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Despite providing convenience and reducing the travel burden of patients, video-conferencing (VC) clinical
visits haven’t enjoyed the wide uptake by patients and care providers. It is desired that the medical problems
addressed by VC visits can match a face-to-face encounter in scope and quality. Subsequently, VC visits with
nurse assistance are emerging; however, the scalable and financially sustainable of such services are unclear.
Therefore, we explore the implementability of VC visits with nursing services using a game-theoretic model,
and investigate the impact of different pricing schemes (discriminative pricing based on patient characteristics
vs. non-discriminative) on patients’ care choices between VC and in-person visits. Our results shed light
on the “artificial congestion” created by a profit-driven medical institution that hurts patient welfare, and
subsequently identify the conditions where the interest of the social planner and the medical institution are
aligned. Our results highlight that, compared to a uniform price of VC visits which seems fair, discriminative
pricing can be more beneficial for patients and the medical institution alike. This heightens the importance
of insurance coverage of telehealth related services to promote the adoption of telehealth by patients and

care providers, and ultimately, improving care access and patient outcomes.

Key words: Telehealth; nurse assistance; game-theoretic; pricing scheme; artificial congestion

1. Introduction

Video-conferencing (VC) visits, as one type of telehealth services, have been offered to ambulatory
patients to manage their care, and have garnered growing attention. Studies of VC visits have
demonstrated its benefits in a spectrum of clinical settings, including wound care, prenatal genetic
screening, cardiovascular care, and home care (Abrams and Geier 2006, Clegg et al. 2011, Grant
et al. 2015, Eriksson et al. 2011). Systematic reviews found that VC visits were associated with
decreased travel costs and lost time/wages, increased access to social support, and a better ability
to tailor care delivery to patient and family needs (Sevean et al. 2009). An American Well study
showed that 20 % of consumers would switch their current primary care provider to another who

offers telehealth services in their area (American Well 2019a). The global market of telehealth was
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anticipated to expand at a compound annual growth rate of 14.3 % from 2014 to 2020, based on
a report by Nathaniel Lacktman, Esq (Wood 2019).

Despite the above-mentioned advantages and a growing market, several factors limit the wide
adoption of VC visits, such as infrastructure, technology literacy, and privacy, among which, the
ability of clinicians to perform an adequate physical examination during VC visits was primarily
concerned (Powell et al. 2017, CDC 2020). The companion of a qualified medical personnel dur-
ing the VC visits is desired to empower telehealth to cover more disease conditions (Kitamura
et al. 2010). The regular services rendered during an office visit, like vital sign check and basic
physical examination, can be conducted by a nurse at patient homes with no compromise in care
quality (Allen et al. 1995), and sending nurses for home care of patients with cancer has been
demonstrated feasible (Bohnenkamp et al. 2004). Combining virtual and in-person care is the path
forward of telehealth (AmwellHealth 2020). However, the cost of dispatching nurses to all patient
homes is prohibitive. The payment policy regarding the VC visits with nurse assistance has not
been established. Charging the same price for auxiliary nursing services to patients from different
communities might be fair; however, it is unclear if this “fairness” comes at a price. There is a
lack of best practice for medical institutions to follow. Hence, how to integrate VC visits with
traditional office visits to meet patient needs while achieving scalable and financially sustainable
operations warrants a thorough investigation.

To fill this gap, we develop a game-theoretic framework to investigate the optimal pricing strate-
gies that navigate patients between VC visits and in-person visits, thereby achieving an overall
economic outcome and improving patient care. The medical institution or social planner is modeled
as the leader in the Stackelberg game, which determines whether to offer VC visits to supple-
ment in-person visits, and the corresponding prices charged for auxiliary nursing services. Patients
from multiple communities as followers make decisions to maximize their perceived utility. Models
featuring different pricing schemes (discriminative pricing based on patient characteristics vs. non-
discriminative) and efficient algorithms for solving the optimal pricing strategy under both linear
and general piece-wise linear concave nurse cost functions are provided. These modeling efforts
lead to the following major observations and policy insights:

(i) Our model sheds light on the value of telehealth in diverting patients from in-person vis-
its to virtual visits that reduces excessive travel burden and congestion in the system, and thus
improving the overall system efficiency. The key determinator is the “system-level” marginal gain
from VC visits as a function of individual travel burden and nurse coordination costs. In princi-
ple, the medical institution favors patients from larger communities that are moderately far away
from its central care facility, indicating a larger marginal gain, to receive VC visits. For patients,

there exists a threshold-type equilibrium patient diversion strategy. Our model further reveals the
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characteristics of patients’ care choices in response to the medical institution’s pricing strategy as
well as payment and cost structures. Surprisingly, the existence of the threshold-type equilibrium
is invariant to these changes.

(ii) Hospital congestion is generated when too many patients conduct in-person visits, which
adds negative externality (e.g., a higher infection risk during a pandemic) to the service system.
However, it is not in the medical institution’s best interests to completely eliminate congestion.
The medical institution is less sensitive to congestion compared to patients, and the perception of
congestion at the central care facility will induce patients to favor VC visits and thus being willing
to pay a higher price for “customized” and “hassle-free” care. This “artificial congestion” created
by the medical institution is not desired by the social planner, but our model reveals the existence
of a pricing regime that aligns the interest of the social planner and the medical institution, which
bolsters the successful implementation of VC visits.

(iii) Our results also highlight that, charging a uniform price of VC visits, which seems fair to
patients, can lead to unintended consequences. The conditions that favor the implementation of
VC visits become more restrictive, and patients from different communities are disproportionally
affected. Patients from the communities that are not very far from the central hospital and are close
to satellite clinics (low nurse coordination cost) would have access to VC visits under discriminative
pricing. However, they would lose this option because the medical institution is not willing to
provide it under non-discriminative pricing. In addition, the aggregate patient utility and hospital
revenue can be lower when discretionary prices are forbidden. Therefore, a discriminative pricing
strategy can be more beneficial. Besides lifting the fairness constraint, shifting the burden from
patients to the payer (e.g., let the government or insurance companies share cost) can further
facilitate the adoption of telehealth by patients and the medical institution alike.

The remainder of the paper is organized as follows: The related literature is briefly reviewed
in Section 2. The assumptions of the game-theoretic model are described in Section 3. The anal-
yses under the discriminative and non-discriminative pricing schemes are presented in Section 4
and Section 5, respectively. Extensions and a numerical study using real-world inspired data are

introduced in Sections 6 and 7. Finally, concluding remarks are given in Section 8.

2. Literature Review

In the realm of telehealth research, the mainstream literature splits into clinical studies and health
economics studies. Existing clinical studies on the use of VC visits mainly focused on the patient
perception of and their experience with VC visits, as well as the evidence of effectiveness (Kitamura
et al. 2010, Mallow et al. 2016). On cost-effectiveness, home telehealth services were found to lead

to reductions in the costs of health care resources for chronic diseases such as congestive heart
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failure, diabetes, and chronic obstructive pulmonary disease, etc., from both health care systems’
and insurers’ perspectives (see review papers Polisena et al. (2009) and Dévalos et al. (2009)). These
studies considered the cost associated with specific health care resources, such as hospitalizations,
primary care encounters, and emergency department visits, and also included the cost required to
set up a home telehealth system. A 34% monthly cost reduction after using virtual care services
was revealed in one study (Grady 2002), where the primary attributes were the reduction in
hospitalization (by 14%), along with reduced appointment times (5-10 minutes), and the removal
of considerable travel time for both patients and their provider. The initial installation cost of a
virtual care system was estimated at a rate of $720 per month, but the reduction of other costs
was expected to cover the differences.

The operations engineering society has limited works on but shows a growing interest in tele-
health. A variety of analytical models have been developed. For instance, mixed integer program-
ming was used to find the best telemedicine device in a telemedicine workstation in rural com-
munities in South Africa (Treurnicht 2009). Simulation techniques were used in the design of a
telemedicine program in Mexico, which was formulated as a vehicle routing problem with a mobile
unit equipped with telecommunication gear and satellite connection (Lach and Vazquez 2004). In
addition, a Bayesian network was used to enhance the telehealth system design by predicting any
problematic situation for at-home kidney disease patients (Bellot et al. 2002). Meta-heuristics was
used to develop a genetic algorithm based method to allow for the tele-screening of breast cancer
using digital mammography images (Qian et al. 2005).

Meanwhile, stochastic models and game theory were prevalently used in the design and evaluation
of flexible service systems with strategic entities. Relevant literature includes an optimal tele-
specialist policy designed to recommend which patients to treat remotely considering the quality
and accuracy trade-off of telehealth services (Tarakci et al. 2007). Telehealth physician triage as a
hierarchical knowledge-based service system has been analyzed using a partially observable Markov
decision process to describe the optimal scheduling policy (Saghafian et al. 2018). The impact of
electronic visits (e-visits) on the cycle time of office visits in primary care settings was investigated
using a multi-class vacation queue model in Zhong et al. (2017, 2018). How physicians select the
size of their patient panel and patient revisit intervals to maximize their compensation under
the e-visit model using patient health dynamics and Markov decision process were presented in
Bavafa et al. (2018) and Bayram et al. (2020). On telehealth service design, the specialist’s optimal
service rate and price for a telehealth service considering patients differing in their travel distances
were investigated in Rajan et al. (2019). Models of telehealth as on-demand service platforms to
investigate pricing and service rate decisions can be found in Liu et al. (2018) and Savin et al. (2019).

Furthermore, the conditions under which switching from an office visit-based clinical practice to
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a mobile-based practice is economical was investigated in Rajan and Agnihothri (2019). Despite
these efforts, the service system design of VC visits with nurse assistance and the corresponding

operational challenges have not been addressed.

3. Problem Settings

Large health care systems typically maintain a network of multiple facilities, including medical
centers, hospitals, and outpatient sites, serving a large population of patients with care of varying
complexity. Our work is motivated by the telehealth service design for such systems to deliver
outpatient care (e.g., specialty care). Without loss of generality, we use the University of Florida
Health Cancer Center (UFHCC), a community hospital, to motivate the study. The UFHCC serves
a catchment area of 22 counties in North Central Florida, with the farthest one being a three-hour
drive away from the medical center in Gainesville, FL (see Figure 1). Among patients served by
UFHCC, 37% of the population are residing in rural areas, and 33% of them are retired with
a median age of 55 years. These patients need to make regular visits to manage their disease
conditions and their appointments are typically made in advance. When visiting the medical
center, in addition to the heavy travel burden, patients, especially elderly ones, have difficulty in
locating the specialty clinic inside of the medical center, and the confusing check-in process could
cause delays and disruptions in receiving care services. A service delivered to patient homes can
reduce the negative patient experience in the medical center and expand access to care for patients
with mobility barriers. To investigate this alternative service and its impact on care delivery system

design, we introduce a game-theoretic model with the assumptions elaborated below.

<
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Figure 1  Catchment area of UFHCC (UF Health Cancer Center 2020).
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Patient community We consider a set of communities (I) in the service region, characterized
by two features: the average demand D; and the average transportation cost f;, incurred by patients
traveling from community ¢ € I to the central care facility. In the context of chronic disease or
cancer management, in contrast to urgent or acute care, D; represents the regular follow-up visits
scheduled in advance, proportional to the size of the patient population. Therefore, we treat D;
as a deterministic variable. In addition, communities vary in their location and their proximity
to the medical center. Notably, patients’ mobility and disease conditions also contribute to their
transportation costs. Without loss of generality, we encapsulate such heterogeneity using a unified
measure of travel burden, denoted as f;. The model can be generalized to investigate f; as a function

of proximity, disease burden, and mobility, among other factors.

Payment structure Patients pay a fixed amount of C; for the physician service (either in-
person or virtual) (The Official U.S. Government Site for Medicare 2020). For VC visits, patients
are also charged for the nursing service. If a discriminative pricing strategy is allowed, the medical
institution can set the price for community ¢ as C, ;. If not, a uniform price C; ; is set. Patients
pay a co-insurance 1;Cs; or n;Cs ¢ with 14,1y € [0,1], respectively. An alternative co-payment
model suggests that patients pay a fixed C5 to the medical institution for nursing services. This
can represent the setting that the insurer (but not the medical institution) fully determines the
patient’s out-of-pocket payment. Since insured patients pay premiums to insurers regardless, we
do not factor it into the utility for comparing VC and in-person visits.

The medical institution collects patients’ out-of-pocket payments for both physician services and
nursing services. For insured patients, the medical institution bills the insurers and gets a lump-sum
payment. Other payers (e.g., governments) also subsidize or reimburse the medical institution for
contracted care plans (e.g., Medicare and Medicaid). The reimbursement for physician services is
thus omitted in the medical institution’s revenue as payers typically reimburse physician services
for VC and in-person visits at an equal rate (eVisit 2020), and the total patient demand stays the
same. The reimbursement for auxiliary nursing services might also be a lump-sum payment by the
insurer. The incumbent reimbursement policy does not cover nursing services for telehealth, and we
consider a conservative scenario by omitting the insurer payment for nursing services for our major

analysis. A discussion of non-zero reimbursement can be found in Section D in the Appendix.

Patient utility For patients, they gain Ry, k= 1,2, as the reward of receiving services. They
also pay the service toll and assume the congestion and travel costs. The utilities of patients from

community 4 for in-person and VC visits are defined as:

Ui1=R1-Ci,— fi—« ijDj, central care facility, (1)

jeI
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Ui72 = RQ — Cl — 02 — ’r]d0271' — 77f027f, Community 7. (2)

The term ), p;D; represents the congestion (denoted in the following as W) in the central care
facility. The congestion disutility for VC visits is not as pronounced as that in the in-person setting,
where congestion implies a crowded environment, a higher risk of contracting an infectious disease
(such as COVID-19), and a larger variability of services. Therefore, we only penalize this negative
externality for in-person visits and use a to measure the sensitivity/unit effect of crowding on
patients. For instance, a spike in telehealth demand was witnessed during the pandemic, where the
adverse consequence of crowdedness measured by « is so large that patients’ utilities of receiving
in-person care are greatly reduced. Besides the risk of infection, patients generally favor a less
crowded environment under which the per-patient space, staffing, and other resources are greater
and the procedures are more ordered. Patients are strategic entities and they pick the option that
maximizes their own utility, i.e., the choice i is obtained as argmax;{U; 1,U,»}. This forms the

incentive compatibility (IC) constraints:
Ui:mlaX{Ui,l,Uin}, \V/ZEI (3)

Remark: We keep (. ;, C5 y and (5 in the utility function for completeness, and 74, n; and Cy will
not be zero at the same time. In case the payment for provider services, C1, is different between
in-person and VC visits, the difference between them can be absorbed by C5 mathematically as a

payment adjustment.

Cost Structure of the Medical Institution First, the medical institution employs nurses
to provide auxiliary care during the VC visits. Medical personnel such as nurses can help measure
the vitals and conduct physical examinations that cannot be delivered virtually, and their training
and knowledge can improve patients’ compliance with the clinical guideline. These nurses can be
supplied by the participating satellite clinics or home care service providers. Nurses are typically
paid by a flat rate or under a contract (Schmidt 2020). The additional cost to the medical institution
mainly comes from the productivity loss and the distance-based travel compensation. In particular,
a nurse sees fewer patients when traveling to patient homes compared to staying at the clinic, and
the travel cost depends on the number of homes to be visited. Thus, we consider a cost structure
9i(D) = 3;D+6,Ip~y, i.e., the nurse coordination cost is proportional to the VC visit demand rate D
plus a fixed set-up cost 8. We start with g;(D) = 3, D, for which we provide an algorithm (Algorithm
1) that converges to the global optima. For a broader consideration of cost structures, we give
an algorithm (Algorithm 2) that suits piece-wise linear concave functions as the approximation of

general concave functions and is guaranteed to converge to the local optima. A sensitivity analysis
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regarding the cost function is presented in the numerical study. Other operational costs are invariant
to telehealth services and hence are not factored into the model.

Second, the medical institution suffers a congestion penalty when the number of patients coming
to the central care facility (e.g., a hospital) exceeds a threshold W,. Congestion in the hospital
could accelerate the spread of infectious disease (such as COVID-19). It could also cause the over-
utilization of capacity-limited resources and affect the hospital’s operating cost. For instance, when
congestion presents in an understaffed setting, the hospital risks paying extra for agency nurses or
paying at an overtime rate. Additionally, congestion attributes to medication errors and diagnostic
delay and incurs other intangible costs. We penalize the medical institution for excessive congestion
with a unit cost rate ~. Lastly, because the patient demand is stable and the physician supply
is also unchanged, other operating costs are not significantly affected by VC visits and are not

featured in the model.

Information structure We assume that patient demands, service prices, and congestion and
transportation costs are common knowledge. Also, the medical institution is able to meet patient
needs, i.e., the care provider is willing to cater to patients’ needs. The setting of patients with
strict preferences is discussed in Section 6.3. In addition, we consider a single major care provider
in the service region, and the monopoly assumption can be relaxed by considering patient loss or
patient migration, which is discussed in Section C in the Appendix. The variables and parameters

introduced above are summarized in Table A.1 in the Appendix.

4. Discriminative Pricing Scheme

Nurses employed by nursing homes and assisted living facilities are often the onsite source through
which physicians can assess patients using telehealth (Miller 2020). The cost of nursing service can
be location dependent, which motivates the discriminative pricing strategy based on the patient’s
residency (Schmidt 2020). Without loss of generality, we start our analysis with the discriminative
pricing scheme and provide the full course of analysis regarding the optimal pricing strategies to

maximize the medical institution’s revenue and the social welfare.

4.1. Revenue Maximization

Community hospitals are typically profit-driven. A monopolistic medical institution determines
whether to offer VC visits at patient homes in different communities (option 2) to supplement
in-person visits provided at the central care facility (option 1). It also determines the price Cs; for
auxiliary nursing services provided in community ¢. Based on the prices, patients make decisions
to maximize their perceived utility (the IC constraints) and they are indifferent to the type of care

services received as long as the perceived utilities stay the same. To induce randomness, patients
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can employ a mixed strategy: in community ¢, a proportion p; € [0, 1] of patients receive in-person

visits versus VC visits (1-p;). The optimization problem (Model 1) is presented below:

max ZD — i) (M4C2,; + Cs) — [ZMD W] ZgZ pi)D;)

s.t. IC constraints (1) — (3).

We let 1y # 0 and 1y = 0 to represent the discriminative pricing scheme, and the non-
discriminative case (ny =0 and 7y # 0) is considered in Section 5. Here we claim that the medical
institution can use pricing alone to navigate patients and the solution to Model 1 is the same
as considering both Cy;’s and p;’s as decision variables (see the Appendix for the proof). This
equivalency greatly simplifies the analysis.

For a clear presentation of the main results, we start with the analysis of one and two communities

that provides insights generalizable to multiple communities.

4.1.1. Single Community If the service region is rather uniform in demand and travel cost,
it can be considered as one large community. For a single community (7), three scenarios (S) can
unfold: (1) all patients go to the hospital, (2) all patients stay at home, and (3) part of them
stay at home, denoted as S™, m € {1,2,3}. Let ¢; = f; — B + v — AR represent the system’s
marginal gain from VC visits, where f; is the saving of individual travel expenditure, g; is the
unit nurse coordination cost, v is the medical institution’s sensitivity to excessive congestion, and
AR =R, — R,. Here AR represents the reward difference between the two services, which is
positive when patients have a higher preference for in-person visits than VC visits, and negative,
otherwise. For mathematical convenience, let (; = ¢;/(2aD;). The equilibrium patient diversions

responding to the optimal pricing are summarized in Proposition 1 and illustrated in Figure 2a.

PROPOSITION 1. With nurse cost function g;(D) = ;D + 0Ip~, the optimal patient diversions
with one community are as follows:

1. 0 <aD?. When 1/2> ¢ > —1/2+V0/(/aD,), a unique mized strategy equilibrium exists,
where p; =1/2 — (; fraction of patients will go to the hospital and the rest stay at home. When
G>1/2, or (< —1/24+V0/(v/aD;), all patients choose either home or hospital, respectively.

2. 0> aD?. Only pure strategies exist, i.e., all patients stay at home when ¢; > 0/(2aD?) or go

to the hospital, otherwise.

Proposition 1 suggests that when the set-up cost 6 is high, a patient diversion is not favored:
depending on the marginal gain from VC visits, all patients either choose VC visits or go to the

hospital. With a small to moderate set-up cost, the percentage of in-person visits is decreasing
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Figure 2 Parameter region partition examples.

with the marginal gain from VC visits. The boundaries of partitions are plotted in solid lines in
Figure 2a. It manifests that a mixed strategy equilibrium (S?) occurs when neither the set-up
cost nor the absolute value of the marginal gain (or loss) is dominantly large. These results are
consistent with our intuition.

Having W, # 0 leads to a continuous but non-differentiable objective function and consequently
complicates the optimization problem. However, it does not significantly impact the structure of
optimal solutions, especially when ~ is not very large. We defer the discussion of the impact of a
positive congestion threshold W, in the numerical study and more discussions can be found in the

Appendix.

4.1.2. Two Communities With two communities A and B, a total of nine scenarios can
occur, denoted as S™", m,n € {1,2,3}. According to the uni-community analysis, the marginal
utility change ¢, is a critical factor, and two cases, pa = pp = ¢ and @4 # ¢p can unfold. We
reserve the technical results in the Appendix and only present the major observations here.

Figure 2b illustrates the equilibrium patient strategies of communities A and B with an equal
marginal gain in different parameter regions, under the assumption D4 < Dpg. The case of Dy > Dp
is symmetric and can be analyzed analogously.

An important takeaway is that when the marginal utility gains are equal, there can be multiple
equilibria. In particular, when 6 = 0 (no set-up cost), one can combine the two communities into one
to significantly simplify the analysis. Since the unit utility gain is invariant to community member-
ship, as long as the total fraction of patients going to the hospital p:= (paDa+ppDg)/(Da+Dg) =
1/2—¢/(2a(D4 + Dg)) is maintained, the optimal revenue can be achieved.

When @4 # ¢p, different equilibrium patient strategies are exhibited in Figure 3. The partitions
are generated with D4 < Dy and are plotted on ¢(; = ¢;/(2aD;), i = A, B for illustration purposes.
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While the readers are referred to the Appendix for further technical details (Proposition A.2), we
outline the main findings here.

When the marginal gain or loss of community i is considerable, i.e., |¢;| > (D + Dp), its
patients will stay at home or go to the hospital, regardless of the choice of the other community.
When the marginal utility change of neither community is large enough, patients will consider
others’ behaviors, and the population size comes in to play. In addition, the two communities
cannot take mixed strategies simultaneously, that is, S33 is not feasible. The medical institution
desires patients with a larger ¢; to stay at home. As such, mixed strategy equilibria are elicited
either when the difference in gains/losses between the choice of home and hospital is minimum, or
patients’ sensitivity to congestion a and/or the demand rate D; is considerable. Both indicate that
a minor change in the proportion of patients going to the hospital will have a salient impact on
congestion and therefore nudging their preferences. In the case that patients are more sensitive to
congestion than the medical institution, congestion becomes valuable to the medical institution —
it desires patients to come to the hospital to generate a certain level of congestion so it can charge

a higher price for the virtual service.

4.1.3. Multiple Communities The cost structure being g¢;(D) = ;D + 0;Ip~, entails a
knapsack problem, which is NP-hard. Therefore, we start with a linear nurse coordination cost
g:(D) = ;D and provide an O(log(N)) time algorithm. For general concave functions, we provide

a well-performing heuristic solution to our problem.

Linear nurse coordination cost functions Without loss of generality, we assume there are
N communities with unique ¢;’s ranked in an ascending order. If there exist two communities
1,7 € I with ¢; = ¢}, then, combine them until getting unique ¢;,’s. This operation is justified based

on the two-community analysis.

THEOREM 1. The optimal solution (p;’s) to the revenue-mazximizing problem with linear nurse
coordination cost functions has the following structure. There exists a community K € I such that
for i <@k, pi =1, and for ;> ¢k, p; =0, and this community is nominated as the “threshold
community.” With K being the threshold community, if pi € (0,1), the optimal congestion, i.e.,

the congestion generated by the optimal number of patients coming to hospital, is obtained as W* =
2 piDi=(a); Di—pk)/(20).

According to Theorem 1, at most one community (the threshold community) is optimal to
adopt mixed strategies. This is consistent with the observation of two communities A and B with
va # ¢p. In addition, when |p;| is large enough, community ¢ patients will stay at home or go to

the hospital, regardless of the choice of patients in other communities. This echoes the observation
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Figure 3 Parameter region partitions for two communities with Dp =3D4 and pa # ¢B.

of the two-community case. In particular, when all ;’s are large, it is optimal to let all patients
stay at home (See Corollary A.1).

In short, we are delighted to find that the property of the system with multiple communities
aligns with that of single and dual communities. In the following, we present the algorithm that
offers us the exact solutions to the revenue-maximizing problem with linear nurse coordination cost
functions. This is equivalent to find the threshold community K and pj,. To obtain K, we first
calculate W =3, _, D; and HY =3, , D;, and obtain pi*> = max{0, min{1, (D, + H)/(2D},) —
(pp + aWE)/(2aDy)}}, for each k=1...N. Here p*> is the optimal percentage of community k
patients going to the hospital when community k is chosen as the “candidate threshold community,”
and the corresponding revenue is denoted as R<*>. The true threshold community satisfies K =

argmax, R<F>.

PROPOSITION 2. If p*> € (0,1), then, k is the true threshold community, i.e., K =k and R<*>

is the optimal revenue. If pi*> =1, then R<F> > R<k=1>: if p<h> =0, then R<F> > R<k+1>,

Proposition 2 articulates that R<*> as a function of k is unimodal. Based on this property, we

device Algorithm 1 (see Table 1).
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Table 1 Algorithm 1 for linear nurse coordination cost functions.

Initial lower =1, upper = N + 1.
For k= |(lower + upper)/2]:
Calculate W =", , Dy, and HY =Y., Dy.
Calculate the corresponding
o> = max{0, min{1, (Dy + HE)/(2Dy) — (s + aWE)/(2aDe) .
If p*> € (0,1), R<F> is optimal, stop.
If p> =1, lower = k, continue.
If p*> =0, upper = k, continue.
Until k£ does not change.

PROPOSITION 3. Algorithm 1 for linear nurse coordination cost functions runs in O(log(N)) time,

where N is the number of communities.

This algorithm is computationally efficient — there is no need to evaluate the revenue in each

iteration, and once a mixed strategy pg"” is obtained, the threshold community & is identified.

Concave nurse coordination cost functions First, we show that for general concave cost
functions, there exists an optimal solution that dictates at most one community to adopt a mixed
strategy. Notably, the notion of “general” here refers to a class of non-decreasing concave functions
that cross the origin, conforming to the nature of cost functions. The cost structure being g;(D) =

8:D +0;Ip~¢ is a special case in that class.

THEOREM 2. For a general concave nurse coordination cost function, there exists an optimal solu-
tion that dictates at most one community k € I to have py € (0,1), and all other communities have

optimal patient diversions p;=0 or 1, i #k.

For brevity, we introduce a vector p representing the patient diversion of all communities. With
a general concave cost structure, the revenue maximization problem is NP-hard and the optimal
solution p#" is difficult to obtain. However, Theorem 2 elucidates a nice structure, which reveals
that the structure of optimal solutions to the problem with general concave cost functions can be
similar to that of linear ones. It motivates us to approximate p&" using a linear approximation. In
lin

the following, we provide a theorem showing that the optimal solution p™ solved under the linear

cost structure assumption is a good approximation.

THEOREM 3. The optimal solution p'™ under the linear cost structure with gt(D) = 3;D, B; =

7
9:(D;)/D; is a feasible solution to the revenue maximization problem under the general concave cost
lin)

structure g;(D), and the corresponding revenue R(p"™) approximates the optimal objective function

R(p?™) with a gap less than g ((1—px ) D) — B (1 — px ) Di, where K is the threshold community

n plin'
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The constraints of the revenue-maximizing problem remain invariant to the nurse coordination cost
function, which only appears in the objective function, and hence, any feasible solution to the linear
problem is also feasible to the concave one. The choice of the linear approximation gi"(D) = ;D

i
is motivated by the fact that gi"(D;) = g;(D;) and ¢/™(0) = ¢;,(0) = 0. When communities have
optimal patient diversions p; =0 or 1, this approximation is exact. This theorem is very powerful
because a good approximation is only required for the threshold community but not others, and
if the cost function for the threshold community is indeed linear, then, no matter how other cost
functions look like, the optimal revenue is guaranteed, i.e., R(p%") = R(p'").

Without solving the optimization problem, if we know that max;cr g;(D;) is small in scale com-
pared to revenue R(-), we can directly use the solution obtained under the linear assumption to
approximate that under the concave assumption. Only when gx ((1 — px)Dx) — Bx (1 — pr) Dk is
not negligible, we then need to consider a better approximation of g;(D), such as a piece-wise linear
concave function. Consequently, we introduce Algorithm 2, where the optimization problem turns
into a non-linear integer program.

Assume there are L; > 1 segments for each piece-wise linear concave function ¢gP'™ (D) as an
approximation to g;(D), and let 3! be the gradient of the cost function at the I** segment, 1 <[ < L;.
Let ¢! = f; +~v — ' — AR for 1 <1< L;. In addition, introduce p’' as the optimal diversion of
community 4 at iteration ¢ by assuming the gradient of the cost function falls on the I** segment
with value §!. Define R"' = R(p!") as the optimal revenue when community i adopts the optimal
solution p’' and the other communities keep their current diversions, i.e., p} for j <i and ,0;_1 for
j > (the definitions are provided in Table 2). We deem a solution p!' as feasible if (1 — p!')D;
falls on the domain of segment [; otherwise, it cannot serve as a candidate for the optimal solution.
Furthermore, for the cost function with a non-zero set-up cost, denote p! =1 (implying no nurse
coordination cost) as pﬁ’lzo, and the corresponding revenue as R*'=°. Then, we define the optimal
solution of p; at iteration ¢ as pl = argmaxp:,th’l, for 0<I<L;. H; (W,;;) is the amount of stay-

home (go-to-hospital, respectively) patients at iteration ¢ after updating patient diversion p! at the

i-th community.

PROPOSITION 4. Algorithm 2 for piece-wise linear concave nurse coordination cost functions con-

verges to a local optimum.

This algorithm is a special case of the minorize-maximization algorithm, which is an iterative
optimization method that finds the maxima of convex programs. Since this problem entails a
non-linear integer program, the algorithm converges to a local optimal in general. The proof of

convergence can be found in the Appendix.
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Table 2 Algorithm 2 for piece-wise linear concave nurse coordination cost functions.

Initialization with the optimal solution p'".
For t=1...
Fori=1...N:
If 1:1, Htc,:z = Ht—l,N - (1 — p:f_l)Di, th = Wt—l,N - pﬁ_lDz
If i=2..N, HS, = Hy; s — (1— pl =)Dy, WG =W, — pl ' D,
For each segment 0 <[ < L;:
Calculate p;' =max{0, min{1, (D; + HE,)/(2D;) — (¢} + aWE)/(2aD;)}}.
Check feasibility, if feasible, calculate R(p'").
Update pf = argmaxp;,th’l.
Update H,; = HE, + (1 — p!)D;, Wy, = WE + p' D;.
Until converge.

4.2. Value of VC visits

We show here that under certain conditions, the medical institution would like to offer VC visits,

which strictly benefits both the medical institution and patients.

ProOPOSITION 5. With linear nurse coordination cost functions, when Ype, = MaX;er@; >
-« Zyez D;, some patients prefer to receive care at home, and the medical institution and patients
who remain to go to the hospital are strictly better off. Moreover, the medical institution collects

strictly more money from every patient who switches from going to the hospital to staying at home.

Proposition 5 suggests that the largest marginal utility gain from offering VC visits should exceed
a threshold —a'), D;. In practice, if the overall cost to deploy VC visits is large due to a high
set-up cost (cost irrelevant to unit demand, e.g., equipment fee or bonus paid to nurses who are
on travel) and/or a high unit cost for dispatching nurses to patient homes, the medical institution
would not implement VC visits.

Furthermore, if there exist patients receiving VC visits, then, the medical institution collects
strictly more money with the amount of ¢; +aW* >0 from every at-home patient in community
i, where W* is the optimal congestion level. Notably, not all regions are equally profitable as a
result of patient heterogeneity. For instance, if all nursing service costs are identical, the medical
institution favors patients from larger-scale communities that are far from its central care facility

to receive VC visits, so as to reap strictly more surplus from patients.

4.3. Social Welfare Maximization

In contrast to the medical institution, a social planner aims to maximize the social welfare with
the following optimization problem under the linear nurse coordination cost assumption:
max » (1—p;)Dilpi+a Y (14 p;)D;]

Cay
el Jjel
s.t. IC constraints (1) — (3).
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PROPOSITION 6. For social welfare mazximization under the linear nurse coordination cost assump-
tion: If Ymaz > —2a Zje[ D;, then, there are patients who should receive care at home, and both

the aggregate patient surplus and the social welfare are strictly larger.

All patients go to the | Social planner starts to offer | Hospital starts to offer
hospital VC services VC services
(Pma;
—2ay.D; —a %.D;

Figure 4 Conditions for implementation of VC visits

Figure 4 compares the feasible regions for the social planner and the medical institution to offer

VC visits. If the maximum marginal gain ¢,,., is smaller than —2a . _, D;, then both of them

iel
would not offer VC visits. When .4, increases to (—=2a)_, ., D;,—a ), ; D;], the social planner
starts to ask some patients to stay at home while the medical institution still sends them all to the
central hospital, according to Proposition 5. When ¢,,., continues to increase, offering VC visits
becomes a consensus, but the congestion generated by the social welfare maximizer is always less
than that of the revenue maximizer, as elaborated in Proposition 7 below.

We introduce superscript “Wel” to refer to the results obtained from social welfare maximization.
Let p*! be the optimal patient diversion of community i, and WWel =3 pVelD; be the optimal
amount of patients going to the hospital. We further introduce superscript “Rev” to refer to the
results obtained from revenue maximization. Let Apospital, Apatients, a0d Awerrare be the difference

in revenues between with and without offering virtual services, and that in patient surplus and

social welfare, respectively.

ProroOSITION 7. Under the conditions that @.,q: > —2« Zje] D; and 3 i, ¢; <0, comparing rev-
enue maximization and social welfare mazximization:

1. The optimal congestion based on the social planner’s decision W ™W¢ is strictly less than that
from the medical institution’s choice W,

2. Viel, pl’ < plev and there exists at least one i € I such that p}'* < pFe

i -
Wel Rev Wel Rev Wel Rev
3. APatiem‘,s > APatients? AHOSpital < AH()s;oital? and AV[/'elfm"e > AWelfare'

It can be observed that the medical institution prefers more patients coming to the hospital than

the social planner does. By maintaining a certain level of “crowdedness,” the medical institution
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can charge a higher price for at-home patients and gain more revenue. In addition, unlike patients
who are no worse under the social welfare maximization, the increase in the medical institution’s
revenue is not guaranteed. While the “artificial congestion” is not favored by the social planner,
the alignment between the social planner and the medical institution can be established and the

discussions are presented in Section 6.1.

5. Non-discriminative Pricing Scheme

In this section, community-specific pricing for VC visits is not allowed (14 =0). Specifically, two
cases can unfold: (i) ny =0 and patients pay a constant Cs that the medical institution can not
determine (for instance, determined by the insurer); (i) 1y # 0, and a sum of 1;Cs ; + C5 is paid

for nursing services. For both cases, we obtained the following patient strategies.

THEOREM 4. When patients from all communities pay the same for VC wvisits:

(a) (Monotonicity in travel burden) For any f; > f;, if community j patients are optimal to stay
at home, then community © patients are also optimal to stay at home.

(b) (Threshold structure) There exists a threshold travel burden F =n;Cy s+ Cy —aW + AR,
where W := 3., p;D; is the total number of patients coming to the hospital. For community i
patients, if f; > F, stay at home; if f; < F', go to the hospital; if f; = F', a mixed strategy equilibrium

can exist.

This theorem shows that with a flat VC visit payment, the patient strategy still enjoys a threshold
policy. The travel burden plays an essential role in this case. Instead of ranking the communities
according to their marginal gain ¢;’s to identify the threshold community, now the ranking is based
on their travel burdens and one aims to find out the threshold travel burden.

In case (i), the medical institution cannot negotiate the price with the insurer due to a lack of
market power. Then, the medical institution is willing to offer VC services only when the price Cs
is greater than a threshold as described in Eq. (A.8) (see Proposition A.4 in the Appendix).

In Case (ii), the medical institution aims to find the optimal solution to the following problem:

max sCap+Co) | Y- Dj+(A=p)Di | = Y g;(D) = > g:((1—p;)Dy)

+ +
Jifj<F i f;=F jel

s.t. IC constraints (1) — (3).

According to Theorem 4, only the threshold community can adopt a mixed strategy, denoted as
pi- Then, we claim that the above problem is the same as the one considering both C5 ; and p; as

decision variables (see the Appendix for the proof).
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We show here that under certain conditions, the medical institution would like to offer VC visits,

which strictly benefits both the medical institution and patients.

PRrROPOSITION 8. With linear nurse coordination cost functions, when there exists a community 1

which has ¢; > o (Z

JELf;>fi D; — Zje]:fjffi D]‘), some patients will prefer to receive care at home,

and the medical institution and patients who remain going to the hospital are strictly better off.

All patients go to the | Social planner starts to offer | Hospital|starts to offer
hospital VC services VC services

Pmax

—2ay.D; —a ¥D;

Figure 5 Conditions for implementation of VC visits under flat nursing service price

Since Q4. = Mmax;er ©; > ©; > O‘(prfi D, — ijffi D;)> -« ZJEI D, the condition in Propo-
sition 8 is stricter than that in Proposition 5. As shown in Figure 5, when discriminative pricing
is not allowed, it is more difficult for the medical institution to benefit from offering VC visits and
subsequently implementing it. This can actually hurt patients at the mean time. For instance, if
maX;er p; > —a )., Dj, but for all i, ¢, < O[(ij>fi D;— ijﬁfi D;), then, the medical institution
will not offer the new service under the flat rate requirement. Nonetheless, it is optimal to do so
if discretionary prices are allowed. According to Proposition 5, patients could have benefited from
VC visits in this region, but they will miss this opportunity because the medical institution will
not implement it.

One might expect that charging the same price brings “fairness”; however, this “fairness” can
bring unintended consequences. When discriminative pricing is allowed, the system-level marginal
gain (; is used to navigate patients. To achieve a larger marginal gain from VC visits, in addition
to being far away from the central hospital, a community can also take advantage of the low nurse
coordination cost to qualify for VC visits. In contrast, with a flat price, the threshold is solely
based on travel burden f;. A community with a larger f; comparing to its peers is more likely to
receive VC visits. However, choosing communities in this way inevitably include communities whose
nurse coordination costs are actually large, which is not good for the overall system efficiency. To

compensate the loss due to large nursing service costs, the medical institution will charge an overall
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higher price to every community. For the communities that enjoy a low nurse coordination cost, they
could have been charged C; such that 17,C5; <n;Cs f, if a community-dependent price is allowed.
Examples of such communities that are disproportionally affected by the fairness requirement are
further illustrated in Section 7.3.

The social welfare gain from the new service compared to that without VC visits can be deter-

mined as:
+ +
max Di(1—=pi)(nyCap+Ca) = > gi((1 = pi) D) = [ZmDi—We + ZDj_We]
' i i i jer

+ ZPz‘Di (04 Z(l - Pj)Dj> + Z(l = pi)Di(=AR — (n;Cop + C2) + fi + QZDJ')
s.t. IC constraints (]1) —(3). ]

PROPOSITION 9. With linear nurse coordination cost functions, when there exists a community 1
which has @; > —2a ijﬁfi D;, some patients prefer to receive care at home, and the social welfare

is strictly better off.

The comparison between the choices of the social planner and the medical institution under non-
discriminative pricing is similar to that without this constraint. The condition 3 ¢; > —2a> f<fi D;
is less restrictive than that for the medical institution to start VC visits. Moreover, since @4z >
wi > 2, 1<t D; > 2« Zje ; D;, the condition for the social planner to implement VC visits
under non-discriminative pricing is stricter compared with that for the discriminative case (see

Proposition 6).

6. Discussions
6.1. Alignment between the Medical Institution and the Social Planner

While the social welfare maximizer brings no harm to patients, it is unclear if it is acceptable by
the medical institution, and we present in Corollary 1 about the conditions that align the interests

of the social planner and the medical institution under the discriminative pricing setting.

COROLLARY 1. If ¢,,00 > —2a ), D;, the social planner will offer VC visits, and the revenue gain
or loss of the medical institution depends on the pricing strategy for VC visits employed by the
social planner.

e A setting that favors a higher price of C;le, such as using the upper bound of equilibrium
prices, leads to an increased revenue (compared to no virtual service).

e An unfavorable price, such as the lower bound of equilibrium prices, leads to a reduced revenue

(strictly lower than no virtual service, except for two special cases when WWel = (0 or WWel =

Zjel Dj)'
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The equilibrium pricing: for the communities that satisfy —aWWel < ¢;, —Cy — AR — v+ f3; <
naCY' < —Co — AR + fi + aW™We; for other communities, 7,C3' = —Cy — AR + f; + aW ™.,

This corollary shows that the optimal pricing of the social welfare maximization problem is not
unique. Because the price is an internal transaction and does not feature in the objective function,
we find a proper setting of prices, ndC;’};el =—Cy— AR+ fi +aW™Wel such that when some patients
are willing to receive care at home, all three parties (patients, the medical institution, and the
social planner) are strictly better off. This creates a first-best solution that is naturally incentive
compatible for the medical institution. Notably, unlike the revenue maximizer, where the medical
institution earns no less money from every patient, now it receives less money from each community
J with ¢; < —aW™el. Such communities exist when WWel > 0.

The pricing strategy that guarantees an improvement of all three parties (patients, the medical
institution, and the social planner) only exists in the discriminatory pricing setting. If not allowed,
there could still be a range of equilibrium prices, but even the one that is most favorable by
the medical institution (i.e., the upper bound of Cs ;) is taken, the profitability of the medical

institution is not guaranteed. An illustrative example can be found in Section 7.3.

6.2. Service Region Expansion

In our study, a patient in community ¢ would seek care with the medical institution if
max{U, 1,U; 2} > 0. For an implementability analysis, the patient demand D; represents the equilib-
rium population before the implementation of VC visits such that U; ; =R; —C1 — fi—a) jer D; >
0. In this case, except for the community with the largest f;, all other communities have a strictly
positive utility, which means the demand rate D, has already exploited all the potential demands in
that community. It is not an equilibrium if there are unmet demands in community ¢ but patients
from another community with f; > f; are catered for.

Let Dap=>,

optimal congestion in the hospital where discriminative pricing is allowed. When the VC visit is

;e1 Di be the congestion in the hospital without the VC visit option, and W* is the
implementable, W* is strictly smaller than D,;. Here we consider the new catchment area where
patients still have the option to go to the hospital, i.e., U;; > 0, when the congestion level W at
the central hospital drops after the implementation of VC visits. With an expanded service region,
the new community set is denoted as I,and I C 1.

The expansion in service region introduces more potential demands. The medical institution
might not be able to absorb these patients because of the capacity cap, e.g., limited number of
physicians. However, it can still benefit from the service region expansion. The new optimization

problem adds one more set of decision variables — the communities in the service region that the
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medical institution aims to cover owing to the capacity cap. Clearly, Aﬁggpital > Aﬁfgpital, due to an
expanded search space. Furthermore, we observe that, if the medical institution can reject or select
patients in its catchment area to maximize its revenue, it desires the communities with greater
p;’s and larger demand D;’s. Due to limited provider capacity, serving the communities close to
the hospital then becomes not as preferable, especially those with a small D; or a small marginal
benefit ;. To see this, consider an example where I = {1}, and I = {1,2}, with f; < f,. With
limited service capacity, the medical institution can only pick one community to serve. Previously,
when —aD; < ¢; < aD;, the maximum revenue is R' = (aD; + ¢1)/(4a) — 6 according to a single
community analysis. However, when aD; + ¢ < aDs 4+ @9, the medical institution is actually better
off with community 2 as their only client with R? = (oD, + ¢5)/(4a) — 6. And R? > R' when
D, > D, (small demand) and/or ¢y > ¢; (low marginal benefit). In addition, if we restrict the total
number of patients a medical institution can serve, it would rather serve one large community than
multiple smaller communities with the same total number of patients (demands), especially when
the set-up cost is high.

We further consider that the number of patients each physician sees can be elastic to a certain
extent. This is evidenced by the fact that VC visits can reduce variabilities and provider non-value
added time. Then, with the service region expansion, more patients can be served by the medical
institution. Let W* be the optimal congestion with the expanded catchment area. As a result, the
optimal congestion with the service region expansion should be strictly less than the congestion
when no virtual service is provided, i.e., W* < D,y. However, whether existing patients will be
harmed by the expansion remains to be explored. For them, whether W* is greater or less than
W* is critical. A low congestion level in the hospital would curb the price of at-home care due
to patients’ IC constraints, i.e., each patient is willing to pay a lower price when W* < W+, They
strictly benefit from less congestion and a lower price.

The choice of W* will be determined by the medical institution. On the one hand, pushing W*
to be as small as possible will attract more communities (with a larger f;) in the service region.
The medical institution loses revenues from the existing patients but is compensated more from
newly attracted patients. On the other hand, as the catchment area increases, more patients would
potentially go to the hospital. The medical institution can encourage them to create a moderate
hospital congestion level and reap the surplus by charging a higher price for at-home care. In this

case, the existing patients would all be worse off.

6.3. Patient Segmentation

The optimal pricing strategy implies that at most one community can have a mix of in-person

and VC visits. However, this is rarely seen in reality as a segment of patients might have fixed
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preferences. Therefore, we consider an extension of our basic discriminative pricing model with
the inclusion of patients who strictly prefer in-person visits to VC visits and vice versa, in each
community. We assume a certain portion of patients prefer to go to the hospital no matter how
severe the congestion in the hospital is, and denote the total number as W, There are also
patients who strictly prefer VC visits if it is offered, with the amount Af™ for community ¢ and
a total of H¥™. The rest population is denoted as DF'** as before, and the partition p; € [0,1] is
calculated based on the flexible population Df'*.

With the two pre-determined groups, the patients’ utility staying at home remains the same and

that going to the central care facility is updated as:

U.1=R1—Ci—fi—« Z ijjFlex —aW¥>_  central care facility.
jel
If some patients strictly prefer VC visits regardless of prices, the medical institution may set
the price arbitrarily high to maximize their revenue, especially if these patients dominate the total
population. Therefore, we assume these patients strictly prefer VC visits when facing the same
utility, and use the IC equilibrium price to calculate the total revenue.
If the medical institution only offers VC visits for the VC service “advocates,” the total revenue

is calculated as
+
All Fix ) _ Flex Fix _ ) Fix

R —‘23?2 A (1gChi + Co) — ZDZ + W, Zﬂzhl .

Under the linear assumption, we have
RAH — Z hrLFlX(SOZ 4 aZDflex + OéWFiX>.
iel jer

The decision of providing VC visits exclusively for this segment of patients depends on whether
the fees collected from them cover the associated nurse costs. When RA!" > 0, the hospital would

like to provide VC visits for these advocates, and a necessary condition is Qe > —a> DJF lex _

aW¥_ Since Dflex +WEx <3

jel
et jer Dj when H™ >0, according to Proposition 5, the medical
institution is actually less in favor of offering VC visits if more patients strictly prefer VC visits.

Next, we consider the situation that the medical institution not only provides VC services for
the VC service advocates, but also the flexible population. Then, the total revenue becomes:

+
All Fix Flex Flex Fix
RM = max § (hi™ + D' (1= p;)) (1aCai + Ca) — E pi D+ W -,

- Zﬁi((l — pi) D'+ ).
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Applying the same methodology as in the main analysis, we find that the threshold struc-
ture still exists, but a modified “optimal” congestion is applied: W¥e* = (o, DI — @) —
aWFx - o H¥) /(2a). Moreover, the implementability condition becomes ¢,,., = max;es @; >
—a Yo D' —aW ™ 4 a H"™, for which, the medical institution is willing to provide VC services
for the flexible patients (and naturally the advocates will receive VC services). We can see that
with more patients strictly favoring VC services, i.e., a larger H"™, the implementability condition
becomes more strict. On the contrary, with more patients pre-determined to go the hospital (a
larger W¥) | the medical institution is more likely to offer VC visits.

One might expect the medical institution to be in favor of offering VC visits since there are
patients strictly prefer VC visits. However, we have shown that this is not the case. Without patients
having fixed preferences, the medical institution can “select” the most profitable population to offer
VC visits; however, with the advocates, the medical institution has to cater to their demands first.
Also, the medical institution would prefer a higher congestion, but its power to create “artificial

congestion” is impaired due to the strict preference of the VC service advocates.

7. Numerical Study

7.1. Model Calibration

We use UFHCC as a motivating example and provide a model and investigate their VC visit ser-
vice design. Unlike primary care, specialty care clinics and specialists (e.g., oncologists) for chronic
disease and cancer management are typically located in urban areas or city centers, and patients
might need to travel a long distance to access care. Currently, UF Health telehealth provides VC
visits for their patients with home internet access, and we further assume those patients can receive
telehealth at home with the presence of nurses from community-based outpatient clinics or home
care providers. We examined the cancer registry data from UFHCC in calendar year 2018 to under-
stand the service region it covers and the demand distribution. Newly registered cancer patients,
especially those who just received surgeries need frequent follow-up visits by specialists to manage
their cancer care, where telehealth suits well in this context. We analyzed the number of newly
registered cancer patients by city and county (zip code indexed) to estimate the potential patient
demands D; across regions. The travel burden of patients to go to the nearest UF Health clinic
available in their own county is used to estimate the nurse coordination cost rate ;. The distance
between patient homes and the medical center is used to estimate the individual travel burden
fi- Demand rate, travel cost, nurse coordination cost, and other parameters are normalized for

illustration purposes. The parameter settings can be found in Tables A.7 and A.8 in the Appendix.
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7.2. Results under the Discriminative Pricing Setting

A total of 3481 patients from 22 counties are considered in the numerical study. The most distant
county covered is Gadsden County, FL, which is 190 miles away, about a three-hour drive to
the medical center. The revenue-maximizing policy finds the Marion county (near Ocala, FL, see
Figure 1) as the threshold community. Among the 22 counties, Marion county is ranked the 8"
based on distance, which is about a 40 minutes’ one-way drive to the medical center. Marion has
the largest demand size and is evaluated as the 12" least profitable county. According to our policy,
all counties that have a smaller marginal profit than Marion and 43.7% of the patients in Marion
should go to the medical center, and the rest should stay at home, which accounts for 50.5% of the

whole normalized demand (the relative market size of telehealth).
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Figure 6 Benefits brought by telehealth for hospital revenue, patient surplus, and social welfare under different
settings: (a) revenue maximization, (b) social welfare maximization, and (c) social welfare maximization

with increased in-person care price Ci

Alignment of Revenue and Social Welfare Maximization As pointed out in Proposi-
tion 7, it may not be the best interests of the medical institution to fully comply with the social
welfare maximizer as it can benefit strictly more from the revenue maximizer. In the following, we
investigate a variation of the problem that could improve social welfare without compromising the
medical institution’s profitability. We compare the optimal solutions under (a) revenue maximiza-
tion, (b) social welfare maximization, and (c) social welfare maximization with increased in-person
care price C. The change in hospital revenue, patient surplus, and social welfare are exhibited in
Figure 6, by assuming $0.05 worth for each mile based on 3481 patients registered per year.

In baseline parameter settings, the medical institution and its patients are strictly better off

compared with no telehealth. The revenue-maximizing policy favors the medical institution while
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the social-welfare maximizer favors patients, where the medical institution is barely more profitable.
The medical institution’s revenue drops significantly owing to the loss of “artificial congestion”.
In fact, all patients are optimal to stay at home under social-welfare maximization (based on
Corollary A.2).

To increase social welfare while being incentive compatible with the medical institution, one can
set the in-person payment C; to CM = C) + a(WR —WWel) and decrease the adjustment payment
for VC visits, Cy, to CM = Cy — a(WRY —WWel) Notably, C; and C, are not decision variables but
input parameters in the optimization problems. As a result, both the social planner and the medical
institution are willing to set 7,C3% = —Cy — AR + f; + aWR = —C} — AR + fi + aW ™! as the
optimal pricing strategy. The results are presented in Scenario (c¢) in Figure 6. Under the social
welfare maximizer, less patients are optimal to go to the hospital so the congestion at the hospital
is alleviated. As such, it is not naturally incentive compatible for patients to accept the price
of telehealth charged by the medical institution under revenue maximization. Therefore, external
forces are needed to channel patients. For instance, the medical institution can raise patients’
awareness of the intangible benefits of telehealth. The most frequently cited factors for patient
satisfaction are convenience and reduced travel cost (Bohnenkamp et al. 2004), reduced wait time
for the appointment and consultation, effective communication with the care provider (Mair et al.
2000, Bohnenkamp et al. 2004, Laila et al. 2008), and overall ease of use and quality of picture
and sound (Laila et al. 2008). In addition, since the overall congestion at the hospital is reduced
thanks to telehealth, the corresponding surplus released to patients can be further reaped by the
medical institution through charging a higher in-person visit price. This can be justified as the
overcrowding of the hospital is alleviated and thus the quality and overall patient experience can

be improved in the hospital.

7.3. Results of the Flat Rate Case

Now the counties are ranked by their travel burden f;, and the optimal policy shows that any
community that is further than or equal to Citrus county in distance should receive VC visits,
and the rest (which include large communities such as Marion and Columbia) should come to the
hospital. Marion and Columbia are two counties that are not very far from the central hospital
but are close to clinics, leading to low nurse dispatch costs. Under discriminative pricing, they
are offered with telehealth at a low price because of the low nurse dispatch costs. But, under
non-discriminative pricing, the medical institution cannot afford to set such a low flat price for
all other patients. Instead, it rather sets a higher flat price to enforce these patients to go to the
hospital. Subsequently, the benefits of telehealth are deprived for the patients residing in these two

communities.
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Indeed, there are patients from other communities who can benefit from the flat rate policy, but
the total patient surplus could be worse. The following case is an example. With a flat rate, more
(52.5%) patients come to the hospital compared with the discriminative pricing case (50.5%). As a
result, the surplus of medical institution, patients, and social welfare are $307K, $581K, and $888K
per year, which are all smaller than those of the discriminative pricing case ($315K, $612K, and
$927K). The flat-rate requirement can be less cost effective.

The social welfare maximizer lets all patients stay at home in both pricing settings, with the
surplus of the medical institution, patients, and social welfare being $-3K, $616K, and $613K per
year, compared to $7K, $606K, and $613K in the discriminative pricing case. In this case, the
maximum feasible C5 is chosen, but the medical institution is still worse off. The revenue gain
of the medical institution is transferred to patients’ aggregate surplus, and as a whole, the social

welfare surplus stays the same.

8. Conclusions and Future Work

While telehealth technology and its use are not new, widespread adoption among care providers
and patients beyond simple telephone correspondence has been relatively slow. The virtual services
offered are typically limited to VC visits without nurse/surrogate assistance, and mainly cover
chronic diseases that do not require a physical examination (mental diseases for example). However,
recent policy changes during the COVID-19 pandemic have reduced barriers to telehealth access,
and have promoted the use of telehealth as a way to deliver care across a broad spectrum. The
involvement of nurse assistance makes it possible for VC visits to cover extended health conditions.
To the best of our knowledge, very few work exists to investigate the design of VC visits with nurse
assistance, and our model fills this gap to help community hospitals understand the potential of
VC visits.

Our study has limitations. First, our analytic results are conducted under some strong assump-
tions. For instance, nurse coordination costs are assumed to be proportional to the number of
patients. The cost structure and the factors influencing costs can be further investigated. Second,
the heterogeneity of other patient features on top of the travel burden is not captured in the
current study. For instance, the technology adoption intention of patients can change over time,
and the health disparity in demographic and socio-economic features of patients may affect their
willingness to use telehealth services. These personalized and possibly evolving preferences need to
be considered. Currently, they are difficult to be quantified lacking related data as telehealth is in
its early adoption stage.

Moreover, barriers to implementing VC visits need to be removed. How to improve patient
awareness of emerging virtual care services is a challenging task and should be further investi-

gated. Admittedly, VC visits are yet to enjoy the uptake by patients and care providers alike,
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both expressed security and privacy concerns of such virtual services. Another critical determinant
of the success of VC visits is the payment model. Our model assumes that insurance companies
would reimburse the same amount for physician services rendered by the medical institution. Cur-
rently, there is no well-established compensation model for providers who offer telehealth, nor a
clear guideline of co-payment or co-insurance by patients. As Medicare recently extends its cover-
age to some telehealth services (U.S. Government of Medicare 2019), we expect more care plans
would accept telehealth services. The current model can be extended with a refined compensation
scheme. In addition, we consider a monopolistic medical institution and do not allow for patients
the no-treatment option. A discussion regarding the impact of VC visits on competitive medical
institutions is explored in the Appendix, and more investigation into patient loss or migration will
be pursued in a future study.

There are several other future research directions. One is to extend the content of impact that
telehealth is able to exert. Our model only considers the direct revenue gain from offering VC
visits and does not account for the impact on the medical institution’s operational cost and patient
outcomes. Other clinical studies have reported provider efficiency gain (Allen et al. 1995, Stalfors
et al. 2003, Olver et al. 2005), reduced appointment no-show (American Well 2019b), and reduced
use of health care resources, such as hospitalizations, and primary care and emergency department
visits (Polisena et al. 2009). A future study can assimilate these indirect benefits from the health
economics perspective. Another direction is to explore the related operational-level optimization
problems. For example, since the medical institution dispatches nurses to patient homes, the cor-
responding vehicle routing problem can be investigated. In addition, the nurse coordination cost
is relatively easy to compute with a deterministic demand. At the strategic level, deterministic
models are good “first-order” approximations (asymptotically optimal in some cases) for more
sophisticated stochastic models. In our case, they provide valuable insights into how optimal pricing
policies are shaped by distinct parameters of the model. At the operational level, with a stochastic
demand in reality, nurses need to be dynamically assigned to different communities, and a resource
allocation problem to minimize the nurse coordination cost with or without limited capacity of

nurses can be considered.
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Appendix A Summary of Model Notations

Table A.1 Summary of model notations.

Indices:

i i € I marks communities, N = |I|;

Parameters:

R1 reward for care delivered in the hospital ($);

Ro reward for care delivered at home ($);

C, price charged for physician services ($);

Cs price charged for nursing services that medical institution cannot determine ($);
Nd percentage of Cy; paid by patients;

Ny percentage of Cs ; paid by patients;

D; demand rate in community ;

fi travel burden of community 4 patients ($);

a sensitivity of congestion from the patient’s side ($ per person: $/pp);
vy sensitivity of congestion from the medical institution’s side ($/pp);
g:(D)  nurse coordination cost of community ¢ as a function of demand D ($);
Bs incremental cost of the nurse coordination cost of community 4 ($/pp);
0 fixed cost of the nurse coordination cost ($);

W, threshold of congestion from the medical institution’s side.

Decision variables:

Cy; price for VC services delivered in community 4 if discriminative pricing is allowed ($);
Cy ¢ flat price for VC services if discriminative pricing is not allowed ($);

U; utility of patients in community i ($);

Pi proportion of community ¢ patients going to the hospital.

Appendix B Additional Results for Two Communities

With two communities A and B, let the partitions p4 and pp be further indexed by a superscript for
different equilibria S™A™B  where the scenario indicators m; € {1,2,3}, i € {A, B}, inheriting the
definition of that of a single community. To illustrate, when both communities go to the hospital,
ma=mp=1,and (p'},p}) =(1,1). In the following, we assume D, < Dy for illustration purposes.

Due to symmetry, systems with D4 > Dp can be analyzed analogously.

PROPOSITION A.1l. Under the nurse coordination cost structure g;(D) = ;D +0Ip~o, with an equal
marginal utility change (pa = e = @), the optimal patient diversion policies for two communities
are as follows:

1. Both staying at home (S*?), if max{a(D4+ Dg),20/(Ds+ Dp)} < .
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2. Both being partially diverted (S33), with proportions (p23,p%) going to the hospital, where
pEDp+pRDs= (Da+Dp)/2—¢/(2a), ifmax{2v2a0 —a(Ds+Dg),a(Dp—Da)} < p < a(Ds+
Dg). The special cases S* and S*? belong to this region.

3. (1,pE) or (p%i',1), where pg = (Dp—Da)/(2Dg) —¢/(2aDp), and p3 = (Da—Dp)/(2Da) —
v/(2aDy), i.e., community A (respectively, B) patients go to the hospital and a miz strategy
is adopted for community B (respectively, A), if —a(Ds+ Dg) +2Vab < ¢ < a(Dp — Dy), or
—a(Das+ Dp) + 2Valh < p<a(Dy— Dg), correspondingly. Note that this region is feasible only
when 0 < aD3,.

4. Both going to the hospital (S*') for all other parameter regions.
Proposition A.2 summarizes the optimal patient diversions in different parameter regions.

PROPOSITION A.2. Under the nurse coordination cost structure g;(D) = ;D + 0Ip~o, for two
communities with unequal ¢’s, the following scenarios can unfold:

1. 0 =0. The optimal equilibria are summarized in Table A.2 and the partitions are presented
in Figure 3(a).

2. 0<0 < aD?. Similar optimal equilibria exist but in different parameter regions, as shown in
Figure 3(b).

3. aD? <0 < aD3%. Compared to Figures 3(a) and (b), equilibria S** and S*' no longer exist,
see Figure 3(c).

4. aD% <6. No mized strateqy ewists, see Figure 3(d).

Table A.2 Optimal patient diversions and the corresponding parameter regions when @4 # ¢p.

Scenario Patient diversion Parameter region (0 =0)
s (L1) Ca< —T22TE and (5 < - 23308
Dp~D Dp—D
St (1,0) o CAD < DLSDA“‘ anchB > Ty
St (L, p%) P?ZSTBA—CB b, - <Cp< =554 and (pDp > (aDy
21 (0,1) CAz%and CBS_%
D+ Ds+D
§22 (0,0) i %4 EDQTAB ang CBDZ gTBB
5% (0,0%) PE = %BB —( THp, 0 << %BB and (pDp <(aDy
S31 (pillvl) pil:DgBDB _CA MSCASDA#? and CBDBSCADA

2D
5% (P2, 0) pi=Latbn ¢, PacBa <, < Paith and (5D > CaDi
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Appendix C Discussion on Competitors

When competition is induced in the market, it is natural that patients would benefit from having
more choices. Here we shed light on the impact of competition on the medical institution. Consider
two adjacent service regions, one is covered by medical institution M4 and the other Mp. Prior to
virtual services, there is no patient migration due to a high travel cost. For instance, when the two
service regions are of the same size, and thus the same level of congestion in the hospital, patients
will always choose the closer one to visit. If medical institution Mp is the only one that offers VC
visits, it can “snatch” patients from medical institution My, which is a trivial case. We further
consider both medical institutions start offering virtual care services.

Under this setting, region A patients actually face four choices, (1) go to the hospital A, (2) go to
the hospital B, (3) VC visits provided by M4, and (4) VC visits provided by Mpg. Option 2 remains
feasible for region A patients living in the borderline area of two service regions, when the congestion
of hospital B is reduced significantly due to Mpg’s virtual service. Then, whoever can offer VC visits
at a lower price becomes the winner of this competition. If My offers a price C}'? +ndC§7 's L col)'B
such that M, cannot match, i.e., medical institution M, will lose money to serve patients priced
similarly to Mg, then, some patients in region A will choose services from Mp until the capacity cap
of Mp is reached. Because of the community-dependent nurse coordination cost, some communities
in region B can also benefit from services provided by M4, where a bi-directional patient migration
could happen. Even without losing patients, the medication institutions still have to lower prices
because they can no longer leverage “artificial congestion” by requesting a portion of patients to
come to hospital as before. The competitor Mp can play as the tie-breaker to make going to the
hospital A strictly worse than receiving VC visits provided by Mp. When being the monopoly, M4
can freely set VC visit prices to benchmark in-person services, and the prices make it profitable to
divert patients to stay at home. However, for the competitor Mg, aimed at “snatching” patients,
it does not hold the same benchmark as serving patients in A hospital, and as far as priced higher
than its operating cost and under its capacity limits, it is willing to set prices as low as possible to
attract patients. Therefore, if there exists a migration from community ¢ in service region A to B,

the harm made to M4 could be greatly larger than the benefit gained by Mp.
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It is possible that the two medical institutions as a whole is worse off compared to not having
virtual services. In particular, define 74 and 73 as the basic costs of offering care services. They
are not included in the monopoly case because they are kept the same, regardless of the extra cost of
nurse coordination when in a virtual way, but they come into play here with competitions. Let ﬂiM 4
and @M B be the marginal nurse coordination costs. Then, due to the loss of D; patients to hospital
B, the difference in profit APA = (7Ma — C'4 4 4Ma)D,; < 0, and that of Mg, APB = (C)'® +
14Ca P +Cy"% — M5 — BMBYD, > 0. When My is willing to set C1'% +1,Cy P +Ca'8 = pMa 4 M4
to attract M, patients, then, the total change APA+APB = (84 — g5 4 pMa _OMA L 4MaA) D,
given 74 = 7Ms CM4 = CME and vMa = 4M5 to mimic a symmetric case. The change in profit
as a whole depends on the difference of the nurse coordination costs between the two medical
institutions. If the gain from the saving of nurse coordination costs is not large, but the original
price C’fv ‘4" is much higher than cost w4, then VC visits can be detrimental.

The analysis above suggests that VC visits could break the geographic “quarantine” that sta-
bilizes the market, and stimulate competition among care providers. It further stresses that the
competition might induce unintended consequences to medical institutions. On patients, based
on the utility definition, they are no worse off, however, when patients switch between multiple
providers to reduce cost, the continuity of care can be affected, which is not good for patient health
management in the long run. To avoid patient loss, medical institutions need to provide high-quality
care, both in-person and virtually, to improve patient retention and maintain competitiveness in

the market.

Appendix D Discussion on Payer Reimbursement

As an extension of the basic payment structure for the discriminative pricing model, we further
consider that the insurer will reimburse C; for the physician’s portion, and 0C5,; for the nursing
service, where C5; is the billed price. An analysis of the non-discriminative case can be carried
out similarly. As such, the medical institution will collect CM = C; + C, for office visits and
C’% =C,+ C’l + (0 +n4)Cs,i + Cs for VC visits. When the service capacity is fixed, the term C; + C’l

is immaterial, and the objective function becomes:

R = Hg?ZXZDi(l —pi)((na+6)Coi + Cs) —7 [Z piD; — We] - Zgi((l = pi) D).
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The introduction of payer reimbursement will not affect the IC constraints of patients. Under this
circumstance, the system-level marginal gain ¢; should be modified as ¢! = —AR + f; —6Cy/(na +
0) =naBi/ (Ma+0) +nay/(na+09), and R = max > Di(1=pi) (¢! +aW)(n4+0)/ng. The equilibrium
patient partition follows the same formulati(;n except that ¢; is replaced by ¢°. In other words, a
threshold-type of equilibrium strategy of patients is invariant to the amount paid by the insurer
to the medical institution.

However, the relationship between the co-insurance factor 7y and the reimbursement factor §
does affect the medical institution’s profitability. Given a fixed amount collected by the medical
institution per patient, e.g., ny+9 = 1, the larger § values, the more revenue the medical institution
will gain. In our numerical study, for the linear nurse cost function case, compared to the baseline
scenario where 13 =1, 6 =0, and R = $157.5K, a scenario of 17 = 0.5 and 6 = 0.5 leads to R =
$316 K, and 1y =0.3 and § = 0.7 leads to R = $528.5K. This suggests that shifting the burden from
patients to the payer (e.g., the government or insurance companies) can benefit both patients and
the medical institution. It heightens the importance of the insurance coverage of telehealth related
services so as to promote the adoption of telehealth by patients and care providers, and ultimately,

improving care access and patient outcomes.
Appendix E Proofs
Unless otherwise notified, we consider n,; # 0 and C is a constant in Model 1 for the basic proofs.

LEMMA A.1. Given the patient diversion p;’s, the equilibrium pricing for the revenue mazimization

problem is 1qCy; = —Cy — AR+ fi + oW, where W =3 p,D;.

Proof. This directly follows patients’ IC constraints. =

PROPOSITION A.3. Consider the optimization problem (Model 2) where the medical institution
determines the price Cy; for nursing services provided in community i (patient home), and dictates

a proportion p; € [0,1] of patients to receive in-person visits versus VC wvisits (1-p;):

N
max ‘Di(l_pi)(’r/dCZ,i“‘CQ)_’y[ZpiDi_WEI _Zgi((l_pi)Di)-

pi:Ca 4

The solutions Cy;’s to Model 2 are also the optimal solutions to Model 1.
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Proof. Here we aim to prove that the optimal solutions of Model 1 and Model 2 are identical, and
the medical institution can use discriminatory pricing alone to control patients’ diversion decisions.

First, the objective of Model 2 is greater than or equal to that of Model 1, because the hospital
can control patients’ decisions and the decision space is larger. To prove that the equivalency can
be achieved, we introduce a small amount € > 0.

Denote the the optimal solution of Model 2 as p?’s, and the corresponding optimal congestion
as W2 =3, p?D;, the hospital can set the at-home price for each community 7 as:

(1) 1aC5,; +Cy = —AR+ fi + aW? + ¢, for community 4 such that pj =1,

(2) 74C5,+Cy=—AR+ fi +aW?, for community i such that p7 € (0,1),

(3) 14aC3,+Cy=—AR+ fi + aW? — ¢, for community ¢ such that p? =0,
where AR=R; —Ro.

First, consider 1y # 0. Note that {C5,}’s are also feasible solutions to Model 1. In this way,
according to incentive compatibility, in equilibrium, patients in case (1) naturally choose to go
to the hospital (i.e., p} = p? = 1) and those in case (3) naturally choose to stay at home (i.e.,
pi = p; =0). Eventually, the hospital can use {C;,}’s to determine the congestion (i.e., the total
number of patients coming to the hospital 1), and in equilibrium, W' = W?. Since the hospital
is optimal to set at most one p? € (0,1) based on Model 2 (Theorem 2), then, there will be at most
one community in case (2). Denote it as community k, then, W' =W? will induce p; = p3.

Next, consider n; =0 and 7y # 0.Following the same logic with 1, # 0, we have Model 1 as

rgaX(nsz,f+Cz) Z Di+(1—pi)D; | - Z 9;(D;j)—9:((L=pi) Di) =~ Z Dj+piD; —We
»f Jifi>fi Jifi>fi Jifi<fi

(A.1)
Model 2 is

C.
»f J:fi>fi Jifi>fi J:fi<fi

(A.2)
Denote the optimal solution of Model 2 as p?’s, and the corresponding optimal congestion as
W? =73 p?D;, the hospital can set the at-home price for each community i as: 7;Cs s + Cy =
—AR + f; + aW?, for community i such that p? € (0,1), where AR =R, — Rs.

mag_(nsz,erCz) Z Dj+(1=p)Di | - Z 9;(D;j)—gi((L—pi) Di) —v Z Dj+piDi =W,

+

+
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Then, for f; > f;, we have n;Cs ;+Cy < —AR+ f; +aWW?, so patients in community j would nat-
urally stay at home; for f; < f;, we have n;Cs s +Cy > —AR + f; + aW?, so patients in community

7 would automatically go to hospital. Therefore, Model 1 and Model 2 are equivalent. m

All of the results below are derived from Model 2 instead of Model 1 for its simplicity.

Proof of Proposition 1
Proof. For one community, three scenarios can unfold: (1) all patients go to the hospital, (2) all
patients stay at home, and (3) part of them stay at home. The corresponding objective value is
denoted as R™, m € {1,2,3}.

For p € [0,1], based on Lemma A.1, we have the medical institution’s revenue as:
R=D(1-p)(AR+ f+apD)—vpD —B(1—p)D — 011y p>o.

When p € (0,1), the first-order condition (FOC) %—Ij = —(p+ apD)D + a(1 — p)D?* = 0 implies
p=3— 525 =3 —(, where ( = 3%5. Then, R* — R' = D(1—p)(¢ + apD) — 0 =aD?*(5 +()* — 0.

The partition line between R* and R' is ( = —% + %. Furthermore, R* — R? = aD*(5 —()p. The

partition line between R® and R? is invariant with 6, which is ¢ = 1. Thus, when 0§ < aD? R®

is optimal when —1 + % < (<3, R"is optimal when ¢ < —1 + \/?D, and R? is optimal when

% < (. When 6 > aD?, R? is dominated by R;. The partition line between the two scenarios with

R?—R'=9pD—0=0is (=55 R" is optimal when ¢ < ;-%; and R? is optimal when ¢ > 5-%;.

Proof of Proposition A.1
Proof. For illustration purposes, we assume Dg > D,. Due to the symmetry of Dy and Dg,
Dg < D4 can be analyzed analogously. A total of nine scenarios can occur, denoted as S™", and
the corresponding revenue is denoted as R™", m,n € {1,2,3}, similar to that defined in the proof
of Proposition 1. Let p;’s be further indexed by a superscript mn, m,n € {1,2,3} to refer to the
diversion under the scenario S™". To illustrate, by definition, when both communities go to the
hospital, (p%', p4) = (1,1). We first introduce the revenue obtained when both communities have

patients staying at home, i.e., scenarios S33, S32, and S%.

R=(1~pa)Da(=AR+ fa+a(paDs+ psDp)) (A.3)
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+ (1= p)Dp(—AR + fg +a(paDas+ppDp))

—v(paDa+ppDp) —Ba(l—pa)Ds—Bs(1l—ps)Dp —26.

Introduce the marginal utility change as ¢, = f; — 8; + v — AR, i € {A, B}. The Lagrange dual

is L=R+Aapa+pa(l—pa)+Agps+ pus(l—pg), where Aa, A, pia, up >0, and the FOC is as

follows:
oL 5
m:—(SOA-l-OépADA+OzpBDB)DA+Oé(1—PA)DA-i-Oé(l—pB)DBDA—F)\A—MA:O,
oL 9
_— — B — — = U.
ap (pp+apaDa+appDp)Dp+a(l —pp)Dg+a(l —pa)DaDp+Ag—pup =0
B

When py, pp € (0,1), the FOC is feasible if and only if o4 = ¢p = ¢, and

Dy+D
PBDB-FPADA:—E#LH.

50 5 (A.4)

In this case, there can be multiple solutions of p4 and pp, as long as equation (A.4) and a(D, +

Dg) > ¢ hold. Some special cases include (p32,0) with p32 = DA%SB — 25 and (0, p%) with
23 _ Da+Dp _ _ ¢
pB - QDB QOLDB.

In addition, the revenue when there is only one community having partial patients staying at

home can be derived with reducing 26 to 6 in formula (A.3), and the FOC stays the same. As long

as equation (A.4) and a(Dg — D) > ¢ hold, (1,p5) with p5 = 26224 _ ¢ 5 the solution, and

2DB 2aDB
when a(D4 — Dp) > ¢, the same is true for (p%,1) with p% = Dg‘;ff” T

For the trivial cases, we present the revenues in Table A.3. Next, we compare and decide which

scenario will lead to the largest revenue with a given parameter region.

Table A.3 Revenues under different scenarios when p4 = ¢p.

Patient diversion Revenue

(1,1) R =(Da+ Dp)(—7)

(0,1) RZ?=R"+ D,(¢+aDg)—6
(1,0) R** =R" + Dg(p+aD4)—6
(0,0) R =R" +(Ds+Dyp) —20
(p%,0%3) R¥» — R ¢ é(% + Q(DA;FDB))2 —920

We start with 8 =0 to understand the solution structure. In this no set-up cost case, in the
region of |¢| < a(Da + Dg), as long as ps and pp satisfy equation (A.4), the revenue stays the

same, including scenarios S3 5% 523 §32 and S$23. We choose the mixed strategy (p3},p%) and
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we claim that R** > R??2 v R?' v R'2 v R''. This follows the pairwise comparisons: R** — R?*? =
1(g—olatbely2 >0 B3 — R = L(2 4 2PazDnl)2 > B3 R12 = 1(2 4 20a%DB))2 > (); and
R33 — RU — (¢+M)220.

In the region ¢ > a(D 4+ Dg), note that (p32, p%) is infeasible, we then claim that R*? is optimal
in the region: ¢ > 0 leads to R** > R", ¢ > aDp leads to R*? > R* | and ¢ > aD, leads to
R22 > RIQO

In the region ¢ < —a(D4 + Dg), again, (p33,p%) is infeasible, and we prove that R'' is optimal
in the region: p <0 = R" > R?** p<—aD, = R" > R*, and o < —aDp = R" > R'2.

For any non-negative 6, the same derivation applies and the detailed algebraic operations are
omitted. However, due to the discontinuity when changing from option 1 — go to the hospital, to
option 2 or 3 — dispatch nurses, the set-up cost comes into play, and the optimal region for S3!

and S'? cannot be combined with that of S®3. The change is demonstrated in Figure 2 in the main

context. [ ]

Proof of Proposition A.2
Proof. For two communities with ¢4 # g, we also start with the scenario (p32, p%) and the FOC
is the same as that of equal ¢’s. Since ¢4 # g, S3 is not feasible. The optimal patient diversions

corresponding to the remaining eight scenarios are presented in Table A.4.

Table A .4 Optimal patient diversions and the corresponding parameter regions when pa # ¢ 5.

Scenario Patient diversion Parameter region (6 =0)
st (LD Cr < —P3FDE and ¢y < —P47PB
512 (1,0) o G < —’j;’DfA oad (o 2 =
S13 (lup?) p?:%BA_CB _QADiB<CB BDBA and CBDB>CADA
5% (0.1) Ca > P450% and G < —Lae
522 (0,0) gA Dgg & and (5> M
% O.0%) =43P0 o 2450 <6y < P4E0 and u Dy < (4D
S (P%,1) pi = LgB —Ca % << DA#ADB and (pDp <(aDa
5% (P, 0) PR =457 —Ca PEpA S (a < P48 and (3Dp > (aDa

When ¢; > a(Da+ Dg), p; =0, i.e., the choice is to stay at home, whereas when ¢; < —a(D4 +

Dg), pi =1, i.e., go to the hospital, regardless of the optimal solution adopted by other communities.
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Therefore, in what follows, we consider the non-trivial cases. We assume Dg > D,4. Due to the
symmetry of D, and Dy, D < D, can be analyzed analogously.

No Set-up Cost.

The revenues under different patient diversions are presented in Table A.5. We compare and

decide which scenario will lead to the largest revenue given the parameter region.

Table A.5 Revenues under different patient diversions when pa # ¢B.

Patient diversion Revenue

( ) R12 R11+DB(QOB+O[DA)*9
(1,0) R =R 4 L1(gp olbatbnly g
(071) R21 R11+DA((pA+(XDB) 0
(0,0) R*® =R" 4+ Dapa+ Dpyp *(29 )
Dp-D a(Ds+D
(0 RP = Ri 4 (D 4 o0)(=0abo) 4 op)

+DA(soA+%—%B)—29

(p,1) R =Rt 1(2a 1 2PaiDp)y2 _¢

(p,0) R32 R11+(DA D5+<PA)(M+%4)
+DB(<P _|_"(’W17+DB) wA) 20

e Region 1: (4 < DA+DB and (g < Dg‘;;iDB ie, pa<—a(Das+Dp)and pp < —a(Ds+ Dpg).
In this region, 532, 523, S and S3! are infeasible. Moreover,
- 4,05 <0 = R > R*;
- ¢p < —aDy = R" > R";
- pa<—aDp = RY >R
Therefore, R', i.e., the patient diversion (1,1) is optimal.
o Region 2: (4> 24522 and (5> 24578 ie., pa > (Da+ D) and @p > (Da+ Dp).
In this region, 532, 523, S and S3! are infeasible. Moreover,
- @a,05>0= R*?>R";
- pa>aDp = R > R";
- pp>aDy = R*? > R?.

Therefore, R??, i.e., the patient diversion (0,0) is optimal.

e Region 3: (4 < BDDA and (5> 2 A e, pa<a(Dp—D,) and pp > a(Dp — Da).
In this region, S*? and S'3 are infeasible. Moreover,
- aDp > ¢, = R?> R*.

~pp+aDy>0= R2>R.
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- Dpypp > Daps = RZ > R

- In this region, we have ¢p > a(Dp — D4) and —a(D4 + D) < pa < a(Ds — Dp). As
R'2 — R3! is a quadratic function of ¢4 with a negative second-order coefficient, the minimum is
obtained at the two endpoints of the region of interest. For one endpoint ¢4 = —a(D4 + Dp),
R'? — R3 > aD3% >0, and for the other endpoint ¢4 = (D4 — Dp), R*? — R* > a(D% — D?) > 0.
Both are non-negative, and thus R'? — R3! >0 in the region.

- We also have a(Dp — D) < pp < a(D4s+ Dp) and ¢4 < a(Dp— D,). As R'? — R* is a
quadratic function of ¢ with a negative second-order coeflicient, the minimum is obtained at the
two endpoints. For one endpoint @5 = (D — D,), R*? — R* >2aD4Dp > 0, and for the other
endpoint ¢ = (D4 + Dg), R*?> — R > aD4(2Dp — D) > 0. Both are non-negative, and thus
R'? — R?3>0 in the region.

Therefore, R'?, i.e., the patient diversion (1,0) is optimal.
e Region 4: (4 > D“#fB and (g < —%, ie., pp<a(Ds—Dg)and s> a(Ds— Dp).
In this region, $* and S3!' are infeasible. Moreover,

- R%> R aD,> ¢y = R2 > R2,

- R >RY: oy +aDp>0= R>>RY.

- R* > R"™: R** >aD? >«a(2Ds— Dg)Dp > R*%.

- We have ¢4 > a(Ds — D) and —a(Ds + D) < pp < a(D4y — Dp). As R** — R is a
quadratic function of @p with a negative second-order coefficient, the minimum is obtained at the
two endpoints of the region under consideration. For one endpoint pp = —a(D 4+ Dp), R*' — R >
aD? >0, and for the other endpoint pp = a(D4 — Dg), R*' — R** > a(D? — D?%) = 0. Thus, the
minimum is non-negative, so R*! — R >0 in the region.

- Wehave a(Dp—Ds) <pa <a(Ds+Dp) and o < a(Dp—D,). As R** — R*? is a quadratic
function of ¢4 with a negative second-order coeflicient, the minimum is obtained at the two end-
points of this region. For the one endpoint @5 = a(Dp — D,), R* — R3?* > —aD? +2aD,Dp +
aD% >0 (because D > D,). For the other endpoint ¢p = a(D4 + Dg), R** — R* > aD% > 0.
Thus, the minimum is non-negative, so R?* — R32 >0 in the region.

Therefore, R?!, i.e., the patient diversion (0,1) is optimal.
e Region 5: a(Dp—D4) <pa<a(Ds+ Dp) and pp > pa.

First, we notice that S'3 and S3!' are infeasible in this region. Moreover,
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- R¥2>R*: R? - R2 =Ds(—apiDa+pa(—pa+aDs+aDg)), which obtains its maximum
(—pa+aDy+ aDg)?*/(4aDy) at (—pa + aDa + aDg)/(2aD4). Since ¢4 < a(D4 + Dp), we
conclude that p?% >0 and the maximum is strictly positive, i.e., R3? > R?2.

- R¥ >R R¥? - R2=D,(—apiDa+pa(—pa+aDs+aDg)+pas—aDg), which obtains
its maximum (—p4 —aDs+aDg)?/(4aD ) at (—pa+aDas+aDpg)/(2aD,). Since pa < a(Da+
Dg), we conclude that p% >0 and because a(Dp — D4) < ¢4, the maximum is strictly positive,
ie., R® > R2.

- R** > RY: since pp > @4, R¥*? — R > é(%“ + %)2 > 0.

- R*?* > R*:since pp > a4, R¥? > (%—k%)Q—FR“, and therefore R3? — R?! >

1
a

a(—D D
( 13+ B))QZO

- R* > R?: consider the region p4 < pp < a(Da+ Dg) and let o = pa + €, then we have

R —R® = — £ (205 —¢)+ 5(Da+ Dp) > = >0.

Therefore, R3?, i.e., the patient diversion (p,0) is optimal.
e Region 6: a(D4 — Dp) <yp<a(Ds+ Dg) and ¢4 > 5.
First, we notice that S3! is infeasible in this region. Moreover,

- R > R*: R® - R?»> = Dp(—apiDa+pp(—pp+aDa+aDg)), which obtains its maximum
(—¢p +aD4s + aDg)*/(4aDp) at (—pp + aDa + aDpg)/(2aDg). Since ¢p < a(Da + Dp), we
conclude that p3 > 0 and the maximum is strictly positive, i.e., R* > R*.

- R® > R*: R® — R*' = Dp(—apiDp+ pp(—¢p+aDs+aDg)+pp —aD,), which obtains
its maximum (—¢p —aDp+aD4)?/(4aDg) at (—pp+aDa+aDg)/(2aDg). Since ¢ < a(D 4+
Dg), we conclude that pj > 0 and because a(Ds — Dp) < ¢p, the maximum is strictly positive,
ic., R®> R,

- R > RY: since o4 > pp, R*' — R3 > é(“%B + %)Q > 0.

- R® >R R® —R12> (e 4 oPa-Dply2 >

- R* > R32: consider the region pp < ps < a(D,+ Dg) and let o4 = ¢p + €, then we have
R® —R%2 = —<(2p,—€)+ 5(Da+ Dp) > = >0.

- R* > R": since ¢4 > pp, R®* > R+ L(22 + DatDp)y2 — R13,

Therefore, R?3, i.e., the patient diversion (0,p) is optimal.

e Region 7: a(—=Ds— Dp) <pp<a(Dp—D,) and pp > pa.
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First, we notice that S*? is infeasible in the region. Moreover, with R'3 = L(£E + %)2 +
R, we have

- R®>R%: R¥—R¥=Dg(—apiDp+pp(—pp—aDs+aDp)), which obtains its maximum
(—pp —aDs + aDg)?/(4aDp) at (—pp — aDa + aDg)/(2aDp) . Since g < a(Dg — D,), we
conclude that p% > 0, and the maximum is strictly positive. Thus, R'3 > R'2.

- R® > R" : R® — R" = Dp(—ap%Dp + pp(—pp — aDa + aDg) + (¢ + aD,)), which
obtains its maximum (pp +aDas+aDg)?/(4aDp) at (—pp —aDa+aDg)/(2aDg) . Since pp <
a(Dp — D,), we conclude that pi > 0, and since a(—D4 — Dp) < pp the maximum is strictly
positive. Thus, R'3 > R

- R®>R*: R¥® > ¢p(Ds+Dg)+R" >psDs+¢pDp+ R" = R

- R13> R3. R13 > i(%_‘_ Q(DA;DB))2+R11 > Da(pa+aDg)+ R = R,

- R > R*: since g4 < pp, R® < L(4p 4 2BaElR))2 4 R — RI3,

- R > R3': since B> 0a, é(‘PTB_’_ a(DA;‘DB))Q > é(@TA_’_ a(DA;DB))Q‘

Therefore, R'3, i.e., the patient diversion (1,p) is optimal.

e Region 8: Symmetric to the optimal region of S** with the patient diversion (1,p), S*' with
(p,1) is optimal in the region a(—Ds — Dp) < s <a(D4s— Dg) and pp < @a.

Non-Zero Set-up Cost.

e When 6 < aD?, the partition is shown in Figure 3(b).

On x-axis:
Partition line between S'* and S3!: *DQ/}D*ADB + \/a\/gAS
Partition line between S®! and S?!: %;
Partition line between S'? and S32: % + ﬁ\/g ;
Partition line between S3? and S?2: %_

On y-axis:
Partition line between S'' and S*3: *DQf]xD;DB + ﬂ\/gs;
Partition line between S'* and S'2: %;
Partition line between S?' and S23: % + \/5@37

Partition line between S23 and §22; 24tDp
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The partition line between S'® and S?! is a parabola aD%(% +aDg(D s+ Dp)(p —2aD%(4s +
&(Da—Dg)*=0.
The partition line between S'? and S?3 is a parabola —aD%(% +aDg(Da+ Dp)(g —2aD*(a —
S(Da—Dp)*+0=0.

The partition line between S** and 5?3 is a straight line with slope %: —2aD%Cs+2aDsDplp+
0=0.

Dy

The slope for the partition line between S*' and S'? is 3
B

e When aD? < 6 < aD3%, the partition is shown in Figure 3(c).

On x-axis:

.- . -D
Partition line between S'* and S2': =28 4 2.
2D, ' 2aD3

Partition line between S'? and $?%: 2B 4
2D, | 2aD%

On y-axis:
Partition line between S'* and S'2: _D21})_BDB + \/a\/gB;
Partition line between S*? and S'2: D§5§A;
Partition line between S?' and S%: % + \/a\/gB;
Partition line between S?* and S%%: %_

e When aD% < 6, the partition is shown in Figure 3(d).

On x-axis:

oL . -D

Partition line between S and S?': B 0 _.
2

2D, | 2aD2%’

o D
Partition line between S and 5*%: 22 + o .
A 2aDA

On y-axis:

o, . 7D
Partition line between S'* and S'2: 24 4 ¢
2Dp ' 2aD%

Partition line between S?' and S%%: % + M%QB.
2
The slope for the partition line between S?!' and S'? is g—g‘.
B
The partition line in Proposition 3 for a non-zero 6 is derived similarly with modification of the

formulae to capture differences between contiguous regions. We omit the detailed proofs here. =

Proof of Theorem 1
Proof. We rank the communities according to their ¢;’s in an ascending order. Without loss of

generality, assume we have |I| = N ordered communities with unique ¢;’s. First, we define that
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excluding k, the congestion at the hospital is W = Zj 21, pjD; and the total number of patients
staying at home is HY =3 i #(1 — p;)D;. With a universal linear nurse coordination cost g(D) =

8D, we further write the objective function as

+> (1= p)Di(—AR+ f; + o px Di+ W)
J#k
— (o D+ W) = B(H + (1= pi) Dy).
This is true for any py € [0,1], k € I, and the Lagrange dual is L = R + A\gpr + (1 — pr), where
Ar >0 and p; > 0. Then, we can calculate the optimal value of p, given that W and Hf are

known following the FOC:

oL
Opr = — (¢ + apr Dy, + oW ) Dy + o1 — py,) Di + aHY Dy + A — iy, =0,

D +HS +aw?
ngkk - kaoz)kk }}, where ¢ = fr +7v — 0.

which yields p; = max{0, min{1,

After calculating all p;’s, k € I, we can further check if they are the genuine optimal solution to
the original problem. If they do, the following two scenarios can unfold.

1. There exists at least one k such that p} € (0,1). Under this scenario, we further consider, if
4.k, s.t. pj,pp € (0,1). Suppose both p; and pj are the genuine optimal solution to the optimiza-
tion problem, with the optimal congestion W* (the total number of patients going to the hospital
under the optimal solution) and the optimal total number of patients staying at home H*. Then,

we have W =W* — pi D, and HY = H* — (1 — p;) Dy, and pj; = D’“JFH*;lgi*p’:)Dk - ‘P’“JFQ(QVZ;ZPZD’“),

which suggests that a(H* — W*) = ¢;. Similarly, we have a(H* — W*) = ;. Since ¢; and ¢, are
unequal according to our assumption, the optimal solution does not allow more than one commu-

nity, denoted as k, to have p; € (0,1). Furthermore, since the genuine optimal p; follows

P =max{0, min{1, D’#H*Q_[()i_p’tm’“ — “0’“+Q(QVZ;;’)ZD’“) }+}, then, for all p; < ¢y, we have a(H* —W*) >
vi, and thus pf = 1. For all ¢; > ¢y, a(H* — W*) < ¢;, and p; =0.
2. Else, p; €{0,1}, Vk € I:

I pp =1, pp < 2 ;lgi_p’“)D’“ - @HQ(QVZD;”’“D’“), which suggests a(H* — W*) — ¢ > 0. Then,

for i < k with ¢; <@g, pf =1, and a(H* — W*) —¢; > 0.

Dyp+H"—(1-pp)Dy,  pp+a(W*—pp Dy)
2Dk QO‘Dk

—If p; =0, pr > , which suggests a(H* — W*) — ), < 0. Then,

for i > k with ¢; > ¢y, pi =0, and o(H* — W*) —¢; <0.
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Collectively, for the genuine optimal solution, there exists a threshold K € I, for i < K, p; =1

and for i > K, p; =0. Since H* +W*=3_.D;, when pj € (0,1), it naturally follows that W* =

azjff:fw. More generally, based on the FOC:

ay . D;—yp,
p; €(0,1) if and only if W* = ZJ2390;

o
ay .D;—y,;
p; =11if and only if W™ < Z:JQHO;

o
ay .D;—y,;
p; =0 if and only if W* > Z:JZHO

o

[

Given that the genuine optimal solution has the structure of having one “threshold” community,
we further introduce the following notations that enable us to pin down the threshold community,
which is the key to the optimization problem. Define p;™~ as the optimal partition of community
k when community m serves as the candidate threshold community, and similarly, define W,fm>’c
(H ,fm>’c), the number of patients going to the hospital (staying at home, respectively) except
for community k£ patients when community m serves as the candidate threshold community. In
addition, let R<™> be the revenue when community m serves as the candidate threshold community.

* : Dy+HE  optaWf : C C
Based on Theorem 1, p; = max{0, min{1, =7 — =575 1}, given that Wy~ and Hy' are known.

Then, we come up with the following lemma.

LEMMA A.2. The optimal solution given a candidate threshold community has a monotonic prop-

erty:
<k>,C <k>,C
: : <k> _ Dpt+Hp" prtaW, " <k+1> _
(1) If there emists pii*~ = ——k—— — =—k——€|[0,1), then p;;7~ =0.
<k>,C <k>,C
.. . <k> Dk+Hk ) <pk+(ka ’ <k—1> __
(i1) If there exists pp"~ = o — b — € (0,1], then pgti'” =1.
(iii) pi*> is monotonically decreasing with k.
<k>,C <k>,C
. . . <k> _ Dp+H, ’ pr+aW, ? . <k+1>
Proof. First, if there exists p;"” = 5Dy — Saby € [0,1), our goal is to prove p;{ = =
H<k>,C 2 +aW<k>,C D . E4l>.C E>.C
0. Note that p;*> <1, so —b5— — 2k < Zk. Furthermore, since H "'~ = HZ"C —

Dy, W,fffrb’c =W, "¢ 4 Dy, (see Figure A.1 for illustration), and ¢, > @k, we have Pt =

max{0, min{p;,1,1}}, where

<k+1>,C <k+1>,C
p . Dk+1 + Hk+1 Pr+1+ aWk+1
k+1 — -
2Dk+1 2aDk+1
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Dy + H,fb’c — Djiq Pt OéWk<k>’C +aDy

B 2D 11 2aDy 4y

Hk<k>,C O + aWIjk>’C Dk

2Dy - 20D 11 - 2Dy

< De D
2Dpy1r 2Dpqa

<

Therefore, piti'> =0.
Dk+HI€<k>,C ka+aWk<k>’C

Similarly, if there exists p*> = 2 - 5Dy €[0,1), we aim to prove pyFy'” =

<k>,C Wk<k>,C

. : PEto D . <k—1>,C <k>,C <k—1>,C
1. With pp*> >0, =-5— — 5 > —=E. Since H.") = H, + Dy, W0

W5C — Dy_y, and pp_y < @i, we have p¥7!> = max{0, min{p,_1,1}}, where

B Dk,1 + Hljlc;1>,C 1+ OéWk<7k171>’C
Pr—1 = 2Dk—1 2@Dk_1
Dy + H*Y 4Dy ooy +aWC —aD,
2Dk,1 205Dk71
. 1_‘_ Hk<k>,c B (pk _'_O{Wk<k>,c + Dk +1
2 2Dk,1 20&Dk,1 2Dk,1 2
Dy, Dy,

Tk —1.
2Dy 1 2Dy,

>1

Therefore, p;*;'> = 1. The monotonic property is a direct result following (i) and (ii). m

pi=1

P €[01]

pi=0

wk>e k A

@ =fi—-Bi+vy

<k+1> _
x =1

P

<k+1>,C . : <k+1>,C
W1 k Ek + ]‘ Hyyy

Figure A.1 An illustration of the relationship between W,fk>’c and H ,fk>’c.

LEMMA A.3. The revenue obtained when an arbitrary community m is selected as the candidate

threshold community is defined as R<™~. It has the following monotonic property:
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(i) For1<k<N, if R<*> > R<*=1> then R<F-1> > R<k—2>,

(ii) For 1<k <N —1, if R<*> > R<FT'> then R<M1> > R<k+2>,

Proof. We start with the proof of (i) if R<*> > R<F~'> then, R<F¥7'> > R<F=2>_ Based on the
definition, two scenarios can unfold.

First, pi¥> € (0,1). Based on Lemma A.2, p;*7'> =1, and based on Theorem 1, p5*~*> = 0. Let
Wk>¢ = Zk | D;, and HZF>© Z;V yp1 Dj- We compare the revenue when k or k —1 is selected

as the candidate threshold community.

R<k> —R<k71> :aHk<k>,Cp;k>Dk _Dk((Pk +OéWk<k>7C)
+D5 (1= p*) (o + aWTC + apg™> Dy)

_ap<k>D H<k> c <k>Dk(Q0k + aW<k> C) + a(l p;k>)p<k>D2
The assumption R<*> — R<F=1> > () is equivalent to
ap™ D H ™ — pit> Di(pr+ oW ) + a(1 = pi*) pi*> Di > 0.

Since pg*> > 0, this condition implies o H "> — (pr + oW, ") + a(1 — p*¥>) D, > 0.

<h-1> <h-2> k1>

Based on Lemma A.2, p;" =1, and then p;” =1, and based on Theorem 1, p."

Then, one can calculate the difference between R<¥~1'> and R<F~2>:

R<k71> _ R<]€72> :OZ(Dk + Hk<k>,C)Dk_l _ Dk-_l((pk_l + aW;k>,C o OéDk_l)

>Dy_q (aH ¥ — (o + aW, ) + aDy 4+ aDy_1) > 0.

<k> <k—1>

Next, in the case of py"” = 1. Using the same argument, p, = (. Then, we compare the

difference between R<*> and R<F~1>.
R<k> _ R<k71> — aDkHI:k>,C . Dk((pk +aWk<k>,c> > Dk(aHljk>,c (SOk +aw<k> C))

The assumption R<¥> — R<¥=1> > () is equivalent to aH "> — (¢ + aW, ") > 0. Then,

Dy

R<k:—1> _ R<k—2>
Dy

—— (R~ — R<*"') 4+ aD;_(Dy +aD;_;) > 0.

The proof of (ii) if R<F¥> > R<F*1>  then R<*'> > R<F*2> can be done analogously, and we

omit the derivations. [
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Proof of Proposition 2

Proof. To obtain the threshold community K and pi, we first calculate W,="¢ = Zf;ll D,

Dk+Hk<k>’C ¢k+aWk<k>

C
<k>,C _ N L <k> : :
and H, =Y i—ks1 Dy, and obtain p"” = max{0, min{1, T R R }+}, for each

k=1..N, and the corresponding revenue is denoted as R<¥>. The true threshold community

satisfies K = argmax, R<*>.
D +H<k>,C +aW<k>,C E>.C E>.C
Further, let p, = ——A— — s 2ot 1 pr €(0,1), then, a(H"C = W) — g, =
QOékak — OADk.

For 1<k<N, R~ —R~" =pDi(a(H"™ =W — o +a(l—py)Dy)
= piDy((1 = pr)aDy + 20p,. Dy, — aDy,)
=ap; D} > 0.
For 1<k<N, R _R<*> —=(1—p)Dp(a(H* =W — o — apeDy)

=—a(l—p)*D; <0.

Moreover, if pj, > 1, then, a(H "¢ = W;=>) -, > aDj, > 0. In addition, p;-* "> =0, according

to Theorem 1 and Lemma A.2. Then,
R<k> _ R<k71> — Dk<a(Hk<k>,C - Wk<k>,C) o Spk) >0.

If pr, <0, then, oz(H,le’C — W;’D’C) — o < —aDy < 0. With the same argument, p;" "> = 1.

Then,

R<k+1> _ R<k> = _Dk:(O[(H]jk>7C - W]:k>7c) - sOk?) < O

Since we have p;*> = max{0, min{p,1}}, we can conclude that if p;*> € (0,1), then, k is the

true threshold community, i.e., K =k and R<*> is the optimal revenue. If p*> =1, then R<*> >

R<k_1>; if p;k> — O7 then R<k> > R<k+1>. n

COROLLARY A.1. IfVi, ¢; >a), D;, then p; =0, i.e., all patients should stay at home.

Proof of Proposition 3
Proof. Proposition 2 together with Lemma A.3 suggest that R<*> is a unimodal function of ¢,

and thus Algorithm 1 reduces to an O(log(N)) algorithm. m
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Proof of Theorem 2
Proof. Assume the optimal solution recommends two communities to adopt mixed strategies,
denoted as community A and community B. Let d% = (1 — p%)Da and d = (1 — p3)Dp be the
optimal stay-at-home demands, and we consider a positive change ¢ > 0. Denote superscript “1”
to indicate the results obtained with dY = d% — € and superscript “2” as that of d% = d* + €. The
corresponding nurse costs are g} and g%. Furthermore, let g% = ga(d* ). The same notation applies
for community B. Because g;(D)’s are non-decreasing concave functions, 2¢% — g} — ¢4 > 0 and

29% — 95 — g5 > 0. See Figure A.2 for illustration. Since d% and d} are optimal, it follows that

dy(fa— AR+ + W) = galdy) + dp(fs — AR+~ + W) — g5(dp)

>(dy =€) (fa—AR+y+ W) —ga(dy —€) + (dp + €)(fs = AR +7+ W) —gp(dj + ),

ie.,
0>e(fp—fa)+ (g4 —g4)+ (95— 95)- (A.5)

Similarly, because of the symmetry of A and B, with the same argument, we know

0>e(fa—[fo)+ (95 —95) + (9a — g2)- (A.6)

Combining the two inequalities, we get 0> (2¢% — g% — ¢%) + (295 — 9% — g5) > 0.

This is true if and only if the cost functions are linear in their own domain [d} — €,d} + €], for
i€ {A, B}. Define ; as the gradient of the cost function g;(D) when D is in [d} —€,d} + €], based
on which, we have ¢! +284€ = g% + Bae = g% and g5 +20pe = g5 + Bre = g%.

Consequently, inequalities (A.5) and (A.6) become 0 > e(fg— fa+(Ba—0p)) and 0 > e(fa— fa+
(B — Ba)). Since p; = f; — Bi +v— AR, i € {A, B}, it implies ¢4 = pp. In this case, there can be
multiple optimal solutions that lead to the same revenue, similar to the two-community case with
pa=@p that as long as the total amount of patients coming to hospital is fixed, the distribution
to the two communities can be flexible. Take ¢ = min{d%, D — d%,d}, Dp — dy}, then, if either
function g;(D) becomes nonlinear in [d} — €, d} + €], the two inequalities cannot hold, or otherwise, if
both keep being linear, and thus the boundary such as 0 or D; is enclosed in [d} — ¢, d} + €], then, one
can push at least one community to the domain boundary and induce a different equilibrium that

only allows one community to adopt a mixed strategy. Therefore, there always exists an optimal
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solution such that at most one community K € I has px € (0,1), and all other communities have

patient diversions p;,=0or 1,i# K. =

dy=d,-¢€

9ga i
dp +¢€

Figure A.2 Tllustration of the marginal utility gain as a function of input demand.

Proof of Theorem 3
Proof. For brevity, we introduce a vector p as the patient diversion of all communities. With a
general concave cost structure, the problem is NP-hard and the optimal solution p®" is difficult
to solve. In the following, we show that the optimal solution under the linear cost assumption p'"
is a good approximation.

We linearize any non-decreasing concave cost function ¢;(D) (a function of demand D) for a
community i to be ¢/""(D) = 3;D. The slope is obtained as 3; = g;(D;)/D; (see Figure A.3). The
choice of the slope enables g;(0) = ¢!"(0) =0 and g;(D;) = ¢'""(D;). Because for general concave
cost functions, there exists an optimal solution that dictates at most one community to have a
partial diversion, we would expect the impact of a linear function compared to a concave one to

the objective function would only present in one community, which could be small and hence leads

to a good approximation.
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First, we claim that p'" is a feasible solution, because the cost function only impacts the objective
function, but not the feasibility of any solutions, since the IC constraints only affect the choice of

the prices Cy ;. Thus, R%(p'") is a lower bound, i.e.,

RG(plin) < RG(pgen)'

Next, we prove that R'"™(p'") is an upper bound. We therefore show that
RG(pgen) g Rlin(pgen) S Rlin(plin)‘

The first inequality holds because of the property of concave functions: given solution p9", g((1—
pi)D;) > Bi(1 — p;)D;, and the other terms in the revenue gain remain the same; the second one
holds because p"" maximizes R'".

Then, we show that the difference between the upper bound and the lower bound is smaller than

9k (D), where K is the threshold community identified using the linear approximation, i.e.,
R™(p™) = R%(p™) = gk (1 = px) D) = B (1 = pi) Dic < gic(Dixc).-

The last inequality holds because we know when pr = 0 or 1, the difference is zero, and the
difference achieves its maximum when the increasing concave function is close to a rectangular
shape (g"**"), as shown in Figure A.3.

As a remark, it is not necessary that the same community is partially diverted under the general

concave cost function and the linear case, nor would the assignment of other communities stay the

same. However, this does not affect the bound of the approximation gap. =

Proof of Proposition 4
Proof. This proof follows the proof of a general Minorize-Maximization problem (a special case
of an Expectation-Maximization problem). In each iteration, a “new” objective function is defined
consisting of the original objective function and a penalty term, which penalizes the difference
between an intermediate variable and its “expected” value obtained from the previous iteration.
In the “optimization” step, such an expected value will be treated as an input, and a new set of
optimal solutions will be obtained accordingly. Then, in the “expectation” step, we update the

expected value of that intermediate variable using the optimal solutions obtained in the previous
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lin

9i

Figure A.3 Illustration of the linear approximation to the concave function.

optimization step. The new objective function and thus the original objective function will have
to be non-decreasing over iterations, and then, such a process will converge to the local optima,
according to (Hunter and Lange 2000). In the following we elaborate the algorithm and show how
it conforms to the Minorize-Maximization problem.

1. Initialization ¢ = 0. We introduce H,; (W;;) as the amount of stay-home (go-to-hospital,
respectively) patients at iteration ¢ after updating patient diversion p! at the i-th community. One
can directly initialize the algorithm with Hy y =0 (stay-home) and Wy y =), D; (go-to-hospital),
and p? =1, i € . An alternative initialization is to use the approximated solution obtained in
Algorithm 1 by assuming ; = g(D;)/D;.

2. Update t =1+ 1.

For each community 1,
Ifi=1, Htcz =H, v —(1—p "Dy, Wt(;i =W,_iv —pi ' D
Ifi=2..N,HS,=H,; 1 —(1— oDy, WE =W — P D;.

Define p"' = (WS =32, piD; — 3", pi ' D;)* > 0 as a penalty term, which penalizes the dif-
ference between an intermediate variable and its “expected” value obtained from the previous
iteration, and introduce a new objective function R"(-) described below. Then, p!* is further

introduced as

t

Pi* = argmaxpiRt’i({pé}an Pis {Pé_l}j%)

= R({p}}jir pi {0 1 int) = (WS =D piDj = pl7' Dy

j<i 1<j
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1 : Di+H;  ¢i+aW; * :
Based on the proof of Theorem 1, p;” = max{0, min{1, =5+ — =5 75-=*} }, where ¢ is associated

with the gradient of g;(D) at D = (1 — p!")D;. This implies solving for an implicit function, and

pt" cannot be directly obtained.

— Here assume there are L; > 1 segments for each piece-wise linear concave function ¢*"™"(D)
as an approximation to g;(D), and let 3! be the gradient of the cost function at the I** segment,
1<I< L Let o= f;+~v— B — AR for 1 <1< L;. In addition, introduce pﬁ’l as the optimal
diversion of community 7 at iteration ¢ by assuming the gradient of the cost function falls on the {*"
segment with value S!. Define R" = R(pf’l) as the optimal revenue when community ¢ adopts the
optimal solution pf’l and the other communities keep their current diversions, i.e., ,0§ for j <i and
pi~ for j>i. We deem a solution pi' as feasible if (1 — p')D; falls on the domain of segment I;
otherwise, it cannot serve as a candidate of the optimal solution. Furthermore, for the cost function

with a non-zero set-up cost, denote p! =1 (implying no nurse coordination cost) as p!*=°

, and
the corresponding revenue as R*'=°. Then, we define the optimal solution of p; at iteration ¢ as
P = argmaxpz,lRt’l, for 0<I<L,;.
— We hereby show that at least one pf’l is feasible, in the sense that it is a fixed point to
the implicit function. Because of being concave, 8! < /7! and consequently ¢! < ¢!~ Meanwhile,
Di+HZ,  oltawf

t,l . t,l - . .
because p;" = max{0, min{1, — D, — ~2aD; }}, we know that p;” is monotone decreasing with

¢!, Therefore, pf’l < pﬁ’l_l. For each segment, define hﬁ’l as the amount of patients staying in the

community given pf’l, and hﬁ’l is monotone increasing with ¢!. The two end points for each segment
| are further denoted as A , and h¥, and we omit 4 here for brevity. Assume no p'* is feasible, then
we prove by induction that hﬁ’l > hY, for 1 <1< L. First, for the first piece with a slope with 3,
and two endpoints 0 and hY, the infeasibility of pi"' leads to hl'' > hV. Then, assume h2'™' > bV |
is true. Move to the case of [, the assumption p!"' is infeasible leads to either h' < Y | or hi' > hY;
however, with hY' > k™' (monotonic property), and h"'™' > hU | we know that k' > hV ,, and
therefore, it can only be h' > hY. Lastly, the assumption p/'" is infeasible leads to hl'* > hY = D;.
However, one cannot obtain a solution that is out of the domain bound. Therefore, a conflict is

induced and thus, there must be one pf’l being feasible.
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Let pi = p!" and update W, ; = ngi pé'Dj + Zi<j P;‘_le and H,; = ngi(l - P;)Dj + Zi<j(1 -

P 1)D;. Based on the definition that p! optimizes R"(-),

R ({05} j<is 5 A0S Yimi) = R ({05 i< 001 A0S Y imi)

=Rt’i({p§-}j<i_1, Pi 1 {P;ﬂ}jm‘—l) =max R"!(:).

Thus, the objective function R"“(-) is non-decreasing with .

3. Stopping condition. The algorithm stops when reaching a point that the objective function
does not increase along any direction, which is a saddle point and is considered as a local optimum.
When the objective function is convex, the algorithm converges to the global optima (Hunter and

Lange 2000). m

9i

qhi

h{ =0 n{ nY hY_y hi =1

Figure A.4 Illustration of a piece-wise linear concave function.

Proof of Proposition 5

Proof. According to Theorem 1, p* € (0,1), if and only if W* = a2iDizes, pt =1, if and only if

2a

* aZiDz‘—Ws
W < Qi Dices,

First, we show that if ©,,4, > —a ), D;, then, there exists at least one community with p; < 1. If

the optimal solution let all p; =1, then, community /N could serve as the threshold community and

W+*=3".D;. It contradicts with Theorem 1, based on which, W* < o SJ_SDN < 2k D’;;C’ 2iDi
ZiDi'
Second, we show that if @0, < —a) , D;, then all communities will have p; = 1. If not, the

number of patients going to the hospital should be less than the total demand W* < ). D,.
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Table A.6 Hospital Revenue, Patient Surplus, and Social Welfare without and with Virtual Services.

No VC Visits With VC Visits
Special | — NaCa2i=—C2—AR+fi+a) , pD
Price
Setting

Hospital | R =", D;(—7) R=},Di(— )+ZiDi(1—Pi)(<Pi+aZjﬂij)
AR= 7D2< p‘)(‘PZ"i_O‘Z p] )
U,=

Patient UlU :Zz Dz(Rl_Cl_fi_aZJ D]) i ZDz(Rl Cl Oéz pJ )

AU; =% Di(a )" ,(1— ) i)
Welfare SOZZiDi(Rl—’y—fi—aZij) S =>,D(C, — ) + Z D;(1 pi)(pi +
O‘Z]pJDJ)+Z D( fz_aijij)
AS=3,(1—pi D%[‘Pz+a2j(1+pj)Dj]
General | — NaCa2; < —Co— AR+ 1, + azj p;D
Price
Setting
Hospital | R” =3, Di(—7) R=5%,p:Di(—7)+ >, Di(1 = p;)(1aCs,: + Co —
Bi)
AR= Z D( p?)(nd021+02 ﬁz ( ))
Patient Z D (Rl O[Z D ) U = Z ( ) (Rg — Cl — T]dCQl - CQ)

lel ( - _O‘Z] p;D )

AU = Zi(l - Pi)Di(—Udcz,i —Cy— AR+ fi +
aZj(1+p.i)Dj)

Welfare | S°=>".D;(Ri—~— f; —Oézj D;) | S=>,pDi(Ri—~v—f; _O‘Zj pi D)+ 5..(1—
pi)Di(Ra — ;)

AS=3,(1—p;)Di[p; + azj(l + p;)Dj]

However, V j € I, since ¢; < —ay . D;, then, % > >, D;, and we have W* < %.
Based on Theorem 1, it suggests that p;, = 1. Contradict.

Therefore, when ¢,,,, > —a ), D;, there exist patients who receive care at home. When there
are patients staying at home, we can see from Table A.6 that all of the three parties are strictly
better off.

Next, we show that the hospital earns strictly more money from every at-home patient.

Patients’ IC constraints require 73C5; +Cy < —AR+ fi +« Z p;D;, Vi€ I. To obtain the max-

imum revenue, 73Cs; + Cy = —AR + f; + aW*. For each patient staying at their own community,

the hospital now gains 74C5; + Cy — ;. First, we show that the threshold community K have

a> " D;+ ¢ >0 because otherwise, > D; + ¢ <0 leads to W* = adi gi_“’K > 02 Di;azi Di
> D;, which contradicts with the condition that there exist at-home patients. Second, since ¢; > ¢k
for each community ¢ that is optimal to stay at home, we conclude for each at-home community

@; > —ay. D;. Compared to the previous gain —y from community 4, the hospital now gains



Author: Service System Design of Video Conferencing Visits with Nurse Assistance 57

naC2,; + Co — 3; which is strictly greater than —v, and it collects 7y3Cs ; +Cs — ; — (—7) = ¢; + aW*
more money from every at-home patient. ; +aW™* > ¢ +aW™* and the latter is positive because

aW=(a),D;,—¢k)/2 and px+ad> ,;D;>0. =

Similar to the profit-maximizing problem, the social-welfare maximization problem of consider-
ation is equivalent to the following model, and all the results are derived from it. The proof follows
that in Proposition A.3.

max > (1=p)Dilpi+a) (14p;)Dj],
Po=2d ot jer
s.t. IC constraints (1) — (3).

Proof of Proposition 7

Proof. For a linear nurse coordination cost function, we obtain:

LWelfare - Z(l - pz)Dz[(pz + OZZ(l +pj)Dg} + AzpzDz +,uz(1 - pz)Dz
J

i

The FOC suggests that

aL eliare
J
As as result, 3 p;D; = —¢itdizii Note that WWel = >, piD;, similar to the revenue-maximizing

case, we have

p¥ e (0,1), if and only if WW= —¥i,

2a0 '
o' =1, if and only if WWI< T2 i,

200’
o' =0, if and only if W™V > 2%

o

Therefore, a threshold structure also applies to the social welfare optimization problem with the
threshold KWe!,

Next, we show WWel < TWRev by considering the following cases:

e Case 1: KRev > gWel,
As W=pgDr+ 3,k Dy, KRev > KWel Jeads to WReY > P/ Wel,

o Case 2: KRev = gWel

WReV _ (8% Zz D; - QOKRev > (6% _;KRev . « _;KWCI _ Wwel.
« (0% (0%
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o Case 3: KRev « gWel

AS W:/)KDK +ZJ<K -D_]) KRev < KWEI leadS tO WREV < WWBI' SinCe (pKRCV < SDKWel,

OZZL Di _SDKRQV > Oé_SDKRev > OC_()OKWCI _Wwel
- Y

WRev —
2c 2x 2x

which contradicts with WE&ev < 13/ Wel,
Introduce the superscript “Rev” to refer to the revenue maximization scenario. Apaiients =

: ‘Wel Rev Wel Rev Wel Rev
aH ), D;. Since H™ > H"V, then, Apfi., . > Apitio,. Moreover, Ajsi. < Afs i and

‘Wel

AN e > ARey.  follow from the fact that pR°¥ maximizes revenue (Agogpital) and pVe' maximizes

social welfare (Aweitare). ®

Proof of Proposition 6
Proof. Let Apospital represent the difference of revenues with and without offering virtual services,
and Apaiients b€ the change of patient surplus. We introduce superscript “Wel” to refer to the
results obtained from social welfare maximization. According to Proposition 7, p}¥' € (0,1), if and
only if WWel = Z2i: pWel — 1 if and only if WWe' < S22,

First, we show that if 4. > —2a )", D;, then there exists at least one community with p; < 1.

If p;=1 for all i € I, community N could serve as the threshold community and WWe' =%~ D;,

which conflicts with WWel < —£maz < QQQEJDi =>,D,.

Second, we show that if ..., < —2a), D;, then, all communities have p; = 1. If not, then, the
number of patients going to the hospital should be less than the total demand rate WWel <3~ D,.
Now, V j € I, since p; < —a .. D;, then, =22 > 3. D;, we have WW' < =22 and according to
Proposition 7, p; = 1. Contradict.

For the change of social welfare without and with VC visits, defined as Aweitare = ), Di(1 —
pi)(pi +ad ;D +aWWel)y =3 D;(1 — p;)pi + «HV(", Dy + WV If HV > 0, Aweltare > 0.
One the other hand, Aweitare = 0 leads to HWV! = 0. Thus, the change in social welfare is strictly

positive when there exists at least one patient staying at home.

Proof of Corollary 1
Proof. For each community i with ¢; > —aW™We the medical institution is willing to provide

them VC visits. Note here W™ is invariant with Cy;. When n,C3%"' < —Cy — AR + f; + aW™W,
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patients are optimal to choose the virtual service option. When —Cy — AR — v+ 3; < ndC;’V,iel,
the medical institution would like to offer virtual services. In summary, any price ndC;’Vfl between
—Cy — AR — v+ B; and —Cy — AR + fi + aWWel would be a feasible price. If ¢; < —aW™Wel, the
hospital is forced to offer VC visits and the equilibrium pricing is 74C3'' = —C, — AR+ fi +aW™W,
which follows patients’ IC constraints.

Under the condition that ¢4, > —2a) . D;:

1. By setting 174C5; = —Cay — AR+ f; +aW W the hospital is strictly better off. For the hospital,
since Apospital = ¥_; Di(1— pi)ps +aHWVIW Wl HWel > () leads to Agospital > 0. Otherwise, HV' =0
leads to p; =1, Vi and thus Apespitas = 0. Therefore, the hospital is strictly better off if there exists
at least one patient staying at home. Social welfare, as the sum of the two, is also positive.

However, whether the hospital receives more money from each community is not guaranteed
under the social maximizer. In fact, the hospital receives more money when —aW™Wel < ;. because
—Cy — AR — v + B <naCyi = —Cy — AR + f; + aW™Wel. However, for communities with ¢; <
—aW™Wel ' the hospital gains less. Such communities exist when WWel >0, i.e., 3 p¥l € (0,1],
which means ¢; < —2aWWel < —aWWel,

2. For the communities with ¢; € [-2aWWel —aWWel) | n,Cy; = —Cy — AR + f; + aWWel <
—Cy— AR —~v+5; and 0 < p; < 1, the hospital is losing money serving them. For the communities
with @; € [~aW Wl +00), when we assign 17,C5; = —Cy — AR — v + 3;, which is a feasible price,
the hospital does not gain more from serving them. Overall, the hospital’s gain is negative.

COROLLARY A.2. When priced at ndcﬂel =—Co— AR+ fi+aWWel ifVi, p; >0, then, p/V*' =0,

i.e., all patients should stay at home under social welfare maximization.

For all patients to stay at home, compared to the condition ¢; >« ._; D; in Corollary A.1 in

icl
the revenue maximization case, the condition of the social planner (Corollary A.2) is relaxed — as
long as all of their marginal utility changes are nonnegative.

Proof of Theorem 4
Proof. For part (a), patients from community j being optimal to stay at home means 7;Cs s +Cs <

fi+aW — AR. Assume not, patients from community ¢ are also optimal to go to hospital, i.e., f; +

aW — AR <n;Cs ;4 Cs. These results lead to f; < f; for any 1;C5 ;+C5 and W, which contradicts
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with f; > f;. Part (b) naturally follows and the threshold distance is F' =n;Cs ; + Cy —aW + AR.

PROPOSITION A.4. When 1y =0, and ny =0, the medical institution is not willing to offer VC

visits unless Cy satisfies the condition described by inequality (A.8).

Proof. When () is a constant, firstly, when F' increases, W also increases, so there exists a unique
solution for F'+aW = Cy+ AR, and then, the equilibrium patient strategy can be obtained. F' and
W can be found by applying the monotone property in Theorem 4 through the following procedure:
Test F' € (fi_1, fi], for i=N+1,N,..,1, where fx,1 =00, fo =0, and stop when feasible F' and W
are found.

e Step 1: Set initial W =), D;. Start with i = N+1,if Cy > f;+aW — AR (denoted as “ineq*”),
i.e., F'> fy, which means feasible F' and W have been found, then, all patients are optimal to go
to the hospital. Else, go to step 2.

e Step 2: (to determine F') Consider community i, if Cy > f; 1 + (W — D;) — AR, stop and
F € (fi_1, fi], go to step 3. Else, continue with i=i—1 and W =W — D,.

e Step 3: (to determine pr ) Now, denote i as K, a threshold community K. A mixed strategy only
exists when F'= fg. Since fix =Cy — a(W — D + pxDx) + AR, we obtain prx = max{0, (—fx +
Cy+ AR — a(W — Dg))/Dk}. Notice that px <1 because of (ineq*). If px >0, F' = fg, and if
pr =0, F € (fx-1, fx)-

Based on individual patients’ choices, the revenue becomes:

obj=Co | Y Dj+(1=p)Dx | = > 9;(D;) = gx((1-px)Dx)

J:fi>fr Jifi>fr
— Y D+ pxDi — W +40> D — W.I*. (A7)
Jifi<fi jeI

After finding out the patient strategy and F', then, the medical institution is willing to offer VC
visits when

Zj:fj>F 9;(D;) + Zj:fj:F 9;((1 = p;)D;) +7[Zj;fj<F Dj+px Dk —W]*" — 'Y[Zjej D; —W.J*
Zj:fj>F D; +Zj:fj:F(1 —p;)D; .

Cy >
(A.8)
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LEMMA A.4. When nq =0 and ny # 0, the medical institution is able to find equilibrium patient

strategies and the optimal Cyy in O(N) time when g(-) is finite piece-wise smooth.

Proof. For mathematical simplicity, we call K the threshold community when F' € (fx_1, fx].
If pr €(0,1), F = fx and n;Cs s+ Co = f; + oW — AR. If px =0, F € (fx_1, fx). To maximize
revenue, the medical institution would set F' = fx —¢, and n;Cs f + Cy = fx —e+aW — AR, for
a small amount e. Therefore, the equilibrium price is 1n;Cs s + C; = fx +aW — AR. Notice that if

px =1, K is not the threshold community. We first find the threshold community and the optimal

strategy px:

K= argmax;_g ;

[RRS)

Obj(i):ffi)?x(nfczf*‘cﬁ Z Dij+(1—p)Di | - Z 9;(D;) — gi((1 = pi) D;)

Jifi>fi Jifi>fi
_'7[ Z Dj+piDi_We]++7[ZDj_We]+v (AQ)
J:fi<fi Jjel
where W = Zj:f]-<f¢ D;+p;D; and n;Cs s + Cy = fi +aW — AR.

The first term is a quadratic function. Thus, this unconstrained optimization problem with one
decision variable p; is easy to solve. For the linear case where g;((1 — p;)D;) = 8:(1 — p;)D;, and
W, =0, we have a close-form optimal solution

a(Hz'C +D; — Wz‘c) —©i !
2O[DZ ’

pi = max{0, min{1,

where ¢; = f; — Bi +7— AR, W =37 Dj and Hf =3}°

J8i<ti isy> 1 Die
When g(+) is smooth or finite piece-wise smooth, we are able to obtain the optimal p; by using

the first derivative or iterating all discontinuous points. =

Proof of Proposition 8
Proof. The medical institution would like to offer the service when there exists ¢ such that
obj(i) > 0. This is equivalent to there exists 7 such that p; <1, for

a(HE +D; = WE) — i

i = ) i 17 )
p; = max{0, min{ 50D, 13

which means ¢; > a(zfj>fi D;— Efjgfi D;).
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The reason for the equivalence is as follows. Assume the optimal solution of p, when k is the
threshold community is pj. If the two statements are not equivalent, then when all p; =1, Vk eI,

there exists 0bj(i) > 0. Observe that

obj(i,pf =1) <obj(i+1,p;x1 =0) (Definition of obj(i,p;) in (A.9))
<obj(i+1,p;ir1=1) (Assumption p; =1, VkeI)

<...<0bj(N,py=1)=0.

Contradict.

Under the condition that 3 ¢; > a(>] t;>1, Di - fi<hs D;), there is at least one patient optimal
to stay at home, and the congestion level at the medical institution decreases comparing to without
VC visits. Hence, the go-to-hospital option has an increased utility. Subsequently, the patients who
are optimal to go to the hospital are strictly better off. Next, consider the patients who prefer to
stay at home. Given that they obtain larger utilities from the at-home option than that from the

go-to-hospital option, they are also strictly better off. =

Proof of Proposition 9

Proof. Social maximizer is to find:

max > Di(1—p)(~AR+ fi+a ) D) Zgz 1-p;)D;) ZmD W +4> D - W]
i J jeI
+ZPiDi(aZ(1—Pj)Dj),

J

s.t. IC constraints (1) — (3).

Follow the same logic with revenue maximizer, the social welfare gain from the new service is

obj WV (K):

=Yy dseey

0b e (7) maX Z D;( AR“‘fJ"‘O‘ZD 1—pl)Di(—AR+fi+OzZDj)

Jf]>f1 J
+ > Dij(@) D;j—aW)+pDi( ZD —aW)
Jifi<fi J
- Z 9;(D;) = g:((1 = ps) Ds) — [ Z Dj+piDi_We]++7[ZDj_We]+>-

]f]>fz ]fj<f7, jeI
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= max Z (p; + ZDj)Dj +(1—p)(pi + ZDj)Di + aW(Z D; —W) (all linear case)

Pi . - - -
Jifi>fi jel jerl jerl

where W = Zj:fj<fi Dj +p1Dl, and wY; = fj - Bj e AR.
The close-form optimal solution is

—2aWE — o,
; = 0, min{l, ———=——1}},
pi; = max{0, min{ %) 13
where ¢; = f; — f; +7— AR, and Wf = Zj:fj<fi D;.
Following the same logic as that in the proof of Proposition 8, social welfare begins to increase

—2aWiC— i

when 3ab; ?i <1, i.e., when there exists a community i with ¢; > —2« ijsfi D;. =

Appendix F  Additional Numerical Studies

We analyze the number of registered cancer patients by city and county (zip code indexed) through-
out calender year 2018 to identify the service region I covered by UFHCC and to estimate the
potential patient demands D; across regions. We crafted one numerical example based on the real-
world data presented in Table A.7. Additional model parameters are displayed in Table A.8. We
introduce f3; = ratiogz * distance;, that is, the cost of dispatching nurses is linear to the distance
between the patient home and the community clinic, and similarly, we define a travel burden-to-
distance ratio, suggesting that the travel cost of patients is linear to the distance between patient

homes and the medical center

F.1 Sensitivity Analysis

Here we present a sensitivity analysis to explore how the decisions vary based on the parameter
setting. First, we consider the demand variation, which is captured by the demand-to-population
ratio. When it decreases, i.e., not all registered patients do follow-ups, the threshold community
is still Marion and 41.5% of patients therein go to the medical center, and the rest stay at home
(51.0% market size). Without the capacity cap, when the demand-to-population ratio increases
from 1 to 2, 44.8% of Marion patients, and 50.3% of total patients are optimal to stay at home. It
suggests that the relative market size of telehealth is decreasing with the increase in demand rate.
This seemingly counter-intuitive observation can be explained by the high congestion cost perceived
by patients, and the medical institution can take advantage of this to create congestion that raises

patients’ willingness to pay for telehealth. The negative externality of congestion perceived by the
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Table A.7 Sample data and optimal solutions.

County Name | D; | f; | fi — ;| Rev. Max. p* Social Max. p* | Rev. Max.p* Social Max. p*
(Base case: 6 =1,000) (Large 6: 6 =10,000)
Alachua, FL. 292 | 2.0 | 0.0 1 . 1 )
Levy, FL 83 1224 0.0 1 1
Clay, FL 265(25.1| 0.0 1 1
Bradford, FL. | 41 [28.3] 0.0 1 1 .
Union, FL 18 129.1| 0.0 1 1 1
Gilchrist, FL. | 29 | 31 0.0 1 1 1
Putnam, FL. | 135| 35 0.0 1 1 .
Dixie, FL 32 | 52 0.0 1 1 1
Citrus, FL 424 158.8 | 19.4 1 1 .
Baker, FL 31 | 59 26.2 1 1 1
Lafayette, FL | 11 |67.8| 31.1 1 1 1
Marion, FL 828 | 38.3 | 34.7 .32 .
Suwannee, FL | 77 | 68 | 41.7 1 1 .
Hamilton, FL | 21 |75.3| 43.0 1 1 1
Sumter, FL 583 |73.4| 45.2 .
Columbia, FL | 104 | 46.8 | 46.0 1
Madison, FL. | 32 | 105 | 72.1 1
Taylor, FL 36 | 100 | 984 1
Jefferson, FL. | 27 | 129 | 101.8 1
Wakulla, FL. | 40 | 143 | 115.6 1
Leon, FL 305 | 144 | 140.3 . . .
Gadsden, FL. | 67 | 176 | 140.7 : . 1
Table A.8 Summary of the model parameter setting.

Parameter Baseline | Range Unit

a 1 [1,10) $/pp

5 1 [1,10) $

ratiog 1 [1,1,000] |$/mile

demand-to-discharge ratio 1 [0.5,2] -

travel burden-to-distance ratio | 1 [1,10] $/mile

W, 0 [0,10,000] | —

medical institution and patients have different effects. When the medical institution is sensitive
to hospital congestion, for example, v increases from 1 to 10, 43.1% of Marion patients should
go to the medical center. Whereas when patients are more sensitive to congestion, for example, «
increases from 1 to 10, 45.6% of Marion patients should go to the medical center. Note that Marion
patients always adopt mixed strategies, which agrees with our previous observation that a large
demand size is more likely to induce mixed strategy optimal solutions.

A smaller nurse coordination cost (for example, a per-mile nurse dispatch cost ratiog = 0.5 in

contrast to 1) would cause more patients to stay at home. Three counties become more beneficial
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than Marion (less beneficial in the base case), and they become optimal to stay at home. Meanwhile,
only 0.2% of Marion patients are still optimal to stay at home, and overall half of the patients are
optimal at home receiving VC services. A larger nurse coordination cost (for example, ratios = 2)
also leads to changes in marginal benefits and ranking of communities. In this case, it indeed
causes more patients to go to the medical center, and 45.5% of total patients are optimal to stay
at home. On the other hand, when the unit distance travel burden increases from 1 to 10, i.e., the

transportation cost of patients f; becomes higher, 55.0% of all patients stay at home.

F.2 Concave Cost Function

In addition, we consider a concave cost function with a non-zero set-up cost, following a previously
published work on profit-maximizing cost allocation problem for firms using cost-based pricing
(Pavia 1995). In this numerical study, we use a set-up cost § = 1,000 in the base case. A piece-wise
linear concave function as in (Hu et al. 2019) with L =3, coef; = 1 and coef; being the reverse
order statistics of L uniform random numbers in [0.6,1], for all 1 < < L. This yields g(D) =
1000 + B; min{D, 100} + 0.745;[min{D, 200} — 100]* + 0.65;,[D — 200]*, as shown in Figure A.5.
Consequently, for each community, the gradients of the cost function are the coefficient of segments
times the marginal cost 3; used in the linear setting, and all parameters stay the same as the linear
baseline in Table A.8. We provide optimal solutions of the base case with W, = 1,000, § = 1,000,
(see Figure A.6) and another case with a large 6: § = 10,000 for comparison in Table A.7.

The impact of being a strictly concave rather than linear cost function on the optimal solution is
also minimal. This is because only communities employing mixed strategies have nurse coordination
costs differing from the ones under the linear approximations. Since the concave cost function
is computationally expensive, one can initialize the heuristic algorithm (Algorithm 2) with the
optimal solution obtained from the linear approximation to gain efficiency.

In contrast, the set-up cost poses a significant impact on the optimal solution. When set-up
costs are high, for example, § = 10,000, we observe that the solution structure with a threshold
community using a mixed strategy no longer exists. Instead, all communities adopt pure strategies,
and more communities are optimal to go to the hospital because of the high set-up cost.

Whereas a single factor, marginal gain ¢;, is sufficient to decide the threshold community in the

linear case, when a general cost function is assumed, both marginal gain ¢; and demand size D;
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should be taken into consideration. Intuitively, with similar marginal gains, the medical institution
would prefer communities with a larger demand to stay at home. Generally, the communities with
good profitability of telehealth (the product of marginal profit and demand is high) are optimal to
stay at home. However, the marginal gain still plays a leading role — if the marginal profit is too
small, no matter how large the population is, the community is still optimal to go to the hospital.
In contrast, when it comes to the social welfare optimization, D; is an important factor — a social
planner would only let a community as a whole to go to the hospital when its population size is
small.

Lastly, our conclusions that (1) a social planner would like more patients to stay at home, and (2)
under the given conditions in Proposition 7, AR o > AR AR 0 < AR ian and AW, >
ARey. . remain valid for the general concave nurse coordination cost functions. The difference of
the optimal solution comparing a concave cost function and its linear approximation is small, and

the readers are referred to the Appendix for more numerical results regarding the benefits brought

by VC visits for hospital revenue, patient surplus, and social welfare under different settings.

4000
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Figure A.5 Sample piece-wise linear concave function

F.3 Non-Zero Congestion Penalty

We test different non-zero congestion penalty threshold values W.. To our surprise, this non-zero
threshold is negligible when the medical institution’s sensitivity to congestion is small (such as v =1
in the baseline setting). When the medical institution’s sensitivity to congestion becomes larger,
for example, v = 10, this threshold comes into play and affects the optimal solutions — a zero
congestion penalty threshold (W, = 0) and a non-zero congestion penalty threshold W, = 1000 favor
less patients coming to the central facility compared to W, = 2000, where the whole population

generates a demand D,y = 3481 in the baseline setting.
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Figure A.6  Results for piece-wise linear concave cost functions (Base case).Benefits brought by telehealth for
hospital revenue, patient surplus, and social welfare under different settings: (a) revenue maximiza-
tion, (b) social welfare maximization, and (c) social welfare maximization with increased in-person

care price C}

For the sensitivity analysis regarding W, # 0, we provide the following discussion. With the non-
linear congestion cost —y[W — W,|*, denote R.(-), the revenue-maximizing objective function as
a function of congestion W, given a non-zero W, =w. <), D;. In addition, let R* be the optimal
objective function, given W, = w,. This is because the change of the objective function does not
affect patients’ incentive compatibility, and thus, once the prices are given, W is given, and p;’s
can be uniquely determined (see the proof of Proposition A.3).

(a) When W, =0 (reduced to a linear term —yW with v # 0), we denote the optimal congestion
as W;. Since Wy is always a feasible solution, R* > R.(W{). Moreover, denote the objective
function when W, =0 as Ry(-), then we have R.(W;) > Ro(Wy). Thus, Ry(W{) serves as a lower
bound of R*.

(b) When W, =3".D; (equivalent to v =0), we denote the optimal congestion as WZ, and
the objective function R, (). We know Wy < W2 and R.(W;) < R.(WZ). Because we drop a
non-positive term in R (+), thus, for any W, we have R, (W) < R (W) < R (W%). We obtain an
upper bound of R*.

Therefore, the optimal objection function R* is between Ry(Wy) and R: (WZ). For the revenue-
maximizing problem, if the impact of 7y (the sensitivity of congestion from the medical institution’s

side) is small, then the difference between Ro(Wy') and R, (W2) is small, i.e., the distance between
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the lower and upper bound of R* is small. As a result, the impact of W, is small. Note that the
impact of v to the hospital’s revenue is in proportion to the number of patients, whereas the impact
of a (the sensitivity of congestion from the patient’s side) is in proportion to the square of the

number of patients.
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