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We study the geometric mechanics and tunable band structures of a recently developed new class
of folded kirigami structures through experiments, theoretical modeling, and numerical simulation.
The folded kirigami structures with square and triangular cut patterns are constructed by replacing
the point hinge in conventional kirigami sheets with a 3D folding hinge. We find that the folded
design can effectively overcome the polarization constraint in the conventional kirigami sheets without
folds. Specially, as the creases continue to fold from 0° to 180°, the folded design achieves a unique
polarization switch, i.e., the structure expands first and then shrinks to be even smaller than that before
folding. Geometric mechanics models are developed to predict how the geometry of the folding hinges
determines both the shape changes and structural responses, including nominal strains, polarization
switch, Poisson’s ratio, folding rate, surface porosity, and structural stiffness. The models are validated
through related experiments. We find that the observed polarization switch corresponds to both the
peak nominal strains and stiffness singularity in the structures. Lastly, we numerically explore its
shape change induced tunable phononic bandgap structures. We find that for special designs with
polarization switch, it leads to symmetric bandgap structures changing with the folding angle. This
work could find potential applications in designing kirigami metamaterials, shape-morphing materials,
and phononic materials with tunable band structures.
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1. Introduction

Shape plays an important role in determining the properties
and functionalities of mechanical structures. This is especially
true for a kirigami structure. It harnesses the ancient art of
paper cutting techniques for achieving shape morphing [1-7]. A
kirigami sheet can either expand laterally with largely enhanced
stretchability via rigid rotation [8-11], or morph into special
2D/3D shapes via out-of-plane buckling deformation [12-15].
Such 2D and 3D shape changes in kirigami sheets yield excep-
tional properties such as ultra-stretchability [9,11,13,16,17], neg-
ative Poisson’s ratio [8,11,18], and programmable material prop-
erties [10,19]. The kirigami structures have found broad appli-
cations in mechanical metamaterials [3,20-23], ultra-stretchable
devices [9,24-27], soft robots [28-31], phononics [10,32], and
energy absorption, harvesting, and saving [20,33-35].

Compared to the widely explored different cut patterns in
kirigami structures and their demonstrated broad applications,
the studies on the geometry of hinges (i.e., the cut tip) that
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connect the cut units receive limited attention. The hinges are
also key to determining its shape-changing behavior and corre-
lated properties [36]. In most kirigami designs, the hinges are
thin and commonly simplified as a point joint. During shape
shifting, the hinges often undergo severe stress concentration.
Thus, the hinges are susceptible to failure to devastating its
structural performances. To reduce their stress concentration,
we proposed a strategy of redesigning the hinges’ local shape
to achieve enhanced stretching strength in kirigami sheets [10].
Recently, Rafsanjani and Bertoldi [14] have demonstrated the
importance of hinges’ width in determining the different shape-
changing modes in a uni-axially stretched kirigami sheet. They
found that for a kirigami sheet with the same cut pattern, when
the hinge is relatively thinner, it favors in-plane deformation
through rigid rotation, while for relatively wider hinges, it prefers
to buckle out of plane to form 3D pop-up structures. Very re-
cently, we have proposed redesigning the unstructured hinges
with a foldable 3D hinge to release the constrained degrees of
freedom in both deformation and actuation [29]. Through control-
lable self-folding in the hinges, we achieved the remote actuation
of both 2D and 3D shape shifting in kirigami sheets in response
environmental temperature. The folds in the hinges could add
new dimensions and largely expand the potential design space
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in conventional kirigami sheets with sole cuts. However, it re-
mains largely unexplored in previous studies [10,14,29], concern-
ing how to quantify the effects of added folds on the shape
changes, as well as shape-determined mechanical and phononic
responses in kirigami sheets.

Following our previous work [29], in this paper, we systemati-
cally exploit how the geometry of foldable hinges affect the defor-
mation and mechanical behavior of the folded kirigami structures
through geometric mechanics models. The folded kirigami struc-
tures are constructed by replacing the point hinge in the conven-
tional kirigami sheet with a 3D folding hinge that is composed
of three mountain and valley creases. The introduced folding
adds several new geometrical and shape-changing parameters
such as the cut length, the angle between the mountain and
valley creases, and the folding angles in the creases. Through
the geometric mechanics model, we explore quantifying the ef-
fects of these new parameters on the shape changes and struc-
tural responses in terms of nominal strains, folding rates, surface
porosity, and structural stiffness. We find that the folded kirigami
structure shows a tunable maximum opening angle by the in-
clined angle of valley creases, as opposed to a constant value in
the conventional kirigami sheet. Thus, it enables the unique shape
changes of folding-induced opening and reclosing of the cuts. En-
hanced by the folding hinges, it achieves a larger tunable design
space of nominal strains, structural porosity, and structural stiff-
ness than the conventional kirigami designs. We further explore
its shape changing induced tunable phononic band structures of
the folded kirigami structures. We find that it shows a larger
bandwidth tunability than the conventional kirigami design.

This paper is organized as follows. Section 2 describes the
design details and shape-changing features of the two example
folded kirigami structures in a square and triangular cut pattern.
Section 3 discusses the developed geometric mechanics models
to quantify the effects of introduced folds on their geometrical
shape and structural stiffness changes, as well as model validation
through experiments. Section 4 discusses the numerical simula-
tion results on the tunable band structures of the folded kirigami
structures via folding-induced shape changes. Finally, Section 5
concludes this work.

2. Shape change of the folded kirigami structures

Fig. 1 displays the construction of two example folded kirigami
structures with the classical square (Fig. 1A and B) and triangular
cut patterns (Fig. 1C and D), as well as their shape changes in
both a single unit and a periodic tessellated form. We replace the
point-joint hinges in conventional kirigami sheets [11] using a
spatial folding hinge. As shown in the left column of Fig. 1, the
hinge consists of three line folds: one mountain crease and two
symmetric valley creases. The physical prototypes are fabricated
using thin sheets of copy paper with prescribed cutting and
engraved creasing patterns via a laser cutter. To reduce the stress
concentration and avoid material failure during folding, circular-
shaped cutouts (see the zoomed-in highlights in Fig. 1A(ii)) are
introduced at each cut tip.

Upon stretching, the three creases start to fold around the
line hinges. Consequently, the two triangular facets hinged by
the mountain crease pop up, forming a tetrahedron hinge in
both square and triangular-cut sheets (2nd column of Fig. 1).
Meanwhile, the connected cut units rotate rigidly in plane around
the creases to open the initially line cuts or slits and form a
pore (highlighted in yellow color). Similar to their non-folded
counterparts with point-joint hinges [11], the two folded kirigami
structures exhibit single degree of freedom deformation and ex-
pand in both lateral directions via hinge folding. The pore is
initially polarized along the vertical direction (2nd column of
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Fig. 1) until it is maximally opened (3rd column of Fig. 1). The
maximally opened configuration defines a critical state of polar-
ization switch. Beyond it, the polarized direction of the pores will
be switched to the horizontal axis upon further folding. Then,
the structure starts to contract until the two triangular facets
meet and contact with each other (4th column of Fig. 1). It
should be noted that the polarization switch is not observed in
its counterpart with point-joint hinges due to its infinite stiffness
at the critical state [11].

3. Geometric mechanics of the folded kirigami structures

To better understand the observed polarization switch, in this
section, we exploit how the geometry of the folds affects the
shape change (Sections 3.1 and 3.2) and mechanical behavior
(Section 3.3) in the folded kirigami structures through both ge-
ometry and mechanics models. Here we assume that all the
triangular facets and the cut units are rigid and the line folds are
modeled as linearly elastic torsional springs.

3.1. Folded kirigami structures with square cuts

3.1.1. Folding angle relationship and folding rate

Fig. 2A shows the schematic shape changes in the folded
kirigami structures with square cuts. The geometry of the square
cut unit cell can be characterized by the side length ay, the cutting
ratio m; that is defined as the ratio of length of cuts d to the unit
cell length aq (i.e., 0 < mg=d/ag< 1 with the subscript “s” denot-
ing the case of square cuts), and the inclined angle ¢, defined as
the angle between the mountain crease and the symmetric valley
creases (Fig. 2A, bottom). As m; varies from 0 to 1, it corresponds
to an increasing cut length or equivalently a decreasing hinge
width (i.e., ap- d). Compared to the conventional kirigami sheet
without folds (i.e., the extreme case of my = 1 with d = ag) [11],
the folded kirigami design adds a new dimension of an inclined
angle ¢q. After folding, the deformed shape can be parametrized
by the deformed length a of the unit cell, the opening angle n;
between cuts with ns € [0, 2¢q] (Fig. 2B, bottom left), as well as
the folding angles at the mountain crease y;, € [0, 7] and valley
crease y, € [0, /2] in the tetrahedron hinge KK;K,K5 (Fig. 2B,
bottom right). When the mountain creases become fully folded,
i.e., ym = m, we will have y, = 7 /2 and ns; = 2¢y (Fig. 2C, bottom)
as discussed in the following.

We note that the opening angle and the folding angles are
geometrically dependent of each other. From the tetrahedron
hinge in the bottom right of Fig. 2B, we can obtain the follow-
ing geometrical relations, i.e., KO, LK1K5, KOy 1L K>K3, K301 LK Ko,
KK]J_KK3, KKZ J_KK3, K1K3 = K2K3 and KOIJ—SKleKgy where
Sk,kyk; 1s the bottom surface of the tetrahedron hinge. Then, we
can readily derive the folding angles of both mountain and valley
creases as

sin —ns/2
VYm =T — 2 arcsin (l((pons/)) (l)
Sin o
cos 2
Yy = arcsin n/2) (2)

V/sin? g cos? (ym/2) + cos? ¢g

Egs. (1) and (2) show that the deformation of the folded
kirigami structures can be characterized by the single degree of
freedom opening angle 5 or equivalently the mountain folding
angle y;,. Both the opening angle and the folding angles are
dependent of the inclined angle ¢y. Fig. 3A(i) shows the variations
of n; as a function of y;, and y, as ¢, increases from 7 /6 to 57 /12.
It shows that 5 increases monotonically with both y;, and y,,. As
the creases start to fold, the line cuts are open. The opening angle
ns increases with the folding angle yp,. At the completely folded
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Fig. 1. Design of shape-changing folded kirigami structures with foldable hinges. (A, B) Shape changes of paper-based folded kirigami structures with square cuts via
folding in the hinges in the form of a single unit (A) and periodic units (B). (C, D) Shape changes in folded kirigami structures with triangular cuts. Column (i) show
the schematic design by introducing three intersecting creases composed of one mountain crease and two symmetric valley creases to the tip of line cut to form
a foldable tetrahedron hinge. Column (ii-iv) show the shape changes during the folding of the creases. The polarized direction is switched from vertical in column
(i) (i.e., the diagonal of the highlighted pore) to horizontal in column (iv) (completely folded state). The intermediate deformed shapes in column (iii) defines the
critical polarization switch state.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A

Y
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Fig. 2. Schematic of the projected view of shape changes in folded kirigami structures with square cuts. (A) non-folded state, (B) partially folded state, (C) completely
folded state with the valley folding angle y, = 7/2. Bottom row shows the schematics of the geometrical parameters in each folded state.

state, i.e., ym = m or y, = m/2, ns reaches its maximum value, i.e., the maximum opening angle (7s)max. Setting y;, = 7 in Eq. (1)
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gives

(1s)max = 2¢0 (3)

Thus, different ¢ ends with different maximum 7n; shown in
Fig. 3A. Eq. (3) indicates that the maximum opening angle in a
folded kirigami structure can be tuned by the inclined angle ¢, of
the creases. This is in contrast to the constant value of (9s)max =
/2 in its non-folded counterparts with point joints [14]. Thus,
higher (7;5)max than 7 /2 can be readily achieved in the folded
kirigami structures by setting ¢y > 7 [4. For example, for the case
with ¢y = 57/12, both yp,-ns and y,-ns curves end at (1s)max =
57 (6 = 2¢p, which is close to 7 when it becomes completely
folded. This is consistent with the experimental observation in
the corresponding physical prototype of paper kirigami structures
shown in Fig. 3B(i).

To characterize the surface morphology of the folded kirigami
structures induced by the out-of-plane folding of the tetrahedron
hinges, we define the folding rate ks as

€0s (¥in/2
ks = tan y, = tan { arcsin (Ym/2) (@)

V/sin? ¢o cos? (yn/2) + cos? g

Geometrically, ks represents the slope of side triangular facet
Skk,k;OT Ski;k; (Fig. 2B, bottom-right) in the tetrahedron hinge.
Based on Egs. (1)-(4), Fig. 3A(ii) shows the change of ks for
the folded kirigami structures with different ¢y during the pore
opening. It shows that a larger inclined angle leads to a higher
folding rate. Overall, the folding rate ks for all the cases shows a
J-shaped trend, which increases dramatically when it approaches
to its respective maximum opening angle (7s)max = 2¢p in Eq. (3).

3.1.2. Nominal strain and surface porosity

Nominal strain: Based on Eqs. (1)-(2), the nominal strain
(exy)s along the x-axis can be expressed as (ex)s = (a — ag)/ao.
From Fig. 2B (bottom left), we have

a = MM sin ¢s + MM, cos ns + MM cos ¢s + M1 M, sin n; (5)

where MM, is the length of the valley crease, M{M, is part
of the cutting line, and ¢ is the projected angle between the
valley creases and the mountain crease after folding. Substituting
MM = (ao - d) [cos @9 and M1M, = d - (ag - d) tan ¢, into Eq. (5),
it gives

o= 2| (G ra3)

+[d — (ap — d) tan ¢p] sin (z + E) }

(6)
4 2

where the condition M;M,= d - (a-d)tan ¢y > 0 must be satis-
fied. It implies that tan ¢y < df(a-d) = ms [(1—m), i.e.,

ms
1 m) 7)

Eq. (7) imposes a geometrical constraint on the maximum in-
clined angle (¢o)max that could be prescribed in the creases for
a given cutting ratio my, i.e., (¢o)max = arctan[ms [(1—my)] with O
< mg< 1. Thus, for a folded kirigami structure with cutting ratio
ms, based on Egs. (3) and (7), in principle, it can achieve a limit
of the maximum opening angle (n;);

mg
— ms) (8)

at (¢o)max = tan~'[my [(1—my)].
Considering the structural symmetry, from Eq. (6), the nominal
strains (&x)s and (&yy)s of the folded square-cut kirigami structure

0 < ¢p < arctan <

(Ms); = 2 (@o)max = 2 arctan (
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along both x- and y-axis can be derived as

(gxx)s = (8”)5 = a—do
do
(1 - ms) . b4 s
SR @G | o
+[ms — (1 — m,) tan ¢ ] sin (% + %)

Eq. (9) characterizes the analytical correlation between the
nominal strains and the opening angle or equivalently the moun-
tain folding angle via Eq. (1) during the shape change. It also
shows that the strains are dependent of the prescribed geometri-
cal parameters such as the inclined angle ¢y and the cutting ratio
ms.

We first explore the effect of ¢y on &y, for the folded kirigami
structures with fixed ms; = 0.8 by plotting the &y vs. yn curves in
Fig. 3A(iii). As yy, increases from O to 7, it shows that &,, increases
monotonically for the case with a smaller ¢, (e.g., 9o = 7 /12 and
7 /6), indicating that the structure always expands as it becomes
completely folded. However, for the case with ¢q larger than
7 [4, &4 increases first (expanding) and then decreases (shrinking)
with the increase of y;,, showing a peak strain (&yy)s-max- Thus, for
folded kirigami structures with a given ms, there exists a criti-
cal value of (¢g)., beyond which the polarization switch occurs,
i.e., 9o > (¢o)c.. We note that the structures with different values
of ¢y show the same value of (&xy)s.max = 0.166 (the horizontal
dash line in Fig. 3A(iii)) for ms; = 0.8, indicating that (&xx)s-max
is independent of ¢g. As shown in Fig. 3A(iii), as ¢o increases,
the nominal strain at the completely folded state (i.e., ym =
) decreases from a positive to even a negative value. This is
consistent with the observed shape changes in both prototypes
with different g9 = 0.37 (Fig. 3B) and ¢y = 5m/12 (Fig. 3C).
Both prototypes have the same m; = 0.8 and the same unfolded
size highlighted by the yellow colored dashed square. Monotonic
folding in the hinges leads to similar structural expansion-to-
shrinkage transitions in both prototypes. At the completely folded
state, compared to the size before folding (i.e., the yellow-colored
dashed square), a slightly expanded shape is observed for ¢y =
0.3 (Fig. 3B(iv)), which corresponds to the small positive nom-
inal strain in Fig. 3A(iii). However, for ¢o = 5712, it shrinks to
an even smaller size with nearly closed pores as shown in right
of Fig. 3C, which corresponds to the negative nominal strain in
Fig. 3A(iii).

We further plot &, from Eq. (9) as a function of the opening
angle n; with constant m; = 0.8 for the designs with different
values of ¢g = /6, /3, and 57/12 in Fig. 3A(iv). We find that
all the curves for different ¢, collapse into one overlapped curve,
whereas 7 for each curve varies from 0 to (75)max = 2¢o for a
given ¢y based on Eq. (3). Thus, each curve ends with a different
maximum opening angle. The corresponding experimental data
agrees well with the model. From the unified curve for different
@o, it shows that the peak strain (ey)s.max iS achieved at the
critical opening angle (ns). = 0.347, which also indicates that the
corresponding critical inclined angle (¢g). for polarization switch
is (¢o)c = (ns)c/2 = 0.177 for mg = 0.8. This is consistent with
the observed polarization switch in the two prototypes, which
have the same my; = 0.8 but larger ¢ = 7/3 and 57/12 than
(¢0)c = 0.177 shown in Fig. 3B-C. We find that when beyond
the critical opening angle (n;). = 0.34m, the original polarized
direction is switched from horizontal to vertical axis for ¢y =
/3 shown in the transition from Fig. 3B(ii) to B(iii), and from
vertical to horizontal for ¢y = 57/12 shown in Fig. 3C. Here, the
polarized direction is defined as the orientation of the rhombus
pore (highlighted in yellow color) along the long diagonal axis.
Thus, for folded kirigami sheets with a given my, (¢g). could be
identified by solving the corresponding (#;). to the peak strain
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Fig. 3. Geometrical modeling of folded kirigami structures with square cuts. (A) (i): theoretical curves of mountain angle y, and valley angle y, vs. the opening
angle n; for designs with different inclined angles ¢p; (ii): theoretical curves of folding rate ks vs. n; for different ¢; (iii): theoretical curves of nominal strain (exy)s
vs. ym for different ¢ at a fixed cutting ratio my = 0.8; (iv): theoretical curves of (ex)s vs. ns for different ¢y at mg = 0.8. Symbols represent the corresponding
measured experimental data points; (v): theoretical curves of (ey)s vs. ns for different m,. Symbols represent the corresponding measured experimental data points;
(vi): theoretical curves of surface porosity ps vs. s for different ¢ at fixed m; = 0.8. The dashed line in both (v) and (vi) represents the case of kirigami sheets with
point hinge when m; approaches to 1. (B-D) Demonstrated shape changes in three paper-based folded krigiami structure prototypes at representative values of 1
with ms = 0.8, ¢ = 0.37 in (B) and m; = 0.8, ¢ = 57/12 in (C), and ms; = 0.2, ¢y = 0.077x in (D). The three prototypes have the same size at the un-folded state
highlighted by the yellow colored dashed square. (B) and (D) undergo polarization switch highlighted by the solid yellow color rhombus with its long diagonal axis
rotated 90°.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(&xx)s-max With (@o)c = (15)c/2 from Eq. (9), i.e., solving the function
f ((g0)c) = 0 in the form of

f (o) |(00=(<P0)c
_ (cos gy — sin gg) (1 — my) cos® gy — (ms — (1 — my) sin go)
(cos go + singp) (1 — ms) cos? g + (ms — (1 — my) sin go)
— tan ¢p

(10)

Next, we explore the effect of the cutting ratio m; on the
variation of gy, for the folded kirigami structures by plotting the
&xx VS 15 curves in Fig. 3A(v). Based on Eq. (8), we have 0 < s
< (ns)i = 2(¢o)max = 2arctan[ms [(1—my)] for each curve with a
given my. Similarly, each curve represents the collapsed curves for
different values of ¢y with ¢y < arctan[m;, [(1—ms)]. For folded
kirigami structures with a smaller m; (ms < 0.4), i.e., shorter line

cuts, it shows a smaller maximum opening angle and a negative

nominal strain that decreases monotonically with the increasing
opening angle, meaning that the structure keeps shrinking as it
becomes completely folded. This is consistent with the observed
continuing shrinking size in the folded paper kirigami structure
with mg = 0.2 and ¢y = 0.0777 shown in Fig. 3D. As m; increases
(e.g., ms > 0.6), all the curves show a positive peak strain at (7).
for (¢o) > (¢o)c, where the structure expands first with a positive
nominal strain and then shrinks. Meanwhile, as m; increases from
0.4 to 0.98, the nominal strain at the completely folded state
increases from about —0.3 to 0. For different values of ms, the
measured nominal strains from experiments agree well with the
geometric model as shown in Fig. 3A(v). Furthermore, we plot
the curve of (&x)smax VS. s as a function of mg in Fig. 3A(v),
which shows that the peak strain increases nonlinearly with m;.
By setting m; = 1 in Eq. (9), it reduces to the case of conventional
non-folded kirigami sheets with point joint hinges [11], where
(E)s—point-hinge = (639)s_point-hinge = V2SI (75 +7/4) — 1. The
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nominal strain increases monotonically with ns and shows a max-
imum value of 0.414. Eq. (9) also presents a constant Poisson’s
ratio vy = —1 for the folded kirigami sheets, which is the same
as its counterpart without folds [11].

Surface Porosity: Given the characteristics of pore opening
during deformation, we use the surface porosity p, to characterize
the overall pore area coverage of the folded kirigami structures.
ps is defined as the ratio of the projected area of the pores S; to
the total area S, i.e.,

ps = S1/S (11)

For the folded kirigami structures with square cuts, from Fig. 2B,
we have S; = a> — 4]00;| [K;K3| /2 — [a§ — 4 (ap — d)* tan ¢ /2]
and S = a?, where 00, = K30,tan ¢; = KK3cos gstan ¢; = (ag—d)
cos gstan ¢, K3K; =(ap—d)/cos ¢s. Thus, it gives
2
a
ps=1- 3 +2[(@—d /al* (tango — tangy) (12)

Combining Egs. (6) and (12), Fig. 3A(vi) shows the change
of ps for folded kirigami structures with different inclined angle
¢o during the pore opening at m; = 0.8. ps shows a peak
value (ps)max With the increase of ns for g9 > 7/6 and (0s)max
increases with ¢o. In addition, p; increases with the increasing ¢g
at given n;, whereas the porosity in the completely folded state
decreases with the increasing ¢,. Notably, for the structure with
a larger @9 = 5712, as yy, increases from 0 to 7, the porosity ps
varies from 0 (an initially closed pore) to a peak value of 0.432
(maximally opened pore), and then decreases to 0 again (pore re-
closing), which is consistent with the experimental observation
shown in Fig. 3B(i). We note that the peak porosity in the folded
kirigami structures is slightly lower than the case of non-folded
kirigami structures with point hinges ((ps)max = 0.5 shown in
Fig. 3A(vi)).

3.2, Folded kirigami structures with triangular cuts

Compared to the square cuts, the folded kirigami structure
with triangular cuts is more complex due to its increased number
of cuts and hinges. For the case of triangular cuts, given its special
three-fold structural symmetry, we set the inclined angle of the
valley creases to be ¢g = /3, where it renders equilateral
triangular facets in the tetrahedron hinges. We find that when ¢g
= /3, folding of the hinges will lead to out-of-plane deformation
in the hinged cut units (Appendix Fig. S1 A). In addition, when
the cutting ratio m; is small (e.g., m; < 0.5 where the subscript
“t” represents the case of triangular cuts), additional cutouts are
needed to ensure compatible deformation (Appendix Fig. S1B),
which will break the structural integrity. Thus, in this work, we
limit our discussions to the cases of g9 = /3 and m; > 0.5 in
the folded kirigami structures with triangular cuts and in-plane
deformation of cut units.

3.2.1. Folding angle relation and folding rate

Fig. 4A-C show the schematics of projected shape changes in
the folded kirigami structure with triangular cuts via hinge fold-
ing, where the mountain folding angle increases from 0 (Fig. 4A,
non-folded) to & (Fig. 4C, completely folded). Fig. 4B shows a
representative intermediate folded state. The rotation of a repre-
sentative hexagonal cut unit enclosed by an equilateral triangle
is highlighted in Fig. 4D-F. At the unfolded state, for the small
equilateral triangle T3oPoP in Fig. 4D consisting of three lines of
cuts, mountain creases, and valley creases, we set its side length
l; to be I; = (1— m;) Ly and the length of PP, = I, where Ly=
2l; + I, is the length of the enclosed large equilateral triangle
T10T20T30. After folding, the triangular T1oT,0T3o transforms into a
new equilateral triangle T,T,T; with side length of L (Fig. 4E(i))
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and the three creases fold into a 3D tetrahedron hinge shown in
Fig. 4E(ii). The opening angle between two cuts is defined as 7,
(Fig. 4E(i)). From the geometry shown in Fig. 4E, we can obtain
the following geometrical relationship between the side lengths
as

NiN = E;N; tan ¢; = E4E tan ¢, /2, N+E = ~/3EE; /2
PoT39 = P4To9 = E{N = E{N/cos ¢ = EE;/2 cos ¢,
T3P, = PPy /tango = b sin (1:/2) //3,

P,P3 = PP = PyP sin ¢, /sin go = 2+/31; sin ¢, /3,

P3Py = PPy cos (1¢/2) =I5 cos (1¢/2) (13)
P4T, = PPy + P1Ts = 2+/3ly sin 277 /3 — @) /3
+2+/3L sin (17:/2) /3

T3T; = T3P, + PP3 + P3Py + P4y
= (V3 @m: = Dsin (n/2) + cos (n/2) ) Lo

where ¢, are the projected angle between the mountain and
valley creases after folding with ¢, = /3 — /2.

The valley folding angle y, (i.e., the dihedral angle between
the pop-up inclined plane Sgrp, and the base surface Sg ;)
and mountain folding angle y;, (i.e., the dihedral angle between
surface Sgp g, and Sggg,, see Fig. 4E-ii) can be determined by
cosyy = N1N/N1E and sin ()/m/Z) = N2E3/N3E3 with EN{_LEE,
and EN LSgk,g,. Thus, based on the geometrical conditions of
EE| = EE3 = EE, = E{E5 = E{E; and Eq. (12), we have

Yy = arccos (W) (14)
Ym = 7 — 2arcsin (—2 sin (n%_ m/z)) (15)

Eqs. (14)-(15) show that it has a single degree of freedom 1,
which is the same as the case of square cuts. Note that despite
the same tetrahedron hinge in both cases of folded kirigami
structures with square and triangular cuts, their relationships
between the folding angles and the opening angle of cuts are
generally different considering their different rotational symme-
tries (i.e., four-fold symmetry in square cuts while three-fold
symmetry in triangular cuts). We note that for the mountain
folding angle yy,, setting ¢o = /3 in Eq. (1) for the case of
square cuts can reduce to Eq. (15), as seen from the same curve
of ym—ns in Fig. 3A(i) (the olive dashed line with ¢y = 7/3) as
that in Fig. 5A (the black line). However, it does not apply to the
valley folding angle y,, i.e., Eq. (2) does not reduce to Eq. (14)
at ¢ = /3, as evidenced by the distinct valley folding-opening
angle curves in Fig. 3A(i) (convex curve, violet dashed line for
square cuts) and Fig. 5A (concave curve, green line for triangular
cuts).

Similarly, based on the geometrical relationship in Eqs. (14)-
(15), the folding rate k; can be obtained as

ke = tan (arccos (tan(n/?:/g—nt/Z))) (16)

Eq. (16) indicates that the folding rate is only dependent of the
opening angle n; (0 < n; < m/3). For all designs with different
cutting ratios m, as n; approaches to x/3, Fig. 5B shows the
similar J-shaped curve to the case of square cuts.

3.2.2. Nominal strains and surface porosity
With Egs. (14)-(15), the nominal strains (ex); and (&), for
the folded kirigami structure with triangular cuts can be derived
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Fig. 4. Schematic of the projected view of shape changes in folded kirigami structures with triangular cuts. (A) non-folded state, (B) partially folded state, (C)
completely folded state with the valley folding angle y, = 7 /2. Bottom row shows the schematics of the geometrical parameters in each folded state.
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as
(exx)r = (T2T3 — TaT30) /T30T20

= /3 @2m; — 1) sin (:/2) + cos (1:/2) — 1
(Syy)[ = \/§ (Ex0)¢ /2

Eq. (17) also shows that it has a constant negative Poisson’s ratio
of vi = — /3/2.

Similarly, the surface porosity p; for the case of triangular cuts
can be obtained as

(17)

pe=1
2
- («/5(1 —mp)? tan (7/2) — 3m; — 1)? + 3 2m; — 1)2) i—g
(18)

Fig. 5C and D show the change of the nominal strain (exy);
and the surface porosity p; with the opening angle . for the

designs with different cut ratio m;, respectively. Similar to the
case of square cuts, for cut ratio m; > 0.55, both (ex); and p;
show a non-monotonic trend with a peak value, where they first
increase and then decrease as n; increases from 0 to /3. This
is consistent with the observed shape transition in the prototype
with m; = 0.65 shown in Fig. 5E. As n; increases, it expands with
an increasing p; and achieves the peak strain with the maximally
expanded shape at (1;). ~0.307 (top right of Fig. 5E), which
agrees well with the theoretical prediction of (n;). = 0.3067 in
Fig. 5C. We note that the expanded shape with the peak strain
does not corresponds to the peak porosity (¢ )max that occurs at
ne ~0.417 as seen from Fig. 5D. As n; further increases, both (ex);
and p; reduce until it becomes completely folded (bottom row of
Fig. 5E). The corresponding measured nominal strains at differ-
ent opening angles agree well with the theoretical prediction as
shown in Fig. 5C.

As m; increases, both the peak strain (ex)r.max (i.€., the purple
curve in Fig. 5C) and peak porosity (Fig. 5D) increase and shift to
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the right. Thus, at the extreme case of point-hinge without folds,
ie, mi = 1, (&x)¢—point-hinge = V3Sin(ne/2) + cos(n:/2) — 1
increases monotonically with n, for 0 < n, < =/3 (Fig. 5C). At
(n¢)e = m/3, it shows the peak strain of 1 (Fig. 5C) and the peak
porosity of 0.75 (Fig. 5D). By manipulating the cut ratio m¢, the
nominal strain (&, ) can be largely tuned from - 0.35 (m; = 0.55)
to 0.95 (m; = 0.95) with the corresponding porosity p; changing
from 0.05 to 0.7 (Fig. 5C-D). The tunable range of both strain and
porosity is much wider than the case of square cuts with (&x);
ranging from - 0.35 (my; = 0.60) to 0.386 (m; = 0.98) and p
ranging from 0 to 0.41 in Fig. 3A(v-vi).

3.3. Structural stiffness for the folded kirigami structures with square
and triangular cuts

The above sections discuss the shape changes of the folded
kirigami structures from the geometrical perspective. In this sec-
tion, we theoretically analyze how the shape change affects their
structural stiffness under uniaxial loads. We assume all line folds
as linear elastic torsional spring with a constant stiffness k and
all facets as rigid plates. For the folded kirigami structure under
uniaxial loads, the potential elastic energy I7 is

n=U-W (19)

where U is the stored elastic energy and W:fy”"; F(dl/dy,,)dy,
is the work done by the external force F, where | is the length
of the unit cell. Considering its periodicity, we select one unit
cell to conduct structural stiffness analysis for both square and
triangular cuts.

Square cuts: For the case of square cuts, from Fig. 2A, we can
determine its elastic energy density U as

Us = 4kl (vm — Ymo)* + 8Kl (v, — 10)* (20)

where [, and [, are the length of mountain and valley creases,
respectively; y,0 and yn are the valley and mountain folding
angles at a certain deformed state, respectively, which satisfy the
relationship in Eq. (2), i.e.,
cos 2
Yy0 = arcsin (mo/2) (21)
V/sin? gg cos? (ymo/2) + cos? g

For a randomly selected deformed state, the condition for the
external force being in equilibrium should satisfy that the first
variation of potential energy IT with respect to y,, equals to zero,
ie,

SIT/8ym = 0 (22)

Thus, by combining Egs. (1), (2), (5)-(6), and Egs. (20)-(22),
we can derive the explicit form for external force F as

dUs/dym

= D o (o — o) My + 16Ky (7 — o) My (23)
da/dyn

where M; and M, are

da - .2 .2
M =[— = { oS (Ym/2) (4 sin” ¢o — sin </Jo)
d¥Ym

—1
Sin ¥ sin? @ (€S @g + sin @g)
4y/1 = sin? (ym/2) sin® @o

dyy/dYm
= — = (CO0S 2) tan
2= “Gasdy (ym/2) tan g
(1 — sin® (ym/2) sin® o) (cos o — 2 sin o) +
sin (ym/2) (sin 2¢o + sin 2¢q) \/ 1 — sin? (yn/2) sin? go

(24)
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Then, based on Eq. (23), we can finally determine the struc-
tural stiffness of the square cut case under uniaxial loads F by [37]

K (§007 ymO) = dF/dym |ym0 (25)

Triangular cuts: For the case of triangle cuts, given its three-
fold structural symmetry, we explore its structural stiffness by
aligning the uniaxial loads along one of the principal axes. Here,
based on the built Cartesian coordinate systems in Fig. 4A, we
select y-axis as the external force direction. Thus, from Fig. 4A,
we can determine the elastic energy density for a unit as

U = 1.5kl (i — Amo)? + 3kl (Vs — 00)? (26)

where L= (2m; — 1)Ly, and the folding angles y,0 and y o at a
certain deformed state that satisfy Eqs. (14)-(15) are

Vo = 7 — 2 arcsin (2\@ sin (77 /3 — ni0/2) /3) :
(27)
Yp0 = arccos (tan (/3 — nwo/2) /ﬁ)

where 1y is the corresponding opening angle.
Then, according to Eq. (22), the external force F* can be
derived as

o _ AU¢/dym _ dU/dne
dL/dyy dL/dn;
3kl [(Ym — Ymo) N1 + 2 (v — v20) N2l (28)

 Lo[sin Gio/2) — V3 (1 = 2m) cos (no/2) |

where Ni=dyn/dn; and N,= dy,/dn; can be derived from Eqgs.
(14)-(15).

Thus, based on Egs. (13)-(15) and (26)-(28), the structural
stiffness K; for triangular cuts under uniaxial loads can be deter-
mined by

Ke (me, @) = dF*/dyim |y = dF*/dne |10 (29)

Then, in principle, the stiffness along any other direction could
be readily determined by their transformation matrices relative to
the principal direction. Given the complex forms of Egs. (25) and
(29), we numerically solve them using the software MATLAB. The
numerical results are presented in Fig. 6.

For the case of square cuts, Fig. 6A plots the variations of its
normalized elastic energy density Us; = Us/kaé with respect to
the opening angle 7, for the designs with different inclined angle
@o at my = 0.75, where 0 < n; < ¢ for each given ¢y. It shows
that U, increases monotonically with the opening angle for all
@o. As ¢ increases, the maximum elastic energy density (U S)max
(dashed line) at the maximum opening angle (7s)max = @o also
increases due to the increased length of valley creases. Fig. 6B
shows the corresponding numerical results on the normalized
structural stiffness K; = K;/k as a function of ns at my = 0.75.
At ns = 0, it shows a structural singularity with an infinite
stiffness for all different values of ¢y. As the line cuts start to
open with a small opening angle of 0.01x, the stiffness drops
dramatically to 0.2 x 10% due to the stretching-induced pop-
up of hinges via folding. The inset figure with the zoom-in view
of the stiffness curves shows that the folded kirigami structures
with a smaller inclined angle ¢y generally possess a relatively
higher structural stiffness. Thus, the folded kirigami structures
with a larger ¢, are easier to open upon uni-axial loading. As
ns further increases, it encounters another structural singularity
point at the same opening angle for all different values of ¢p.
Beyond the singularity point, the stiffness becomes negative and
increases with further opening. By comparing the positions of the
opening angle for the singular stiffness in Fig. 6B and the peak
nominal strains in Fig. 3B(v) (ms; = 0.75), we find that both angles
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give the identical critical value of (n;). = 0.296m, indicating
that the point of polarization switch at the maximally stretched
state corresponds to an infinite structural stiffness. Beyond the
singular stiffness point, the structure starts to shrink under uni-
axial loading, which leads to a negative stiffness as observed in
Fig. 6B.

Similarly, for folded triangular cut kirigami structures with
different cut length ratios m;, we plot the numerical results of
both normalized elastic energy density U, = U; /kL(zJ and nor-
malized structural stiffness K, = K./k vs. the opening angle
ne, where g9 = /3 is kept the same. Fig. 6C shows that the
elastic energy density U; decreases with the increasing value
of m;, which is reasonable due to the higher folding energy in
the folded structures with smaller cut lengths (i.e., larger crease
length). As m; increases from 0.55 to 0.95, the maximum elastic
energy density (U;)max at the maximum opening angle (¢ )max =
/3 decreases by 10 folds (the dashed line in Fig. 6C). Similar
to the case of square cuts, the structural stiffness for triangular
cuts in Fig. 6D shows two singular points, one is at the onset
of cut opening (i.e.,, n; = 0), the result of which is not shown
for clarity, and the other is at the critical opening angle that
corresponds to the maximum nominal strains for each given m;.
We have the identical (ns). = 0.237, 0.287, and 0.337, i.e., the
polarization switch point, for the onsets of both singular stiffness
in Fig. 6D and peak strains in Fig. 5C for m; = 0.75, 0.85, and
0.95, respectively. Thus, a larger m, could delay the occurrence of
polarization switch. Meanwhile, the inset figure on the zoom-on
view of the stiffness shows that the structural stiffness decreases
with the increasing m; due to the reducing folding hinge sizes.

By comparing the zoom-in stiffness curves in the insets of
Fig. 6B and D, we note that for both folded square-cut and
triangular-cut kirigami structures with the same cutting ratio
(e.g., ms = my = 0.75), the triangular cut structure exhibits a
higher structural stiffness than that of square cuts when evalu-
ated at the same opening angle. For example, at n; = n; = 0.27,
K, ~ 70 for the triangular cut, which is over twice higher than
that of the square cuts with K ~ 29.5.

4. Tunable bandgaps of the folded kirigami structures

Square cuts: The shape change in the folded kirigami struc-
tures makes it possible to tune their potential phononic band
structures through the opening and closing of pores. Since the
band structures are mainly determined by the deformed config-
urations in the square cuts characterized by the opening angle
ns, Next, we numerically explore the evolution of the bandgaps
with the changing ns in the folded kirigami structures using
finite element simulation. Specially, the designs with different
parameters of inclined angle ¢y and the cutting ratio mg in the
periodic unit cells are studied.

The finite element analysis is performed on the
two-dimensional projection of the selected unit under different
opening angles through the acoustics module in COMSOL. For the
bandgap structure analysis, eigenfrequency study is simulated for
an infinite structure by defining a single unit cell with periodic
Block-Floquet boundary conditions, shown as in the insets of
Fig. 7A(ii)- C(ii). In the simulation, the first twenty eigenfre-
quencies w are calculated and normalized as w = wAq/27Cr,
where Ag is the undeformed unit cell length, and Ct = /u/p
is the transverse plane wave velocity with CG; = 170.25 m/s
for assumed PET materials with shear modulus © = 40 MPa
and density p = 1380 kg/m>. The simulation is repeated with
a 5° incremental opening angle and the obtained normalized
frequencies are plotted correspondingly. For the transmission loss
analysis, as shown in Fig. 7D, we construct a 5 x 5 periodic
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structure whose ends are coupled with two rectangular air do-
mains with perfectly matched layers. The left domain (labeled
as B in Fig. 7D) is specified as the background pressure field
with 1 Pa sound pressure. The transmission loss is defined as
the difference of the averaged sound pressure between the left
and right boundaries of the layered structure. Finally, the sound
pressure level is plotted by arraying the 5 x 5 periodic structure
vertically.

Fig. 7A(i)-C(i) show the comparison of bandgap diagrams as a
function of the opening angle n; (equivalently the nominal strain
¢) between three representative periodic unit cells, where ¢y =
45° and m; = 0.8 in Fig. 7A, o = 45° and ms = +/2/2 in Fig. 7B,
and ¢o = 70° and m; = 0.8 in Fig. 7C, respectively. Specially,
the sub-unit in Fig. 7B takes a regular octagonal shape. The blue
curves show the corresponding nominal strain ¢ as a function
of ns in terms of Eq. (9). Within the studied eigenfrequency
range, Fig. 7A(i)-C(i) show that all the three structures exhibit
a similar distribution of four combined bandgaps, either wide
continuous (bandgap I and IV) or discrete (bandgap II and III),
evolving with the increase of 7;. The dispersion curves for the
specified opening angles with peak nominal strains are shown
in Fig. 7A(ii)-C(ii). The bandgaps are denoted by the shaded area
that prohibit acoustic waves from traveling through within the
corresponding frequency range. The maximum transmission loss
in both bandgap I and IV at the peak strain is more than 200 dB for
all the three structures (Fig. 7A-C, iii). In bandgap I of all the three
structures, there exists an abrupt increase of the transmission
at around normalized frequency 0.3, which can be explained by
the overall size effect. Fig. 7D shows an example of the sound
pressure distribution in an assembly of 5 x 5 unit cells (¢g
= 70°, mg = 0.8), where the sound transmission is forbidden
at the bandgap frequencies with significantly different sound
pressure level on the two sides of the structure, while the sound
transmission beyond the bandgap range is allowed.

Interestingly, Fig. 7B(i) shows that the unit cell (¢ = 45°
and m; = «/5/2) exhibits a symmetric bandgap diagram about
the axis of n; = 45° with the peak strain. As 7, increases, the
structure undergoes a polarization switch and ¢ becomes zero at
its maximum opening angle of 90°. We believe that such a sym-
metric band structure is attributed to the rotational symmetry of
regular octagon shape in the sub-unit and the related structure
polarization switch. Similar polarization switch is also observed
for the unit cell with a larger ¢y = 70° in Fig. 7C(i). However, it
shows an asymmetric band structure about the axis of n; = 60°
at the peak strain. In addition, rather than an open pore shape at
ns = 90° in Fig. 7B(i), the pore transits to be nearly closed and ¢
becomes negative at its maximum opening angle of 140°. We note
that the polarization switch in both structures leads to a narrow
necking and discontinuity in the bandgap II of the diagram in
Fig. 7B(i) and C(i), which occurs around the position with the
peak strain, also the transition point for the onset of polarization
switch.

Indeed, different bandgap structures can not only be achieved
by choosing different inclined angle ¢y and cutting ratio ms, but
also be tuned by changing the opening angle for a specific design.
For example, for the kirigami structure shown in Fig. 7A(i), as
the opening angle increases from 0° to 90°, the bandwidth of
bandgap I can be tuned from the narrowest at the opening angle
ns ~ 30° with @ € [0.16, 0.38] to the widest at n; = 90° with
w € [0.02, 0.58]. Bandgap III is the most tunable, where it shows
no bandgap at n; &~ 45° but a large bandwidth with w € [0.43,
0.85] at s &~ 0°. Overall, for all the three kirigami structures in
Fig. 7A(i)-C(i), bandgaps II, Il and IV show a narrower bandwidth
distribution but relatively higher tenability, while bandgap I has a
wider bandwidth but limited tunability in terms of opening new
bandgaps.
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Fig. 6. Structural stiffness analysis of folded kirigami structures with square and triangle cuts. (A) Predicted curves of normalized elastic spring torsional energy
stored in folds Us (= Us/ka(z)) vs. the opening angle 7, for square cut designs with different inclined angles ¢, at fixed cutting ratio mg; = 0.75. The dashed line
represents the maximum normalized Us for different ¢y; (B) The corresponding predicted curves of normalized structural stiffness EL (= K /k) vs. ns for designs in
(A). Inset shows the zoom-in view of the curves. (C) Predicted curves of normalized elastic spring torsional energy stored in folds U; (= U; /kLg) vs. the opening
angle n, for triangular cut designs with different cutting ratio m, at fixed inclined angle ¢y = /3. The dashed line represents the maximum normalized U, for
different m,; (D) The corresponding predicted curves of normalized structural stiffness K, (= K, /k) vs. n, for designs in (C). Inset shows the zoom-in view of the

curves.

Triangular cuts: Based on the results of tunable bandgaps
from the shape changes in the case of square cuts, here, we focus
on how the unit shape (i.e., the triangular cuts) affects the band
structure. We choose a representative structure with m; = 0.8
and ¢y = 60° for comparison.

Fig. 8A shows the calculated band structure evolution with
the opening angle 5, as it increases from 0° to 120°. The blue
curve shows the corresponding nominal strain calculated from
Eq. (17). Similarly, the band structures show both wide contin-
uous and discrete bandgap evolution with the strain. Compared
to the similar case of square cuts in Fig. 7C, it exhibits a more
complex band structure in terms of the bandgap distribution and
opening/closing of new bandgaps shown in Fig. 8A. Fig. 8B shows
the specified band structure at the peak strain. It shows more
bandgaps but narrower bandwidths than that for square cuts in
Fig. 7C(ii). For example, the triangular cut shows 9 distributed
narrow bandgaps ranging from normalized frequency of 0.08
to 0.9 (Fig. 8C), while the square case shows 4 wide bandgaps
ranging from normalized frequency of 0.19 to 0.9 (Fig. 7C(ii)). In
addition, the transmission losses shown in Fig. 8C in the range of
bandgap frequency are more significant, whose maximum can be
more than 50 dB in several wide bandgaps.

We note that both the square cuts and the triangular cuts
show higher bandgap tunability than the reported conventional

10

kirigami structures with point-like hinges [10] Given the similar
overall geometric shape and porosity in both kirigami structures
with and without folding hinges, the conventional kirigami struc-
ture with square cuts shows a distribution of multiple parallel
bandgaps at different frequencies [10]. In addition, the band-
widths of all the parallel bandgaps remain almost unchanged
with the applied strain until the strain exceeds 15% [10]. In
comparison, the square cuts in Fig. 7A(i)-C(i) and the triangular
cuts in Fig. 8A with foldable hinges show more complex bandgaps
with curved boundaries, enabling a much higher bandgap tunabil-
ity.

5. Conclusions

In summary, through combined modeling and experiments,
we explore quantifying the effects of 3D folding hinges on the
shape changes of a new class of folded kirigami structures as well
as the shape determined structural stiffness and band structure
evolution. Compared to the conventional non-folded kirigami
structures with point hinges, the folded kirigami structure in-
troduces several newly added folding-related parameters that
lead to distinct shape-changing behaviors. The folding hinge de-
sign enables the potential unique polarization switch that is
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not observed in its non-folded counterpart. A geometric model
is developed to predict the effects of the prescribed govern-
ing geometrical parameters such as the inclined angles and the
cutting ratio on the shape changes of the folded kirigami struc-
tures, including the folding angle, nominal strains, folding rate,
and surface porosity. The model is validated through related
experiments. The geometrical design space for the occurrence
of polarization switch is identified. Moreover, a geometric me-
chanics model is developed to quantify the shape changes on the
structural stiffness. Lastly, its potential application in achieving
tunable bandgaps in the folded kirigami structures is explored
through numerical simulation by manipulating the cutting ratio
and the inclined crease angle.

The current study mainly focuses on the in-plane deforma-
tion of the folded kirigami sheets. We note that the folding
hinge design can also enable the out-of-plane deformation as
demonstrated in Fig. S1B in the Appendix. How the geometry of
the folding hinges affects the rich out-of-plane deformation in
different folded kirigami sheets will be left for future studies. We
believe that the folded kirigami design could also be applicable to
thick kirigami structures, as well as self-folding shape-morphing
machines and soft robots.
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