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Despite providing convenience and reducing the travel burden of patients, video-conferencing (VC) clinical

visits haven’t enjoyed the wide uptake by patients and care providers. It is desired that the medical problems

addressed by VC visits can match a face-to-face encounter in scope and quality. Subsequently, VC visits with

nurse assistance are emerging; however, the scalable and financially sustainable of such services are unclear.

Therefore, we explore the implementability of VC visits with nursing services using a game-theoretic model,

and investigate the impact of different pricing schemes (discriminative pricing based on patient characteristics

vs. non-discriminative) on patients’ care choices between VC and in-person visits. Our results shed light

on the “artificial congestion” created by a profit-driven medical institution that hurts patient welfare, and

subsequently identify the conditions where the interest of the social planner and the medical institution are

aligned. Our results highlight that, compared to a uniform price of VC visits which seems fair, discriminative

pricing can be more beneficial for patients and the medical institution alike. This heightens the importance

of insurance coverage of telehealth related services to promote the adoption of telehealth by patients and

care providers, and ultimately, improving care access and patient outcomes.
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1. Introduction

Video-conferencing (VC) visits, as one type of telehealth services, have been offered to ambulatory

patients to manage their care, and have garnered growing attention. Studies of VC visits have

demonstrated its benefits in a spectrum of clinical settings, including wound care, prenatal genetic

screening, cardiovascular care, and home care (Abrams and Geier 2006, Clegg et al. 2011, Grant

et al. 2015, Eriksson et al. 2011). Systematic reviews found that VC visits were associated with

decreased travel costs and lost time/wages, increased access to social support, and a better ability

to tailor care delivery to patient and family needs (Sevean et al. 2009). An American Well study

showed that 20 % of consumers would switch their current primary care provider to another who

offers telehealth services in their area (American Well 2019a). The global market of telehealth was
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anticipated to expand at a compound annual growth rate of 14.3 % from 2014 to 2020, based on

a report by Nathaniel Lacktman, Esq (Wood 2019).

Despite the above-mentioned advantages and a growing market, several factors limit the wide

adoption of VC visits, such as infrastructure, technology literacy, and privacy, among which, the

ability of clinicians to perform an adequate physical examination during VC visits was primarily

concerned (Powell et al. 2017, CDC 2020). The companion of a qualified medical personnel dur-

ing the VC visits is desired to empower telehealth to cover more disease conditions (Kitamura

et al. 2010). The regular services rendered during an office visit, like vital sign check and basic

physical examination, can be conducted by a nurse at patient homes with no compromise in care

quality (Allen et al. 1995), and sending nurses for home care of patients with cancer has been

demonstrated feasible (Bohnenkamp et al. 2004). Combining virtual and in-person care is the path

forward of telehealth (AmwellHealth 2020). However, the cost of dispatching nurses to all patient

homes is prohibitive. The payment policy regarding the VC visits with nurse assistance has not

been established. Charging the same price for auxiliary nursing services to patients from different

communities might be fair; however, it is unclear if this “fairness” comes at a price. There is a

lack of best practice for medical institutions to follow. Hence, how to integrate VC visits with

traditional office visits to meet patient needs while achieving scalable and financially sustainable

operations warrants a thorough investigation.

To fill this gap, we develop a game-theoretic framework to investigate the optimal pricing strate-

gies that navigate patients between VC visits and in-person visits, thereby achieving an overall

economic outcome and improving patient care. The medical institution or social planner is modeled

as the leader in the Stackelberg game, which determines whether to offer VC visits to supple-

ment in-person visits, and the corresponding prices charged for auxiliary nursing services. Patients

from multiple communities as followers make decisions to maximize their perceived utility. Models

featuring different pricing schemes (discriminative pricing based on patient characteristics vs. non-

discriminative) and efficient algorithms for solving the optimal pricing strategy under both linear

and general piece-wise linear concave nurse cost functions are provided. These modeling efforts

lead to the following major observations and policy insights:

(i) Our model sheds light on the value of telehealth in diverting patients from in-person vis-

its to virtual visits that reduces excessive travel burden and congestion in the system, and thus

improving the overall system efficiency. The key determinator is the “system-level” marginal gain

from VC visits as a function of individual travel burden and nurse coordination costs. In princi-

ple, the medical institution favors patients from larger communities that are moderately far away

from its central care facility, indicating a larger marginal gain, to receive VC visits. For patients,

there exists a threshold-type equilibrium patient diversion strategy. Our model further reveals the
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characteristics of patients’ care choices in response to the medical institution’s pricing strategy as

well as payment and cost structures. Surprisingly, the existence of the threshold-type equilibrium

is invariant to these changes.

(ii) Hospital congestion is generated when too many patients conduct in-person visits, which

adds negative externality (e.g., a higher infection risk during a pandemic) to the service system.

However, it is not in the medical institution’s best interests to completely eliminate congestion.

The medical institution is less sensitive to congestion compared to patients, and the perception of

congestion at the central care facility will induce patients to favor VC visits and thus being willing

to pay a higher price for “customized” and “hassle-free” care. This “artificial congestion” created

by the medical institution is not desired by the social planner, but our model reveals the existence

of a pricing regime that aligns the interest of the social planner and the medical institution, which

bolsters the successful implementation of VC visits.

(iii) Our results also highlight that, charging a uniform price of VC visits, which seems fair to

patients, can lead to unintended consequences. The conditions that favor the implementation of

VC visits become more restrictive, and patients from different communities are disproportionally

affected. Patients from the communities that are not very far from the central hospital and are close

to satellite clinics (low nurse coordination cost) would have access to VC visits under discriminative

pricing. However, they would lose this option because the medical institution is not willing to

provide it under non-discriminative pricing. In addition, the aggregate patient utility and hospital

revenue can be lower when discretionary prices are forbidden. Therefore, a discriminative pricing

strategy can be more beneficial. Besides lifting the fairness constraint, shifting the burden from

patients to the payer (e.g., let the government or insurance companies share cost) can further

facilitate the adoption of telehealth by patients and the medical institution alike.

The remainder of the paper is organized as follows: The related literature is briefly reviewed

in Section 2. The assumptions of the game-theoretic model are described in Section 3. The anal-

yses under the discriminative and non-discriminative pricing schemes are presented in Section 4

and Section 5, respectively. Extensions and a numerical study using real-world inspired data are

introduced in Sections 6 and 7. Finally, concluding remarks are given in Section 8.

2. Literature Review

In the realm of telehealth research, the mainstream literature splits into clinical studies and health

economics studies. Existing clinical studies on the use of VC visits mainly focused on the patient

perception of and their experience with VC visits, as well as the evidence of effectiveness (Kitamura

et al. 2010, Mallow et al. 2016). On cost-effectiveness, home telehealth services were found to lead

to reductions in the costs of health care resources for chronic diseases such as congestive heart
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failure, diabetes, and chronic obstructive pulmonary disease, etc., from both health care systems’

and insurers’ perspectives (see review papers Polisena et al. (2009) and Dávalos et al. (2009)). These

studies considered the cost associated with specific health care resources, such as hospitalizations,

primary care encounters, and emergency department visits, and also included the cost required to

set up a home telehealth system. A 34% monthly cost reduction after using virtual care services

was revealed in one study (Grady 2002), where the primary attributes were the reduction in

hospitalization (by 14%), along with reduced appointment times (5-10 minutes), and the removal

of considerable travel time for both patients and their provider. The initial installation cost of a

virtual care system was estimated at a rate of $720 per month, but the reduction of other costs

was expected to cover the differences.

The operations engineering society has limited works on but shows a growing interest in tele-

health. A variety of analytical models have been developed. For instance, mixed integer program-

ming was used to find the best telemedicine device in a telemedicine workstation in rural com-

munities in South Africa (Treurnicht 2009). Simulation techniques were used in the design of a

telemedicine program in Mexico, which was formulated as a vehicle routing problem with a mobile

unit equipped with telecommunication gear and satellite connection (Lach and Vázquez 2004). In

addition, a Bayesian network was used to enhance the telehealth system design by predicting any

problematic situation for at-home kidney disease patients (Bellot et al. 2002). Meta-heuristics was

used to develop a genetic algorithm based method to allow for the tele-screening of breast cancer

using digital mammography images (Qian et al. 2005).

Meanwhile, stochastic models and game theory were prevalently used in the design and evaluation

of flexible service systems with strategic entities. Relevant literature includes an optimal tele-

specialist policy designed to recommend which patients to treat remotely considering the quality

and accuracy trade-off of telehealth services (Tarakci et al. 2007). Telehealth physician triage as a

hierarchical knowledge-based service system has been analyzed using a partially observable Markov

decision process to describe the optimal scheduling policy (Saghafian et al. 2018). The impact of

electronic visits (e-visits) on the cycle time of office visits in primary care settings was investigated

using a multi-class vacation queue model in Zhong et al. (2017, 2018). How physicians select the

size of their patient panel and patient revisit intervals to maximize their compensation under

the e-visit model using patient health dynamics and Markov decision process were presented in

Bavafa et al. (2018) and Bayram et al. (2020). On telehealth service design, the specialist’s optimal

service rate and price for a telehealth service considering patients differing in their travel distances

were investigated in Rajan et al. (2019). Models of telehealth as on-demand service platforms to

investigate pricing and service rate decisions can be found in Liu et al. (2018) and Savin et al. (2019).

Furthermore, the conditions under which switching from an office visit-based clinical practice to
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a mobile-based practice is economical was investigated in Rajan and Agnihothri (2019). Despite

these efforts, the service system design of VC visits with nurse assistance and the corresponding

operational challenges have not been addressed.

3. Problem Settings

Large health care systems typically maintain a network of multiple facilities, including medical

centers, hospitals, and outpatient sites, serving a large population of patients with care of varying

complexity. Our work is motivated by the telehealth service design for such systems to deliver

outpatient care (e.g., specialty care). Without loss of generality, we use the University of Florida

Health Cancer Center (UFHCC), a community hospital, to motivate the study. The UFHCC serves

a catchment area of 22 counties in North Central Florida, with the farthest one being a three-hour

drive away from the medical center in Gainesville, FL (see Figure 1). Among patients served by

UFHCC, 37% of the population are residing in rural areas, and 33% of them are retired with

a median age of 55 years. These patients need to make regular visits to manage their disease

conditions and their appointments are typically made in advance. When visiting the medical

center, in addition to the heavy travel burden, patients, especially elderly ones, have difficulty in

locating the specialty clinic inside of the medical center, and the confusing check-in process could

cause delays and disruptions in receiving care services. A service delivered to patient homes can

reduce the negative patient experience in the medical center and expand access to care for patients

with mobility barriers. To investigate this alternative service and its impact on care delivery system

design, we introduce a game-theoretic model with the assumptions elaborated below.

Figure 1 Catchment area of UFHCC (UF Health Cancer Center 2020).
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Patient community We consider a set of communities (I) in the service region, characterized

by two features: the average demand Di and the average transportation cost fi, incurred by patients

traveling from community i ∈ I to the central care facility. In the context of chronic disease or

cancer management, in contrast to urgent or acute care, Di represents the regular follow-up visits

scheduled in advance, proportional to the size of the patient population. Therefore, we treat Di

as a deterministic variable. In addition, communities vary in their location and their proximity

to the medical center. Notably, patients’ mobility and disease conditions also contribute to their

transportation costs. Without loss of generality, we encapsulate such heterogeneity using a unified

measure of travel burden, denoted as fi. The model can be generalized to investigate fi as a function

of proximity, disease burden, and mobility, among other factors.

Payment structure Patients pay a fixed amount of C1 for the physician service (either in-

person or virtual) (The Official U.S. Government Site for Medicare 2020). For VC visits, patients

are also charged for the nursing service. If a discriminative pricing strategy is allowed, the medical

institution can set the price for community i as C2,i. If not, a uniform price C2,f is set. Patients

pay a co-insurance ηdC2,i or ηfC2,f with ηd, ηf ∈ [0,1], respectively. An alternative co-payment

model suggests that patients pay a fixed C2 to the medical institution for nursing services. This

can represent the setting that the insurer (but not the medical institution) fully determines the

patient’s out-of-pocket payment. Since insured patients pay premiums to insurers regardless, we

do not factor it into the utility for comparing VC and in-person visits.

The medical institution collects patients’ out-of-pocket payments for both physician services and

nursing services. For insured patients, the medical institution bills the insurers and gets a lump-sum

payment. Other payers (e.g., governments) also subsidize or reimburse the medical institution for

contracted care plans (e.g., Medicare and Medicaid). The reimbursement for physician services is

thus omitted in the medical institution’s revenue as payers typically reimburse physician services

for VC and in-person visits at an equal rate (eVisit 2020), and the total patient demand stays the

same. The reimbursement for auxiliary nursing services might also be a lump-sum payment by the

insurer. The incumbent reimbursement policy does not cover nursing services for telehealth, and we

consider a conservative scenario by omitting the insurer payment for nursing services for our major

analysis. A discussion of non-zero reimbursement can be found in Section D in the Appendix.

Patient utility For patients, they gain Rk, k= 1,2, as the reward of receiving services. They

also pay the service toll and assume the congestion and travel costs. The utilities of patients from

community i for in-person and VC visits are defined as:

Ui,1 =R1−C1− fi−α
∑
j∈I

ρjDj, central care facility, (1)
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Ui,2 =R2−C1−C2− ηdC2,i− ηfC2,f , community i. (2)

The term
∑

j∈I ρjDj represents the congestion (denoted in the following as W ) in the central care

facility. The congestion disutility for VC visits is not as pronounced as that in the in-person setting,

where congestion implies a crowded environment, a higher risk of contracting an infectious disease

(such as COVID-19), and a larger variability of services. Therefore, we only penalize this negative

externality for in-person visits and use α to measure the sensitivity/unit effect of crowding on

patients. For instance, a spike in telehealth demand was witnessed during the pandemic, where the

adverse consequence of crowdedness measured by α is so large that patients’ utilities of receiving

in-person care are greatly reduced. Besides the risk of infection, patients generally favor a less

crowded environment under which the per-patient space, staffing, and other resources are greater

and the procedures are more ordered. Patients are strategic entities and they pick the option that

maximizes their own utility, i.e., the choice i is obtained as arg maxi{Ui,1,Ui,2}. This forms the

incentive compatibility (IC) constraints:

Ui = max
i
{Ui,1,Ui,2}, ∀i∈ I. (3)

Remark: We keep C2,i, C2,f and C2 in the utility function for completeness, and ηd, ηf and C2 will

not be zero at the same time. In case the payment for provider services, C1, is different between

in-person and VC visits, the difference between them can be absorbed by C2 mathematically as a

payment adjustment.

Cost Structure of the Medical Institution First, the medical institution employs nurses

to provide auxiliary care during the VC visits. Medical personnel such as nurses can help measure

the vitals and conduct physical examinations that cannot be delivered virtually, and their training

and knowledge can improve patients’ compliance with the clinical guideline. These nurses can be

supplied by the participating satellite clinics or home care service providers. Nurses are typically

paid by a flat rate or under a contract (Schmidt 2020). The additional cost to the medical institution

mainly comes from the productivity loss and the distance-based travel compensation. In particular,

a nurse sees fewer patients when traveling to patient homes compared to staying at the clinic, and

the travel cost depends on the number of homes to be visited. Thus, we consider a cost structure

gi(D) = βiD+θiID>0, i.e., the nurse coordination cost is proportional to the VC visit demand rate D

plus a fixed set-up cost θ. We start with gi(D) = βiD, for which we provide an algorithm (Algorithm

1) that converges to the global optima. For a broader consideration of cost structures, we give

an algorithm (Algorithm 2) that suits piece-wise linear concave functions as the approximation of

general concave functions and is guaranteed to converge to the local optima. A sensitivity analysis
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regarding the cost function is presented in the numerical study. Other operational costs are invariant

to telehealth services and hence are not factored into the model.

Second, the medical institution suffers a congestion penalty when the number of patients coming

to the central care facility (e.g., a hospital) exceeds a threshold We. Congestion in the hospital

could accelerate the spread of infectious disease (such as COVID-19). It could also cause the over-

utilization of capacity-limited resources and affect the hospital’s operating cost. For instance, when

congestion presents in an understaffed setting, the hospital risks paying extra for agency nurses or

paying at an overtime rate. Additionally, congestion attributes to medication errors and diagnostic

delay and incurs other intangible costs. We penalize the medical institution for excessive congestion

with a unit cost rate γ. Lastly, because the patient demand is stable and the physician supply

is also unchanged, other operating costs are not significantly affected by VC visits and are not

featured in the model.

Information structure We assume that patient demands, service prices, and congestion and

transportation costs are common knowledge. Also, the medical institution is able to meet patient

needs, i.e., the care provider is willing to cater to patients’ needs. The setting of patients with

strict preferences is discussed in Section 6.3. In addition, we consider a single major care provider

in the service region, and the monopoly assumption can be relaxed by considering patient loss or

patient migration, which is discussed in Section C in the Appendix. The variables and parameters

introduced above are summarized in Table A.1 in the Appendix.

4. Discriminative Pricing Scheme

Nurses employed by nursing homes and assisted living facilities are often the onsite source through

which physicians can assess patients using telehealth (Miller 2020). The cost of nursing service can

be location dependent, which motivates the discriminative pricing strategy based on the patient’s

residency (Schmidt 2020). Without loss of generality, we start our analysis with the discriminative

pricing scheme and provide the full course of analysis regarding the optimal pricing strategies to

maximize the medical institution’s revenue and the social welfare.

4.1. Revenue Maximization

Community hospitals are typically profit-driven. A monopolistic medical institution determines

whether to offer VC visits at patient homes in different communities (option 2) to supplement

in-person visits provided at the central care facility (option 1). It also determines the price C2,i for

auxiliary nursing services provided in community i. Based on the prices, patients make decisions

to maximize their perceived utility (the IC constraints) and they are indifferent to the type of care

services received as long as the perceived utilities stay the same. To induce randomness, patients
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can employ a mixed strategy: in community i, a proportion ρi ∈ [0,1] of patients receive in-person

visits versus VC visits (1-ρi). The optimization problem (Model 1) is presented below:

max
C2,i

∑
i

Di(1− ρi)(ηdC2,i +C2)− γ

[∑
i

ρiDi−We

]+
−
∑
i

gi((1− ρi)Di)

s.t. IC constraints (1)− (3).

We let ηd 6= 0 and ηf = 0 to represent the discriminative pricing scheme, and the non-

discriminative case (ηd = 0 and ηf 6= 0) is considered in Section 5. Here we claim that the medical

institution can use pricing alone to navigate patients and the solution to Model 1 is the same

as considering both C2,i’s and ρi’s as decision variables (see the Appendix for the proof). This

equivalency greatly simplifies the analysis.

For a clear presentation of the main results, we start with the analysis of one and two communities

that provides insights generalizable to multiple communities.

4.1.1. Single Community If the service region is rather uniform in demand and travel cost,

it can be considered as one large community. For a single community (i), three scenarios (S) can

unfold: (1) all patients go to the hospital, (2) all patients stay at home, and (3) part of them

stay at home, denoted as Sm, m ∈ {1,2,3}. Let ϕi = fi − βi + γ − ∆R represent the system’s

marginal gain from VC visits, where fi is the saving of individual travel expenditure, βi is the

unit nurse coordination cost, γ is the medical institution’s sensitivity to excessive congestion, and

∆R = R1 − R2. Here ∆R represents the reward difference between the two services, which is

positive when patients have a higher preference for in-person visits than VC visits, and negative,

otherwise. For mathematical convenience, let ζi = ϕi/(2αDi). The equilibrium patient diversions

responding to the optimal pricing are summarized in Proposition 1 and illustrated in Figure 2a.

Proposition 1. With nurse cost function gi(D) = βiD + θID>0, the optimal patient diversions

with one community are as follows:

1. θ < αD2
i . When 1/2 > ζi > −1/2 +

√
θ/(
√
αDi), a unique mixed strategy equilibrium exists,

where ρi = 1/2− ζi fraction of patients will go to the hospital and the rest stay at home. When

ζi ≥ 1/2, or ζi ≤−1/2 +
√
θ/(
√
αDi), all patients choose either home or hospital, respectively.

2. θ≥ αD2
i . Only pure strategies exist, i.e., all patients stay at home when ζi ≥ θ/(2αD2

i ) or go

to the hospital, otherwise.

Proposition 1 suggests that when the set-up cost θ is high, a patient diversion is not favored:

depending on the marginal gain from VC visits, all patients either choose VC visits or go to the

hospital. With a small to moderate set-up cost, the percentage of in-person visits is decreasing
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Figure 2 Parameter region partition examples.

with the marginal gain from VC visits. The boundaries of partitions are plotted in solid lines in

Figure 2a. It manifests that a mixed strategy equilibrium (S3) occurs when neither the set-up

cost nor the absolute value of the marginal gain (or loss) is dominantly large. These results are

consistent with our intuition.

Having We 6= 0 leads to a continuous but non-differentiable objective function and consequently

complicates the optimization problem. However, it does not significantly impact the structure of

optimal solutions, especially when γ is not very large. We defer the discussion of the impact of a

positive congestion threshold We in the numerical study and more discussions can be found in the

Appendix.

4.1.2. Two Communities With two communities A and B, a total of nine scenarios can

occur, denoted as Smn, m,n ∈ {1,2,3}. According to the uni-community analysis, the marginal

utility change ϕi is a critical factor, and two cases, ϕA = ϕB = ϕ and ϕA 6= ϕB can unfold. We

reserve the technical results in the Appendix and only present the major observations here.

Figure 2b illustrates the equilibrium patient strategies of communities A and B with an equal

marginal gain in different parameter regions, under the assumption DA ≤DB. The case of DA ≥DB

is symmetric and can be analyzed analogously.

An important takeaway is that when the marginal utility gains are equal, there can be multiple

equilibria. In particular, when θ= 0 (no set-up cost), one can combine the two communities into one

to significantly simplify the analysis. Since the unit utility gain is invariant to community member-

ship, as long as the total fraction of patients going to the hospital ρ̄ := (ρADA+ρBDB)/(DA+DB) =

1/2−ϕ/(2α(DA +DB)) is maintained, the optimal revenue can be achieved.

When ϕA 6=ϕB, different equilibrium patient strategies are exhibited in Figure 3. The partitions

are generated with DA <DB and are plotted on ζi =ϕi/(2αDi), i=A,B for illustration purposes.
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While the readers are referred to the Appendix for further technical details (Proposition A.2), we

outline the main findings here.

When the marginal gain or loss of community i is considerable, i.e., |ϕi| > α(DA + DB), its

patients will stay at home or go to the hospital, regardless of the choice of the other community.

When the marginal utility change of neither community is large enough, patients will consider

others’ behaviors, and the population size comes in to play. In addition, the two communities

cannot take mixed strategies simultaneously, that is, S33 is not feasible. The medical institution

desires patients with a larger ϕi to stay at home. As such, mixed strategy equilibria are elicited

either when the difference in gains/losses between the choice of home and hospital is minimum, or

patients’ sensitivity to congestion α and/or the demand rate Di is considerable. Both indicate that

a minor change in the proportion of patients going to the hospital will have a salient impact on

congestion and therefore nudging their preferences. In the case that patients are more sensitive to

congestion than the medical institution, congestion becomes valuable to the medical institution —

it desires patients to come to the hospital to generate a certain level of congestion so it can charge

a higher price for the virtual service.

4.1.3. Multiple Communities The cost structure being gi(D) = βiD + θiID>0 entails a

knapsack problem, which is NP-hard. Therefore, we start with a linear nurse coordination cost

gi(D) = βiD and provide an O(log(N)) time algorithm. For general concave functions, we provide

a well-performing heuristic solution to our problem.

Linear nurse coordination cost functions Without loss of generality, we assume there are

N communities with unique ϕi’s ranked in an ascending order. If there exist two communities

i, j ∈ I with ϕi =ϕj, then, combine them until getting unique ϕi’s. This operation is justified based

on the two-community analysis.

Theorem 1. The optimal solution (ρ∗i ’s) to the revenue-maximizing problem with linear nurse

coordination cost functions has the following structure. There exists a community K ∈ I such that

for ϕi <ϕK, ρ∗i = 1, and for ϕi >ϕK, ρ∗i = 0, and this community is nominated as the “threshold

community.” With K being the threshold community, if ρ∗K ∈ (0,1), the optimal congestion, i.e.,

the congestion generated by the optimal number of patients coming to hospital, is obtained as W ∗ =∑
i ρ
∗
iDi = (α

∑
iDi−ϕK)/(2α).

According to Theorem 1, at most one community (the threshold community) is optimal to

adopt mixed strategies. This is consistent with the observation of two communities A and B with

ϕA 6= ϕB. In addition, when |ϕi| is large enough, community i patients will stay at home or go to

the hospital, regardless of the choice of patients in other communities. This echoes the observation



12 Author: Service System Design of Video Conferencing Visits with Nurse Assistance

-5 0 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S22  (0,0)

S23  (0, )

S13  (1, )

S11  (1,1)

S12  (1,0)

S21  (0,1)

S32

( ,0)

S31

( ,1)

(a) θ= 0

-5 0 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S22  (0,0)

S23  (0, )
S13  (1, )

S11  (1,1)

S12  (1,0)

S21  (0,1)

S32

( ,0)

S31

( ,1)

(b) 0< θ <αD2
A

-5 0 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S22  (0,0)

S23  (0, )
S13  (1, )

S11  (1,1)

S12  (1,0)

S21  (0,1)

(c) αD2
A ≤ θ < αD2

B

0 2 4 6 8 10
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

S12  (1,0) S22  (0,0)

S11  (1,1) S21  (0,1)

(d) αD2
B ≤ θ

Figure 3 Parameter region partitions for two communities with DB = 3DA and ϕA 6= ϕB .

of the two-community case. In particular, when all ϕi’s are large, it is optimal to let all patients

stay at home (See Corollary A.1).

In short, we are delighted to find that the property of the system with multiple communities

aligns with that of single and dual communities. In the following, we present the algorithm that

offers us the exact solutions to the revenue-maximizing problem with linear nurse coordination cost

functions. This is equivalent to find the threshold community K and ρ∗K . To obtain K, we first

calculate WC
k =

∑
i<kDi and HC

k =
∑

i>kDi, and obtain ρ<k>k = max{0,min{1, (Dk+HC
k )/(2Dk)−

(ϕk + αWC
k )/(2αDk)}}, for each k = 1...N . Here ρ<k>k is the optimal percentage of community k

patients going to the hospital when community k is chosen as the “candidate threshold community,”

and the corresponding revenue is denoted as R<k>. The true threshold community satisfies K =

argmaxkR
<k>.

Proposition 2. If ρ<k>k ∈ (0,1), then, k is the true threshold community, i.e., K = k and R<k>

is the optimal revenue. If ρ<k>k = 1, then R<k> >R<k−1>; if ρ<k>k = 0, then R<k> >R<k+1>.

Proposition 2 articulates that R<k> as a function of k is unimodal. Based on this property, we

device Algorithm 1 (see Table 1).
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Table 1 Algorithm 1 for linear nurse coordination cost functions.

Initial lower= 1, upper=N + 1.
For k= b(lower+upper)/2c:

Calculate WC
k =

∑
i<kDk and HC

k =
∑

i>kDk.
Calculate the corresponding

ρ<k>k = max{0,min{1, (Dk +HC
k )/(2Dk)− (ϕk +αWC

k )/(2αDk)}}.
If ρ<k>k ∈ (0,1), R<k> is optimal, stop.
If ρ<k>k = 1, lower= k, continue.
If ρ<k>k = 0, upper= k, continue.

Until k does not change.

Proposition 3. Algorithm 1 for linear nurse coordination cost functions runs in O(log(N)) time,

where N is the number of communities.

This algorithm is computationally efficient — there is no need to evaluate the revenue in each

iteration, and once a mixed strategy ρ<k>k is obtained, the threshold community k is identified.

Concave nurse coordination cost functions First, we show that for general concave cost

functions, there exists an optimal solution that dictates at most one community to adopt a mixed

strategy. Notably, the notion of “general” here refers to a class of non-decreasing concave functions

that cross the origin, conforming to the nature of cost functions. The cost structure being gi(D) =

βiD+ θiID>0 is a special case in that class.

Theorem 2. For a general concave nurse coordination cost function, there exists an optimal solu-

tion that dictates at most one community k ∈ I to have ρk ∈ (0,1), and all other communities have

optimal patient diversions ρi = 0 or 1, i 6= k.

For brevity, we introduce a vector ρ representing the patient diversion of all communities. With

a general concave cost structure, the revenue maximization problem is NP-hard and the optimal

solution ρgen is difficult to obtain. However, Theorem 2 elucidates a nice structure, which reveals

that the structure of optimal solutions to the problem with general concave cost functions can be

similar to that of linear ones. It motivates us to approximate ρgen using a linear approximation. In

the following, we provide a theorem showing that the optimal solution ρlin solved under the linear

cost structure assumption is a good approximation.

Theorem 3. The optimal solution ρlin under the linear cost structure with glini (D) = βiD, βi =

gi(Di)/Di is a feasible solution to the revenue maximization problem under the general concave cost

structure gi(D), and the corresponding revenue R(ρlin) approximates the optimal objective function

R(ρgen) with a gap less than gK((1−ρK)DK)−βK(1−ρK)DK, where K is the threshold community

in ρlin.
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The constraints of the revenue-maximizing problem remain invariant to the nurse coordination cost

function, which only appears in the objective function, and hence, any feasible solution to the linear

problem is also feasible to the concave one. The choice of the linear approximation glini (D) = βiD

is motivated by the fact that glini (Di) = gi(Di) and glini (0) = gi(0) = 0. When communities have

optimal patient diversions ρi = 0 or 1, this approximation is exact. This theorem is very powerful

because a good approximation is only required for the threshold community but not others, and

if the cost function for the threshold community is indeed linear, then, no matter how other cost

functions look like, the optimal revenue is guaranteed, i.e., R(ρgen) =R(ρlin).

Without solving the optimization problem, if we know that maxi∈I gi(Di) is small in scale com-

pared to revenue R(·), we can directly use the solution obtained under the linear assumption to

approximate that under the concave assumption. Only when gK((1− ρK)DK)− βK(1− ρK)DK is

not negligible, we then need to consider a better approximation of gi(D), such as a piece-wise linear

concave function. Consequently, we introduce Algorithm 2, where the optimization problem turns

into a non-linear integer program.

Assume there are Li ≥ 1 segments for each piece-wise linear concave function gp-lini (D) as an

approximation to gi(D), and let βli be the gradient of the cost function at the lth segment, 1≤ l≤Li.

Let ϕli = fi + γ − βli −∆R for 1 ≤ l ≤ Li. In addition, introduce ρt,li as the optimal diversion of

community i at iteration t by assuming the gradient of the cost function falls on the lth segment

with value βli. Define Rt,l =R(ρt,li ) as the optimal revenue when community i adopts the optimal

solution ρt,li and the other communities keep their current diversions, i.e., ρtj for j < i and ρt−1j for

j > i (the definitions are provided in Table 2). We deem a solution ρt,li as feasible if (1− ρt,li )Di

falls on the domain of segment l; otherwise, it cannot serve as a candidate for the optimal solution.

Furthermore, for the cost function with a non-zero set-up cost, denote ρti = 1 (implying no nurse

coordination cost) as ρt,l=0
i , and the corresponding revenue as Rt,l=0. Then, we define the optimal

solution of ρi at iteration t as ρti = argmax
ρ
t,l
i
Rt,l, for 0≤ l≤Li. Ht,i (Wt,i) is the amount of stay-

home (go-to-hospital, respectively) patients at iteration t after updating patient diversion ρti at the

i-th community.

Proposition 4. Algorithm 2 for piece-wise linear concave nurse coordination cost functions con-

verges to a local optimum.

This algorithm is a special case of the minorize-maximization algorithm, which is an iterative

optimization method that finds the maxima of convex programs. Since this problem entails a

non-linear integer program, the algorithm converges to a local optimal in general. The proof of

convergence can be found in the Appendix.
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Table 2 Algorithm 2 for piece-wise linear concave nurse coordination cost functions.

Initialization with the optimal solution ρlin.

For t=1...
For i =1...N:

If i=1, HC
t,i =Ht−1,N − (1− ρt−1i )Di, W

C
t,i =Wt−1,N − ρt−1i Di.

If i=2...N, HC
t,i =Ht,i−1− (1− ρt−1i )Di, W

C
t,i =Wt,i−1− ρt−1i Di.

For each segment 0≤ l≤Li:
Calculate ρt,li = max{0,min{1, (Di +HC

t,i)/(2Di)− (ϕli +αWC
t,i)/(2αDi)}}.

Check feasibility, if feasible, calculate R(ρt,li ).
Update ρti = argmax

ρ
t,l
i
Rt,l.

Update Ht,i =HC
t,i + (1− ρti)Di, Wt,i =WC

t,i + ρtiDi.
Until converge.

4.2. Value of VC visits

We show here that under certain conditions, the medical institution would like to offer VC visits,

which strictly benefits both the medical institution and patients.

Proposition 5. With linear nurse coordination cost functions, when ϕmax = maxi∈I ϕi >

−α
∑

j∈IDj, some patients prefer to receive care at home, and the medical institution and patients

who remain to go to the hospital are strictly better off. Moreover, the medical institution collects

strictly more money from every patient who switches from going to the hospital to staying at home.

Proposition 5 suggests that the largest marginal utility gain from offering VC visits should exceed

a threshold −α
∑

iDi. In practice, if the overall cost to deploy VC visits is large due to a high

set-up cost (cost irrelevant to unit demand, e.g., equipment fee or bonus paid to nurses who are

on travel) and/or a high unit cost for dispatching nurses to patient homes, the medical institution

would not implement VC visits.

Furthermore, if there exist patients receiving VC visits, then, the medical institution collects

strictly more money with the amount of ϕi +αW ∗ > 0 from every at-home patient in community

i, where W ∗ is the optimal congestion level. Notably, not all regions are equally profitable as a

result of patient heterogeneity. For instance, if all nursing service costs are identical, the medical

institution favors patients from larger-scale communities that are far from its central care facility

to receive VC visits, so as to reap strictly more surplus from patients.

4.3. Social Welfare Maximization

In contrast to the medical institution, a social planner aims to maximize the social welfare with

the following optimization problem under the linear nurse coordination cost assumption:

max
C2,i

∑
i∈I

(1− ρi)Di[ϕi +α
∑
j∈I

(1 + ρj)Dj]

s.t. IC constraints (1)− (3).
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Proposition 6. For social welfare maximization under the linear nurse coordination cost assump-

tion: If ϕmax >−2α
∑

j∈IDj, then, there are patients who should receive care at home, and both

the aggregate patient surplus and the social welfare are strictly larger.
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All patients go to the 
hospital

Hospital starts to offer 
VC services

Social planner starts to offer 
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Figure 4 Conditions for implementation of VC visits

Figure 4 compares the feasible regions for the social planner and the medical institution to offer

VC visits. If the maximum marginal gain ϕmax is smaller than −2α
∑

i∈IDi, then both of them

would not offer VC visits. When ϕmax increases to (−2α
∑

i∈IDi,−α
∑

i∈IDi], the social planner

starts to ask some patients to stay at home while the medical institution still sends them all to the

central hospital, according to Proposition 5. When ϕmax continues to increase, offering VC visits

becomes a consensus, but the congestion generated by the social welfare maximizer is always less

than that of the revenue maximizer, as elaborated in Proposition 7 below.

We introduce superscript “Wel” to refer to the results obtained from social welfare maximization.

Let ρWel
i be the optimal patient diversion of community i, and WWel =

∑
i ρ

Wel
i Di be the optimal

amount of patients going to the hospital. We further introduce superscript “Rev” to refer to the

results obtained from revenue maximization. Let ∆Hospital, ∆Patients, and ∆Welfare be the difference

in revenues between with and without offering virtual services, and that in patient surplus and

social welfare, respectively.

Proposition 7. Under the conditions that ϕmax >−2α
∑

j∈IDj and ∃ i, ϕi < 0, comparing rev-

enue maximization and social welfare maximization:

1. The optimal congestion based on the social planner’s decision WWel is strictly less than that

from the medical institution’s choice WRev.

2. ∀i∈ I, ρWel
i ≤ ρRev

i and there exists at least one i∈ I such that ρWel
i <ρRev

i .

3. ∆Wel
Patients >∆Rev

Patients, ∆Wel
Hospital <∆Rev

Hospital, and ∆Wel
Welfare >∆Rev

Welfare.

It can be observed that the medical institution prefers more patients coming to the hospital than

the social planner does. By maintaining a certain level of “crowdedness,” the medical institution
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can charge a higher price for at-home patients and gain more revenue. In addition, unlike patients

who are no worse under the social welfare maximization, the increase in the medical institution’s

revenue is not guaranteed. While the “artificial congestion” is not favored by the social planner,

the alignment between the social planner and the medical institution can be established and the

discussions are presented in Section 6.1.

5. Non-discriminative Pricing Scheme

In this section, community-specific pricing for VC visits is not allowed (ηd = 0). Specifically, two

cases can unfold: (i) ηf = 0 and patients pay a constant C2 that the medical institution can not

determine (for instance, determined by the insurer); (ii) ηf 6= 0, and a sum of ηfC2,f +C2 is paid

for nursing services. For both cases, we obtained the following patient strategies.

Theorem 4. When patients from all communities pay the same for VC visits:

(a) (Monotonicity in travel burden) For any fi > fj, if community j patients are optimal to stay

at home, then community i patients are also optimal to stay at home.

(b) (Threshold structure) There exists a threshold travel burden F = ηfC2,f +C2 − αW + ∆R,

where W :=
∑

i∈I ρiDi is the total number of patients coming to the hospital. For community i

patients, if fi >F , stay at home; if fi <F , go to the hospital; if fi = F , a mixed strategy equilibrium

can exist.

This theorem shows that with a flat VC visit payment, the patient strategy still enjoys a threshold

policy. The travel burden plays an essential role in this case. Instead of ranking the communities

according to their marginal gain ϕi’s to identify the threshold community, now the ranking is based

on their travel burdens and one aims to find out the threshold travel burden.

In case (i), the medical institution cannot negotiate the price with the insurer due to a lack of

market power. Then, the medical institution is willing to offer VC services only when the price C2

is greater than a threshold as described in Eq. (A.8) (see Proposition A.4 in the Appendix).

In Case (ii), the medical institution aims to find the optimal solution to the following problem:

max
C2,f

(ηfC2,f +C2)

 ∑
j:fj>F

Dj + (1− ρi)Di

− ∑
j:fj>F

gj(Dj)−
∑
j:fj=F

gj((1− ρj)Dj)

−γ

 ∑
j:fj<F

Dj +
∑
i:fi=F

ρiDi−We

+

+ γ

[∑
j∈I

Dj −We

]+
s.t. IC constraints (1)− (3).

According to Theorem 4, only the threshold community can adopt a mixed strategy, denoted as

ρi. Then, we claim that the above problem is the same as the one considering both C2,f and ρi as

decision variables (see the Appendix for the proof).
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We show here that under certain conditions, the medical institution would like to offer VC visits,

which strictly benefits both the medical institution and patients.

Proposition 8. With linear nurse coordination cost functions, when there exists a community i

which has ϕi >α
(∑

j∈I:fj>fi
Dj −

∑
j∈I:fj≤fi

Dj

)
, some patients will prefer to receive care at home,

and the medical institution and patients who remain going to the hospital are strictly better off.
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Figure 5 Conditions for implementation of VC visits under flat nursing service price

Since ϕmax = maxi∈I ϕi ≥ϕi >α(
∑

fj>fi
Dj −

∑
fj≤fi

Dj)≥−α
∑

j∈IDj, the condition in Propo-

sition 8 is stricter than that in Proposition 5. As shown in Figure 5, when discriminative pricing

is not allowed, it is more difficult for the medical institution to benefit from offering VC visits and

subsequently implementing it. This can actually hurt patients at the mean time. For instance, if

maxi∈I ϕi >−α
∑

j∈IDj, but for all i, ϕi <α(
∑

fj>fi
Dj−

∑
fj≤fi

Dj), then, the medical institution

will not offer the new service under the flat rate requirement. Nonetheless, it is optimal to do so

if discretionary prices are allowed. According to Proposition 5, patients could have benefited from

VC visits in this region, but they will miss this opportunity because the medical institution will

not implement it.

One might expect that charging the same price brings “fairness”; however, this “fairness” can

bring unintended consequences. When discriminative pricing is allowed, the system-level marginal

gain ϕi is used to navigate patients. To achieve a larger marginal gain from VC visits, in addition

to being far away from the central hospital, a community can also take advantage of the low nurse

coordination cost to qualify for VC visits. In contrast, with a flat price, the threshold is solely

based on travel burden fi. A community with a larger fi comparing to its peers is more likely to

receive VC visits. However, choosing communities in this way inevitably include communities whose

nurse coordination costs are actually large, which is not good for the overall system efficiency. To

compensate the loss due to large nursing service costs, the medical institution will charge an overall
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higher price to every community. For the communities that enjoy a low nurse coordination cost, they

could have been charged C2,i such that ηdC2,i < ηfC2,f , if a community-dependent price is allowed.

Examples of such communities that are disproportionally affected by the fairness requirement are

further illustrated in Section 7.3.

The social welfare gain from the new service compared to that without VC visits can be deter-

mined as:

max
C2,f

∑
i

Di(1− ρi)(ηfC2,f +C2)−
∑
i

gi((1− ρi)Di)− γ

[∑
i

ρiDi−We

]+
+ γ

[∑
j∈I

Dj −We

]+

+
∑
i

ρiDi

(
α
∑
j

(1− ρj)Dj

)
+
∑
i

(1− ρi)Di(−∆R− (ηfC2,f +C2) + fi +α
∑
j

Dj)

s.t. IC constraints (1)− (3).

Proposition 9. With linear nurse coordination cost functions, when there exists a community i

which has ϕi >−2α
∑

fj≤fi
Dj, some patients prefer to receive care at home, and the social welfare

is strictly better off.

The comparison between the choices of the social planner and the medical institution under non-

discriminative pricing is similar to that without this constraint. The condition ∃ ϕi >−2α
∑

fj≤fi
Dj

is less restrictive than that for the medical institution to start VC visits. Moreover, since ϕmax ≥

ϕi > −2α
∑

fj≤fi
Dj ≥ −2α

∑
j∈IDj, the condition for the social planner to implement VC visits

under non-discriminative pricing is stricter compared with that for the discriminative case (see

Proposition 6).

6. Discussions

6.1. Alignment between the Medical Institution and the Social Planner

While the social welfare maximizer brings no harm to patients, it is unclear if it is acceptable by

the medical institution, and we present in Corollary 1 about the conditions that align the interests

of the social planner and the medical institution under the discriminative pricing setting.

Corollary 1. If ϕmax >−2α
∑

iDi, the social planner will offer VC visits, and the revenue gain

or loss of the medical institution depends on the pricing strategy for VC visits employed by the

social planner.

• A setting that favors a higher price of CWel
2,i , such as using the upper bound of equilibrium

prices, leads to an increased revenue (compared to no virtual service).

• An unfavorable price, such as the lower bound of equilibrium prices, leads to a reduced revenue

(strictly lower than no virtual service, except for two special cases when WWel = 0 or WWel =∑
j∈IDj).
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The equilibrium pricing: for the communities that satisfy −αWWel ≤ ϕi, −C2 −∆R− γ + βi ≤

ηdC
Wel
2,i ≤−C2−∆R+ fi +αWWel; for other communities, ηdC

Wel
2,i =−C2−∆R+ fi +αWWel.

This corollary shows that the optimal pricing of the social welfare maximization problem is not

unique. Because the price is an internal transaction and does not feature in the objective function,

we find a proper setting of prices, ηdC
Wel
2,i =−C2−∆R+fi+αWWel, such that when some patients

are willing to receive care at home, all three parties (patients, the medical institution, and the

social planner) are strictly better off. This creates a first-best solution that is naturally incentive

compatible for the medical institution. Notably, unlike the revenue maximizer, where the medical

institution earns no less money from every patient, now it receives less money from each community

j with ϕj <−αWWel. Such communities exist when WWel > 0.

The pricing strategy that guarantees an improvement of all three parties (patients, the medical

institution, and the social planner) only exists in the discriminatory pricing setting. If not allowed,

there could still be a range of equilibrium prices, but even the one that is most favorable by

the medical institution (i.e., the upper bound of C2,f ) is taken, the profitability of the medical

institution is not guaranteed. An illustrative example can be found in Section 7.3.

6.2. Service Region Expansion

In our study, a patient in community i would seek care with the medical institution if

max{Ui,1,Ui,2} ≥ 0. For an implementability analysis, the patient demand Di represents the equilib-

rium population before the implementation of VC visits such that Ui,1 =R1−C1−fi−α
∑

j∈IDj ≥

0. In this case, except for the community with the largest fi, all other communities have a strictly

positive utility, which means the demand rate Di has already exploited all the potential demands in

that community. It is not an equilibrium if there are unmet demands in community i but patients

from another community with fj > fi are catered for.

Let DAll =
∑

i∈IDi be the congestion in the hospital without the VC visit option, and W ∗ is the

optimal congestion in the hospital where discriminative pricing is allowed. When the VC visit is

implementable, W ∗ is strictly smaller than DAll. Here we consider the new catchment area where

patients still have the option to go to the hospital, i.e., Ui,1 ≥ 0, when the congestion level W at

the central hospital drops after the implementation of VC visits. With an expanded service region,

the new community set is denoted as Ĩ, and I ⊂ Ĩ.

The expansion in service region introduces more potential demands. The medical institution

might not be able to absorb these patients because of the capacity cap, e.g., limited number of

physicians. However, it can still benefit from the service region expansion. The new optimization

problem adds one more set of decision variables — the communities in the service region that the
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medical institution aims to cover owing to the capacity cap. Clearly, ∆̃Rev
Hospital ≥∆Rev

Hospital, due to an

expanded search space. Furthermore, we observe that, if the medical institution can reject or select

patients in its catchment area to maximize its revenue, it desires the communities with greater

ϕi’s and larger demand Di’s. Due to limited provider capacity, serving the communities close to

the hospital then becomes not as preferable, especially those with a small Di or a small marginal

benefit ϕi. To see this, consider an example where I = {1}, and Ĩ = {1,2}, with f1 < f2. With

limited service capacity, the medical institution can only pick one community to serve. Previously,

when −αD1 ≤ϕ1 ≤ αD1, the maximum revenue is R1 = (αD1 +ϕ1)/(4α)− θ according to a single

community analysis. However, when αD1 +ϕ1 <αD2 +ϕ2, the medical institution is actually better

off with community 2 as their only client with R2 = (αD2 + ϕ2)/(4α) − θ. And R2 > R1 when

D2 >D1 (small demand) and/or ϕ2 >ϕ1 (low marginal benefit). In addition, if we restrict the total

number of patients a medical institution can serve, it would rather serve one large community than

multiple smaller communities with the same total number of patients (demands), especially when

the set-up cost is high.

We further consider that the number of patients each physician sees can be elastic to a certain

extent. This is evidenced by the fact that VC visits can reduce variabilities and provider non-value

added time. Then, with the service region expansion, more patients can be served by the medical

institution. Let W̃ ∗ be the optimal congestion with the expanded catchment area. As a result, the

optimal congestion with the service region expansion should be strictly less than the congestion

when no virtual service is provided, i.e., W̃ ∗ < DAll. However, whether existing patients will be

harmed by the expansion remains to be explored. For them, whether W ∗ is greater or less than

W̃ ∗ is critical. A low congestion level in the hospital would curb the price of at-home care due

to patients’ IC constraints, i.e., each patient is willing to pay a lower price when W̃ ∗ <W ∗. They

strictly benefit from less congestion and a lower price.

The choice of W̃ ∗ will be determined by the medical institution. On the one hand, pushing W̃ ∗

to be as small as possible will attract more communities (with a larger fi) in the service region.

The medical institution loses revenues from the existing patients but is compensated more from

newly attracted patients. On the other hand, as the catchment area increases, more patients would

potentially go to the hospital. The medical institution can encourage them to create a moderate

hospital congestion level and reap the surplus by charging a higher price for at-home care. In this

case, the existing patients would all be worse off.

6.3. Patient Segmentation

The optimal pricing strategy implies that at most one community can have a mix of in-person

and VC visits. However, this is rarely seen in reality as a segment of patients might have fixed
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preferences. Therefore, we consider an extension of our basic discriminative pricing model with

the inclusion of patients who strictly prefer in-person visits to VC visits and vice versa, in each

community. We assume a certain portion of patients prefer to go to the hospital no matter how

severe the congestion in the hospital is, and denote the total number as WFix. There are also

patients who strictly prefer VC visits if it is offered, with the amount hFix
i for community i and

a total of HFix. The rest population is denoted as DFlex
i as before, and the partition ρi ∈ [0,1] is

calculated based on the flexible population DFlex
i .

With the two pre-determined groups, the patients’ utility staying at home remains the same and

that going to the central care facility is updated as:

Ui,1 =R1−C1− fi−α
∑
j∈I

ρjD
Flex
j −αWFix, central care facility.

If some patients strictly prefer VC visits regardless of prices, the medical institution may set

the price arbitrarily high to maximize their revenue, especially if these patients dominate the total

population. Therefore, we assume these patients strictly prefer VC visits when facing the same

utility, and use the IC equilibrium price to calculate the total revenue.

If the medical institution only offers VC visits for the VC service “advocates,” the total revenue

is calculated as

RAll = max
C2,i

∑
i

hFix
i (ηdC2,i +C2)− γ

[∑
i

DFlex
i +WFix−We

]+
−
∑
i

βih
Fix
i .

Under the linear assumption, we have

RAll =
∑
i∈I

hFix
i (ϕi +α

∑
j∈I

DFlex
j +αWFix).

The decision of providing VC visits exclusively for this segment of patients depends on whether

the fees collected from them cover the associated nurse costs. When RAll > 0, the hospital would

like to provide VC visits for these advocates, and a necessary condition is ϕmax >−α
∑

j∈ID
Flex
j −

αWFix. Since
∑

j∈ID
Flex
j +WFix <

∑
j∈IDj when HFix > 0, according to Proposition 5, the medical

institution is actually less in favor of offering VC visits if more patients strictly prefer VC visits.

Next, we consider the situation that the medical institution not only provides VC services for

the VC service advocates, but also the flexible population. Then, the total revenue becomes:

RAll = max
C2,i

∑
i

(
hFix
i +DFlex

i (1− ρi)
)

(ηdC2,i +C2)− γ

[∑
i

ρiD
Flex
i +WFix−We

]+
−
∑
i

βi((1− ρi)DFlex
i +hFix

i ).
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Applying the same methodology as in the main analysis, we find that the threshold struc-

ture still exists, but a modified “optimal” congestion is applied: WFlex,∗ = (α
∑

iD
Flex
i − ϕK −

αWFix + αHFix)/(2α). Moreover, the implementability condition becomes ϕmax = maxi∈I ϕi >

−α
∑

j∈ID
Flex
j −αWFix +αHFix, for which, the medical institution is willing to provide VC services

for the flexible patients (and naturally the advocates will receive VC services). We can see that

with more patients strictly favoring VC services, i.e., a larger HFix, the implementability condition

becomes more strict. On the contrary, with more patients pre-determined to go the hospital (a

larger WFix), the medical institution is more likely to offer VC visits.

One might expect the medical institution to be in favor of offering VC visits since there are

patients strictly prefer VC visits. However, we have shown that this is not the case. Without patients

having fixed preferences, the medical institution can “select” the most profitable population to offer

VC visits; however, with the advocates, the medical institution has to cater to their demands first.

Also, the medical institution would prefer a higher congestion, but its power to create “artificial

congestion” is impaired due to the strict preference of the VC service advocates.

7. Numerical Study

7.1. Model Calibration

We use UFHCC as a motivating example and provide a model and investigate their VC visit ser-

vice design. Unlike primary care, specialty care clinics and specialists (e.g., oncologists) for chronic

disease and cancer management are typically located in urban areas or city centers, and patients

might need to travel a long distance to access care. Currently, UF Health telehealth provides VC

visits for their patients with home internet access, and we further assume those patients can receive

telehealth at home with the presence of nurses from community-based outpatient clinics or home

care providers. We examined the cancer registry data from UFHCC in calendar year 2018 to under-

stand the service region it covers and the demand distribution. Newly registered cancer patients,

especially those who just received surgeries need frequent follow-up visits by specialists to manage

their cancer care, where telehealth suits well in this context. We analyzed the number of newly

registered cancer patients by city and county (zip code indexed) to estimate the potential patient

demands Di across regions. The travel burden of patients to go to the nearest UF Health clinic

available in their own county is used to estimate the nurse coordination cost rate βi. The distance

between patient homes and the medical center is used to estimate the individual travel burden

fi. Demand rate, travel cost, nurse coordination cost, and other parameters are normalized for

illustration purposes. The parameter settings can be found in Tables A.7 and A.8 in the Appendix.
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7.2. Results under the Discriminative Pricing Setting

A total of 3481 patients from 22 counties are considered in the numerical study. The most distant

county covered is Gadsden County, FL, which is 190 miles away, about a three-hour drive to

the medical center. The revenue-maximizing policy finds the Marion county (near Ocala, FL, see

Figure 1) as the threshold community. Among the 22 counties, Marion county is ranked the 8th

based on distance, which is about a 40 minutes’ one-way drive to the medical center. Marion has

the largest demand size and is evaluated as the 12th least profitable county. According to our policy,

all counties that have a smaller marginal profit than Marion and 43.7% of the patients in Marion

should go to the medical center, and the rest should stay at home, which accounts for 50.5% of the

whole normalized demand (the relative market size of telehealth).
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Figure 6 Benefits brought by telehealth for hospital revenue, patient surplus, and social welfare under different

settings: (a) revenue maximization, (b) social welfare maximization, and (c) social welfare maximization

with increased in-person care price C1

Alignment of Revenue and Social Welfare Maximization As pointed out in Proposi-

tion 7, it may not be the best interests of the medical institution to fully comply with the social

welfare maximizer as it can benefit strictly more from the revenue maximizer. In the following, we

investigate a variation of the problem that could improve social welfare without compromising the

medical institution’s profitability. We compare the optimal solutions under (a) revenue maximiza-

tion, (b) social welfare maximization, and (c) social welfare maximization with increased in-person

care price C1. The change in hospital revenue, patient surplus, and social welfare are exhibited in

Figure 6, by assuming $0.05 worth for each mile based on 3481 patients registered per year.

In baseline parameter settings, the medical institution and its patients are strictly better off

compared with no telehealth. The revenue-maximizing policy favors the medical institution while
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the social-welfare maximizer favors patients, where the medical institution is barely more profitable.

The medical institution’s revenue drops significantly owing to the loss of “artificial congestion”.

In fact, all patients are optimal to stay at home under social-welfare maximization (based on

Corollary A.2).

To increase social welfare while being incentive compatible with the medical institution, one can

set the in-person payment C1 to CM
1 =C1 +α(WRev−WWel) and decrease the adjustment payment

for VC visits, C2, to CM
2 =C2−α(WRev−WWel). Notably, C1 and C2 are not decision variables but

input parameters in the optimization problems. As a result, both the social planner and the medical

institution are willing to set ηdC
M
2,i =−C2−∆R+ fi +αWRev =−CM

2 −∆R+ fi +αWWel as the

optimal pricing strategy. The results are presented in Scenario (c) in Figure 6. Under the social

welfare maximizer, less patients are optimal to go to the hospital so the congestion at the hospital

is alleviated. As such, it is not naturally incentive compatible for patients to accept the price

of telehealth charged by the medical institution under revenue maximization. Therefore, external

forces are needed to channel patients. For instance, the medical institution can raise patients’

awareness of the intangible benefits of telehealth. The most frequently cited factors for patient

satisfaction are convenience and reduced travel cost (Bohnenkamp et al. 2004), reduced wait time

for the appointment and consultation, effective communication with the care provider (Mair et al.

2000, Bohnenkamp et al. 2004, Laila et al. 2008), and overall ease of use and quality of picture

and sound (Laila et al. 2008). In addition, since the overall congestion at the hospital is reduced

thanks to telehealth, the corresponding surplus released to patients can be further reaped by the

medical institution through charging a higher in-person visit price. This can be justified as the

overcrowding of the hospital is alleviated and thus the quality and overall patient experience can

be improved in the hospital.

7.3. Results of the Flat Rate Case

Now the counties are ranked by their travel burden fi, and the optimal policy shows that any

community that is further than or equal to Citrus county in distance should receive VC visits,

and the rest (which include large communities such as Marion and Columbia) should come to the

hospital. Marion and Columbia are two counties that are not very far from the central hospital

but are close to clinics, leading to low nurse dispatch costs. Under discriminative pricing, they

are offered with telehealth at a low price because of the low nurse dispatch costs. But, under

non-discriminative pricing, the medical institution cannot afford to set such a low flat price for

all other patients. Instead, it rather sets a higher flat price to enforce these patients to go to the

hospital. Subsequently, the benefits of telehealth are deprived for the patients residing in these two

communities.
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Indeed, there are patients from other communities who can benefit from the flat rate policy, but

the total patient surplus could be worse. The following case is an example. With a flat rate, more

(52.5%) patients come to the hospital compared with the discriminative pricing case (50.5%). As a

result, the surplus of medical institution, patients, and social welfare are $307K, $581K, and $888K

per year, which are all smaller than those of the discriminative pricing case ($315K, $612K, and

$927K). The flat-rate requirement can be less cost effective.

The social welfare maximizer lets all patients stay at home in both pricing settings, with the

surplus of the medical institution, patients, and social welfare being $-3K, $616K, and $613K per

year, compared to $7K, $606K, and $613K in the discriminative pricing case. In this case, the

maximum feasible C2 is chosen, but the medical institution is still worse off. The revenue gain

of the medical institution is transferred to patients’ aggregate surplus, and as a whole, the social

welfare surplus stays the same.

8. Conclusions and Future Work

While telehealth technology and its use are not new, widespread adoption among care providers

and patients beyond simple telephone correspondence has been relatively slow. The virtual services

offered are typically limited to VC visits without nurse/surrogate assistance, and mainly cover

chronic diseases that do not require a physical examination (mental diseases for example). However,

recent policy changes during the COVID-19 pandemic have reduced barriers to telehealth access,

and have promoted the use of telehealth as a way to deliver care across a broad spectrum. The

involvement of nurse assistance makes it possible for VC visits to cover extended health conditions.

To the best of our knowledge, very few work exists to investigate the design of VC visits with nurse

assistance, and our model fills this gap to help community hospitals understand the potential of

VC visits.

Our study has limitations. First, our analytic results are conducted under some strong assump-

tions. For instance, nurse coordination costs are assumed to be proportional to the number of

patients. The cost structure and the factors influencing costs can be further investigated. Second,

the heterogeneity of other patient features on top of the travel burden is not captured in the

current study. For instance, the technology adoption intention of patients can change over time,

and the health disparity in demographic and socio-economic features of patients may affect their

willingness to use telehealth services. These personalized and possibly evolving preferences need to

be considered. Currently, they are difficult to be quantified lacking related data as telehealth is in

its early adoption stage.

Moreover, barriers to implementing VC visits need to be removed. How to improve patient

awareness of emerging virtual care services is a challenging task and should be further investi-

gated. Admittedly, VC visits are yet to enjoy the uptake by patients and care providers alike,
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both expressed security and privacy concerns of such virtual services. Another critical determinant

of the success of VC visits is the payment model. Our model assumes that insurance companies

would reimburse the same amount for physician services rendered by the medical institution. Cur-

rently, there is no well-established compensation model for providers who offer telehealth, nor a

clear guideline of co-payment or co-insurance by patients. As Medicare recently extends its cover-

age to some telehealth services (U.S. Government of Medicare 2019), we expect more care plans

would accept telehealth services. The current model can be extended with a refined compensation

scheme. In addition, we consider a monopolistic medical institution and do not allow for patients

the no-treatment option. A discussion regarding the impact of VC visits on competitive medical

institutions is explored in the Appendix, and more investigation into patient loss or migration will

be pursued in a future study.

There are several other future research directions. One is to extend the content of impact that

telehealth is able to exert. Our model only considers the direct revenue gain from offering VC

visits and does not account for the impact on the medical institution’s operational cost and patient

outcomes. Other clinical studies have reported provider efficiency gain (Allen et al. 1995, Stalfors

et al. 2003, Olver et al. 2005), reduced appointment no-show (American Well 2019b), and reduced

use of health care resources, such as hospitalizations, and primary care and emergency department

visits (Polisena et al. 2009). A future study can assimilate these indirect benefits from the health

economics perspective. Another direction is to explore the related operational-level optimization

problems. For example, since the medical institution dispatches nurses to patient homes, the cor-

responding vehicle routing problem can be investigated. In addition, the nurse coordination cost

is relatively easy to compute with a deterministic demand. At the strategic level, deterministic

models are good “first-order” approximations (asymptotically optimal in some cases) for more

sophisticated stochastic models. In our case, they provide valuable insights into how optimal pricing

policies are shaped by distinct parameters of the model. At the operational level, with a stochastic

demand in reality, nurses need to be dynamically assigned to different communities, and a resource

allocation problem to minimize the nurse coordination cost with or without limited capacity of

nurses can be considered.
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Appendix A Summary of Model Notations

Table A.1 Summary of model notations.

Indices:
i i∈ I marks communities, N = |I|;
Parameters:
R1 reward for care delivered in the hospital ($);
R2 reward for care delivered at home ($);
C1 price charged for physician services ($);
C2 price charged for nursing services that medical institution cannot determine ($);
ηd percentage of C2,i paid by patients;
ηf percentage of C2,f paid by patients;
Di demand rate in community i;
fi travel burden of community i patients ($);
α sensitivity of congestion from the patient’s side ($ per person: $/pp);
γ sensitivity of congestion from the medical institution’s side ($/pp);
gi(D) nurse coordination cost of community i as a function of demand D ($);
βi incremental cost of the nurse coordination cost of community i ($/pp);
θ fixed cost of the nurse coordination cost ($);
We threshold of congestion from the medical institution’s side.
Decision variables:
C2,i price for VC services delivered in community i if discriminative pricing is allowed ($);
C2,f flat price for VC services if discriminative pricing is not allowed ($);
Ui utility of patients in community i ($);
ρi proportion of community i patients going to the hospital.

Appendix B Additional Results for Two Communities

With two communities A and B, let the partitions ρA and ρB be further indexed by a superscript for

different equilibria SmAmB , where the scenario indicators mi ∈ {1,2,3}, i ∈ {A,B}, inheriting the

definition of that of a single community. To illustrate, when both communities go to the hospital,

mA =mB = 1, and (ρ11A , ρ
11
B ) = (1,1). In the following, we assume DA ≤DB for illustration purposes.

Due to symmetry, systems with DA ≥DB can be analyzed analogously.

Proposition A.1. Under the nurse coordination cost structure gi(D) = βiD+θID>0, with an equal

marginal utility change (ϕA =ϕB =ϕ), the optimal patient diversion policies for two communities

are as follows:

1. Both staying at home (S22), if max{α(DA +DB),2θ/(DA +DB)} ≤ϕ.
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2. Both being partially diverted (S33), with proportions (ρ33A , ρ
33
B ) going to the hospital, where

ρ33BDB+ρ33ADA = (DA+DB)/2−ϕ/(2α), if max{2
√

2αθ−α(DA+DB), α(DB−DA)} ≤ϕ≤ α(DA+

DB). The special cases S23 and S32 belong to this region.

3. (1, ρ13B ) or (ρ31A ,1), where ρ13B = (DB−DA)/(2DB)−ϕ/(2αDB), and ρ31A = (DA−DB)/(2DA)−

ϕ/(2αDA), i.e., community A (respectively, B) patients go to the hospital and a mix strategy

is adopted for community B (respectively, A), if −α(DA + DB) + 2
√
αθ ≤ ϕ ≤ α(DB −DA), or

−α(DA +DB) + 2
√
αθ ≤ ϕ ≤ α(DA −DB), correspondingly. Note that this region is feasible only

when θ < αD2
B.

4. Both going to the hospital (S11) for all other parameter regions.

Proposition A.2 summarizes the optimal patient diversions in different parameter regions.

Proposition A.2. Under the nurse coordination cost structure gi(D) = βiD + θID>0, for two

communities with unequal ϕ’s, the following scenarios can unfold:

1. θ = 0. The optimal equilibria are summarized in Table A.2 and the partitions are presented

in Figure 3(a).

2. 0≤ θ < αD2
A. Similar optimal equilibria exist but in different parameter regions, as shown in

Figure 3(b).

3. αD2
A ≤ θ < αD2

B. Compared to Figures 3(a) and (b), equilibria S32 and S31 no longer exist,

see Figure 3(c).

4. αD2
B ≤ θ. No mixed strategy exists, see Figure 3(d).

Table A.2 Optimal patient diversions and the corresponding parameter regions when ϕA 6= ϕB .

Scenario Patient diversion Parameter region (θ= 0)

S11 (1,1) ζA ≤−DA+DB
2DA

and ζB ≤−DA+DB
2DB

S12 (1,0) ζA ≤ DB−DA
2DA

and ζB ≥ DB−DA
2DB

S13 (1, ρ13B ) ρ13B = DB−DA
2DB

− ζB −DA−DB
2DB

≤ ζB ≤ DB−DA
2DB

and ζBDB ≥ ζADA

S21 (0,1) ζA ≥ DA−DB
2DA

and ζB ≤−DA+DB
2DB

S22 (0,0) ζA ≥ DA+DB
2DA

and ζB ≥ DA+DB
2DB

S23 (0, ρ23B ) ρ23B = DA+DB
2DB

− ζB DA−DB
2DB

≤ ζB ≤ DA+DB
2DB

and ζBDB ≤ ζADA

S31 (ρ31A ,1) ρ31A = DA−DB
2DA

− ζA −DA−DB
2DA

≤ ζA ≤ DA−DB
2DA

and ζBDB ≤ ζADA

S32 (ρ32A ,0) ρ32A = DA+DB
2DA

− ζA DB−DA
2DA

≤ ζA ≤ DA+DB
2DA

and ζBDB ≥ ζADA
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Appendix C Discussion on Competitors

When competition is induced in the market, it is natural that patients would benefit from having

more choices. Here we shed light on the impact of competition on the medical institution. Consider

two adjacent service regions, one is covered by medical institution MA and the other MB. Prior to

virtual services, there is no patient migration due to a high travel cost. For instance, when the two

service regions are of the same size, and thus the same level of congestion in the hospital, patients

will always choose the closer one to visit. If medical institution MB is the only one that offers VC

visits, it can “snatch” patients from medical institution MA, which is a trivial case. We further

consider both medical institutions start offering virtual care services.

Under this setting, region A patients actually face four choices, (1) go to the hospital A, (2) go to

the hospital B, (3) VC visits provided by MA, and (4) VC visits provided by MB. Option 2 remains

feasible for region A patients living in the borderline area of two service regions, when the congestion

of hospital B is reduced significantly due to MB’s virtual service. Then, whoever can offer VC visits

at a lower price becomes the winner of this competition. If MB offers a price CMB
1 +ηdC

MB
2,i +CMB

2

such that MA cannot match, i.e., medical institution MA will lose money to serve patients priced

similarly to MB, then, some patients in region A will choose services from MB until the capacity cap

of MB is reached. Because of the community-dependent nurse coordination cost, some communities

in region B can also benefit from services provided by MA, where a bi-directional patient migration

could happen. Even without losing patients, the medication institutions still have to lower prices

because they can no longer leverage “artificial congestion” by requesting a portion of patients to

come to hospital as before. The competitor MB can play as the tie-breaker to make going to the

hospital A strictly worse than receiving VC visits provided by MB. When being the monopoly, MA

can freely set VC visit prices to benchmark in-person services, and the prices make it profitable to

divert patients to stay at home. However, for the competitor MB, aimed at “snatching” patients,

it does not hold the same benchmark as serving patients in A hospital, and as far as priced higher

than its operating cost and under its capacity limits, it is willing to set prices as low as possible to

attract patients. Therefore, if there exists a migration from community i in service region A to B,

the harm made to MA could be greatly larger than the benefit gained by MB.
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It is possible that the two medical institutions as a whole is worse off compared to not having

virtual services. In particular, define πMA and πMB as the basic costs of offering care services. They

are not included in the monopoly case because they are kept the same, regardless of the extra cost of

nurse coordination when in a virtual way, but they come into play here with competitions. Let βMA
i

and βMB
i be the marginal nurse coordination costs. Then, due to the loss of Di patients to hospital

B, the difference in profit ∆PA = (πMA − CMA
1 + γMA)Di < 0, and that of MB, ∆PB = (CMB

1 +

ηdC
MB
2,i +CMB

2 −πMB −βMB
i )Di ≥ 0. When MB is willing to set CMB

1 +ηdC
MB
2,i +CMB

2 = πMA +βMA
i

to attract MA patients, then, the total change ∆PA+∆PB = (βMA
i −βMB

i +πMA−CMA
1 +γMA)Di,

given πMA = πMB , CMA
1 =CMB

1 and γMA = γMB to mimic a symmetric case. The change in profit

as a whole depends on the difference of the nurse coordination costs between the two medical

institutions. If the gain from the saving of nurse coordination costs is not large, but the original

price CMA
1 is much higher than cost πMA , then VC visits can be detrimental.

The analysis above suggests that VC visits could break the geographic “quarantine” that sta-

bilizes the market, and stimulate competition among care providers. It further stresses that the

competition might induce unintended consequences to medical institutions. On patients, based

on the utility definition, they are no worse off, however, when patients switch between multiple

providers to reduce cost, the continuity of care can be affected, which is not good for patient health

management in the long run. To avoid patient loss, medical institutions need to provide high-quality

care, both in-person and virtually, to improve patient retention and maintain competitiveness in

the market.

Appendix D Discussion on Payer Reimbursement

As an extension of the basic payment structure for the discriminative pricing model, we further

consider that the insurer will reimburse Ĉ1 for the physician’s portion, and δC2,i for the nursing

service, where C2,i is the billed price. An analysis of the non-discriminative case can be carried

out similarly. As such, the medical institution will collect CM
1 = C1 + Ĉ1 for office visits and

CM
2,i =C1 + Ĉ1 +(δ+ηd)C2,i+C2 for VC visits. When the service capacity is fixed, the term C1 + Ĉ1

is immaterial, and the objective function becomes:

Rδ = max
C2,i

∑
i

Di(1− ρi)((ηd + δ)C2,i +C2)− γ

[∑
i

ρiDi−We

]+
−
∑
i

gi((1− ρi)Di).
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The introduction of payer reimbursement will not affect the IC constraints of patients. Under this

circumstance, the system-level marginal gain ϕi should be modified as ϕδi =−∆R+fi− δC2/(ηd +

δ)−ηdβi/(ηd+δ)+ηdγ/(ηd+δ), and Rδ = max
C2,i

∑
iDi(1−ρi)(ϕδi +αW )(ηd+δ)/ηd. The equilibrium

patient partition follows the same formulation except that ϕi is replaced by ϕδi . In other words, a

threshold-type of equilibrium strategy of patients is invariant to the amount paid by the insurer

to the medical institution.

However, the relationship between the co-insurance factor ηd and the reimbursement factor δ

does affect the medical institution’s profitability. Given a fixed amount collected by the medical

institution per patient, e.g., ηd+δ= 1, the larger δ values, the more revenue the medical institution

will gain. In our numerical study, for the linear nurse cost function case, compared to the baseline

scenario where ηd = 1, δ = 0, and R = $157.5K, a scenario of ηd = 0.5 and δ = 0.5 leads to R =

$316K, and ηd = 0.3 and δ= 0.7 leads to R= $528.5K. This suggests that shifting the burden from

patients to the payer (e.g., the government or insurance companies) can benefit both patients and

the medical institution. It heightens the importance of the insurance coverage of telehealth related

services so as to promote the adoption of telehealth by patients and care providers, and ultimately,

improving care access and patient outcomes.

Appendix E Proofs

Unless otherwise notified, we consider ηd 6= 0 and C2 is a constant in Model 1 for the basic proofs.

Lemma A.1. Given the patient diversion ρi’s, the equilibrium pricing for the revenue maximization

problem is ηdC2,i =−C2−∆R+ fi +αW , where W =
∑

i ρiDi.

Proof. This directly follows patients’ IC constraints.

Proposition A.3. Consider the optimization problem (Model 2) where the medical institution

determines the price C2,i for nursing services provided in community i (patient home), and dictates

a proportion ρi ∈ [0,1] of patients to receive in-person visits versus VC visits (1-ρi):

max
ρi,C2,i

∑
i

Di(1− ρi)(ηdC2,i +C2)− γ

[∑
i

ρiDi−We

]+
−
∑
i

gi((1− ρi)Di).

The solutions C2,i’s to Model 2 are also the optimal solutions to Model 1.
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Proof. Here we aim to prove that the optimal solutions of Model 1 and Model 2 are identical, and

the medical institution can use discriminatory pricing alone to control patients’ diversion decisions.

First, the objective of Model 2 is greater than or equal to that of Model 1, because the hospital

can control patients’ decisions and the decision space is larger. To prove that the equivalency can

be achieved, we introduce a small amount ε > 0.

Denote the the optimal solution of Model 2 as ρ2i ’s, and the corresponding optimal congestion

as W 2 =
∑

i ρ
2
iDi, the hospital can set the at-home price for each community i as:

(1) ηdC
∗
2,i +C2 =−∆R+ fi +αW 2 + ε, for community i such that ρ2i = 1,

(2) ηdC
∗
2,i +C2 =−∆R+ fi +αW 2, for community i such that ρ2i ∈ (0,1),

(3) ηdC
∗
2,i +C2 =−∆R+ fi +αW 2− ε, for community i such that ρ2i = 0,

where ∆R=R1−R2.

First, consider ηd 6= 0. Note that {C∗2,i}’s are also feasible solutions to Model 1. In this way,

according to incentive compatibility, in equilibrium, patients in case (1) naturally choose to go

to the hospital (i.e., ρ1i = ρ2i = 1) and those in case (3) naturally choose to stay at home (i.e.,

ρ1i = ρ2i = 0). Eventually, the hospital can use {C∗2,i}’s to determine the congestion (i.e., the total

number of patients coming to the hospital W 1), and in equilibrium, W 1 =W 2. Since the hospital

is optimal to set at most one ρ2i ∈ (0,1) based on Model 2 (Theorem 2), then, there will be at most

one community in case (2). Denote it as community k, then, W 1 =W 2 will induce ρ1k = ρ2k.

Next, consider ηd = 0 and ηf 6= 0.Following the same logic with ηd 6= 0, we have Model 1 as

max
C2,f

(ηfC2,f +C2)

 ∑
j:fj>fi

Dj + (1− ρi)Di

− ∑
j:fj>fi

gj(Dj)−gi((1−ρi)Di)−γ

 ∑
j:fj<fi

Dj + ρiDi−We

+

.

(A.1)

Model 2 is

max
C2,f ,ρi

(ηfC2,f +C2)

 ∑
j:fj>fi

Dj + (1− ρi)Di

− ∑
j:fj>fi

gj(Dj)−gi((1−ρi)Di)−γ

 ∑
j:fj<fi

Dj + ρiDi−We

+

.

(A.2)

Denote the optimal solution of Model 2 as ρ2i ’s, and the corresponding optimal congestion as

W 2 =
∑

i ρ
2
iDi, the hospital can set the at-home price for each community i as: ηfC2,f + C2 =

−∆R+ fi +αW 2, for community i such that ρ2i ∈ (0,1), where ∆R=R1−R2.
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Then, for fj > fi, we have ηfC2,f +C2 <−∆R+fj +αW 2, so patients in community j would nat-

urally stay at home; for fj < fi, we have ηfC2,f +C2 >−∆R+fj +αW 2, so patients in community

j would automatically go to hospital. Therefore, Model 1 and Model 2 are equivalent.

All of the results below are derived from Model 2 instead of Model 1 for its simplicity.

Proof of Proposition 1

Proof. For one community, three scenarios can unfold: (1) all patients go to the hospital, (2) all

patients stay at home, and (3) part of them stay at home. The corresponding objective value is

denoted as Rm, m∈ {1,2,3}.

For ρ∈ [0,1], based on Lemma A.1, we have the medical institution’s revenue as:

R=D(1− ρ)(∆R+ f +αρD)− γρD−β(1− ρ)D− θI(1−ρ)D>0.

When ρ ∈ (0,1), the first-order condition (FOC) ∂R
∂ρ

= −(ϕ + αρD)D + α(1 − ρ)D2 = 0 implies

ρ= 1
2
− ϕ

2αD
:= 1

2
− ζ, where ζ = ϕ

2αD
. Then, R3 −R1 =D(1− ρ)(ϕ+ αρD)− θ = αD2( 1

2
+ ζ)2 − θ.

The partition line between R3 and R1 is ζ =− 1
2

+
√
θ√
αD

. Furthermore, R3−R2 = αD2( 1
2
− ζ)ρ. The

partition line between R3 and R2 is invariant with θ, which is ζ = 1
2
. Thus, when θ ≤ αD2, R3

is optimal when − 1
2

+
√
θ√
αD
≤ ζ ≤ 1

2
, R1 is optimal when ζ < − 1

2
+

√
θ√
αD

, and R2 is optimal when

1
2
< ζ. When θ ≥ αD2, R3 is dominated by R1. The partition line between the two scenarios with

R2−R1 =ϕD− θ= 0 is ζ = θ
2αD2 . R1 is optimal when ζ < θ

2αD2 and R2 is optimal when ζ > θ
2αD2 .

Proof of Proposition A.1

Proof. For illustration purposes, we assume DB ≥ DA. Due to the symmetry of DA and DB,

DB <DA can be analyzed analogously. A total of nine scenarios can occur, denoted as Smn, and

the corresponding revenue is denoted as Rmn, m,n ∈ {1,2,3}, similar to that defined in the proof

of Proposition 1. Let ρi’s be further indexed by a superscript mn, m,n ∈ {1,2,3} to refer to the

diversion under the scenario Smn. To illustrate, by definition, when both communities go to the

hospital, (ρ11A , ρ
11
B ) = (1,1). We first introduce the revenue obtained when both communities have

patients staying at home, i.e., scenarios S33, S32, and S23.

R= (1− ρA)DA(−∆R+ fA +α(ρADA + ρBDB)) (A.3)
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+ (1− ρB)DB(−∆R+ fB +α(ρADA + ρBDB))

− γ(ρADA + ρBDB)−βA(1− ρA)DA−βB(1− ρB)DB − 2θ.

Introduce the marginal utility change as ϕi = fi − βi + γ −∆R, i ∈ {A,B}. The Lagrange dual

is L=R+ λAρA + µA(1− ρA) + λBρB + µB(1− ρB), where λA, λB, µA, µB ≥ 0, and the FOC is as

follows:

∂L

∂ρA
=−(ϕA +αρADA +αρBDB)DA +α(1− ρA)D2

A +α(1− ρB)DBDA +λA−µA = 0,

∂L

∂ρB
=−(ϕB +αρADA +αρBDB)DB +α(1− ρB)D2

B +α(1− ρA)DADB +λB −µB = 0.

When ρA, ρB ∈ (0,1), the FOC is feasible if and only if ϕA =ϕB =ϕ, and

ρBDB + ρADA =− ϕ

2α
+
DA +DB

2
. (A.4)

In this case, there can be multiple solutions of ρA and ρB, as long as equation (A.4) and α(DA +

DB) ≥ ϕ hold. Some special cases include (ρ32A ,0) with ρ32A = DA+DB
2DA

− ϕ
2αDA

, and (0, ρ23B ) with

ρ23B = DA+DB
2DB

− ϕ
2αDB

.

In addition, the revenue when there is only one community having partial patients staying at

home can be derived with reducing 2θ to θ in formula (A.3), and the FOC stays the same. As long

as equation (A.4) and α(DB−DA)≥ϕ hold, (1, ρ13B ) with ρ13B = DB−DA
2DB

− ϕ
2αDB

is the solution, and

when α(DA−DB)≥ϕ, the same is true for (ρ31A ,1) with ρ31A = DA−DB
2DA

− ϕ
2αDA

.

For the trivial cases, we present the revenues in Table A.3. Next, we compare and decide which

scenario will lead to the largest revenue with a given parameter region.

Table A.3 Revenues under different scenarios when ϕA = ϕB .

Patient diversion Revenue

(1,1) R11 = (DA +DB)(−γ)
(0,1) R12 =R11 +DA(ϕ+αDB)− θ
(1,0) R21 =R11 +DB(ϕ+αDA)− θ
(0,0) R22 =R11 +ϕ(DA +DB)− 2θ

(ρ33A ,ρ33B ) R33 =R11 + 1
α

(ϕ
2

+ α(DA+DB)

2
)2− 2θ

We start with θ = 0 to understand the solution structure. In this no set-up cost case, in the

region of |ϕ| < α(DA +DB), as long as ρA and ρB satisfy equation (A.4), the revenue stays the

same, including scenarios S13, S31, S23, S32 and S33. We choose the mixed strategy (ρ33A ,ρ33B ) and
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we claim that R33 ≥ R22 ∨ R21 ∨ R12 ∨ R11. This follows the pairwise comparisons: R33 − R22 =

1
α

(ϕ
2
− α(DA+DB)

2
)2 ≥ 0; R33−R21 = 1

α
(ϕ
2

+ α(DA−DB)

2
)2 ≥ 0; R33−R12 = 1

α
(ϕ
2

+ α(−DA+DB)

2
)2 ≥ 0; and

R33−R11 = 1
α

(ϕ
2

+ α(DA+DB)

2
)2 ≥ 0.

In the region ϕ≥ α(DA+DB), note that (ρ33A , ρ
33
B ) is infeasible, we then claim that R22 is optimal

in the region: ϕ > 0 leads to R22 > R11, ϕ > αDB leads to R22 > R21, and ϕ > αDA leads to

R22 >R12.

In the region ϕ≤−α(DA +DB), again, (ρ33A , ρ
33
B ) is infeasible, and we prove that R11 is optimal

in the region: ϕ< 0 ⇒ R11 >R22, ϕ<−αDA ⇒ R11 >R21, and ϕ<−αDB ⇒ R11 >R12.

For any non-negative θ, the same derivation applies and the detailed algebraic operations are

omitted. However, due to the discontinuity when changing from option 1 — go to the hospital, to

option 2 or 3 — dispatch nurses, the set-up cost comes into play, and the optimal region for S31

and S13 cannot be combined with that of S33. The change is demonstrated in Figure 2 in the main

context.

Proof of Proposition A.2

Proof. For two communities with ϕA 6=ϕB, we also start with the scenario (ρ33A , ρ
33
B ) and the FOC

is the same as that of equal ϕ’s. Since ϕA 6=ϕB, S33 is not feasible. The optimal patient diversions

corresponding to the remaining eight scenarios are presented in Table A.4.

Table A.4 Optimal patient diversions and the corresponding parameter regions when ϕA 6= ϕB .

Scenario Patient diversion Parameter region (θ= 0)

S11 (1,1) ζA ≤−DA+DB
2DA

and ζB ≤−DA+DB
2DB

S12 (1,0) ζA ≤ DB−DA
2DA

and ζB ≥ DB−DA
2DB

S13 (1, ρ13B ) ρ13B = DB−DA
2DB

− ζB −DA−DB
2DB

≤ ζB ≤ DB−DA
2DB

and ζBDB ≥ ζADA

S21 (0,1) ζA ≥ DA−DB
2DA

and ζB ≤−DA+DB
2DB

S22 (0,0) ζA ≥ DA+DB
2DA

and ζB ≥ DA+DB
2DB

S23 (0, ρ23B ) ρ23B = DA+DB
2DB

− ζB DA−DB
2DB

≤ ζB ≤ DA+DB
2DB

and ζBDB ≤ ζADA

S31 (ρ31A ,1) ρ31A = DA−DB
2DA

− ζA −DA−DB
2DA

≤ ζA ≤ DA−DB
2DA

and ζBDB ≤ ζADA

S32 (ρ32A ,0) ρ32A = DA+DB
2DA

− ζA DB−DA
2DA

≤ ζA ≤ DA+DB
2DA

and ζBDB ≥ ζADA

When ϕi >α(DA +DB), ρi = 0, i.e., the choice is to stay at home, whereas when ϕi <−α(DA +

DB), ρi = 1, i.e., go to the hospital, regardless of the optimal solution adopted by other communities.
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Therefore, in what follows, we consider the non-trivial cases. We assume DB ≥ DA. Due to the

symmetry of DA and DB, DB <DA can be analyzed analogously.

No Set-up Cost.

The revenues under different patient diversions are presented in Table A.5. We compare and

decide which scenario will lead to the largest revenue given the parameter region.

Table A.5 Revenues under different patient diversions when ϕA 6= ϕB .

Patient diversion Revenue

(1,0) R12 =R11 +DB(ϕB +αDA)− θ
(1,ρ) R13 =R11 + 1

α
(ϕB

2
+ α(DA+DB)

2
)2− θ

(0,1) R21 =R11 +DA(ϕA +αDB)− θ
(0,0) R22 =R11 +DAϕA +DBϕB − 2θ

(0,ρ) R23 =R11 + (DB−DA
2

+ ϕB
2α

)(α(DA+DB)

2
+ ϕB

2
)

+DA(ϕA + α(DA+DB)

2
− ϕB

2
)− 2θ

(ρ,1) R31 =R11 + 1
α

(ϕA
2

+ α(DA+DB)

2
)2− θ

(ρ,0) R32 =R11 + (DA−DB
2

+ ϕA
2α

)(α(DA+DB)

2
+ ϕA

2
)

+DB(ϕB + α(DA+DB)

2
− ϕA

2
)− 2θ

• Region 1: ζA ≤−DA+DB
2DA

and ζB ≤−DA+DB
2DB

, i.e., ϕA ≤−α(DA+DB) and ϕB ≤−α(DA+DB).

In this region, S32, S23, S13, and S31 are infeasible. Moreover,

- ϕA,ϕB ≤ 0 ⇒ R11 ≥R22;

- ϕB ≤−αDA ⇒ R11 ≥R12;

- ϕA ≤−αDB ⇒ R11 ≥R21.

Therefore, R11, i.e., the patient diversion (1,1) is optimal.

• Region 2: ζA ≥ DA+DB
2DA

and ζB ≥ DA+DB
2DB

, i.e., ϕA ≥ α(DA +DB) and ϕB ≥ (DA +DB).

In this region, S32, S23, S13, and S31 are infeasible. Moreover,

- ϕA,ϕB ≥ 0 ⇒ R22 ≥R11;

- ϕA ≥ αDB ⇒ R22 ≥R12;

- ϕB ≥ αDA ⇒ R22 ≥R21.

Therefore, R22, i.e., the patient diversion (0,0) is optimal.

• Region 3: ζA ≤ DB−DA
2DA

and ζB ≥ DB−DA
2DB

, i.e., ϕA ≤ α(DB −DA) and ϕB ≥ α(DB −DA).

In this region, S32 and S13 are infeasible. Moreover,

- αDB ≥ϕA ⇒ R12 ≥R22.

- ϕB +αDA ≥ 0 ⇒ R12 ≥R11.
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- DBϕB ≥DAϕA ⇒ R12 ≥R21.

- In this region, we have ϕB ≥ α(DB − DA) and −α(DA + DB) ≤ ϕA ≤ α(DA − DB). As

R12 −R31 is a quadratic function of ϕA with a negative second-order coefficient, the minimum is

obtained at the two endpoints of the region of interest. For one endpoint ϕA = −α(DA + DB),

R12−R31 ≥ αD2
B ≥ 0, and for the other endpoint ϕA = α(DA−DB), R12−R31 ≥ α(D2

B −D2
A)≥ 0.

Both are non-negative, and thus R12−R31 ≥ 0 in the region.

- We also have α(DB −DA) ≤ ϕB ≤ α(DA +DB) and ϕA ≤ α(DB −DA). As R12 −R23 is a

quadratic function of ϕB with a negative second-order coefficient, the minimum is obtained at the

two endpoints. For one endpoint ϕB = α(DB −DA), R12 −R23 ≥ 2αDADB ≥ 0, and for the other

endpoint ϕB = α(DA +DB), R12 −R23 ≥ αDA(2DB −DA) ≥ 0. Both are non-negative, and thus

R12−R23 ≥ 0 in the region.

Therefore, R12, i.e., the patient diversion (1,0) is optimal.

• Region 4: ζA ≥ DA−DB
2DA

and ζB ≤−DA+DB
2DB

, i.e., ϕB ≤ α(DA−DB) and ϕA ≥ α(DA−DB).

In this region, S23 and S31 are infeasible. Moreover,

- R21 ≥R22: αDA ≥ϕB ⇒ R21 ≥R22.

- R21 ≥R11: ϕA +αDB ≥ 0 ⇒ R21 ≥R11.

- R21 ≥R12: R21 ≥ αD2
A ≥ α(2DA−DB)DB ≥R12.

- We have ϕA ≥ α(DA − DB) and −α(DA + DB) ≤ ϕB ≤ α(DA − DB). As R21 − R13 is a

quadratic function of ϕB with a negative second-order coefficient, the minimum is obtained at the

two endpoints of the region under consideration. For one endpoint ϕB =−α(DA+DB), R21−R13 ≥

αD2
A ≥ 0, and for the other endpoint ϕB = α(DA −DB), R21 −R13 ≥ α(D2

A −D2
A) = 0. Thus, the

minimum is non-negative, so R21−R13 ≥ 0 in the region.

- We have α(DB−DA)≤ϕA ≤ α(DA+DB) and ϕB ≤ α(DB−DA). As R21−R32 is a quadratic

function of ϕA with a negative second-order coefficient, the minimum is obtained at the two end-

points of this region. For the one endpoint ϕB = α(DB −DA), R21 −R32 ≥ −αD2
A + 2αDADB +

αD2
B ≥ 0 (because DB ≥DA). For the other endpoint ϕB = α(DA +DB), R21 −R32 ≥ αD2

B ≥ 0.

Thus, the minimum is non-negative, so R21−R32 ≥ 0 in the region.

Therefore, R21, i.e., the patient diversion (0,1) is optimal.

• Region 5: α(DB −DA)≤ϕA ≤ α(DA +DB) and ϕB ≥ϕA.

First, we notice that S13 and S31 are infeasible in this region. Moreover,



42 Author: Service System Design of Video Conferencing Visits with Nurse Assistance

- R32 >R22: R32−R22 =DA(−αρ2ADA+ρA(−ϕA+αDA+αDB)), which obtains its maximum

(−ϕA + αDA + αDB)2/(4αDA) at (−ϕA + αDA + αDB)/(2αDA). Since ϕA ≤ α(DA + DB), we

conclude that ρ∗A > 0 and the maximum is strictly positive, i.e., R32 >R22.

- R32 >R12: R32−R12 =DA(−αρ2ADA + ρA(−ϕA +αDA +αDB) +ϕA−αDB), which obtains

its maximum (−ϕA−αDA+αDB)2/(4αDA) at (−ϕA+αDA+αDB)/(2αDA). Since ϕA ≤ α(DA+

DB), we conclude that ρ∗A > 0 and because α(DB −DA)≤ ϕA, the maximum is strictly positive,

i.e., R32 >R12.

- R32 ≥R11: since ϕB ≥ϕA, R32−R11 ≥ 1
α

(ϕA
2

+ α(DA+DB)

2
)2 ≥ 0.

- R32 ≥R21: since ϕB ≥ϕA, R32 ≥ 1
α

(ϕA
2

+ α(DA+DB)

2
)2 +R11, and therefore R32−R21 ≥ 1

α
(ϕA

2
+

α(−DA+DB)

2
)2 ≥ 0.

- R32 ≥R23: consider the region ϕA ≤ ϕB ≤ α(DA +DB) and let ϕB = ϕA + ε, then we have

R32−R23 =− ε
4α

(2ϕB − ε) + ε
2
(DA +DB)≥ ε2

4α
≥ 0.

Therefore, R32, i.e., the patient diversion (ρ,0) is optimal.

• Region 6: α(DA−DB)≤ϕB ≤ α(DA +DB) and ϕA ≥ϕB.

First, we notice that S31 is infeasible in this region. Moreover,

- R23 >R22: R23−R22 =DB(−αρ2BDA+ρB(−ϕB +αDA+αDB)), which obtains its maximum

(−ϕB + αDA + αDB)2/(4αDB) at (−ϕB + αDA + αDB)/(2αDB). Since ϕB ≤ α(DA + DB), we

conclude that ρ∗B > 0 and the maximum is strictly positive, i.e., R23 >R22.

- R23 >R21: R23−R21 =DB(−αρ2BDB +ρB(−ϕB +αDA +αDB) +ϕB−αDA), which obtains

its maximum (−ϕB−αDB +αDA)2/(4αDB) at (−ϕB +αDA+αDB)/(2αDB). Since ϕB ≤ α(DA+

DB), we conclude that ρ∗B > 0 and because α(DA −DB)≤ ϕB, the maximum is strictly positive,

i.e., R23 >R21.

- R23 ≥R11: since ϕA ≥ϕB, R21−R33 ≥ 1
α

(ϕB
2

+ α(DA+DB)

2
)2 ≥ 0.

- R23 ≥R12: R23−R12 ≥ 1
α

(ϕB
2

+ α(DA−DB)

2
)2 ≥ 0.

- R23 ≥R32: consider the region ϕB ≤ ϕA ≤ α(DA +DB) and let ϕA = ϕB + ε, then we have

R23−R32 =− ε
4α

(2ϕA− ε) + ε
2
(DA +DB)≥ ε2

4α
≥ 0.

- R23 ≥R13: since ϕA ≥ϕB, R23 ≥R11 + 1
α

(ϕB
2

+ α(DA+DB)

2
)2 =R13.

Therefore, R23, i.e., the patient diversion (0,ρ) is optimal.

• Region 7: α(−DA−DB)≤ϕB ≤ α(DB −DA) and ϕB ≥ϕA.
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First, we notice that S32 is infeasible in the region. Moreover, with R13 = 1
α

(ϕB
2

+ α(DA+DB)

2
)2 +

R11, we have

- R13 ≥R12 : R13−R12 =DB(−αρ2BDB+ρB(−ϕB−αDA+αDB)), which obtains its maximum

(−ϕB − αDA + αDB)2/(4αDB) at (−ϕB − αDA + αDB)/(2αDB) . Since ϕB ≤ α(DB −DA), we

conclude that ρ∗B > 0, and the maximum is strictly positive. Thus, R13 ≥R12.

- R13 ≥ R11 : R13 − R11 = DB(−αρ2BDB + ρB(−ϕB − αDA + αDB) + (ϕB + αDA)), which

obtains its maximum (ϕB +αDA +αDB)2/(4αDB) at (−ϕB −αDA +αDB)/(2αDB) . Since ϕB ≤

α(DB −DA), we conclude that ρ∗B > 0, and since α(−DA −DB) ≤ ϕB the maximum is strictly

positive. Thus, R13 ≥R11.

- R13 ≥R22: R13 ≥ϕB(DA +DB) +R11 ≥ϕADA +ϕBDB +R11 =R22.

- R13 ≥R32: R13 ≥ 1
α

(ϕA
2

+ α(DA+DB)

2
)2 +R11 ≥DA(ϕA +αDB) +R11 =R21.

- R13 ≥R23: since ϕA ≤ϕB, R23 ≤ 1
α

(ϕB
2

+ α(DA+DB)

2
)2 +R11 =R13.

- R13 ≥R31: since ϕB ≥ϕA, 1
α

(ϕB
2

+ α(DA+DB)

2
)2 ≥ 1

α
(ϕA

2
+ α(DA+DB)

2
)2.

Therefore, R13, i.e., the patient diversion (1,ρ) is optimal.

• Region 8: Symmetric to the optimal region of S13 with the patient diversion (1, ρ), S31 with

(ρ,1) is optimal in the region α(−DA−DB)≤ϕA ≤ α(DA−DB) and ϕB ≤ϕA.

Non-Zero Set-up Cost.

• When θ < αD2
A, the partition is shown in Figure 3(b).

On x-axis:

Partition line between S11 and S31: −DA−DB
2DA

+
√
θ√

αDA
;

Partition line between S31 and S21: DA−DB
2DA

;

Partition line between S12 and S32: DB−DA
2DA

+
√
θ√

αDA
;

Partition line between S32 and S22: DA+DB
2DA

.

On y-axis:

Partition line between S11 and S13: −DA−DB
2DB

+
√
θ√

αDB
;

Partition line between S13 and S12: DB−DA
2DB

;

Partition line between S21 and S23: DA−DB
2DB

+
√
θ√

αDB
;

Partition line between S23 and S22: DA+DB
2DB

.



44 Author: Service System Design of Video Conferencing Visits with Nurse Assistance

The partition line between S13 and S21 is a parabola αD2
Bζ

2
B +αDB(DA +DB)ζB − 2αD2

AζA +

α
4
(DA−DB)2 = 0.

The partition line between S12 and S23 is a parabola −αD2
Bζ

2
B +αDB(DA+DB)ζB−2αD2

AζA−
α
4
(DA−DB)2 + θ= 0.

The partition line between S13 and S23 is a straight line with slope DA
DB

: −2αD2
AζA+2αDADBζB+

θ= 0.

The slope for the partition line between S31 and S13 is DA
DB

.

• When αD2
A < θ <αD

2
B, the partition is shown in Figure 3(c).

On x-axis:

Partition line between S11 and S21: −DB
2DA

+ θ
2αD2

A
;

Partition line between S12 and S22: DB
2DA

+ θ
2αD2

A
.

On y-axis:

Partition line between S11 and S13: −DA−DB
2DB

+
√
θ√

αDB
;

Partition line between S13 and S12: DB−DA
2DB

;

Partition line between S21 and S23: DA−DB
2DB

+
√
θ√

αDB
;

Partition line between S23 and S22: DA+DB
2DB

.

• When αD2
B < θ, the partition is shown in Figure 3(d).

On x-axis:

Partition line between S11 and S21: −DB
2DA

+ θ
2αD2

A
;

Partition line between S12 and S22: DB
2DA

+ θ
2αD2

A
.

On y-axis:

Partition line between S11 and S12: −DA
2DB

+ θ
2αD2

B
;

Partition line between S21 and S22: DA
2DB

+ θ
2αD2

B
.

The slope for the partition line between S21 and S12 is
D2

A

D2
B

.

The partition line in Proposition 3 for a non-zero θ is derived similarly with modification of the

formulae to capture differences between contiguous regions. We omit the detailed proofs here.

Proof of Theorem 1

Proof. We rank the communities according to their ϕi’s in an ascending order. Without loss of

generality, assume we have |I| = N ordered communities with unique ϕi’s. First, we define that
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excluding k, the congestion at the hospital is WC
k =

∑
j 6=k ρjDj and the total number of patients

staying at home is HC
k =

∑
j 6=k(1− ρj)Dj. With a universal linear nurse coordination cost g(D) =

βD, we further write the objective function as

R= (1− ρk)Dk(−∆R+ fk +α(ρkDk +WC
k ))

+
∑
j 6=k

(1− ρj)Dj(−∆R+ fj +α(ρkDk +WC
k ))

− γ(ρkDk +WC
k )−β(HC

k + (1− ρk)Dk).

This is true for any ρk ∈ [0,1], k ∈ I, and the Lagrange dual is L=R+ λkρk + µk(1− ρk), where

λk ≥ 0 and µk ≥ 0. Then, we can calculate the optimal value of ρk given that WC
k and HC

k are

known following the FOC:

∂L

∂ρk
=−(ϕk +αρkDk +αWC

k )Dk +α(1− ρk)D2
k +αHC

k Dk +λk−µk = 0,

which yields ρ∗k = max{0,min{1, Dk+H
C
k

2Dk
− ϕk+αW

C
k

2αDk
}}, where ϕk = fk + γ−β.

After calculating all ρ∗k’s, k ∈ I, we can further check if they are the genuine optimal solution to

the original problem. If they do, the following two scenarios can unfold.

1. There exists at least one k such that ρ∗k ∈ (0,1). Under this scenario, we further consider, if

∃ j, k, s.t. ρ∗j , ρ∗k ∈ (0,1). Suppose both ρ∗j and ρ∗k are the genuine optimal solution to the optimiza-

tion problem, with the optimal congestion W ∗ (the total number of patients going to the hospital

under the optimal solution) and the optimal total number of patients staying at home H∗. Then,

we have WC
k =W ∗− ρ∗kDk and HC

k =H∗− (1− ρ∗k)Dk, and ρ∗k =
Dk+H

∗−(1−ρ∗k)Dk

2Dk
− ϕk+α(W

∗−ρ∗kDk)

2αDk
,

which suggests that α(H∗−W ∗) = ϕk. Similarly, we have α(H∗−W ∗) = ϕj. Since ϕj and ϕk are

unequal according to our assumption, the optimal solution does not allow more than one commu-

nity, denoted as k, to have ρ∗k ∈ (0,1). Furthermore, since the genuine optimal ρ∗k follows

ρ∗k = max{0,min{1, Dk+H
∗−(1−ρ∗k)Dk

2Dk
− ϕk+α(W

∗−ρ∗kDk)

2αDk
}}, then, for all ϕi <ϕk, we have α(H∗−W ∗)>

ϕi, and thus ρ∗i = 1. For all ϕi >ϕk, α(H∗−W ∗)<ϕi, and ρ∗i = 0.

2. Else, ρ∗k ∈ {0,1}, ∀k ∈ I:

— If ρ∗k = 1, ρ∗k ≤
Dk+H

∗−(1−ρ∗k)Dk

2Dk
− ϕk+α(W

∗−ρ∗kDk)

2αDk
, which suggests α(H∗−W ∗)−ϕk ≥ 0. Then,

for i < k with ϕi <ϕk, ρ
∗
i = 1, and α(H∗−W ∗)−ϕi ≥ 0.

— If ρ∗k = 0, ρ∗k ≥
Dk+H

∗−(1−ρ∗k)Dk

2Dk
− ϕk+α(W

∗−ρ∗kDk)

2αDk
, which suggests α(H∗−W ∗)−ϕk ≤ 0. Then,

for i > k with ϕi >ϕk, ρ
∗
i = 0, and α(H∗−W ∗)−ϕi ≤ 0.
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Collectively, for the genuine optimal solution, there exists a threshold K ∈ I, for i < K, ρ∗i = 1

and for i > K, ρ∗i = 0. Since H∗ +W ∗ =
∑

jDj, when ρ∗K ∈ (0,1), it naturally follows that W ∗ =

α
∑

j Dj−ϕK

2α
. More generally, based on the FOC:

ρ∗i ∈ (0,1) if and only if W ∗ =
α
∑

jDj −ϕi
2α

;

ρ∗i = 1 if and only if W ∗ ≤
α
∑

jDj −ϕi
2α

;

ρ∗i = 0 if and only if W ∗ ≥
α
∑

jDj −ϕi
2α

.

Given that the genuine optimal solution has the structure of having one “threshold” community,

we further introduce the following notations that enable us to pin down the threshold community,

which is the key to the optimization problem. Define ρ<m>k as the optimal partition of community

k when community m serves as the candidate threshold community, and similarly, define W<m>,C
k

(H<m>,C
k ), the number of patients going to the hospital (staying at home, respectively) except

for community k patients when community m serves as the candidate threshold community. In

addition, let R<m> be the revenue when community m serves as the candidate threshold community.

Based on Theorem 1, ρ∗k = max{0,min{1, Dk+H
C
k

2Dk
− ϕk+αW

C
k

2αDk
}}, given that WC

k and HC
k are known.

Then, we come up with the following lemma.

Lemma A.2. The optimal solution given a candidate threshold community has a monotonic prop-

erty:

(i) If there exists ρ<k>k =
Dk+H

<k>,C
k

2Dk
− ϕk+αW

<k>,C
k

2αDk
∈ [0,1), then ρ<k+1>

k+1 = 0.

(ii) If there exists ρ<k>k =
Dk+H

<k>,C
k

2Dk
− ϕk+αW

<k>,C
k

2αDk
∈ (0,1], then ρ<k−1>k−1 = 1.

(iii) ρ<k>k is monotonically decreasing with k.

Proof. First, if there exists ρ<k>k =
Dk+H

<k>,C
k

2Dk
− ϕk+αW

<k>,C
k

2αDk
∈ [0,1), our goal is to prove ρ<k+1>

k+1 =

0. Note that ρ<k>k < 1, so
H

<k>,C
k

2
− ϕk+αW

<k>,C
k

2α
< Dk

2
. Furthermore, since H<k+1>,C

k+1 = H<k>,C
k −

Dk+1, W
<k+1>,C
k+1 =W<k>,C

k +Dk, (see Figure A.1 for illustration), and ϕk+1 >ϕk, we have ρ<k+1>
k+1 =

max{0,min{ρk+1,1}}, where

ρk+1 =
Dk+1 +H<k+1>,C

k+1

2Dk+1

−
ϕk+1 +αW<k+1>,C

k+1

2αDk+1
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=
Dk+1 +H<k>,C

k −Dk+1

2Dk+1

− ϕk+1 +αW<k>,C
k +αDk

2αDk+1

<
H<k>,C
k

2Dk+1

− ϕk +αW<k>,C
k

2αDk+1

− Dk

2Dk+1

<
Dk

2Dk+1

− Dk

2Dk+1

= 0.

Therefore, ρ<k+1>
k+1 = 0.

Similarly, if there exists ρ<k>k =
Dk+H

<k>,C
k

2Dk
− ϕk+αW

<k>,C
k

2αDk
∈ [0,1), we aim to prove ρ<k−1>k−1 =

1. With ρ<k>k > 0,
H

<k>,C
k

2
− ϕk+αW

<k>,C
k

2
> −Dk

2
. Since H<k−1>,C

k−1 = H<k>,C
k + Dk, W

<k−1>,C
k−1 =

W<k>,C
k −Dk−1, and ϕk−1 <ϕk, we have ρ<k−1>k−1 = max{0,min{ρk−1,1}}, where

ρk−1 =
Dk−1 +H<k−1>,C

k−1

2Dk−1
−
ϕk−1 +αW<k−1>,C

k−1

2αDk−1

=
Dk−1 +H<k>,C

k +Dk

2Dk−1
− ϕk−1 +αW<k>,C

k −αDk−1

2αDk−1

>
1

2
+
H<k>,C
k

2Dk−1
− ϕk +αW<k>,C

k

2αDk−1
+

Dk

2Dk−1
+

1

2

> 1− Dk

2Dk−1
+

Dk

2Dk−1
= 1.

Therefore, ρ<k−1>k−1 = 1. The monotonic property is a direct result following (i) and (ii).

𝑘

𝛗𝑖 = 𝑓𝑖 − 𝛽𝑗 + 𝛾

𝜌𝑖 = 1

𝜌𝑖 = 0

𝜌𝑘
<𝑘> ∈ [0,1]

𝑘 + 1

W𝑘
<𝑘>,𝐶 𝑘 𝐻𝑘

<𝑘>,𝐶

𝐻𝑘+1
<𝑘+1>,𝐶

W𝑘+1
<𝑘+1>,𝐶

𝜌𝑘
<𝑘+1> = 1

Figure A.1 An illustration of the relationship between W<k>,C
k and H<k>,C

k .

Lemma A.3. The revenue obtained when an arbitrary community m is selected as the candidate

threshold community is defined as R<m>. It has the following monotonic property:
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(i) For 1<k≤N , if R<k> >R<k−1>, then R<k−1> >R<k−2>.

(ii) For 1≤ k <N − 1, if R<k> >R<k+1>, then R<k+1> >R<k+2>.

Proof. We start with the proof of (i) if R<k> >R<k−1>, then, R<k−1> >R<k−2>. Based on the

definition, two scenarios can unfold.

First, ρ<k>k ∈ (0,1). Based on Lemma A.2, ρ<k−1>k−1 = 1, and based on Theorem 1, ρ<k−1>k = 0. Let

W<k>,C
k =

∑k−1
j=1 Dj, and H<k>,C

k =
∑N

j=k+1Dj. We compare the revenue when k or k−1 is selected

as the candidate threshold community.

R<k>−R<k−1> =αH<k>,C
k ρ<k>k Dk−Dk(ϕk +αW<k>,C

k )

+Dk(1− ρ<k>k )(ϕk +αW<k>,C
k +αρ<k>k Dk)

=αρ<k>k DkH
<k>,C
k − ρ<k>k Dk(ϕk +αW<k>,C

k ) +α(1− ρ<k>k )ρ<k>k D2
k.

The assumption R<k>−R<k−1> > 0 is equivalent to

αρ<k>k DkH
<k>,C
k − ρ<k>k Dk(ϕk +αW<k>,C

k ) +α(1− ρ<k>k )ρ<k>k D2
k > 0.

Since ρ<k>k > 0, this condition implies αH<k>,C
k − (ϕk +αW<k>,C

k ) +α(1− ρ<k>k )Dk > 0.

Based on Lemma A.2, ρ<k−1>k−1 = 1, and then ρ<k−2>k−2 = 1, and based on Theorem 1, ρ<k−1>k−2 = 0.

Then, one can calculate the difference between R<k−1> and R<k−2>:

R<k−1>−R<k−2> =α(Dk +H<k>,C
k )Dk−1−Dk−1(ϕk−1 +αW<k>,C

k −αDk−1)

>Dk−1(αH
<k>,C
k − (ϕk +αW<k>,C

k ) +αDk +αDk−1)> 0.

Next, in the case of ρ<k>k = 1. Using the same argument, ρ<k−1>k = 0. Then, we compare the

difference between R<k> and R<k−1>.

R<k>−R<k−1> = αDkH
<k>,C
k −Dk(ϕk +αW<k>,C

k )>Dk(αH
<k>,C
k − (ϕk +αW<k>,C

k )).

The assumption R<k>−R<k−1> > 0 is equivalent to αH<k>,C
k − (ϕk +αW<k>,C

k )> 0. Then,

R<k−1>−R<k−2> =
Dk−1

Dk

(R<k>−R<k−1>) +αDk−1(Dk +αDk−1)> 0.

The proof of (ii) if R<k> > R<k+1>, then R<k+1> > R<k+2> can be done analogously, and we

omit the derivations.
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Proof of Proposition 2

Proof. To obtain the threshold community K and ρ∗K , we first calculate W<k>,C
k =

∑k−1
j=1 Dj,

and H<k>,C
k =

∑N

j=k+1Dj, and obtain ρ<k>k = max{0,min{1, Dk+H
<k>,C
k

2Dk
− ϕk+αW

<k>,C
k

2αDk
}}, for each

k = 1...N , and the corresponding revenue is denoted as R<k>. The true threshold community

satisfies K = argmaxkR
<k>.

Further, let ρk =
Dk+H

<k>,C
k

2Dk
− ϕk+αW

<k>,C
k

2αDk
. If ρk ∈ (0,1), then, α(H<k>,C

k −W<k>,C
k ) − ϕk =

2αρkDk−αDk.

For 1<k≤N, R<k>−R<k−1> = ρkDk(α(H<k>,C
k −W<k>,C

k )−ϕk +α(1− ρk)Dk)

= ρkDk((1− ρk)αDk + 2αρkDk−αDk)

= αρ2kD
2
k > 0.

For 1≤ k <N, R<k+1>−R<k> =(1− ρk)Dk(α(H<k>,C
k −W<k>,C

k )−ϕk−αρkDk)

=−α(1− ρk)2D2
k < 0.

Moreover, if ρk ≥ 1, then, α(H<k>,C
k −W<k>,C

k )−ϕk ≥ αDk > 0. In addition, ρ<k−1>k = 0, according

to Theorem 1 and Lemma A.2. Then,

R<k>−R<k−1> =Dk(α(H<k>,C
k −W<k>,C

k )−ϕk)> 0.

If ρk ≤ 0, then, α(H<k>,C
k −W<k>,C

k ) − ϕk ≤ −αDk < 0. With the same argument, ρ<k+1>
k = 1.

Then,

R<k+1>−R<k> =Dk(α(H<k>,C
k −W<k>,C

k )−ϕk)< 0.

Since we have ρ<k>k = max{0,min{ρk,1}}, we can conclude that if ρ<k>k ∈ (0,1), then, k is the

true threshold community, i.e., K = k and R<k> is the optimal revenue. If ρ<k>k = 1, then R<k> >

R<k−1>; if ρ<k>k = 0, then R<k> >R<k+1>.

Corollary A.1. If ∀i, ϕi ≥ α
∑

iDi, then ρi = 0, i.e., all patients should stay at home.

Proof of Proposition 3

Proof. Proposition 2 together with Lemma A.3 suggest that R<i> is a unimodal function of i,

and thus Algorithm 1 reduces to an O(log(N)) algorithm.
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Proof of Theorem 2

Proof. Assume the optimal solution recommends two communities to adopt mixed strategies,

denoted as community A and community B. Let d∗A = (1− ρ∗A)DA and d∗B = (1− ρ∗B)DB be the

optimal stay-at-home demands, and we consider a positive change ε > 0. Denote superscript “1”

to indicate the results obtained with d1A = d∗A− ε and superscript “2” as that of d2A = d∗A + ε. The

corresponding nurse costs are g1A and g2A. Furthermore, let g∗A = gA(d∗A). The same notation applies

for community B. Because gi(D)’s are non-decreasing concave functions, 2g∗A − g1A − g2A ≥ 0 and

2g∗B − g1B − g2B ≥ 0. See Figure A.2 for illustration. Since d∗A and d∗B are optimal, it follows that

d∗A(fA−∆R+ γ+W ∗)− gA(d∗A) + d∗B(fB −∆R+ γ+W ∗)− gB(d∗B)

≥(d∗A− ε)(fA−∆R+ γ+W ∗)− gA(d∗A− ε) + (d∗B + ε)(fB −∆R+ γ+W ∗)− gB(d∗B + ε),

i.e.,

0≥ ε(fB − fA) + (g∗A− g1A) + (g∗B − g2B). (A.5)

Similarly, because of the symmetry of A and B, with the same argument, we know

0≥ ε(fA− fB) + (g∗B − g1B) + (g∗A− g2A). (A.6)

Combining the two inequalities, we get 0≥ (2g∗A− g1A− g2A) + (2g∗B − g2B − g1B)≥ 0.

This is true if and only if the cost functions are linear in their own domain [d∗i − ε, d∗i + ε], for

i∈ {A,B}. Define βi as the gradient of the cost function gi(D) when D is in [d∗i − ε, d∗i + ε], based

on which, we have g1A + 2βAε= g∗A +βAε= g2A and g1B + 2βBε= g∗B +βBε= g2B.

Consequently, inequalities (A.5) and (A.6) become 0≥ ε(fB−fA+(βA−βB)) and 0≥ ε(fA−fB+

(βB − βA)). Since ϕi = fi− βi + γ−∆R, i ∈ {A,B}, it implies ϕA = ϕB. In this case, there can be

multiple optimal solutions that lead to the same revenue, similar to the two-community case with

ϕA = ϕB that as long as the total amount of patients coming to hospital is fixed, the distribution

to the two communities can be flexible. Take ε = min{d∗A,DA − d∗A, d∗B,DB − d∗B}, then, if either

function gi(D) becomes nonlinear in [d∗i −ε, d∗i +ε], the two inequalities cannot hold, or otherwise, if

both keep being linear, and thus the boundary such as 0 or Di is enclosed in [d∗i −ε, d∗i +ε], then, one

can push at least one community to the domain boundary and induce a different equilibrium that

only allows one community to adopt a mixed strategy. Therefore, there always exists an optimal



Author: Service System Design of Video Conferencing Visits with Nurse Assistance 51

solution such that at most one community K ∈ I has ρK ∈ (0,1), and all other communities have

patient diversions ρi = 0 or 1, i 6=K.
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Figure A.2 Illustration of the marginal utility gain as a function of input demand.

Proof of Theorem 3

Proof. For brevity, we introduce a vector ρ as the patient diversion of all communities. With a

general concave cost structure, the problem is NP-hard and the optimal solution ρgen is difficult

to solve. In the following, we show that the optimal solution under the linear cost assumption ρlin

is a good approximation.

We linearize any non-decreasing concave cost function gi(D) (a function of demand D) for a

community i to be glini (D) = βiD. The slope is obtained as βi = gi(Di)/Di (see Figure A.3). The

choice of the slope enables gi(0) = glini (0) = 0 and gi(Di) = glini (Di). Because for general concave

cost functions, there exists an optimal solution that dictates at most one community to have a

partial diversion, we would expect the impact of a linear function compared to a concave one to

the objective function would only present in one community, which could be small and hence leads

to a good approximation.
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First, we claim that ρlin is a feasible solution, because the cost function only impacts the objective

function, but not the feasibility of any solutions, since the IC constraints only affect the choice of

the prices C2,i. Thus, RG(ρlin) is a lower bound, i.e.,

RG(ρlin)≤RG(ρgen).

Next, we prove that Rlin(ρlin) is an upper bound. We therefore show that

RG(ρgen)≤Rlin(ρgen)≤Rlin(ρlin).

The first inequality holds because of the property of concave functions: given solution ρgen, g((1−

ρi)Di) ≥ βi(1− ρi)Di, and the other terms in the revenue gain remain the same; the second one

holds because ρlin maximizes Rlin.

Then, we show that the difference between the upper bound and the lower bound is smaller than

gK(DK), where K is the threshold community identified using the linear approximation, i.e.,

Rlin(ρlin)−RG(ρlin) = gK((1− ρK)DK)−βK(1− ρK)DK ≤ gK(DK).

The last inequality holds because we know when ρK = 0 or 1, the difference is zero, and the

difference achieves its maximum when the increasing concave function is close to a rectangular

shape (gworst
i ), as shown in Figure A.3.

As a remark, it is not necessary that the same community is partially diverted under the general

concave cost function and the linear case, nor would the assignment of other communities stay the

same. However, this does not affect the bound of the approximation gap.

Proof of Proposition 4

Proof. This proof follows the proof of a general Minorize-Maximization problem (a special case

of an Expectation-Maximization problem). In each iteration, a “new” objective function is defined

consisting of the original objective function and a penalty term, which penalizes the difference

between an intermediate variable and its “expected” value obtained from the previous iteration.

In the “optimization” step, such an expected value will be treated as an input, and a new set of

optimal solutions will be obtained accordingly. Then, in the “expectation” step, we update the

expected value of that intermediate variable using the optimal solutions obtained in the previous
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Figure A.3 Illustration of the linear approximation to the concave function.

optimization step. The new objective function and thus the original objective function will have

to be non-decreasing over iterations, and then, such a process will converge to the local optima,

according to (Hunter and Lange 2000). In the following we elaborate the algorithm and show how

it conforms to the Minorize-Maximization problem.

1. Initialization t = 0. We introduce Ht,i (Wt,i) as the amount of stay-home (go-to-hospital,

respectively) patients at iteration t after updating patient diversion ρti at the i-th community. One

can directly initialize the algorithm with H0,N = 0 (stay-home) and W0,N =
∑

iDi (go-to-hospital),

and ρ0i = 1, i ∈ I. An alternative initialization is to use the approximated solution obtained in

Algorithm 1 by assuming βi = g(Di)/Di.

2. Update t= t+ 1.

For each community i,

If i= 1, HC
t,i =Ht−1,N − (1− ρt−1i )Di, W

C
t,i =Wt−1,N − ρt−1i Di.

If i= 2...N , HC
t,i =Ht,i−1− (1− ρt−1i )Di, W

C
t,i =Wt,i−1− ρt−1i Di.

Define pt,i = (WC
t,i −

∑
j<i ρ

t
jDj −

∑
i<j ρ

t−1
j Dj)

2 ≥ 0 as a penalty term, which penalizes the dif-

ference between an intermediate variable and its “expected” value obtained from the previous

iteration, and introduce a new objective function Rt,i(·) described below. Then, ρti
∗

is further

introduced as

ρti
∗

= argmaxρiR
t,i({ρtj}j<i, ρi,{ρt−1j }j>i)

:=R({ρtj}j<i, ρi,{ρt−1j }j>i)− (WC
t,i−

∑
j<i

ρtjDj −
∑
i<j

ρt−1j Dj)
2.



54 Author: Service System Design of Video Conferencing Visits with Nurse Assistance

Based on the proof of Theorem 1, ρti
∗

= max{0,min{1, Di+H
C
t,i

2Di
− ϕ∗

i +αW
C
t,i

2αDi
}}, where ϕ∗i is associated

with the gradient of gi(D) at D = (1− ρti
∗
)Di. This implies solving for an implicit function, and

ρti
∗

cannot be directly obtained.

— Here assume there are Li ≥ 1 segments for each piece-wise linear concave function gp-lini (D)

as an approximation to gi(D), and let βli be the gradient of the cost function at the lth segment,

1 ≤ l ≤ Li. Let ϕli = fi + γ − βli −∆R for 1 ≤ l ≤ Li. In addition, introduce ρt,li as the optimal

diversion of community i at iteration t by assuming the gradient of the cost function falls on the lth

segment with value βli. Define Rt,l =R(ρt,li ) as the optimal revenue when community i adopts the

optimal solution ρt,li and the other communities keep their current diversions, i.e., ρtj for j < i and

ρt−1j for j > i. We deem a solution ρt,li as feasible if (1− ρt,li )Di falls on the domain of segment l;

otherwise, it cannot serve as a candidate of the optimal solution. Furthermore, for the cost function

with a non-zero set-up cost, denote ρti = 1 (implying no nurse coordination cost) as ρt,l=0
i , and

the corresponding revenue as Rt,l=0. Then, we define the optimal solution of ρi at iteration t as

ρti
∗

= argmax
ρ
t,l
i
Rt,l, for 0≤ l≤Li.

— We hereby show that at least one ρt,li is feasible, in the sense that it is a fixed point to

the implicit function. Because of being concave, βli <β
l−1
i and consequently ϕli <ϕ

l−1
i . Meanwhile,

because ρt,li = max{0,min{1, Di+H
C
t,i

2Di
− ϕl

i+αW
C
t,i

2αDi
}}, we know that ρt,li is monotone decreasing with

ϕli. Therefore, ρt,li < ρt,l−1i . For each segment, define ht,li as the amount of patients staying in the

community given ρt,li , and ht,li is monotone increasing with ϕli. The two end points for each segment

l are further denoted as hUl−1 and hUl , and we omit i here for brevity. Assume no ρt,li is feasible, then

we prove by induction that ht,li > hUl , for 1≤ l < L. First, for the first piece with a slope with β1

and two endpoints 0 and hU1 , the infeasibility of ρt,1i leads to ht,1i >hU1 . Then, assume ht,l−1i >hUl−1

is true. Move to the case of l, the assumption ρt,li is infeasible leads to either ht,li <hUl−1 or ht,li >hUl ;

however, with ht,li > ht,l−1i (monotonic property), and ht,l−1i > hUl−1 we know that ht,li > hUl−1, and

therefore, it can only be ht,li >hUl . Lastly, the assumption ρt,Li is infeasible leads to ht,Li >hUL =Di.

However, one cannot obtain a solution that is out of the domain bound. Therefore, a conflict is

induced and thus, there must be one ρt,li being feasible.
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Let ρti = ρti
∗

and update Wt,i =
∑

j≤i ρ
t
jDj +

∑
i<j ρ

t−1
j Dj and Ht,i =

∑
j≤i(1− ρtj)Dj +

∑
i<j(1−

ρt−1j )Dj. Based on the definition that ρti optimizes Rt,i(·),

Rt,i({ρtj}j<i, ρti,{ρt−1j }j>i)≥Rt,i({ρtj}j<i, ρt−1i ,{ρt−1j }j>i)

=Rt,i({ρtj}j<i−1, ρti−1,{ρt−1j }j>i−1) = maxRt,i−1(·).

Thus, the objective function Rt,i(·) is non-decreasing with i.

3. Stopping condition. The algorithm stops when reaching a point that the objective function

does not increase along any direction, which is a saddle point and is considered as a local optimum.

When the objective function is convex, the algorithm converges to the global optima (Hunter and

Lange 2000).
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Figure A.4 Illustration of a piece-wise linear concave function.

Proof of Proposition 5

Proof. According to Theorem 1, ρ∗s ∈ (0,1), if and only if W ∗ =
α
∑

iDi−ϕs

2α
; ρ∗s = 1, if and only if

W ∗ ≤ α
∑

iDi−ϕs

2α
.

First, we show that if ϕmax >−α
∑

iDi, then, there exists at least one community with ρi < 1. If

the optimal solution let all ρ∗i = 1, then, community N could serve as the threshold community and

W ∗ =
∑

iDi. It contradicts with Theorem 1, based on which, W ∗ ≤ α
∑

iDi−ϕN

2α
<

α
∑

iDi+α
∑

iDi

2α
=∑

iDi.

Second, we show that if ϕmax ≤ −α
∑

iDi, then all communities will have ρi = 1. If not, the

number of patients going to the hospital should be less than the total demand W ∗ <
∑

iDi.
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Table A.6 Hospital Revenue, Patient Surplus, and Social Welfare without and with Virtual Services.

No VC Visits With VC Visits

Special
Price
Setting

— ηdC2,i =−C2−∆R+ fi +α
∑

i ρjDj

Hospital R0 =
∑

iDi(−γ) R=
∑

iDi(−γ)+
∑

iDi(1−ρi)(ϕi+α
∑

j ρjDj)
∆R=

∑
iDi(1− ρi)(ϕi +α

∑
j ρjDj)

Patient U 0
i =

∑
iDi(R1−C1−fi−α

∑
jDj) Ui =

∑
iDi(R1−C1− fi−α

∑
j ρjDj)

∆Ui =
∑

iDi(α
∑

j(1− ρj)Dj)

Welfare S0 =
∑

iDi(R1− γ− fi−α
∑

jDj) S =
∑

iDi(C1 − γ) +
∑

iDi(1 − ρi)(ϕi +
α
∑

j ρjDj) +
∑

iDi(R1−C1− fi−α
∑

j ρjDj)
∆S =

∑
i(1− ρi)Di[ϕi +α

∑
j(1 + ρj)Dj]

General
Price
Setting

— ηdC2,i ≤−C2−∆R+ fi +α
∑

j ρjDj

Hospital R0 =
∑

iDi(−γ) R=
∑

i ρiDi(−γ) +
∑

iDi(1− ρi)(ηdC2,i +C2−
βi)
∆R=

∑
iDi(1− ρi)(ηdC2,i +C2−βi− (−γ))

Patient U 0 =
∑

iDi(R1−C1−fi−α
∑

jDj) U =
∑

i(1 − ρi)Di(R2 − C1 − ηdC2,i − C2) +∑
i ρiDi(R1−C1− fi−α

∑
j ρjDj)

∆U =
∑

i(1− ρi)Di(−ηdC2,i − C2 −∆R+ fi +
α
∑

j(1 + ρj)Dj)

Welfare S0 =
∑

iDi(R1− γ− fi−α
∑

jDj) S =
∑

i ρiDi(R1− γ− fi−α
∑

j ρjDj) +
∑

i(1−
ρi)Di(R2−βi)
∆S =

∑
i(1− ρi)Di[ϕi +α

∑
j(1 + ρj)Dj]

However, ∀ j ∈ I, since ϕj ≤ −α
∑

iDi, then,
α
∑

iDi−ϕj

2α
≥
∑

iDi, and we have W ∗ <
α
∑

iDi−ϕs

2α
.

Based on Theorem 1, it suggests that ρj = 1. Contradict.

Therefore, when ϕmax >−α
∑

iDi, there exist patients who receive care at home. When there

are patients staying at home, we can see from Table A.6 that all of the three parties are strictly

better off.

Next, we show that the hospital earns strictly more money from every at-home patient.

Patients’ IC constraints require ηdC2,i+C2 ≤−∆R+fi+α
∑

j ρjDj, ∀i∈ I. To obtain the max-

imum revenue, ηdC2,i +C2 =−∆R+ fi +αW ∗. For each patient staying at their own community,

the hospital now gains ηdC2,i + C2 − βi. First, we show that the threshold community K have

α
∑
Di +ϕK > 0 because otherwise, α

∑
Di +ϕK ≤ 0 leads to W ∗ =

α
∑

iDi−ϕK

2
≥ α

∑
iDi+α

∑
iDi

2
=∑

Di, which contradicts with the condition that there exist at-home patients. Second, since ϕi ≥ϕK

for each community i that is optimal to stay at home, we conclude for each at-home community

ϕi > −α
∑

iDi. Compared to the previous gain −γ from community i, the hospital now gains
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ηdC2,i+C2−βi which is strictly greater than −γ, and it collects ηdC2,i+C2−βi− (−γ) =ϕi+αW ∗

more money from every at-home patient. ϕi+αW ∗ ≥ϕK +αW ∗, and the latter is positive because

αW = (α
∑

iDi−ϕK)/2 and ϕK +α
∑

iDi > 0.

Similar to the profit-maximizing problem, the social-welfare maximization problem of consider-

ation is equivalent to the following model, and all the results are derived from it. The proof follows

that in Proposition A.3.

max
ρi,C2,i

∑
i∈I

(1− ρi)Di[ϕi +α
∑
j∈I

(1 + ρj)Dj],

s.t. IC constraints (1)− (3).

Proof of Proposition 7

Proof. For a linear nurse coordination cost function, we obtain:

LWelfare =
∑
i

(1− ρi)Di[ϕi +α
∑
j

(1 + ρj)Dj] +λiρiDi +µi(1− ρi)Di.

The FOC suggests that

∂LWelfare

∂ρi
=−Di(ϕi +α

∑
j

ρjDj) +αDi

∑
j

Dj(1− ρj)−αDi

∑
j

Dj +λiDi−µiDi = 0.

As as result,
∑

j ρjDj = −ϕi+λi−µi
2α

. Note that WWel =
∑

j ρjDj, similar to the revenue-maximizing

case, we have

ρWel
i ∈ (0,1), if and only if WWel =

−ϕi
2α

;

ρWel
i = 1, if and only if WWel ≤ −ϕi

2α
;

ρWel
i = 0, if and only if WWel ≥ −ϕi

2α
.

Therefore, a threshold structure also applies to the social welfare optimization problem with the

threshold KWel.

Next, we show WWel <WRev by considering the following cases:

• Case 1: KRev >KWel.

As W = ρKDK +
∑

j<KDj, K
Rev >KWel leads to WRev >WWel.

• Case 2: KRev =KWel.

WRev =
α
∑

iDi−ϕKRev

2α
>
α−ϕKRev

2α
=
α−ϕKWel

2α
=WWel.
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• Case 3: KRev <KWel.

As W = ρKDK +
∑

j<KDj, K
Rev <KWel leads to WRev <WWel. Since ϕKRev <ϕKWel ,

WRev =
α
∑

iDi−ϕKRev

2α
>
α−ϕKRev

2α
>
α−ϕKWel

2α
=WWel,

which contradicts with WRev <WWel.

Introduce the superscript “Rev” to refer to the revenue maximization scenario. ∆Patients =

αH
∑

jDj. Since HWel > HRev, then, ∆Wel
Patients > ∆Rev

Patients. Moreover, ∆Wel
Hospital < ∆Rev

Hospital and

∆Wel
Welfare >∆Rev

Welfare follow from the fact that ρRev maximizes revenue (∆Hospital) and ρWel maximizes

social welfare (∆Welfare).

Proof of Proposition 6

Proof. Let ∆Hospital represent the difference of revenues with and without offering virtual services,

and ∆Patients be the change of patient surplus. We introduce superscript “Wel” to refer to the

results obtained from social welfare maximization. According to Proposition 7, ρWel
i ∈ (0,1), if and

only if WWel = −ϕi
2α

; ρWel
i = 1, if and only if WWel ≤ −ϕi

2α
.

First, we show that if ϕmax >−2α
∑

iDi, then there exists at least one community with ρi < 1.

If ρi = 1 for all i ∈ I, community N could serve as the threshold community and WWel =
∑

iDi,

which conflicts with WWel ≤ −ϕmax

2α
<

2α
∑

iDi

2α
=
∑

iDi.

Second, we show that if ϕmax ≤−2α
∑

iDi, then, all communities have ρi = 1. If not, then, the

number of patients going to the hospital should be less than the total demand rate WWel <
∑

iDi.

Now, ∀ j ∈ I, since ϕj ≤ −α
∑

iDi, then,
−ϕj

2α
≥
∑

iDi, we have WWel ≤ −ϕs

2α
, and according to

Proposition 7, ρj = 1. Contradict.

For the change of social welfare without and with VC visits, defined as ∆Welfare =
∑

iDi(1−

ρi)(ϕi + α
∑

iDi + αWWel) =
∑

iDi(1− ρi)ϕi + αHWel(
∑

iDi +WWel). If HWel > 0, ∆Welfare > 0.

One the other hand, ∆Welfare = 0 leads to HWel = 0. Thus, the change in social welfare is strictly

positive when there exists at least one patient staying at home.

Proof of Corollary 1

Proof. For each community i with ϕi ≥ −αWWel, the medical institution is willing to provide

them VC visits. Note here WWel is invariant with C2,i. When ηdC
Wel
2,i ≤−C2 −∆R+ fi +αWWel,
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patients are optimal to choose the virtual service option. When −C2 −∆R − γ + βi ≤ ηdCWel
2,i ,

the medical institution would like to offer virtual services. In summary, any price ηdC
Wel
2,i between

−C2 −∆R− γ + βi and −C2 −∆R+ fi + αWWel would be a feasible price. If ϕi <−αWWel, the

hospital is forced to offer VC visits and the equilibrium pricing is ηdC
Wel
2,i =−C2−∆R+fi+αWWel,

which follows patients’ IC constraints.

Under the condition that ϕmax >−2α
∑

iDi:

1. By setting ηdC2,i =−C2−∆R+fi+αWWel, the hospital is strictly better off. For the hospital,

since ∆Hospital =
∑

iDi(1−ρi)ϕi+αHWelWWel. HWel > 0 leads to ∆Hospital > 0. Otherwise, HWel = 0

leads to ρi = 1, ∀i and thus ∆Hospital = 0. Therefore, the hospital is strictly better off if there exists

at least one patient staying at home. Social welfare, as the sum of the two, is also positive.

However, whether the hospital receives more money from each community is not guaranteed

under the social maximizer. In fact, the hospital receives more money when −αWWel ≤ϕi, because

−C2 − ∆R − γ + βi ≤ ηdC2,i = −C2 − ∆R + fi + αWWel. However, for communities with ϕi <

−αWWel, the hospital gains less. Such communities exist when WWel > 0, i.e., ∃ ρWel
i ∈ (0,1],

which means ϕi ≤−2αWWel <−αWWel.

2. For the communities with ϕi ∈ [−2αWWel,−αWWel), ηdC2,i = −C2 − ∆R + fi + αWWel <

−C2−∆R−γ+βi and 0≤ ρi < 1, the hospital is losing money serving them. For the communities

with ϕi ∈ [−αWWel,+∞), when we assign ηdC2,i =−C2 −∆R− γ + βi, which is a feasible price,

the hospital does not gain more from serving them. Overall, the hospital’s gain is negative.

Corollary A.2. When priced at ηdC
Wel
2,i =−C2−∆R+fi+αWWel, if ∀i, ϕi ≥ 0, then, ρWel

i = 0,

i.e., all patients should stay at home under social welfare maximization.

For all patients to stay at home, compared to the condition ϕj ≥ α
∑

i∈IDi in Corollary A.1 in

the revenue maximization case, the condition of the social planner (Corollary A.2) is relaxed — as

long as all of their marginal utility changes are nonnegative.

Proof of Theorem 4

Proof. For part (a), patients from community j being optimal to stay at home means ηfC2,f +C2 <

fj +αW −∆R. Assume not, patients from community i are also optimal to go to hospital, i.e., fi+

αW −∆R≤ ηfC2,f +C2. These results lead to fi < fj for any ηfC2,f +C2 and W , which contradicts
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with fi > fj. Part (b) naturally follows and the threshold distance is F = ηfC2,f +C2−αW + ∆R.

Proposition A.4. When ηd = 0, and ηf = 0, the medical institution is not willing to offer VC

visits unless C2 satisfies the condition described by inequality (A.8).

Proof. When C2 is a constant, firstly, when F increases, W also increases, so there exists a unique

solution for F +αW =C2 +∆R, and then, the equilibrium patient strategy can be obtained. F and

W can be found by applying the monotone property in Theorem 4 through the following procedure:

Test F ∈ (fi−1, fi], for i=N + 1,N, ..,1, where fN+1 =∞, f0 = 0, and stop when feasible F and W

are found.

• Step 1: Set initial W =
∑

iDi. Start with i=N+1, if C2 > fi+αW −∆R (denoted as “ineq*”),

i.e., F > fN , which means feasible F and W have been found, then, all patients are optimal to go

to the hospital. Else, go to step 2.

• Step 2: (to determine F ) Consider community i, if C2 > fi−1 + α(W −Di)−∆R, stop and

F ∈ (fi−1, fi], go to step 3. Else, continue with i= i− 1 and W =W −Di.

• Step 3: (to determine ρK) Now, denote i asK, a threshold community K. A mixed strategy only

exists when F = fK . Since fK =C2−α(W −DK + ρKDK) + ∆R, we obtain ρK = max{0, (−fK +

C2 + ∆R− α(W −DK))/DK}. Notice that ρK < 1 because of (ineq*). If ρK > 0, F = fK , and if

ρK = 0, F ∈ (fK−1, fK).

Based on individual patients’ choices, the revenue becomes:

obj =C2

 ∑
j:fj>fK

Dj + (1− ρK)DK

− ∑
j:fj>fK

gj(Dj)− gK((1− ρK)DK)

− γ[
∑

j:fj<fK

Dj + ρKDK −We]
+ + γ[

∑
j∈I

Dj −We]
+. (A.7)

After finding out the patient strategy and F , then, the medical institution is willing to offer VC

visits when

C2 ≥
∑

j:fj>F
gj(Dj) +

∑
j:fj=F

gj((1− ρj)Dj) + γ[
∑

j:fj<F
Dj + ρKDK −We]

+− γ[
∑

j∈IDj −We]
+∑

j:fj>F
Dj +

∑
j:fj=F

(1− ρj)Dj

.

(A.8)
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Lemma A.4. When ηd = 0 and ηf 6= 0, the medical institution is able to find equilibrium patient

strategies and the optimal C2,f in O(N) time when g(·) is finite piece-wise smooth.

Proof. For mathematical simplicity, we call K the threshold community when F ∈ (fK−1, fK ].

If ρK ∈ (0,1), F = fK and ηfC2,f +C2 = fi + αW −∆R. If ρK = 0, F ∈ (fK−1, fK). To maximize

revenue, the medical institution would set F = fK − ε, and ηfC2,f +C2 = fK − ε+αW −∆R, for

a small amount ε. Therefore, the equilibrium price is ηfC2,f +C2 = fK +αW −∆R. Notice that if

ρK = 1, K is not the threshold community. We first find the threshold community and the optimal

strategy ρK :

K = argmaxi=0,1,..,Nobj(i),

obj(i) = max
ρi

(ηfC2,f +C2)

 ∑
j:fj>fi

Dj + (1− ρi)Di

− ∑
j:fj>fi

gj(Dj)− gi((1− ρi)Di)

− γ[
∑

j:fj<fi

Dj + ρiDi−We]
+ + γ[

∑
j∈I

Dj −We]
+, (A.9)

where W =
∑

j:fj<fi
Dj + ρiDi and ηfC2,f +C2 = fi +αW −∆R.

The first term is a quadratic function. Thus, this unconstrained optimization problem with one

decision variable ρi is easy to solve. For the linear case where gi((1− ρi)Di) = βi(1− ρi)Di, and

We = 0, we have a close-form optimal solution

ρi = max{0,min{1, α(HC
i +Di−WC

i )−ϕi
2αDi

}},

where ϕi = fi−βi + γ−∆R, WC
i =

∑
j:fj<fi

Dj and HC
i =

∑
j:fj>fi

Dj.

When g(·) is smooth or finite piece-wise smooth, we are able to obtain the optimal ρi by using

the first derivative or iterating all discontinuous points.

Proof of Proposition 8

Proof. The medical institution would like to offer the service when there exists i such that

obj(i)> 0. This is equivalent to there exists i such that ρi < 1, for

ρi = max{0,min{1, α(HC
i +Di−WC

i )−ϕi
2αDi

}},

which means ϕi >α(
∑

fj>fi
Dj −

∑
fj≤fi

Dj).
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The reason for the equivalence is as follows. Assume the optimal solution of ρk when k is the

threshold community is ρ∗k. If the two statements are not equivalent, then when all ρ∗k = 1, ∀k ∈ I,

there exists obj(i)> 0. Observe that

obj(i, ρ∗i = 1)< obj(i+ 1, ρi+1 = 0) (Definition of obj(i, ρi) in (A.9))

< obj(i+ 1, ρi+1 = 1) (Assumption ρ∗k = 1, ∀k ∈ I)

< ... < obj(N,ρN = 1) = 0.

Contradict.

Under the condition that ∃ ϕi >α(
∑

fj>fi
Dj −

∑
fj≤fi

Dj), there is at least one patient optimal

to stay at home, and the congestion level at the medical institution decreases comparing to without

VC visits. Hence, the go-to-hospital option has an increased utility. Subsequently, the patients who

are optimal to go to the hospital are strictly better off. Next, consider the patients who prefer to

stay at home. Given that they obtain larger utilities from the at-home option than that from the

go-to-hospital option, they are also strictly better off.

Proof of Proposition 9

Proof. Social maximizer is to find:

max
C2

∑
i

Di(1− ρi)(−∆R+ fi +α
∑
j

Dj)−
∑
i

gi((1− ρi)Di)− γ[
∑
i

ρiDi−We]
+ + γ[

∑
j∈I

Dj −We]
+

+
∑
i

ρiDi(α
∑
j

(1− ρj)Dj),

s.t. IC constraints (1)− (3).

Follow the same logic with revenue maximizer, the social welfare gain from the new service is

objWel(K):

K = argmaxi=0,1,..,Nobj
Wel(i)

objWel(i) = max
ρi

(
∑

j:fj>fi

Dj(−∆R+ fj +α
∑
j

Dj) + (1− ρi)Di(−∆R+ fi +α
∑
j

Dj)

+
∑

j:fj<fi

Dj(α
∑
j

Dj −αW ) + ρiDi(α
∑
j

Dj −αW )

−
∑

j:fj>fi

gj(Dj)− gi((1− ρi)Di)− γ[
∑

j:fj<fi

Dj + ρiDi−We]
+ + γ[

∑
j∈I

Dj −We]
+).
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= max
ρi

 ∑
j:fj>fi

(ϕj +
∑
j∈I

Dj)Dj + (1− ρi)(ϕi +
∑
j∈I

Dj)Di

+αW (
∑
j∈I

Dj −W ) (all linear case)

where W =
∑

j:fj<fi
Dj + ρiDi, and ϕj = fj −βj + γ−∆R.

The close-form optimal solution is

ρi = max{0,min{1, −2αWC
i −ϕi

2αDi

}},

where ϕi = fi−βi + γ−∆R, and WC
i =

∑
j:fj<fi

Dj.

Following the same logic as that in the proof of Proposition 8, social welfare begins to increase

when
−2αWC

i −ϕi

2αDi
< 1, i.e., when there exists a community i with ϕi >−2α

∑
fj≤fi

Dj.

Appendix F Additional Numerical Studies

We analyze the number of registered cancer patients by city and county (zip code indexed) through-

out calender year 2018 to identify the service region I covered by UFHCC and to estimate the

potential patient demands Di across regions. We crafted one numerical example based on the real-

world data presented in Table A.7. Additional model parameters are displayed in Table A.8. We

introduce βi = ratioβ ∗ distancei, that is, the cost of dispatching nurses is linear to the distance

between the patient home and the community clinic, and similarly, we define a travel burden-to-

distance ratio, suggesting that the travel cost of patients is linear to the distance between patient

homes and the medical center

F.1 Sensitivity Analysis

Here we present a sensitivity analysis to explore how the decisions vary based on the parameter

setting. First, we consider the demand variation, which is captured by the demand-to-population

ratio. When it decreases, i.e., not all registered patients do follow-ups, the threshold community

is still Marion and 41.5% of patients therein go to the medical center, and the rest stay at home

(51.0% market size). Without the capacity cap, when the demand-to-population ratio increases

from 1 to 2, 44.8% of Marion patients, and 50.3% of total patients are optimal to stay at home. It

suggests that the relative market size of telehealth is decreasing with the increase in demand rate.

This seemingly counter-intuitive observation can be explained by the high congestion cost perceived

by patients, and the medical institution can take advantage of this to create congestion that raises

patients’ willingness to pay for telehealth. The negative externality of congestion perceived by the



64 Author: Service System Design of Video Conferencing Visits with Nurse Assistance

Table A.7 Sample data and optimal solutions.

County Name Di fi fi−βi Rev. Max. ρ∗ Social Max. ρ∗ Rev. Max.ρ∗ Social Max. ρ∗

(Base case: θ= 1,000) (Large θ: θ= 10,000)
Alachua, FL 292 2.0 0.0 1 . 1 .
Levy, FL 83 22.4 0.0 1 . 1 .
Clay, FL 265 25.1 0.0 1 . 1 .
Bradford, FL 41 28.3 0.0 1 . 1 .
Union, FL 18 29.1 0.0 1 . 1 1
Gilchrist, FL 29 31 0.0 1 . 1 1
Putnam, FL 135 35 0.0 1 . 1 .
Dixie, FL 32 52 0.0 1 . 1 1
Citrus, FL 424 58.8 19.4 1 . 1 .
Baker, FL 31 59 26.2 1 . 1 1
Lafayette, FL 11 67.8 31.1 1 . 1 1
Marion, FL 828 38.3 34.7 .32 . . .
Suwannee, FL 77 68 41.7 1 . 1 .
Hamilton, FL 21 75.3 43.0 1 . 1 1
Sumter, FL 583 73.4 45.2 . . . .
Columbia, FL 104 46.8 46.0 . . 1 .
Madison, FL 32 105 72.1 . . 1 .
Taylor, FL 36 100 98.4 . . 1 .
Jefferson, FL 27 129 101.8 . . 1 .
Wakulla, FL 40 143 115.6 . . 1 .
Leon, FL 305 144 140.3 . . . .
Gadsden, FL 67 176 140.7 . . 1 .

Table A.8 Summary of the model parameter setting.

Parameter Baseline Range Unit
α 1 [1,10) $/pp
γ 1 [1,10) $
ratioβ 1 [1,1,000] $/mile
demand-to-discharge ratio 1 [0.5,2] –
travel burden-to-distance ratio 1 [1,10] $/mile
We 0 [0,10,000] –

medical institution and patients have different effects. When the medical institution is sensitive

to hospital congestion, for example, γ increases from 1 to 10, 43.1% of Marion patients should

go to the medical center. Whereas when patients are more sensitive to congestion, for example, α

increases from 1 to 10, 45.6% of Marion patients should go to the medical center. Note that Marion

patients always adopt mixed strategies, which agrees with our previous observation that a large

demand size is more likely to induce mixed strategy optimal solutions.

A smaller nurse coordination cost (for example, a per-mile nurse dispatch cost ratioβ = 0.5 in

contrast to 1) would cause more patients to stay at home. Three counties become more beneficial
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than Marion (less beneficial in the base case), and they become optimal to stay at home. Meanwhile,

only 0.2% of Marion patients are still optimal to stay at home, and overall half of the patients are

optimal at home receiving VC services. A larger nurse coordination cost (for example, ratioβ = 2)

also leads to changes in marginal benefits and ranking of communities. In this case, it indeed

causes more patients to go to the medical center, and 45.5% of total patients are optimal to stay

at home. On the other hand, when the unit distance travel burden increases from 1 to 10, i.e., the

transportation cost of patients fi becomes higher, 55.0% of all patients stay at home.

F.2 Concave Cost Function

In addition, we consider a concave cost function with a non-zero set-up cost, following a previously

published work on profit-maximizing cost allocation problem for firms using cost-based pricing

(Pavia 1995). In this numerical study, we use a set-up cost θ= 1,000 in the base case. A piece-wise

linear concave function as in (Hu et al. 2019) with L = 3, coef1 = 1 and coefl being the reverse

order statistics of L uniform random numbers in [0.6, 1], for all 1 < l ≤ L. This yields g(D) =

1000 + βimin{D,100} + 0.7βi[min{D,200} − 100]+ + 0.6βi[D − 200]+, as shown in Figure A.5.

Consequently, for each community, the gradients of the cost function are the coefficient of segments

times the marginal cost βi used in the linear setting, and all parameters stay the same as the linear

baseline in Table A.8. We provide optimal solutions of the base case with We = 1,000, θ = 1,000,

(see Figure A.6) and another case with a large θ: θ= 10,000 for comparison in Table A.7.

The impact of being a strictly concave rather than linear cost function on the optimal solution is

also minimal. This is because only communities employing mixed strategies have nurse coordination

costs differing from the ones under the linear approximations. Since the concave cost function

is computationally expensive, one can initialize the heuristic algorithm (Algorithm 2) with the

optimal solution obtained from the linear approximation to gain efficiency.

In contrast, the set-up cost poses a significant impact on the optimal solution. When set-up

costs are high, for example, θ = 10,000, we observe that the solution structure with a threshold

community using a mixed strategy no longer exists. Instead, all communities adopt pure strategies,

and more communities are optimal to go to the hospital because of the high set-up cost.

Whereas a single factor, marginal gain ϕi, is sufficient to decide the threshold community in the

linear case, when a general cost function is assumed, both marginal gain ϕi and demand size Di
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should be taken into consideration. Intuitively, with similar marginal gains, the medical institution

would prefer communities with a larger demand to stay at home. Generally, the communities with

good profitability of telehealth (the product of marginal profit and demand is high) are optimal to

stay at home. However, the marginal gain still plays a leading role — if the marginal profit is too

small, no matter how large the population is, the community is still optimal to go to the hospital.

In contrast, when it comes to the social welfare optimization, Di is an important factor — a social

planner would only let a community as a whole to go to the hospital when its population size is

small.

Lastly, our conclusions that (1) a social planner would like more patients to stay at home, and (2)

under the given conditions in Proposition 7, ∆Wel
Patients >∆Rev

Patients, ∆Wel
Hospital <∆Rev

Hospital, and ∆Wel
Welfare >

∆Rev
Welfare remain valid for the general concave nurse coordination cost functions. The difference of

the optimal solution comparing a concave cost function and its linear approximation is small, and

the readers are referred to the Appendix for more numerical results regarding the benefits brought

by VC visits for hospital revenue, patient surplus, and social welfare under different settings.
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Figure A.5 Sample piece-wise linear concave function

F.3 Non-Zero Congestion Penalty

We test different non-zero congestion penalty threshold values We. To our surprise, this non-zero

threshold is negligible when the medical institution’s sensitivity to congestion is small (such as γ = 1

in the baseline setting). When the medical institution’s sensitivity to congestion becomes larger,

for example, γ = 10, this threshold comes into play and affects the optimal solutions — a zero

congestion penalty threshold (We = 0) and a non-zero congestion penalty threshold We = 1000 favor

less patients coming to the central facility compared to We = 2000, where the whole population

generates a demand DAll = 3481 in the baseline setting.
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Figure A.6 Results for piece-wise linear concave cost functions (Base case).Benefits brought by telehealth for

hospital revenue, patient surplus, and social welfare under different settings: (a) revenue maximiza-

tion, (b) social welfare maximization, and (c) social welfare maximization with increased in-person

care price C1

For the sensitivity analysis regarding We 6= 0, we provide the following discussion. With the non-

linear congestion cost −γ[W −We]
+, denote Re(·), the revenue-maximizing objective function as

a function of congestion W , given a non-zero We =we <
∑

iDi. In addition, let R∗ be the optimal

objective function, given We = we. This is because the change of the objective function does not

affect patients’ incentive compatibility, and thus, once the prices are given, W is given, and ρi’s

can be uniquely determined (see the proof of Proposition A.3).

(a) When We = 0 (reduced to a linear term −γW with γ 6= 0), we denote the optimal congestion

as W ∗
0 . Since W ∗

0 is always a feasible solution, R∗ ≥ Re(W
∗
0 ). Moreover, denote the objective

function when We = 0 as R0(·), then we have Re(W
∗
0 )≥R0(W

∗
0 ). Thus, R0(W

∗
0 ) serves as a lower

bound of R∗.

(b) When We =
∑

iDi (equivalent to γ = 0), we denote the optimal congestion as W ∗
∞, and

the objective function R∞(·). We know W ∗
0 ≤W ∗

∞ and Re(W
∗
0 ) ≤ Re(W ∗

∞). Because we drop a

non-positive term in R∞(·), thus, for any W , we have Re(W )≤R∞(W )≤R∞(W ∗
∞). We obtain an

upper bound of R∗.

Therefore, the optimal objection function R∗ is between R0(W
∗
0 ) and R∗∞(W ∗

∞). For the revenue-

maximizing problem, if the impact of γ (the sensitivity of congestion from the medical institution’s

side) is small, then the difference between R0(W
∗
0 ) and R∞(W ∗

∞) is small, i.e., the distance between
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the lower and upper bound of R∗ is small. As a result, the impact of We is small. Note that the

impact of γ to the hospital’s revenue is in proportion to the number of patients, whereas the impact

of α (the sensitivity of congestion from the patient’s side) is in proportion to the square of the

number of patients.
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