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Abstract

Hierarchical relations are prevalent and indispensable for organizing human knowl-
edge captured by a knowledge graph (KG). The key property of hierarchical
relations is that they induce a partial ordering over the entities, which needs to
be modeled in order to allow for hierarchical reasoning. However, current KG
embeddings can model only a single global hierarchy (single global partial order-
ing) and fail to model multiple heterogeneous hierarchies that exist in a single
KG. Here we present ConE (Cone Embedding), a KG embedding model that is
able to simultaneously model multiple hierarchical as well as non-hierarchical
relations in a knowledge graph. ConE embeds entities into hyperbolic cones and
models relations as transformations between the cones. In particular, ConE uses
cone containment constraints in different subspaces of the hyperbolic embedding
space to capture multiple heterogeneous hierarchies. Experiments on standard
knowledge graph benchmarks show that ConE obtains state-of-the-art performance
on hierarchical reasoning tasks as well as knowledge graph completion task on
hierarchical graphs. In particular, our approach yields new state-of-the-art Hits@1
of 45.3% on WN18RR and 16.1% on DDB14 (0.231 MRR). As for hierarchical
reasoning task, our approach outperforms previous best results by an average of
20% across three hierarchical datasets.

1 Introduction

Knowledge graph (KG) is a prevalent data structure that stores factual knowledge in the form of
triplets, which connect two entities (nodes) with a relation (edge) [1]. Knowledge graphs play an
important role in many scientific and machine learning applications, including question answering
[2], information retrieval [3] and discovery in biomedicine [4]. Knowledge graph completion is the
problem of predicting missing relations in the graph, and is crucial in many real-world applications.
Knowledge graph embedding (KGE) models [5, 6, 7] approach the task by embedding entities and
relations into low-dimensional vector space and then use the embeddings to learn a function that
given a head entity h and a relation r predicts the tail entity t.

Hierarchical information is ubiquitous in real-world KGs, such as WordNet [8] or Gene Ontology
[9], since much human knowledge is organized hierarchically. The relations in these KGs can be
separated into non-hierarchical relations (e.g., likes, friendOf ) and hierarchical relations (e.g., isA,
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Figure 1: (a) There are three categories of relations: non-hierarchical relation (sister term), hypernym
(partOf ) and hyponym relation (subClass). Relations induce multiple independent hierarchies. (b)
ConE uses d 2D hyperbolic entailment cones to model an entity. Entities PalmTree and SugarPalm
are connected by a hyponym relation subClass and therefore the cone of PalmTree contains the cone
of SugarPalm.

partOf ), where non-hierarchical relations capture interactions between the entities at the same level
while hierarchical relations induce a tree-like partial ordering structure of entities.

Recent works propose the use of a variety of embedding geometries such as hyperbolic embeddings,
box embeddings, and cone embeddings [10, 11, 12] to model partial ordering property of hierarchical
relations, but two important challenges remain: (1) Existing works that consider hierarchical relations
[13] do not take into account existing non-hierarchical relations [14]. (2) These methods can only
be applied to graphs with a single hierarchical relation type, and are thus not suitable to real-world
knowledge graphs that simultaneously encode multiple hierarchies using many different relations.
For example, in Figure 1, subClass and partOf each define a unique hierarchy over the same set of
entities. However, existing models treat all relations in a KG as part of one single hierarchy, limiting
the ability to reason with different types of heterogeneous hierarchical relations. While there are
methods for reasoning over KGs that use hyperbolic space (MuRP [15], RotH [16]), which is suitable
for modeling tree-like graphs, the choice of relational transformations used in these works (rotation)
prevents them from faithfully capturing all the properties of hierarchical relations. For example, they
cannot model transitivity of hierarchical relations: if there exist triplets (h1, r, h2) and (h2, r, h3),
then (h1, r, h3) exists, i.e. h1 and h3 are also related by relation r.

Here we propose a novel hyperbolic knowledge graph embedding model ConE. ConE is motivated
by the transitivity of nested angular cones [12] that naturally model the partial ordering defined by
hierarchical relations. Our proposed approach embeds entities into the product space of hyperbolic
planes, where the coordinate in each hyperbolic plane corresponds to a 2D hyperbolic cone. To
address challenge (1), we model non-hierarchical relations as hyperbolic cone rotations from head
entity to tail entity, while we model hierarchical relations as a restricted rotation which guarantees
cone containment (Figure 1(b)). To address challenge (2), we assign distinct embedding subspaces
corresponding to product spaces of a different set of hyperbolic planes for each hierarchical relation, to
enforce cone containment constraints. By doing so, multiple heterogeneous hierarchies are preserved
simultaneously in unique subspaces, allowing ConE to perform multiple hierarchical reasoning tasks
accurately.

We evaluate the performance of ConE on the KG completion task and hierarchical reasoning task.
A single trained ConE model can achieve remarkable performance on both tasks simultaneously.
On KG completion task, ConE achieves new state-of-the-art results on two benchmark knowledge
graph datasets including WN18RR [5, 17], DDB14 [18] (outperforming by 0.9% and 4.5% on
Hits@1 metric). We also develop a novel biological knowledge graph GO21 from biomedical
domain and show that ConE successfully models multiple hierarchies induced by different biological
processes. We also evaluate our model against previous hierarchical modeling approaches on ancestor-
descendant prediction task. Results show that ConE significantly outperforms baseline models (by
20% on average when missing links are included), suggesting that it effectively models multiple
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heterogeneous hierarchies. Moreover, ConE performs well on the lowest common ancestor (LCA)
prediction task, improving over previous methods by 100% in Hits@3 metric.

2 Related Work

Hierarchical reasoning. The most related line of work is learning structured embeddings to perform
hierarchical reasoning on graphs and ontologies: order embedding, probabilistic order embedding,
box embedding, Gumbel-box embedding and hyperbolic embedding [10, 11, 12, 19, 20, 21, 22].
These embedding-based methods map entities to various geometric representations that can capture
the transitivity and entailment of hierarchical relations. These methods aim to perform hierarchical
reasoning (transitive closure completion), such as predicting if an entity is an ancestor of another entity.
However, the limitation of the above works is that they can only model a single hierarchical relation,
and it remains unexplored how to extend them to multiple hierarchical relations in heterogeneous
knowledge graphs. Recently, [23] builds upon the box embedding and further models joint (two)
hierarchies using two boxes as entity embeddings. However, the method is not scalable since
the model needs to learn a quadratic number of transformation functions between all pairs of
hierarchical relations. Furthermore, the missing part is that these methods do not leverage non-
hierarchical relations to further improve the hierarchy modeling. For example in Figure 1(a), with the
sisterTerm(PalmTree, MapleTree) and subClass(PalmTree, Tree), we may infer subClass(MapleTree,
Tree). In contrast to prior methods, ConE is able to achieve exactly this type of reasoning as it can
simultaneously model multiple hierarchical as well as non-hierarchical relations.

Knowledge graph embedding. Various embedding methods have been proposed to model entities
and relations in heterogeneous knowledge graphs. Prominent examples include TransE [5], DistMult
[24], ComplEx [25], RotatE [7] and TuckER [14]. These methods often require high embedding
dimensionality to model all the triples. Recently KG embeddings based on hyperbolic space have
shown success in modeling hierarchical knowledge graphs. MuRP [15] learns relation-specific
parameters in the Poincaré ball model. RotH [16] uses rotation and reflection transformation in
n-dimensional Poincaré space to model relational patterns, and achieves state-of-the-art for the KG
completion task, especially under low-dimensionality. However, transformations used in MuRP and
RotH cannot capture transitive relations which hierarchical relations naturally are.

To the best of our knowledge, ConE is the first model that can faithfully model multiple hierarchical
as well as non-hierarchical relations in a single embedding framework.

3 ConE Model Framework

3.1 Preliminaries

Knowledge graphs and knowledge graph embeddings. We denote the entity set and the relation
set in knowledge graph as E and R respectively. Each edge in the graph is represented by a triplet
(h, r, t), connecting the head entity h ∈ E and the tail entity t ∈ E with relation r ∈ R. In KG
embedding models, entities and relations are mapped to vectors: E → RdE ,R → RdR . Here dE , dR
refer to the dimensionality of entity and relation embeddings, respectively. Specifically, the mapping
is learnt via optimizing a defined scoring function RdE × RdR × RdE → R measuring the likelihood
of triplets [16], while maximizing such likelihood only for true triplets.

Hierarchies in knowledge graphs. Many real-world knowledge graphs contain hierarchical rela-
tions [10, 11, 26]. Such hierarchical structure is characterized by very few top-level nodes corre-
sponding to general and abstract concepts and a vast number of bottom-level nodes corresponding
to concrete instances or components of the concept. Examples of hierarchical relations include isA,
partOf. Note that there may exist multiple (heterogeneous) hierarchical relations in the same graph,
which induce several different potentially incompatible hierarchies (i.e., partial orderings) over the
same set of entities (Figure 1(a)). In contrast to prior work, our approach is able to model many
simultaneous hierarchies over the same set of entities.

Hyperbolic embeddings. Hyperbolic embeddings can naturally capture hierarchical structures.
Hyperbolic geometry is a non-Euclidean geometry with a constant negative curvature, where curvature
measures how a geometric manifold deviates from Euclidean space. In this work, we use Poincaré
ball model with constant curvature c = −1 as the hyperbolic space for entity embeddings [10].
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We also investigate on more flexible curvatures, see Appendix B, results show that our model is
robust enough with constant curvature c = −1. In particular, we denote d-dimensional Poincaré ball
centered at origin as Bd = {x ∈ Rd : ∥x∥ < 1}, where ∥·∥ is the Euclidean norm. The Poincaré ball
model of hyperbolic space is equipped with Riemannian metric:

gB = (
2

1− ∥x∥2
)2gE (1)

where gE denotes the Euclidean metric, i.e., gE = Id. The mobius addition ⊕ [27] defined on
Poincaré ball model with −1 curvature is given by:

x⊕ y =
(1 + 2⟨x,y⟩+ ∥y∥2)x+ (1− ∥x∥2)y

1 + 2⟨x,y⟩+ ∥x∥2 ∥y∥2
(2)

For each point x ∈ Bd, the tangent space TxB is the Euclidean vector space containing all tangent
vectors at x. One can map vectors in TxB to vectors in Bd through exponential map expx(·) : TxB →
Bd as follows:

expx(u) = x⊕ tanh(
∥u∥

1− ∥x∥
)

u

∥u∥
(3)

Conversely, the logarithmic map logx(·) : Bd → TxB maps vectors in Bd back to vectors in TxB, in
particular:

logx(u) = (1− ∥x∥) · tanh−1(∥−x⊕ v∥) −x⊕ v

∥−x⊕ v∥
(4)

Also, the hyperbolic distance between x,y ∈ Bd is:

dB(x,y) = 2 tanh−1(∥−x⊕ y∥) (5)

A key property of hyperbolic space is that the amount of space covered by a ball of radius r in
hyperbolic space increases exponentially with respect to r, rather than polynomially as in Euclidean
space. This property contributes to the fact that hyperbolic space can naturally model hierarchical
tree-like structure.

Hyperbolic entailment cones. Each hierarchical relation induces a partial ordering over the entities.
To capture a given partial ordering, we use the hyperbolic entailment cones [12]. Figure 1(b) gives an
example of 2D hyperbolic cones.

Let Cx denotes the cone at apex x. The goal is to model partial order by containment relationship
between cones, in particular, the entailment cones satisfy transitivity:

∀x,y ∈ Bd\{0} : y ∈ Cx ⇒ Cy ⊆ Cx (6)

Also, for x,y ∈ Bd, we define the angle of y at x to be the angle between the half-lines −→ox and −→xy
and denote it as ∠xy. It can be expressed as:

∠xy = cos−1(
⟨x,y⟩(1 + ∥x∥2)− ∥x∥2 (1 + ∥y∥2)

∥x∥ ∥x− y∥
√

1 + ∥x∥2 ∥y∥2 − 2⟨x,y⟩
) (7)

To satisfy transitivity of nested angular cones and symmetric conditions [12], we have the following
expression of Poincaré entailment cone at apex x ∈ Bd:

Cx = {y ∈ Bd|∠xy ≤ sin−1(K
1− ∥x∥2

∥x∥
)} (8)

where K ∈ R is a hyperparameter (we take K = 0.1). This implies that the half aperture ϕx of cone
Cx is as follows:

ϕx = sin−1(K
1− ∥x∥2

∥x∥
) (9)
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Figure 2: ConE model overview: Embedding space is the product space of d hyperbolic planes and
ConE learns a different transformation in each hyperbolic plane. ConE uses restricted rotation
in an assigned relation-specific subspace to model each hierarchical relation r and enforces cone
containment constraint in the subspace so that partial ordering of cones is preserved in the subspace.
For hyperbolic planes not in the subspace, we use a general rotation to model r. How to choose a
relation-specific subspace for each hierarchical relation is essential and further explained in Sec. 3.3.

3.2 ConE Embedding Space and Transformations

We first introduce the embedding space that ConE operates in, and the transformations used to model
hierarchical as well as non-hierarchical relations.

For ease of discussion let’s assume that the relation type is given a priori. In fact, knowledge about
hierarchical relations (i.e., transitive closure) is explicitly available in the definition of the relation in
KGs such as ConceptNet [28], WordNet [8] and Gene Ontology [9]. When such information is not
available, ConE can infer “hierarchicalness” of a relation by a simple criteria with slight modification
to the Krackhardt scores [29], see Appendix H.

Embedding space. The embedding space of ConE, S, is a product space of d hyperbolic planes
[30], resulting in a total embedding dimension of 2d. S can be denoted as S = B2 × B2 × · · · × B2.
Note that this space is different from RotH embedding space [16], which is a single 2d-dimensional
hyperbolic space. ConE’s embedding space is critical in modeling ancestor-descendant relationships
for heterogeneous KGs, since it is more natural when allocating its subspaces (product space of
multiple hyperbolic planes) to heterogeneous hierarchical relations.

We denote the embedding of entity h ∈ E as h = (h1,h2, · · · ,hd) where hi ∈ B2 is the apex of the
i-th 2D hyperbolic cone. We model relation r as a cone transformation on each hyperbolic plane
from head entity cone to tail entity cone. Let r = (r1, r2, · · · , rd) be the representation of relation
r. We use ri = (si, θi) to parameterize transformation for the i-th hyperbolic plane as shown in
Figure 2. si > 0 is the scaling factor indicating how far to go in radial direction and (θi · ϕhi

/π) is
the rotation angle restricted by half aperture ϕhi

(θi ∈ [−π, π)). To perform hierarchical tasks such
as ancestor-descendant prediction, ConE uses nested cones in each hyperbolic plane to model the
partial ordering property of hierarchical relations, by the cone containment constraint in Def. 1.
Definition 1. Cone containment constraint. If entity h is an ancestor of t, then the cone embedding
of t has to reside in that of the entity h, i.e., Cti ⊆ Chi

, ∀i ∈ {1, ...d}.

The cone containment constraint can be enforced in any of the hyperbolic plane components in S . Next
we introduce ConE’s transformations for characterizing hierarchical and non-hierarchical patterns of
relation r in triple (h, r, t). Note that we utilize both transformations to model hierarchical relations
r to capture non-hierarchical properties, i.e., symmetry, composition, etc, as well as hierarchical
properties, i.e., partial ordering. We do this by performing different transformations in different
subspaces of S , as discussed in detail in Sec. 3.3.

Transformation for modeling non-hierarchical properties. Rotation is an expressive transforma-
tion to capture relation between entities [7]. Analogous to RotatE, we adopt rotation transformation
f1 to model non-hierarchical properties (Figure 3(a)). For rotation in the i-th hyperbolic plane,

f1(hi, ri) = expo(G(θi) logo(hi)) (10)

where G(θi) is the Givens rotation matrix:

G(θi) =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]
(11)
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Figure 3: Transformations in ConE in Poincaré ball: (a) Cone rotation from h to t used for non-
hierarchical relations; (b) Restricted rotation from the cone of parent h to the cone of child t used for
hierarchical relations, where “1” corresponds to scaling and “2” to rotation (si, θi) in Eq. 12.

We also show that the rotation transformation in Eq. 10 is expressive: It can model relation patterns
including symmetry, anti-symmetry, inversion, and composition (Appendix A.1).

Transformation for modeling hierarchical properties. However, f1 cannot be directly applied to
model hierarchical relations, because rotation does not obey transitive property: rotation by θi twice
will result in a rotation of 2θi, instead of θi. Hence it cannot guarantee (h1, r, h3) when (h1, r, h2) and
(h2, r, h3) are true. We use restricted rotation transformation f2 to model hierarchical relations.
We impose cone containment constraint to preserve partial ordering of cones after the transformation.
Without loss of generality we assume relation r is a hyponym type relation, the restricted rotation
from h to t in i-th hyperbolic plane is as follows (we perform restricted rotation from t to h if r is a
hypernym relation):

f2(hi, ri) = exphi
(si ·G(θi

ϕhi

π
)hi), ri = (si, θi) (12)

where ϕhi
is the half aperture of cone hi. hi is the unit vector of hi in the tangent space of hi:

hi = ĥi/||ĥi||, ĥi = loghi
(
1 + ||hi||
2||hi||

hi) (13)

Figure 3(b) illustrates the two-step transformation described in Eq. 12, namely the scaling step and
the rotation step.

3.3 ConE Model of Heterogeneous Hierarchies

In the previous section, we explained how we enforce cone containment constraint for hierarchical
relations, however two challenges remain when simultaneously modeling multiple heterogeneous
hierarchies: (1) Partial ordering: Suppose that there is a hyponym relation between entities h1 and
h2, and a different hyponym relation between entities h2 and h3. Then a naïve model would enforce
that the cone of h1 contains the cone of h2 which contains the cone of h3, implying that a hyponym
relation exists between h1 and h3, which is not correct. (2) Expressive power: Cone containment
constraint, while ensuring hierarchical structure by geometric entailment, limits the set of possible
rotation transformations and thus limits the model’s expressive power.

To address these challenges we proceed as follows. Instead of enforcing cone containment constraint
in the entire embedding space, ConE proposes a novel technique to assign unique subspace for each
hierarchical relation, i.e. we enforce cone containment constraint only in a subset of d hyperbolic
planes. Next we further elaborate on this idea.

In particular, for a hierarchical relation r, we assign a corresponding subspace of S , which is a product
space of a subset of hyperbolic planes. Then, we use restricted rotation in the subspace and rotation in
the complement space. We train ConE to enforce cone containment constraint in the relation-specific
subspace. The subspace can be represented by a d-dimensional mask m,mi ∈ {0, 1}, and mi = 1
indicates that cone containment is enforced in the i-th hyperbolic plane. We then extend such notation
to all relations where m = 0 for non-hierarchical relations.
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Dataset #entities #relations #training #validation #test Examples of hierarchical relations
WN18RR 40,943 11 86,385 3,034 3,134 hypernym, has part
DDB14 9,203 14 38,233 4,000 4,000 subtype of, subset of
GO21 89,127 21 796,136 5,000 5,000 part of, is a

FB15k-237 14,541 237 272,115 17,535 20,466 location/contains, /music/genre/parent_genre

Table 1: Datasets statistics. Note that FB15k-237 has very few such hierarchical relations.

Our design of leveraging both transformations to model hierarchical relations is crucial in that they
capture different aspects of the relation. The use of restricted rotation along with cone containment
constraint serves to preserve partial ordering of a hierarchical relation in its relation-specific subspace.
But restricted rotation alone is insufficient: hierarchical relations also possess other properties such as
composition and symmetry that cannot be modeled by restricted rotation. Hence we augment with the
rotation transformation to capture these properties, allowing composition of different hierarchical and
non-hierarchical relations through rotations in the complement space. We further provide theoretical
and empirical results in Appendix A to support that both transformations are of great significance to
the expressiveness of our model.

Putting it all together gives us the following distance scoring function (we use (vi)i∈{1,··· ,d} in the
following to denote a d-dimensional vector v):

ψ(h, r, t) = −1

d
[m · (dB(f2(hi, ri), ti))i∈{1,··· ,d}

+(1−m) · (dB(f1(hi, ri), ti))i∈{1,··· ,d}] + bh + bt

(14)

where the first term corresponds to the restricted rotation in relation-specific subspace, and the second
term corresponds to the rotation in complementary space. A high score indicates that cone of entity h
after relation-specific transformation r is close to the cone of entity t in terms of hyperbolic distance
dB. Note that bh, bt are the learnt radius parameters of h, t which can be interpreted as margins [15].

Subspace allocation. We assign equal dimensional subspaces for all hierarchical relations. We
discuss and compare several strategies in assigning subspaces for hierarchical relations in Appendix B,
including whether to use overlapping subspaces or orthogonal subspaces for different hierarchical
relations, as well as the choice of dimensionality of subspaces. Overlapping subspaces (Appendix B)
allow the model to perform well and enable it to scale to knowledge graphs with a large number
of relations, since there are exponentially many possible overlapping subspaces that can potentially
correspond to different hierarchical relations.

3.4 ConE Loss Function

We use a loss function composed of two parts. The first part of the loss function aims to ensure that
for a given head entity h and relation r the distance to the true tail entity t is smaller than to the
negative tail entity t′:

Ld(h, r, t) =− log σ(ψ(h, r, t))−
∑
t′∈T

1

|T |
log σ(−ψ(h, r, t′)) (15)

where (h, r, t) denotes a positive training example/triplet, and we generate negative samples (h, r, t′)
by substituting the tail with a random entity in T ⊆ E , a random set of entities in KG excluding t.

However, the distance loss Ld does not guarantee embeddings satisfying the cone containment
constraint, since the distance between transformed head embedding and tail embedding can still be
non-zero after training. Hence we additionally introduce the angle loss (without loss of generality let
r be a hyponym relation):

La(h, r, t) = m · (max(0,∠hiti − ϕ(hi)))i∈{1,··· ,d} (16)

which directly encourages cone of h to contain cone of t in relation-specific subspaces, by constraining
the angle between the cones. The final loss is then a weighted sum of the distance loss and the angle
loss, where weight w is a hyperparameter (We investigate the choice of w in Appendix B):

L = Ld + w · La (17)
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WN18RR DDB14 GO21
Fraction of inferred descendant pairs among all true descendant pairs in the test set

Model 0% 50% 100% 0% 50% 100% 0% 50% 100%
Order [19] .889 .739 .498 .731 .633 .513 .642 .592 .534

Poincaré [10] .810 .685 .508 .976 .832 .571 .525 .519 .516
HypCone [12] .799 .677 .504 .973 .823 .594 .554 .539 .519

RotatE [7] .601 .593 .582 .615 .590 .565 .546 .534 .526
RotH [16] .601 .608 .611 .609 .596 .578 .596 .583 .564

ConE .895 .801 .679 .981 .909 .818 .789 .744 .693
Improvement (%) +1.9% +9.6% +11.1% +0.5% +10.3% +38.4% +22.9% +25.7% +22.9%

Table 2: Ancestor-descendant prediction results in mAP (mean average precision). Best score in bold
and second best underlined. We create different test sets that get harder as they contain more and
more test cases (0%, 50%, 100%) of inferred descendant pairs.

4 Experiments

Given a KG containing many hierarchical and non-hierarchical relations, our experiments evaluate:
(A) Performance of ConE on hierarchical reasoning task of predicting if entity h1 is an ancestor of
entity h2. (B) Performance of ConE on generic KG completion tasks.

Datasets. We use four knowledge graph benchmarks (Table 1): WordNet lexical knowledge graph
(WN18RR [5, 17]), drug knowledge graph (DDB14 [18]), and a KG capturing common knowledge
(FB15k-237 [31]). Furthermore, we also curated a new biomedical knowledge graph GO21, which
models genes and the hierarchy of biological processes they participate in.

Model training. During training, we use Adam [32] as the optimizer and search hyperparameters
including batch size, embedding dimension, learning rate, angle loss weight and dimension of
subspace for each hierarchical relation. (Training details and standard deviations in Appendix G).2

We use a single trained model (without fine-tuning) for all evaluation tasks: On ancestor-descendant
relationship prediction, our scoring function for a pair (h, t) with hierarchical relation r is the angle
loss in Eq. 16 where a lower score means h is more likely to be an ancestor of t. For KG completion
task we use the scoring function ψ(h, r, t) in Eq. 14 to rank the triples.

4.1 Hierarchical Reasoning: Ancestor-descendant Prediction

Next we define ancestor-descendant relationship prediction task to test model’s ability on hierarchical
reasoning. Given two entities, the goal makes a binary prediction if they have ancestor-descendant
relationship:

Definition 2. Ancestor-descendant relationship. Entity pair (h1, h2) is considered to have ancestor-
descendant relationship if: there exists a path from h1 to h2 that only contains one type of hyponym
relation, or a path from h2 to h1 that only contains one type of hypernym relation.

Our evaluation setting is a generalization of the transitive closure prediction [19, 10, 12] which
is defined only over a single hierarchy, but our knowledge graphs contain multiple hierarchies
(hierarchical relations). More precisely: (1) When heterogeneous hierarchies coexist in the graph, we
compute the transitive closure induced by each hierarchical relation separately. The test set for each
hierarchical relation is a random collection sampled from all transitive closures of that relation. (2)
To increase the difficulty of the prediction task, our evaluation also considers inferred descendant
pairs, which are only possible to be inferred when simultaneously considering hierarchical and
non-hierarchical relations in KG, due to missing links in KG. We call a descendant pair (u, v) an
inferred descendant pair if their ancestor-descendant relationship can be inferred from the whole
graph but not from the training set. For instance, (Tree,WinePalm) would be an inferred descendant
pair if the subClass relation between Tree and PalmTree is missing in training set. We construct
the inferred descendant pairs by taking the transitive closures of the entire graph, and exclude the
transitive closures of relations in the training set. In our experiments, we consider three test settings:
0%, 50%, 100%, corresponding to the fraction of inferred descendant pairs among all true descendant
pairs in the test set, and the setting with a higher fraction is harder.

2The code of our paper is available at http://snap.stanford.edu/cone.
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Figure 4: The embeddings of RotH and ConE, trained on WN18RR, projecting to one hyperbolic
plane. We show the embedding of a family of trees, and the arrows point from higher level entities
to lower level entities, representing the hierarchical relation “Hyponym”. Different levels of entities
and their corresponding cones in ConE model (Figure 4(b)) are marked with different colors. In
ConE model, the embeddings of high-level entities (e.g., tree, palm tree) are close to the center of the
hyperbolic plane, while embeddings of their descendant entities (e.g., wine palm, mallee) fall in their
hyperbolic cones.

On each dataset, we extract 50k ancestor-descendant pairs. For each pair, we randomly replace the
true descendant with a random entity in the graph, resulting in a total of 100k pairs. Our way of
selecting negative examples offsets the bias during learning that is prevalent in baseline models: the
models tend to always give higher scores to pairs with a high-level node as ancestor, since high-level
nodes usually have more descendants presented in training data. We replace the true descendant while
keeping the true ancestor unchanged for the negative sample, and thus the model will not be able
to “cheat” by taking advantage of the fore-mentioned bias. For each model, we then use its scoring
function to rank all the pairs. We use the standard mean average precision (mAP) to evaluate the
performance on this binary classification task. We further show the AUROC results in Appendix E.

Baselines. We compare our method with state-of-the-art methods for hierarchical reasoning, including
Order embeddings [19], Poincaré embeddings [10] and Hyperbolic entailment cones [12]. Note that
these methods can only handle a single hierarchical relation at a time. So each baseline trains a
separate embedding for each hierarchical relation and then learns a scoring function on the embedding
of the two entities. To ensure that the experiment controls the model size, we enforce that in baselines,
the sum of embedding dimensions of all relations is equal to the relation embedding dimension
of ConE. We also perform comprehensive hyperparameter search for all baselines (Appendix G).
Although KG embedding models (RotatE [7] and RotH [16]) cannot be directly applied to this task,
we adapt them to perform this task by separately training an MLP to make binary classification on
ancestor-descendant pair, taking the concatenation of the two entity embeddings as input. Note that
ConE outperforms these KG completion methods without even requiring additional training.

Results. Table 2 reports the ancestor-descendant prediction results of ConE and the baselines. We
observe that the novel subspace transformation of ConE results in its superior performance in this
task. Our model consistently outperforms baseline methods on all three datasets. As we expected,
KG embedding models cannot perform well on this task (in the range of 0.5 ∼ 0.6 across all settings),
since they do not explicitly model the partial ordering property of the hierarchical relations. In
contrast, our visualization of ConE’s embedding in Figure 4 suggests that ConE faithfully preserves
the cone containment constraint in modeling hierarchical relations, while RotH’s embedding exhibit
less hierarchical structure. As a result, ConE simultaneously captures the heterogeneous relation
modeling and partial ordering, combining the best of both worlds. Our improvement is more
significant as the fraction of inferred descendant pairs increases. This shows that ConE not only
embeds a given hierarchical structure, but can also infer missing hierarchical links by modeling other
non-hierarchical relations at the same time. Thanks to the restricted rotation transformation and
the use of product spaces of hyperbolic planes, ConE can faithfully model the hierarchies without
requiring all transitive closures in the training set. We further perform additional studies to explore
reasons for the performance of each method on ancestor-descendant prediction task in Appendix E.

Lowest common ancestor prediction task. Moreover, we demonstrate flexibility and power of ConE
using a hierarchical analysis task: lowest common ancestor (LCA) prediction, which requires both the
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WN18RR DDB14 GO21 FB15k-237
κ = (1.00, 0.61, 0.99, 0.50) κ = (1.00, 0.84, 0.78, 0.18) κ = (1.00, 0.65, 0.96, 0.22) κ = (1.00, 0.18, 0.36, 0.06)

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
TransE [5] .226 .017 .403 .532 .183 .103 .212 .337 .149 .066 .179 .310 .294 - - .465
RotatE [7] .476 .428 .429 .571 .225 .154 .245 .362 .203 .123 .234 .357 .338 .241 .375 .533

TuckER [14] .470 .443 .482 .526 .198 .137 .219 .314 .205 .136 .222 .342 .358 .266 .394 .544
HAKE [33] .496 .451 .513 .582 .217 .146 .237 .361 .169 .104 .185 .295 .341 .243 .378 .535
MuRP [15] .481 .440 .495 .566 .214 .146 .231 .349 .166 .100 .181 .301 .335 .243 .367 .518
RotH [16] .495 .449 .514 .586 .223 .152 .245 .357 .151 .079 .171 .289 .344 .246 .380 .535

ConE .496 .453 .515 .579 .231 .161 .252 .364 .211 .140 .237 .347 .345 .247 .381 .540

Table 3: Knowledge graph completion results, best out of dimension d ∈ {100, 250, 500}. Best score
in bold and second best underlined. κ is a tuple denoting the 4 Krackhardt scores [29] that measure
how hierarchical a graph is, higher scores mean more hierarchical. ConE achieves the best MRR and
Hits@1 results in hierarchical KGs.

ability to model ancestor-descendant relationship and to distinguish the lowest ancestor. Results show
that ConE can precisely predict LCA, outperforming over 100% on Hits@3 and Hits@10 metrics
compared to previous methods (See detailed results and analysis in Appendix F).

4.2 Knowledge Graph Completion

We also experiment on knowledge graph completion task where missing links include hierarchical
relations as well as non-hierarchical relations. We follow the standard evaluation setting [5].

Baselines. We compare ConE model to state-of-the-art models on knowledge graph completion task,
including TransE [5], RotatE [7], TuckER [14] and HAKE [33], as well as MuRP [15] and RotH
[16], which both operate on a hyperbolic space.

Results. Table 3 reports the KG completion results. Over the first three hierarchical datasets
considered, ConE achieves state-of-the-art results over many recent baselines, including the recently
proposed hyperbolic approaches RotH and MuRP. We also notice that the margins on Hits@1 and
Hits@3 scores are much larger than Hits@10, indicating that our model provides the most accurate
predictions. We further use Krackhardt scores κ to measure how hierarchical each graph is [29].
The score consists of four metrics ((connectedness, hierarchy, efficiency, LUBedness), Appendix H),
where if a graph is maximally hierarchical (i.e., a tree) then its Krackhardt score is (1, 1, 1, 1), and
higher score on four metrics indicate a more hierarchical structure. Notice that the Krackhardt
scores of FB15k-237 are approximately three times lower than those of WN18RR, DDB14 and
GO21, indicating that FB15k-237 is indeed non-hierarchical. We can see that our ConE model still
performs better than other hierarchical KG embedding models (RotH and MuRP) on FB15k-237 and
is comparable to SOTA model (TuckER). Overall, this shows that ConE can scale to a large number
of relations, and that it has competitive performance even in non-hierarchical knowledge graphs.

We further analyze the performance of ConE in low-dimensional regimes in Appendix C. Similar
to previous studies, the hyperbolic-space-based ConE model performs much better than Euclidean
KG embeddings in low dimensions (d = 32). ConE performs similar to previous hyperbolic KG
embedding baselines in low dimensions, but outperforms them in high-dimensional regimes (Table 2).

Ablation study. We further compare the performance of our model with one that does not use cone
restricted rotation for modeling hierarchical relations and one that does not use rotation for modeling
hierarchical relations. Ablation results suggest that both transformations, i.e., cone restricted rotation
and rotation, are critical in predicting missing hierarchical relations (Appendix A.2). In particular,
our ablation results on each individual hierarchical relation suggest that with cone restricted rotation,
ConE can simultaneously model heterogeneous hierarchical relations effectively.

5 Conclusion

In this paper, we propose ConE, a hierarchical KG embedding method that models entities as hyper-
bolic cones and uses different transformations between cones to simultaneously capture hierarchical
and non-hierarchical relation patterns. We apply cone containment constraint to relation-specific
subspaces to capture hierarchical information in heterogeneous knowledge graphs. ConE can simulta-
neously perform knowledge graph completion task and hierarchical task, and achieves state-of-the-art
results on both tasks across three hierarchical knowledge graph datasets.
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