that both GREASELM and QA-GNN significantly outperform RoBERTa-
Large even when no prepositional phrases are in the question. We hypothesize that some of these
questions may require less reasoning, but require specific commonsense knowledge that RoOBERTa
may not have learned during pretraining (e.g., “What is a person considered a bully known for?”).

Qualitative Analysis. In Figure 2, we examine GREASELM’s node-to-node attention weights in-
duced by the GNN layers of the model, and analyze whether they reflect more expressive reasoning
steps compared to QA-GNN. Figure 2 shows an example from the CommonsenseQA IH-dev set. In
this example, GREASELM correctly predicts that the answer is “airplane” while QA-GNN makes
an incorrect prediction, “motor vehicle”. For both models, we perform Best First Search (BFS) on
the retrieved KG subgraph G, to trace high attention weights from the interaction node (purple).

For GREASELM, we observe that the attention by the interaction node increases on the “bug” entity
in the intermediate GNN layers, but drops again by the final layer, resembling a suitable intuition
surrounding the hedge term “unlikely”. Meanwhile, the attention on “windshield” consistently in-
creases across all layers. For QA-GNN, the attention on “bug” increases over multiple layers. As
“bug” is mentioned multiple times in the context, it may be well-represented in QA-GNN’s context
node initialization, which is never reformulated by language representations, unlike in GREASELM.
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Figure 2: Qualitative analysis of GREASELM’s graph attention weight changes across multiple
layers of message passing compared with QA-GNN. GREASELM demonstrates attention change

airplane windshield, airplane

vehicle bug vehicle

car

GNN Final Layer

patterns that more closely resemble the expected change in focus on the “bug” entity.

Domain generality Our reported results thus
far demonstrate the viability of our method in
the general commonsense reasoning domain. In
this section, we explore whether GREASELM
could be adapted to other domains by evaluat-
ing on the MedQA-USMLE dataset. Our results
in Table 6 demonstrate that GREASELM out-
performs state-of-the-art fine-tuned LMs (e.g.,
SapBERT; Liu et al., 2021) and a QA-GNN
augmentation of SapBERT. Additionally, we
note the improved performance over all clas-
sical methods and LM methods first reported
in Jin et al. (2021). Additional results in Ap-
pendix C show that our approach is also ag-
nostic to the language model used with im-
provements recorded by GREASELM when it is
seeded with other LMs, such as PubmedBERT
(Gu et al., 2022), and BioBERT (Lee et al.,

Table 6: Performance on MedQA-USMLE

Methods Acc. (%)
Baselines (Jin et al., 2021)

CHANCE 25.0
PMI 31.1
IR-ES 35.5
IR-CusTOM 36.1
CLINICALBERT-BASE 32.4
BIOROBERTA-BASE 36.1
BIOBERT-BASE 34.1
BIOBERT-LARGE 36.7
Baselines (Our implementation)
SapBERT-Base (w/o KG) 37.2
QA-GNN 38.0
GREASELM (Ours) 38.5

2020). While these results are promising as they suggest that GREASELM is an effective aug-
mentation of pretrained LMs for different domains and KGs (i.e., the medical domain with the DDB
+ Drugbank KG), there is still ample room for improvement on this task.

6 CONCLUSION

In this paper, we introduce GREASELM, a new model that enables interactive fusion through joint
information exchange between knowledge from language models and knowledge graphs. Experi-
mental results demonstrate superior performance compared to prior KG+LM and LM-only baselines
across standard datasets from multiple domains (commonsense and medical). Our analysis shows
improved capability modeling questions exhibiting textual nuances, such as negation and hedging.
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A ETHICS STATEMENT

We outline potential ethical issues with our work below. First, GREASELM is a method to fuse
language representations and knowledge graph representations for effective reasoning about textual
situations. Consequently, GREASELM could reflect many of the same biases and toxic behaviors
exhibited by language models and knowledge graphs that are used to initialize it. For example,
prior large-scale language models have been shown to encode biases about race, gender, and other
demographic attributes (Sheng et al., 2020). Because GREASELM is seeded with pretrained lan-
guage models that often learn these patterns, it is possible to reflect them in open-world settings.
Second, the ConceptNet knowledge graph (Speer et al., 2017) used in this work has been shown to
encode stereotypes (Mehrabi et al., 2021), rather than completely clean commonsense knowledge.
If GREASELM were used outside these standard benchmarks in conjunction with ConceptNet as a
KG, it might rely on unethical relationships in its knowledge resource to arrive at conclusions. Con-
sequently, while GREASELM could be used for applications outside these standard benchmarks,
we would encourage implementers to use the same precautions they would apply to other language
models and methods that use noisy knowledge sources.

Another source of ethical concern is the use of the MedQA-USMLE evaluation. While we find
clinical reasoning using language models and knowledge graphs to be an interesting testbed for
GREASELM and for joint language and reasoning models in general, we do not encourage users to
use these models for real world clinical prediction, particularly at these performance levels.

B EXPERIMENTAL SETUP DETAILS

B.1 ENTITY LINKING

Given each QA context, we follow the procedure from Yasunaga et al. (2021) to retrieve the subgraph
Gsuwp from G. First, we perform entity linking to G to retrieve an initial set of nodes Vjjkeq- Second,
we add any bridge entities that are in a 2-hop path between any pair of linked entities in Vjjpkeq to get
the set of retrieved entities Vieyrieved- Then we prune the set of nodes Viegieved USINg a relevance score
computed for each node. To compute the relevance score, we follow the procedure of Yasunaga et al.
(2021) — we concatenate the node name with the context of the QA example, and pass it through a
pre-trained LM, using the output score of the node name as the relevance score. We only retain the
top 200 scores nodes and prune the remaining ones. Finally, we retrieve all the edges that connect
any two nodes in Vg, forming the retrieved subgraph Gg,,. Each node in Gy, is assigned a type
according to whether its corresponding entity was linked from the context ¢, question g, answer a,
or from a bridge path.

B.2 GRAPH INITIALIZATION

To compute initial node embeddings (§3.3) for entities retrieved in G, from ConceptNet, we follow
the method of MHGRN (Feng et al., 2020). We convert knowledge triples in the KG into sentences
using pre-defined templates for each relation. Then, these sentences are fed into a BERT-large LM
to compute embeddings for each sentence. Finally, for all sentences containing an entity, we extract
all token representations of the entity’s mention spans in these sentences, mean pool over these
representations and project this mean-pooled representation.

For MedQA-USMLE, node embeddings are initialized similarly using the pooled token output em-
beddings of the entity name from the SapBERT model (described in §4.2; Liu et al., 2021). For
MedQA, 5% of examples do not yield a retrieved entity. In these cases, we represent the graph using
a dummy node initialized with 0. In essence, GreaseLM backs off to only using LM representations
as the graph propagates no information.

B.3 HYPERPARAMETERS
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Table 7: Hyperparameter settings for models and experiments

Dataset
Category Hyperparameter
C QA  OpenbookQA  MedQA-USMLE
Number of GREASELM layers M 5 6 3
Number of Unimodal LM layers N' 19 18 9
Model architecture Number of attention heads in GNN 2 2 2
Dimension of node embeddings and the messages in GNN 200 200 200
Dimension of MLP hidden layers (except MInt operator) 200 200 200
Number of hidden layers of MLPs 1 1 1
Dimension of MInt operator hidden layer 400 200 400
Regularization Dropout rate of the embedding layer, GNN layers and fully-connected layers 0.2 0.2 0.2
Learning rate of parameters in LM 1.00E-05 1.00E-05 5.00E-05
Learning rate of parameters not in LM 1.00E-03 1.00E-03 1.00E-03
N Number of epochs in which LM’s parameters are kept frozen 4 4 0
Optimization
Optimizer RAdam RAdam RAdam
Learning rate schedule constant constant constant
Batch size 128 128 128
Number of epochs 30 70 20
Max gradient norm (gradient clipping) 1.0 1.0 1.0
Max number of nodes 200 200 200
Data
Max number of tokens 100 100 512

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ABLATION STUDIES

In Table 8, we summarize an ablation study conducted using the CommonsenseQA IHdev set.

Modality interaction. A key component of GREASELM is the connection of the LM to the GNN
via the modality interaction module (Eq. 11). If we remove modality interaction, the performance
drops significantly, from 78.5% to 76.5% (approximately the performance of QA-GNN). Integrating
the modality interaction in every other layer instead of consecutive layers also hurts performance. A
possible explanation is that skipping layers could impede learning consistent representations across
layers for both the LM and the GNN, a property which may be desirable given we initialize the
model using a pretrained LM’s weights (e.g., RoOBERTa). We also find that sharing parameters
between modality interaction layers (Eq. 11) outperforms not sharing, possibly because our datasets
are not very large (e.g., 10k for CommonsenseQA), and sharing parameters helps prevent overfitting.

Table 8: Ablation study of our model components, using the CommonsenseQA IH-dev set.

Ablation Type Ablation Dev Acc.
GREASELM - 78.5
. . No interaction 76.5
Modality Interaction Interaction in every other layer 76.3
Interaction Layer Parameter Sharing No parameter sharing 77.1
M=4 77.7
Number of GREASELM layers (M) M =6 78.0
M=7 76.2
.. Interaction node connected to all
Graph Connectivity nodes in Vg, n0t only Vinked 77.6
e Random 60.8
Node Initialization 1.\ b (Bordes et al., 2013) 77.7

Number of GREASELM layers. We find that M/ = 5 GREASELM layers achieves the highest
performance. However, both the results for M = 4 and M = 6 are relatively close to the top
performance, indicating our method is not overly sensitive to this hyperparameter.
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Graph connectivity. The interaction node e;,,; is a key component of GREASELM that bridges the
interaction between the KG and the text. Selecting which nodes in the KG are directly connected
to e;n affects the rate at which information from different portions of the KG can reach the text
representations. We find that connecting e;,,; KG nodes explicitly linked to the input text performs
best. Connecting e;,,; to all nodes in the subgraph (e.g., bridge entities) hurts performance (-0.9%),
possibly because the interaction node is overloaded by having to attend to all nodes in the graph (up
to 200). By connecting the interaction node only to linked entities, each linked entity serves as a
filter for relevant information that reaches the interaction node.

KG node embedding initialization. Effectively initializing KG node representations is critical.
When we initialize nodes randomly instead of using the BERT-based initialization method from
Feng et al. (2020), the performance drops significantly (78.5% — 60.8%). While using standard KG
embeddings (e.g., TransE; Bordes et al., 2013) recovers much of the performance drop (77.7%), we
still find that using BERT-based entity embeddings performs best.

C.2 EFFECT OF LM INITIALIZATION ON GREASELM

Table 9: Performance on the in-house splits of Com- Table 10: Initialization on MedQA-
monsenseQA for different LM initializations of our USMLE
method, GREASELM. Methods Acc. (%)
SAPBERT-BASE 37.2
Methods IHdev-Acc. IHtest-Acc. + GREASELM (Ours) 38.5
ROBERTA-LARGE 73.1 68.7 BIOBERT-BASE 34.1
+ GREASELM (Ours) 78.5 74.2 + GREASELM (Ours) 34.6
ROBERTA-BASE 65.1 59.8 PUBMEDBERT-BASE 38.0
+ GREASELM (Ours) 69.3 65.0 + GREASELM (Ours) 38.7

To evaluate whether our method is agnostic to the LM used to seed the GreaseLM layers, we replace
the LMs we use in previous experiments (RoBERTa-large for CommonsenseQA and SapBERT for
MedQA-USMLE) with RoBERTa-base for CommonsenseQA, and BioBERT and PubmedBERT
for MedQA-USMLE. Across multiple LM initializations in two domains, our results demonstrate
that GREASELM can provide a consistent improvement for multiple LMs when used as a modality
junction between KGs and language.
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