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Abstract—The goal of this work is to investigate the sys-
tem configuration and information management of primary
care delivery with electronic visits (e-visits). We consider a
medical institution employing primary care physicians and
other clinicians that offer office visits (in-person) and e-visits
(through secure messaging from patient portals), and where
different queue-joining behaviors: denoted as the mixed strategy,
the duplication strategy and the threshold strategy are adopted
by flexible patients based on different system configurations.
Different queueing models are developed to capture flexible
patients’ queue-joining behaviors according to queueing informa-
tion provision. In particular, we develop the equilibrium behavior
of a dual server system where state information is available for
one of the servers and the flexible patient exhibits a utility-
maximizing behavior, which extends the literature on the analysis
of queueing systems with strategic customers. The duplication
strategy with deletion offers the least expected waiting time
for the patients, and the threshold strategy provides the next
best performance which is superior to the mixed strategy, which
demonstrates the value of information. Note to Practitioners—We
present a novel analytical framework for modeling the primary
care delivery system and obtain the equilibrium patient flows
under different queue-joining behaviors. This framework enables
a rigorous analytical investigation of system configurations and
their influence on system performance under a reasonable level
of abstraction. System efficiency can be improved by taking
advantage of patients’ heterogeneity in care preferences and time
sensitivity. Queue information management and coordination of
servers are found to be crucial in achieving the best efficiency,
especially with growing flexible customers in the population. The
methodology and analysis put forth in this study provide action-
able insights into care delivery planners engaged in facilitating
e-visits, especially during the COVID pandemic.

Index Terms— Capacity planning, doubly stochastic Poisson
process, e-visits, primary care, queueing.

I. INTRODUCTION

ITH the rapid growth of patient population and the
Wacute shortage of primary care physicians (PCPs),
declining access to care is becoming a menace for both patients
and care providers in the United States [1]. Due to long
appointment delays, limited after-hours care at physicians’
offices, and other access barriers, patients seek a significant
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amount of nonemergent care at emergency departments [2]
or conduct self-diagnosis [3], and more patients do not show
up for their appointment or do not seek future services [4].
The primary care system risks being mired in excessive costs,
adverse patient outcomes, and poor patient retention and this
warrants a reform.

With the advent of digital health, an alternative service
to office visits, e-visit, is gaining momentum. An e-visit is
different from a video conferencing visit that requests the
presence of both patients and care providers at the same time
with the service quality close to an in-person visit. Instead,
e-visits allow patients to answer a series of questions in an
electronic patient portal (e.g., MyChart by EPIC) and submit
them to a care provider. In this way, care providers are afforded
greater flexibility in care delivery due to the asynchronous
nature of e-visits. In addition, e-visits do not have to be man-
aged by physicians, but can be offered by nurse practitioners
or physician assistants, and the unit cost of a nonphysician
provider is typically lower [2]. E-visits and similar telehealth
services are growing rapidly during the COVID-19 pandemic
as a way to screen, triage, and remotely monitor patients
without the infectious risk [5]. Before COVID-19, less than
1% of all physician visits in the United States were conducted
via telehealth and that number had spiked to over 50% and
tapered off as the first wave of COVID-19 got suppressed.
However, the demand (approximately 17%) has stayed high
above the prepandemic level [6].

The wide adoption of e-visits and other telehealth services
poses significant operational challenges to the primary care
providers. Patients can differ in their health conditions, acuity
of illness, socioeconomic factors, cultural preferences, and
digital literacy in addition to possessing varying idiosyncratic
traits [4]. These factors drive patients’ preferences for care
options. Patients can behave strategically in obtaining their
care, depending on their perception of the quality of different
care services, their travel burden, and the time-sensitivity of
their symptoms. These behaviors also impact the delay in
obtaining care experienced by the whole patient population
and the effective market share of each service in equilibrium.
On the other hand, patients’ behaviors are affected by how
the services themselves are configured. For instance, clinic
closures and limited in-person appointments largely shaped
the telehealth visit spike in April 2020 in the United States.
In addition, the long appointment delay of an office visit
informed by the scheduling system can also nudge the patient
to use an e-visit in anticipation of a quick response. The capac-
ity of appointments, the information made available to patients,
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and the scheduling options all affect the strategies certain
patients can take, leading to different equilibrium behaviors
and patient diversions. As a result, utilizing the heterogeneity
of patients and configuring the system accordingly are vital to
improving the efficiency of the system.

In this article, we conceptualize the primary care deliv-
ery system as a queueing network with two parallel queues
offering office visits and e-visits, respectively. This corre-
sponds to the case where e-visits are offered by nonphysician
providers, which is common in real practice [2]. To address
the heterogeneity in e-visit eligibility and time-sensitivity,
patient demands are segmented into dedicated office visits,
e-advocates, and flexible encounters, where care options are
evaluated on the basis of utility functions that measure the
tradeoff between the reward obtained and the cost of waiting
for each service. Without loss of generality, we consider three
system configurations: 1) the information regarding the queue
length (appointment delay or waiting time) is not explicitly
offered for either service; then, flexible patients could employ
a mixed strategy in choosing either service with a positive
probability; 2) flexible patients are allowed to submit two
requests (a duplication strategy), and cancel the redundant
request upon receiving one of the services, which does not
require the queue length information; and 3) the appointment
delay of office visits is transparent to patients, whereas the
waiting time of e-visits is not provided; then, flexible patients
can adopt a threshold strategy: the patient chooses the service
with the better expected utility which is based on the observed
number of patients waiting for office visits.

These three settings correspond to our observation of the
current service system designs. In particular, the threshold
strategy is very close to what we have seen in real-world
operations for patients who perceive the service quality of
office visits adjusted by convenience (e.g., travel cost) higher
than e-visits. Patients are time-sensitive, so they will first
check the earliest open office visit appointment and decide
whether to make the appointment, or use an e-visit instead.
For some cases, patients need to overcome some barrier to
obtain the queueing time information or simply cannot have
it, for example, have to go through a complicated procedure
to get the appointment information in the scheduling system,
or need to call their clinic scheduler and wait in the phone line
to enquire the available time. In this case, we can consider
the queue length information to be not explicitly provided to
patients, and patients might just make their decision (a mixed
strategy) based on their past experience. This also allows them
to game the system by submitting requests for both services if
there is no penalty on withdrawal of appointments or no-show
charged by insurance.

This article makes the following contributions to the
literature.

1) We develop stochastic models and computationally effi-
cient analytical methods to characterize the patient
flows in equilibrium and compare system perfor-
mance under different information provision and service
settings.

2) Allowing patients to submit duplicate requests and the
flexibility to cancel the redundant requests is shown to
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benefit all classes of patients, providing the withdrawn
appointments can be immediately filled. This provides
the best-case scenario as the system is work-conserving.

3) Our study provides a lucid demonstration of “the value
of information” in flexible service systems, which is
context-dependent—the observable office visit queue
setting outperforms the nonobservable one only when
the e-visit service capacity is below a certain level.

4) We identify the best configurations necessary to maxi-
mize patient welfare and explore the possible provider
strategies that can be employed under cooperation or
competition. In a setting where e-visits and office visits
are competitive, interestingly, when absorbing the entire
e-eligible market to e-visits is advantageous, hiding
queue length information might be preferable to the
interest of the medical institution but not patients.

5) In addition, having more flexible patients and increasing
their flexibility improves the efficiency of the system
universally. This is true for all strategies provided there
exists sufficient e-visit capacity.

6) The proposed models enable us to analytically character-
ize the impact of e-visits on patient access to care, and
the solutions developed can serve as a toolset to address
a class of service configuration problems for strategic
customers facing partially substitutable service options.

The remainder of the article is organized as follows.
In Section II, we review the related literature. Section III
discusses the assumptions of the model including Section I to
the various strategies used by the patients. Section IV develops
the analytical model for various strategies. The properties
of the system are discussed in Section V and the article is
concluded in Section VI. The proofs of all propositions can
be found in the Appendix.

II. LITERATURE REVIEW

E-visits have garnered growing attention with the emerging
portal technology. The COVID-19 pandemic has boosted the
demand for telehealth services in a short period of time, with
providers scrambling for service capacity [7], [8]. Such an
adoption is expected to be irreversible with continued and
increased use of e-visits in the future [9]. However, few
studies have analyzed the service design of e-visits, which is
instrumental to the sustainable and scalable e-visit implemen-
tation. Using queueing-based analysis, Liu and D’ Aunno [10]
studied the cost efficiency and productivity of involving
nurse practitioners in primary care. A quantitative analy-
sis of e-visits using a patient health dynamics model was
developed by Bavafa et al. [11], which captures the usage of
e-visits and nonphysician providers and quantifies physicians’
expected earnings and patients’ expected health outcomes.
Rajan et al. [12] investigated the effect of telemedicine on
chronic care considering the heterogeneous travel burden. The
scheduling policies among e-visits and office visits using
a vacation queue model was investigated in [13] and the
flexible capacity allocation of e-visits was investigated in [14].
However, no analytical study on the patient flow of e-visits
addresses the inherent segmentation of patients based on
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their care preferences and investigates the implications of
information management from an operational perspective.

In our study, the duplication strategy is modeled based on
the analysis of [15]. A further development of queues with
duplicated requests was presented in [16], which introduced
different routing schemes like the “M,” “N,’ and the “W”
shaped network topologies. However, it was assumed in [16]
that the jobs can be concurrently serviced by various servers,
which is not feasible with patient care.

The other two strategies described in this article build on
the foundational work on strategic queuing in [17]. Strategic
queueing literature was further strengthened with the analysis
of several queuing systems in [18]-[20]. The queueing-game-
theoretic tools that have been applied in the healthcare domain
include the representative work [21], involving cross-border
patient movement for healthcare services; [22] which discusses
concierge medicine and its impact on patient access; and [23],
where nonurgent emergency visits are modeled as a queuing
problem. A review of recent advancements in strategic queue-
ing literature is provided in [24] and [25], and a survey on
queueing literature with strategic arrivals is presented in [26].

The threshold strategy model is also closely related to the
stream of literature on multiphase queues with nonhomoge-
neous arrival processes. A comprehensive review of operations
research methods for modeling patient flow and outcomes
can be referred to [27]. A bibliography of the application
of queues with nonhomogeneous arrivals in various domains
was presented by Whitt [28]. The development of the sto-
chastic models in this work builds on the research on doubly
stochastic Poisson processes and its application to queueing
theory [29]-[31].

IIT. MODEL ASSUMPTIONS

Primary care patients typically seek care from their ded-
icated care providers within the insurer’s care network.
In this study, we consider a medical institution that employs
PCPs and nonphysician providers and offers care services
(office and e-visits) to their panel patients. Assumptions
on encounter classification, patient demand, service sup-
ply, and the strategies employed by patients are outlined
below.

A. Encounter Classification

Practically, clinics measure patient demands by the volume
of encounters and in what follows, we discuss encounter
types. The most important driver for e-visits is the disease
condition. A patient with a cold or skin rash is eligible for
e-visits; however, the same patient could suffer migraine and
need a botox injection which requires an on-site visit. For
patients who are eligible to avail e-visit services, which we
nominate as e-eligible encounters. Some patients are tech-
savvy, or value the safety of online services, or perceive that
the transportation barrier outweighs the benefit of having face-
to-face encounters. If eligible, these patients strictly prefer
e-visits over office visits, and the corresponding e-encounters
are nominated as e-advocates. For instance, the retired popu-
lation living in rural areas or with mobility issues, or patients
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Fig. 1. Encounter classification and patient flow in primary care delivery
with e-visits.

with existing conditions and are sensitive to infectious dis-
eases, might strictly prefer e-visits over office visits. The
rest of e-eligible patients are open to being served by either
channels and we consider these encounters as flexible. For
patients whose medical conditions are neither e-eligible nor
time-sensitive, we nominate their encounters as dedicated
office visits. A schematic for patient classification is provided
in Fig. 1. We do not differentiate between the terms patient
type and encounter type and use them interchangeably.

B. Patient Demand

We assume that the total encounters follow a homoge-
neous Poisson point process. While the arrival process to a
physician’s office might not be Poisson due to appointment-
based scheduling, the original demand of patients is generally
valid to be modeled as a Poisson arrival based on historical
appointment data [10], [32], [33]. We denote the Poisson
arrival intensities of potential encounters of dedicated office
visits, flexible patients, and e-advocates as A4, Af, and A,,
respectively.

The above patient segmentation can be estimated by analyz-
ing historical patient records and based on qualitative surveys
designed to elicit the preferences of patients between office
and e-visits. For instance, a survey conducted by Nippon Tele-
graph and Telephone (NTT) DATA Corporation [34] reported
that 76% of patients prioritize access to care over the need
for human interactions with their care providers, and 70%
of patients are comfortable communicating with their care
providers via text, email, or video, in lieu of seeing them in
person [35].

C. Service Supply

To describe the service process, we consider a queueing
network with two servers and denote uor and e, as the
office visit and e-visit service rate, respectively. Because office
visits are typically appointment-based, we are interested in the
appointment delay (can be shifts, days, or weeks) rather than
the waiting time in a physician’s office (typically measured by
minutes). Because the in-clinic waiting time is typically orders
of magnitude smaller, we do not consider it in our study for
the tactical-level decision support. For e-visits, no appointment
is needed, but there is still a delay (can be shifts or days) in
getting response due to limited service capacity and service
time variability. In this study, we use appointment delay and
waiting time interchangeably. The service rates herein act as
a proxy for the nominal appointment capacity of a service
provider per a scheduling unit (e.g., a clinical session), or the
rate at which the physician is able to provide treatment to their
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patients. This assumption follows the ones introduced in [36]
and [37].

D. Strategies of Flexible Patients

Since the choices of e-advocates and dedicated office visit
patients are fixed, we focus on the different strategies a flexible
patient can adopt under various circumstances. A strategy is
induced by how the system is configured and what information
is available to them.

1) Mixed Strategy: Both service queues are not observable;
however, patients are aware of the expected waiting time for
each service. In equilibrium, the flexible patients can adopt a
mixed strategy of joining each queue.

2) Duplication Strategy: The flexible patient is highly
time-sensitive but is indifferent to the service quality and
convenience (i.e., the total reward) of both services and
submits requests to both services. The patient is treated by the
server which is available first and the redundant request gets
deleted immediately. In a way, the flexible patient is gaming
and possibly exploiting the scheduling system. In this case,
whether or not the queues are observable is immaterial.

3) Threshold Strategy: The office visit queue is observable
but the e-visit queue is not. Here we assume that the e-visit
queue is not observable because currently the system (vendor)
does not inform patients how many messages are waiting to be
responded to. Then, an arriving flexible patient (she) observes
the office visit queue and joins the queue if the queue length
is below a threshold; otherwise, the patient seeks the e-visit
service (a threshold strategy). In practice, a patient can check
the office visit appointment delay. Upon being notified that the
next available slot is two weeks away, the patient will decide
whether she can tolerate the long waiting time, or had better
submit an e-visit instead. This asymmetric design is common
in other service industries. For instance, customers who arrive
at a fast-food restaurant (e.g., Subway) and find a long waiting
line may opt to order the food online (e.g., using Tapingo)
instead.

We assume patients are risk-neutral, their decisions are
irrevocable, and retrials of balking patients and reneging of
entering patients are not allowed, following [17]. The only
exception is the duplication strategy, where the system deletes
the duplicate request upon a copy is served. In addition,
we assume the service system is closed, that is, there is no
patient loss, and office and e-visit services are provided by
the same medical institution. The scenario of patient loss
and competitive office and e-visit services are discussed in
Sections V-D and V-E, respectively.

IV. QUEUEING MODEL

Stochastic models are developed for each flexible patient
strategy in this section.

A. Mixed Strategy Model

Flexible patients gain a reward R., (R.) from receiving
e-visit (office visit) services and have to pay a unit time cost of
Cey (Copy) for time spent in the system, including both waiting
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and service time. For ease of exposition, the reward represents
the benefit of receiving care, adjusted by service quality and
the cost of travel, and we let Cory = Coy = C and define k =
(Rofy — Rey)/(C), which is the waiting cost adjusted reward
difference. Flexible patients will determine the strategy such
that their utilities are maximized.

Proposition 1: When there is ample office visit capacity,
that is, tory > Aq + A, and the waiting cost adjusted reward
difference is large enough (k > k,), all flexible patients choose
office visits. When there is sufficient e-visit capacity, that
iS, ey > A4 + Ay, and the waiting cost adjusted reward
difference is small enough (k < k,), all flexible patients choose
e-visits. Otherwise, an arriving flexible patient will adopt a
mixed strategy, that is, she will join the office visit queue
with probability p and the e-visit queue with probability 1— p,
p € (0,1).

The effective arrival to the office visit queue is denoted as
ATX = J, + pls and that to the e-visit queue is ATX =
Ja + (I = p)A;. The mean waiting times in the system are:

MY = (1) (o, — AT and WIX = (1)/(ey — AZ).
In equilibrium, Rofy — Cony Wip® = Rey — Cey W™, while
ensuring that AS}‘V" < Moty and AQ“ViX < Uey. The formula of
p is provided in the Appendix.

If a patient cannot observe the congestion in each queue, she
will randomize her option in a way that in equilibrium, she gets
the same utility from both services. If the rewards and waiting
costs are the same for both services, the patient experiences the
same waiting time at both services in equilibrium. Eventually,
all three classes of patients experience the same waiting
time. This system configuration has the minimum information

provision and is easy to implement.

B. Duplication Strategy Model

When a duplication strategy is allowed, the service system
can be modeled as one with multitype servers and multi-
ple jobs. We have a set of two servers & = { Mg, Mey}
representing office visit and e-visit servers, and job types
C = {d, f,a} representing dedicated office visit, flexible,
and e-advocate patients, respectively. Server My can serve
patients of type C(My) = {d, f} and server M., can
serve patients of type C(M.,) = {f,a}. Following [15],
we derive a merged state space representation using the
ordered tuple (u;;, M;, t;, M;), where the indices (i, j) €
{(ev,ofv), (ofv,ev), (ev, ¥), (ofv, @), (¥, ?)}, and ¥ denotes an
empty set. M; and M; stand for the two servers that can serve
a customer belonging to C(M;) and C(M;), respectively. The
ordering of the tuple is critical and is read from right to left:
server M is busy in service of a customer belonging to C(M),
followed by f; number of customers which can be served
exclusively by M; or C(M;) — C(M;). This is followed by
server M; which is busy serving one customer belonging to
a class it can serve, followed by u;; number of customers
of unspecified type which can be served either by M; or
M; or C(Mj) U C(M;). It is worth noting that this state
space representation is rather succinct and there is no need
to specify the states of all entities including the ones that are
being served. Using such a state space depiction, all possible
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Fig. 2. Possible states of the queueing system where class “f” patients can
be served by both servers Moy and My .

transitions between states can be formulated and flow-balance
equations can be derived.

A few sample states are illustrated in Fig. 2. For example,
the first state (3, Mogy, 3, Mey) implies that, from the right,
the e-visit server is serving either an e-advocate or a flexible
patient. Waiting to be served are three e-advocates who can
be served only by the e-visit server. In addition, the office
visit server is busy and is treating either a dedicated office
visit patient or a flexible patient. That is followed by three
patients of the unidentified type who can seek services from
either server. In total, there are six patients waiting and two
patients in service. The steady-state probabilities and waiting
times for each class of patients are derived and can be found
in the Appendix.

Proposition 2: Dedicated office visit patients and
e-advocate patients, depending on their states, have either
zero waiting time, an exponential waiting time, or a waiting
time that consists of a series of exponential waiting times
as in a tandem queue. For flexible patients, if either of the
server is free, there is zero waiting time and if both servers
are busy, the waiting time is equal to that obtained from an
M/M/1 queue with combined service rates and arrival rates.

This system configuration is very efficient since it is work-
conserving. In addition, flexible patients experience the least
waiting time compared to other classes. However, the system
is configured in a way such that redundant requests get
cleared and immediately make way for other appointments to
take their place. Although patients do not need the queueing
information, maintaining such a configuration is a challenging
undertaking because one has to keep tracking the duplicated
requests and fill in the withdrawn slots, which demands a
sophisticated information management system coordinating
the two services.

C. Threshold Strategy Model

The threshold strategy model follows the rational queueing
literature by Naor [17]. If an arriving flexible patient observes
n patients in the office visit queue (including the one in
service), the expected utility is Roty — ((n 4+ 1)Coty)/(fotv)-
The patient then compares the utility of requesting an e-visit,
Rey — Cey Wey, where W,y is the expected waiting time incurred
at the e-visit queue, including both waiting and service time.
Then, flexible patients play a threshold strategy ng,—an

, Office Visit Queue Length

T T T

I i
Phase 1 Phase 2

Fig. 3. Arrival process of the e-visit queue. This process is modulated by
the queue length of the office visit queue and determined by the threshold
nie chosen by the flexible patient.

arriving flexible patient joins the office visit queue if she
observes ng, — 1 patients or less and joins the virtual e-visit
queue (submits an e-visit) if she sees ny, patients or more
in the office visit queue. The threshold ny, is determined by
Nthr = argmin{Rofv - ((n + l)Cofv)/(/uofv) < Rev - CevWev}~

+
It is wofltehZ noting that W,, is a function of ny, and e-visit
service rate fey.

Under the threshold strategy, the office visit queue, when
viewed in isolation, can be modeled as a single server queue
with an arrival rate that varies based on its queue length. Then,
viewing the e-visit queue in isolation, the arrival to this queue
is modulated by an alternating process. The “off” phase or
phase 1 is when the arrival to the e-visit queue is equal to
A1 = A, and the “on” phase or phase 2 is when the arrival to
the e-visit queue is equal to 4, = A, + A . Specifically, phase
1 corresponds to the period of time the office queue length is
strictly less than ny, (the threshold), preceding and succeeding
this period the queue length switches to a value greater than
or equal to ny,. Phase 2 corresponds to the amount of time the
office queue length is greater than or equal to ny,, preceding
and succeeding this period the system is in phase 1.

Proposition 3: The arrival process to the e-visit queue
follows a doubly stochastic Poisson process as depicted
in Fig. 3 characterized by nonexponentially distributed sojourn
times, the distribution of which is determined by the
threshold ny,;.

Here, we present a renewal approximation of the doubly
stochastic Poisson process. Following [30], the Laplace trans-
form of the probability density function of the synchronous
interevent time ¢*(s) is obtained as

. 1 230y 2502
() = A1o1 + a0 |:S+/11 S+/12i|
(1 — A2)? s ?
o1 + Aav) [(S + A1) (s +/12)i|
[1— fres+)][1 = £ (s + 42)]
=[S+ )

(D

where v and v, are the expected sojourn times in phases 1
and 2, respectively; A1 = A4, 412 = 44 + Ay, and f;°(s) and
f5(s) are the Laplace transforms of the probability density
functions of phases 1 and 2 sojourn times, respectively. The
derivation can be found in the Appendix.
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Corollary 1: The
can be estimated as
where 0 = ¢ (e (1 — 0)).

Corollary 1 is obtained based on the renewal approxi-
mation and the accuracy of the approximation is discussed
in the Appendix. Since the distributions of phase durations
are exogenously determined by the threshold ng,, which
is endogenized by the strategy chosen by flexible patients,
we present the following procedure for obtaining the equilib-
rium threshold.

First, set n = |[(RotvMotv)/(Cory)] — 1 and calculate the
expected utilities for e-visit and office visit services: Uy =
Rey — ev(n)Cev» and Upty = Roty — ((n + I)Cofv)/(,uofv)»
respectively. Since the higher the threshold, more traffic flows
to the office visit queue, and lesser traffic flows to the e-visit
queue, it can be trivially seen that Uyp is monotonically
decreasing with n and U,y is monotonically increasing with n,
and there exists a unique fixed point across which Uey — Uygy
changes the sign. Therefore, depending on the difference in
magnitude between the two utilities, the threshold can be
altered from its starting value until the sign of the difference
of utilities changes; otherwise, the procedure is terminated at
n = 0, which implies that e-visits offer a better utility than
that can be obtained from an empty office visit queue. This
fixed point n is the equilibrium threshold.

The effective arrival to each queue is determined as

Ag:,r = P(Nofv = nthr) (/Ia + j«f) + P(Nofv < nthr)/la (2)

Al = P(Noty > nie)da + P(Noty < nwe) (25 + 2a)  (3)

expected waiting
Wey =

time in system

D/ (1 = o) ey,

where N is the number of patients in the office visit queue
(including in service) and ng, is the equilibrium threshold.

Remark: In contrast to the mixed strategy, due to the integral
nature of the threshold, in equilibrium, the flexible patient may
not experience the exact same waiting time at both queues
even if the rewards and waiting costs are same for both the
queues.

V. DISCUSSIONS

In this section, we compare different system configurations
and the corresponding system performance.

A. System Performance Comparison

Five parameters, the three arrival rates and the two service
rates are critical to modeling the system. For system design
purposes, in each experimental setting, we vary the e-visit
capacity (characterized by e-visit service rate ue,) and fix
the remaining four parameters and investigate how the aggre-
gate patient surplus (determined by average waiting times)
vary accordingly. We consider a mean population arrival rate
ranging from 12 to 20 patients per day. This roughly reflects
the total traffic for a single primary care provider we have
observed in practice. The split of these arrival rates across
different types is allowed to vary as they could shift in the
future or due to externally imposed constraints. For example,
the COVID-19 pandemic could force a lot of patients to use
e-visits more often. The service rates are chosen to ensure
stability of the system. The reward and cost of each service

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

are nominally chosen to reflect the relative importance of each
service.

To lay out a clear picture of the system property driven
by these parameters, we consider horizontally substitutable
services, that is, Rey = Ropy and Cey = Copy. This assumption
is necessary for the implementation of the duplication strategy
as patients must be indifferent to which service they receive as
long as they receive the quickest possible service. A discussion
regarding unequal rewards and time sensitivity is provided in
Section V-C.

Since the formulas to evaluate the waiting times of the
duplication strategy model and the threshold strategy model
are complicated, we present numerical studies to illustrate
the performance of each system. Now, we briefly explain
our choice of parameters. Each scenario corresponds to a
setting where the proportions of each class of patients are
varied, along with different office visit capacity provisions.
The stability condition for all strategies requires pey + Uoty >
A= Ada+Ar+ Ad, oty > Aa, and fiey > Ag, SO ey 1S set tO
be larger than max(A — iofy, A4)-

Fig. 4 provides the equilibrium waiting time of flexible
patients under the mixed strategy. In the left panel, it can
be seen that with increasing e-visit capacity, the waiting time
is monotonically decreasing. There is a sharp drop when the
e-visit capacity is increased from its minimum capacity by a
moderate amount. As shown in the right panel, the arrival
to the e-visit queue is increasing, until there is no longer
any flexible patient joining the office visit queue. To divert
patients, the e-visit capacity can take a range of values that
will lead to different market sizes of e-visits. Based on
the cost of providing e-visits, a decision can be made to
determine the optimal e-visit capacity such that the cost of
staffing shall not overweight the gain in aggregate patient
surplus. Finally, beyond a particular e-visit capacity identified
in Proposition 1, the expected utility of e-visits exceeds that of
office visits and therefore, all flexible patients will choose the
e-visit service. This capacity can capture the entire market
for e-eligible patients, that is, flexible patients as well as
e-advocates. Provision of more e-visit capacity beyond this
particular capacity will only lead to a better waiting time for
e-eligible patients as can be seen in Fig. 4 (the dark green
dotted lines representing expected office visit waiting times
are flat).

Fig. 5 depicts the system performance where the flexible
patient has the option to submit duplicate requests at both
services. The lowest waiting times are witnessed for the class
of flexible patients at the expense of the dedicated office
visit patients and e-advocates. Specifically, the flexible patient
experiences a waiting time equivalent to that experienced in
a system whose service rate is the summation of both service
rates and the arrival rate is also a combination of the two. It can
be seen that the waiting time of e-advocates is close to that of
flexible patients with increasing e-visit capacity and had the
office visit capacity been increased instead, the waiting time of
dedicated office visit patients would be close to that of flexible
patients, owing to lesser congestion. When the e-visit capacity
is sufficiently large, effectively, almost all flexible patients are
served in the e-visit queue but there will always be a nonzero
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Fig. 4. System performance under the mixed strategy (left to right): 1) the
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and WX, respectively, and 2) the effective arrival rates of e-visit (Ag™) and
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Fig. 5. Average waiting times for dedicated office visits (W;UP), e-advocates

(Wé1 Py, and flexible patients (W;l»”p) under the duplication strategy for various
values of e-visit capacities. )

probability that a flexible patient will be served by the office
visit queue even at high e-visit capacity. Thus, it can be seen
that under a duplication strategy, the e-visit server will not
capture the entire e-eligible market.

Fig. 6 exhibits the system performance when flexible
patients adopt the threshold strategy. First, with the increase
in e-visit capacity, we witness a decrease in the threshold
beyond which the flexible patient joins the e-visit queue, and
such a threshold eventually stabilizes: it becomes zero as
there is enough e-visit capacity such that the total time spent
in the e-visit queue is smaller than the expected office visit
service time. Second, we also observe that the waiting time
for the office visit queue is slightly lesser than the e-visit
waiting time for lower e-visit capacities. This is because,
the flexible patient on arrival observes the conditional wait-
ing time (n + 1)/(uoy), which is higher than the expected
waiting time for an office visit patient. Overall, the expected
waiting time is decreasing with increased e-visit capacity,
and the arrival to the e-visit queue is increasing, until there
is no longer any flexible patient arrival to the office visit
queue. Beyond this e-visit capacity, the behavior of the system
under the threshold strategy is the same as that of the mixed
strategy. We also see that the waiting times follow a step
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Fig. 6. System performance under the threshold strategy (left to right): 1) the
average waiting times for e-visit and office visit queues W™"; 2) the thresholds
(nwr) employed by flexible patients in equilibrium; and 3) the effective arrival
rates of e-visit (A1) and office visit (A} ) queues for various values of e-visit
capacities.
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Fig. 7. Comparison of system performance with unobservable and observable
office visit queues.

pattern. The expected waiting time at the office visit queue
follows the shape of the value of thresholds employed by the
flexible patients which is provided in the middle plots. These
thresholds also follow a stepwise pattern due to its integral
nature. With increasing e-visit capacity, the reduction in office
visit waiting time is caused by the decrease in thresholds.
Since the flexible patients optimize their strategy, the e-visit
waiting time closely follows the office visit waiting time.
However, as the earlier remark suggests, the integral nature
of the threshold strategy followed does not lead to an exact
match in waiting times at both the queues.

To further compare the two system configurations, we plot
the measurements in the same figure (Fig. 7). It can be
seen in the right panel that, the arrival of patients to the
e-visit queue under the mixed strategy is always no less
than that under the threshold strategy. This indicates that the
information of prospective lower waiting time at the office
visit queue can draw opportunists there, and hence, balance
the patient flow and lead to an overall lesser waiting time.
With more e-visit capacity, however, such information is
not necessary, as all flexible patients seek e-visits directly.
It is interesting to note that the turning points of the two
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effective arrival curves are not the same; the e-visit capacity
to attract all flexible patients of the threshold strategy is
larger than that of the mixed strategy. This is trivial to see as
Rey — (Cev)/(ﬂev — (Aa + /If)) > Rofy — (Cofv)/(ﬂofv) implies
Rey — (Cev)/(ﬂev - (/111 + /If)) > Rotv — (Cofv)/(,uofv - /Id)
Under the threshold strategy, flexible patients can join the
office visit queue if it is empty or less congested. Such a liberty
is not afforded when the queue lengths are unobservable.
Next, we look at the left panel of Fig. 7. Although office
visit arrivals of the threshold strategy are greater than that
of the mixed strategy, the former enjoys lesser waiting times.
In the mixed strategy case, the arrival is a Poisson process;
with the threshold strategy, the arrival process has a smaller
variability than that of Poisson, so even the intensity is higher,
it can still yield a smaller queue length.

Lastly, we compare the aggregate patient surplus of different
system configurations. Since we assume identical rewards and
waiting costs and do not allow patient loss, we only need
to compare the expected waiting times for all patients in the
system. The average waiting times weighted by their arrival
rates are shown in Fig. 8. It is found that the duplication
strategy offers the least waiting time for the system compared
to other strategies. This is due to the work-conserving nature:
the flexible patient gets her service as soon as one server
is available and frees up the appointment she holds in the
other server, dynamically balancing the workload of the two
queues. This policy sets the best efficiency the system can
possibly obtain. However, this performance is achieved under
the premise that the redundant appointment gets deleted and
can be immediately filled with any later request. There are
potential difficulties in implementing such a process since
it will be burdensome to advance appointments for office
visits. Nevertheless, a system that allows redundant requests
for flexible patients is most efficient. In this case, any cost of
providing queue information to patients is replaced by the cost
of jointly managing information between two systems.

The comparison of the mixed strategy and the threshold
strategy exemplified the value of information to flexible cus-
tomers. We summarize that for low e-visit capacity scenarios,
the threshold strategy is superior to the mixed strategy in terms
of the aggregate patient surplus. This is due to the exploitation
of the information regarding the possible low congestion in
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Fig. 9. Comparison of the system performance of the three system
configurations with different population mixes.

the office queue by flexible patients who use that to their
advantage. However, for maintaining the same market size,
the e-visit capacity needed for the threshold strategy case
is always no smaller than that of the mixed strategy case.
If revenue gains are the same but the unit cost of providing
e-visit services is lower than that of office visits, the medical
institution would actually be in favor of the mixed strategy.
Overall, the impact of information provision diminishes as
more e-visit services become available. When the equilibrium
threshold becomes zero, the mixed strategy is equivalent to
the threshold strategy.

B. Population Composition

We hereby analyze the impact of the population mix of
patients. Define a as the proportion of flexible patients in the
population. We have observed that due to the COVID pan-
demic, many patients have altered their attitude and increas-
ingly adopted e-visits. For illustration purposes, we split the
inflexible patients equally among dedicated office visits and
e-advocates and vary o and observe the waiting times under
the three strategies. Fig. 9 elucidates the relationship: the
duplication strategy still offers the best performance even
when the proportion of flexible patients is low. However,
the difference between the waiting times of the threshold
strategy and the mixed strategy become more significant as
the proportion of flexible patients increases. It articulates that
information is helpful when there are more people who can use
it. Comparing vertically, that is, keep the same e-visit service
rate under different a’s, we see in Fig. 10 that in general,
the system performs better with a higher proportion of flexible
patients. The system benefits from the flexibility of patients,
which improves the efficiency of the system. Note that in the
bottom figure of the right panel, the waiting time under the
threshold strategy when o = 0.7 is inferior to a = 0.5 till
Uey = 5.3. This can be attributed to the huge swings in phase
arrival rates (high variance) when the proportion of flexible
patients is really high and the e-visit capacity is too low. Unlike
the mixed strategy and duplication strategy, the monotonicity
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Fig. 10. Impact of change in population mixes on each system.

of waiting times with respect to a is lost for the threshold
strategy.

C. Vertical Differentiation

Here, we look at the system performance when flexible
patients value the two services differently, that is, Rey 7% Rofy
and/or Cey # Copy. If the office visit is valued higher than
the e-visit service, the patient is willing to wait longer for
the office visit service. Therefore, the equilibrium average
waiting times in the two queues differ. Fig. 11 compares the
mixed and threshold strategy under vertical differentiation.
Three cases are provided with different benefit-to-cost ratios
for office and e-visit services. The first plot has the office
visit offering a higher benefit, whereas the next two plots
have the e-visit offering a superior benefit. The flattened arrival
rate curves in the first plot indicate that the change in arrival
rates are not very sensitive to the addition of e-visit service
capacity when the office visit offers a very high benefit-to-
cost ratio over e-visits. In contrast, when the benefit-to-cost
ratio of e-visits is high, the flexible patients can be sensitive
to the e-visit service capacity and will be attracted to choose
e-visit services. It is interesting to observe that for the mixed
strategy, nearly the whole flexible segment will be attracted
to e-visits as the e-visit service capacity becomes abundant,
whereas for the threshold strategy, the diversion is moderate,
which helps balance the flow and avoids overcrowding. The
flexible patients might be overly optimistic when making deci-
sions based on expectation solely. This conservative behavior
induced by allowing for an observable office visit queue is
also witnessed in the case when the benefit-to-cost ratio of
the office visit is greater. This again justifies the value of
information, especially when the e-visit capacity is not large
enough to guarantee the expected utility (see Fig. 11), where
the expected waiting time of the mixed strategy (blue curves)
is greater than that of the threshold strategy (red curves) when
Uey 18 not large enough.

Essentially, the benefit-to-cost ratio measures the level of
flexibility of those flexible patients. Patients are more flexible
when (Rey)/(Cey) and (Rys)/(Coty) are closer to each other,
and less flexible when one significantly dominates the other.
We do not consider the duplication strategy under the vertically
differentiated service system since flexible patients would not
submit duplicate requests for services valued differently.
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Fig. 11. Comparison of mixed and threshold strategy when there is vertical
differentiation among the services.

D. Patient Loss

It can be seen in Fig. 6 that for really low e-visit capacity,
the waiting time is extremely high. In traditional office visit
appointment systems, it is observed that longer delays lead
to more no-shows of patients. This indicates that there is a
threshold to the utility sought by flexible patients. We can relax
the assumption of a closed system and assume that flexible
patients will not seek a service from the medical institution
unless the net utility is positive. They may either seek services
elsewhere or choose to self-treat. We can therefore impose a
condition of net positive utility for flexible patients, which will
affect the equilibrium traffic.

If the arriving flexible patient observes n patients in
the office visit queue, the expected utility is Ropy —
((n + 1)Coy)/(toty).- In the absence of e-visits, flexible
patients balk from the office visit queue if this utility is
negative and the patient is lost from the system. The threshold
ne beyond which the patient utility is negative is determined
by Nhr = argmin {Rotv — ((I’l + I)Cofv)/(,uofv) < 0}.

neZl*
In the presence of e-visits, if the office visit threshold 7,

is exceeded, a flexible patient who balks will adopt a mixed
strategy with probability x of requesting the e-visit service
as long as their expected utility from e-visits is positive. The
utility of requesting an e-visit is Rey — Cey Wey (X, n4nr), Where
Wey (x, nyy) is the expected waiting time in the system incurred
at the e-visit queue. For a fixed e-visit capacity and threshold
Ry, Wey(X, ngy) 18 increasing in x. The probability xg, is

determined as xg, = argmin {Rey — Wey (X, niy) Cev < 0}.
x€[0,1]
The probability xg; = 1 implies that there is no flexible

patient loss for the system. Without patient loss, the positive
utility selection and the best utility selection are equivalent.
If x4y = 1, it means that the e-visit service has enough
capacity to absorb flexible patients. Now, the flexible patient
can maximize her utility by balking from the office visit queue
at a threshold smaller than ng,. This new threshold 7 can be
determined by /i = argmin {Rory, — ((n + 1)Copv)/(tory) <

nelt
Rev - CevWeV(la I’l)}
The procedure for positive utility selection is outlined below.
First, determine n = [(Rofyofv)/(Cotv)] and calculate the
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Fig. 12. System performance under the positive utility strategy by flexible
patients: (left to right) 1) the average waiting times for e-visit and office
visit services (W"T); 2) the equilibrium thresholds (n24,) used by the flexible
patients; and 3) the patient diversion due to e-visits for various values of
e-visit capacities. In this scenario, there is no patient loss beyond a certain
e-visit capacity marked in green dashed vertical lines.

expected utilities for e-visit and office visit, respectively,
by assuming x = 1. Then, two scenarios can unfold. If the
utility of joining the e-visit queue is negative, there should be
patient loss. Using a binary search, we determine x (mixed
strategy probability) for which the expected e-visit utility is
zero. If the utility of joining the e-visit queue is nonnegative,
flexible patients can balk from the office visit queue for a
shorter threshold. We can adjust the threshold # till the e-visit
utility just outweighs that of office visits (similar to the best
utility selection procedure).

Fig. 12 depicts the system performance where flexible
patients always seek a positive utility from the system. The
experimental setting is the same as that of Fig. 6. The positive
utility selection results in the initial plateau region in the
waiting time (the left panel in Fig. 12), where patient loss is
incurred till a positive utility is achieved from increasing the
e-visit capacity. With additional capacity, the arrival to e-visit
queue ramps up till there is no patient loss from the system
as shown in the middle panel of the arrival rate plots. Post
the plateau region, the performance of the system is similar to
that of the best utility seeking case.

If the medical institution would like to determine the e-visit
capacity, it should consider providing at least the capacity that
ensures no patient loss. With the additional provision of e-visit
capacity, the medical institution might incur costs without
receiving additional revenue. If the services are not provided
by the same medical institution, the e-visit provider might want
to set the capacity that captures the entire e-eligible market
which is greater than the capacity that ensures no patient loss.
If the cost of having additional e-visit capacity is inelastic
to the demand, that market capturing e-visit capacity can be
installed by the e-visit provider.

E. Competitive E-Visits and Office Visits

Here, we briefly discuss the comparison of the strategies
when e-visits and office visits are not provided by the same
entity and therefore compete for patients. If the e-visit provider
does not cooperate with the office visit provider on information
sharing between the two systems, the duplicate request will not
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be deleted and will tentatively be wasted. Then, the dedicated
office visit patients and e-advocates witness an expected wait-
ing time of (1)/(toty — 4 — A7) and (1)/(tev — 2 — A7),
respectively, and flexible patients experience an expected wait-
ing time which is between (1)/(tev + ftotv — Aa — Ay — Aa)
and (1)/(tev + flotv — Aa — 247 — Agq). Therefore, the aggre-
gate patient surplus will be worse off under the duplication
strategy comparing to the mixed strategy.

If both providers have complete information, anyone who
enjoys a lower cost to provide information will offer queue
length information. For instance, if it is not conventional for
patients to obtain their expected waiting time for e-visits,
it is a dominant strategy for the office visit provider to reveal
information because comparing to the mixed strategy, they will
attract more patients given more arrivals means more profits
for the provider. Notably, in order to provide information
for office visit services, clinics typically have receptionists or
call center representatives and maintain a scheduling system,
such as the appointment system in patient portals. On the
other hand, the e-visit provider might be able to provide
low-resolution information to their customers at no cost, and
an example of the current attempt is to announce to patients
that messages will typically be responded within 24-72 h.

VI. TAKEAWAYS AND CONCLUSION

Access barriers to primary care services lead to adverse
societal consequences. It was estimated that around 14%-27%
of emergency room visits could be addressed at primary care
facilities, a significant amount of which were attributable to
long waiting times for appointments and limited after-hours
care at physicians’ offices [2]. Fragmented care (e.g., seek-
ing primary care in urgent care settings) and self-diagnosis
are prone to error and dangerous if inappropriate decisions
are made. The emergence of e-visits fills the gap in care
continuum. With a growing impetus on patient centered
care, the healthcare system will witness a major transi-
tion from traditional care delivery modules to virtual ones.
The COVID-19 pandemic has underscored the benefits of
e-services as being “contactless” and travel-free, which has
significantly stimulated the implementation of e-visits and tele-
health services and propelled a bulk of patient population to
adopt this novel platform. This might lead to a transformation
in patient expectations and continued demand for the service,
and with this transition, it is vital to ensure that services
are configured to the highest performance standard. We have
shown that provision of queue length information has a signif-
icant influence on how patients decide their service selection
strategy, and we expect that with technological innovation,
the cost of information management, and service coordination
can be brought down significantly, offering more potential for
improving care delivery efficiency and patient experience.

In closing, for the appropriate service design and success-
ful implementation of e-visits, understanding patient needs,
addressing physician concerns, and removing operational bar-
riers are instrumental. The overall benefits of e-visits need
to be assessed to incorporate e-visits’ impact on the entire
medical care spending and patient outcomes, which demands
multidisciplinary research endeavors.
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Future work will involve the exploration of systems with
general service distributions to improve the generalizability
of the models, and the determination of the optimal staffing,
scheduling, and capacity assignment among physicians and
nonphysician providers, which could be flexible according to
patient flow dynamics. It is also imperative to explore payment
structures that accommodate technologically mediated interac-
tions between providers and patients and design the service
contract between patients and the medical institution that
enables the delivery of the best outcomes for all stakeholders.
The contract could feature pricing (copayment) of e-visits,
insurers’ reimbursement policies, as well as information
sharing.

APPENDIX: PROOFS

Proof of Proposition 1: If pory > Aq + Ay and Repy —
(Cotv)/(ttotv — (Aa + A7) = Rev — (Cev)/(ftev — 4q), then
p=1.And, if gey > Ao+ 4 s and Ropy — (Coty)/(Uoty — Aa) <
Rev — (Cev)/(tev — (Aa + A¢)), then, p = 0. To simplify the
analysis, let Copy = Cey = C and define k = (Rofy — Rev)/(C),
which is the waiting cost adjusted reward difference.

To find the probability p with which the flexible
patients choose the office visit queue at equilibrium,
we equate the expressions for utilities at office visit

and e-visit queue: Ryy — CWoy = Ry — CWey,
where W; = (1)/(u; — A;),i € {ev,ofv}. We have
to ensure that the value of p obtained satisfies
0 < p < 1 and that A; < u; for i € {ev,ofv}.
When p = 1, we get k = (Roy — Rey)/(C) = ky:=
(fev — totv + Aa + /1f —Aa)/ oty — (Ag + /If))(/lev — 4a))
and when we have p = 0, we get the value of k.:=

(fev = oty + 4a — A — L)/ ((toty — Aa) (fev — Aa — Af)).

It can be concluded that when there is ample office visit
capacity, and the waiting cost adjusted reward difference is
large enough, that is, k > k,, all flexible patients choose
office visits. Similarly, when there is enough e-visit capacity,
and the waiting cost adjusted reward difference is small
enough, that is, k < k,, all flexible patients choose e-visits.
Otherwise, flexible patients choose a mixed strategy, that is,
having probability p € (0,1) to choose office visits. The
stability condition implies that p < (uotv — 44)/(4y) and
P> (Aa + Ay — ptev)/(Ay). Then, in equilibrium

Cofv CeV
Rofv_ =Rev_ .
,uofv_(/Id'f'p/If) /uev_(/la_’_(l_p)/lf)
(A.1)
We get the solution for p as
_ k(,uev_,uofv"f‘ld"f‘/lf _ia) -2
B 2k
) 2
4+k (,uofv'f‘,uev_/la — la _/If)
+ . (A2

2kl

Proof of Proposition 2: There are two servers indexed by
ofv and ev with service rates por and uey and three classes
of customers indexed by d, f, and a with arrival rates 14, 44,
and 4, where ofv serves classes d and f, ev serves classes f
and a. Class f is, therefore, the redundant class of customers.

To illustrate the state representation, let us consider a
particular state space (Uofvevs Mev, totvs Motv). Reading from
right to left, it indicates that the office visit server is busy
servicing a customer of type d or f followed by 7,5, customers
of type d, followed by a busy e-visit server servicing a
customer of type f or a, and it is followed by ufy ey Customers
of type f,d, or a. The state-space can also be of the form
(Uofvevs Moty, tey, Mey), Where f., customers are of type a
or f and the uepey customers belong to any of the three
classes. The indices on u and ¢ in the state-space representation
(uij, M;, tj, M;) are dropped since they can be inferred from
the ordering of the tuple and can be treated as constants. Then,
the detailed balanced equations can be derived using this state-
space configuration.

Using Theorem 2 of [15], we can obtain the steady-state
probabilities TT() as

H(”» MOfV» t: Mev)
() ()
Hofv +,uev Hev

( ha+ Ay )((zauf)(zdﬂaﬂf))n(o)

Hofv + ey (/ld + Ao + Zif)#ev
foru, t>0

da+ra+ 2\ ( 2 \
H(M, MeVa t’ MOfV) = (u) ( d )

Hofv + ey Hoty
( Aa + if

) (id + if) (id + Ao + if) 11(0)
Uotv + HUey (j«d + Aa + 2j~f')ﬂofv
t>0

for u,
I (u, Moty)
_ ( Iy )u((xd +27) (Aa + A Hf))n(o)
Hofy (Ad + Aa + 24 5) troty
foru >0
I(u, Mey)
. (l_a)u((za +27) (ha + A + Af))n(o)
Hev (Za + Za +225) ptev
for u > 0.

(AS5)

(A.6)

Here, I1(0) represents the empty state.

Summing the above equations over all possible values of
u and t and adding I1(0) and equating to 1 gives the value
of T1(0). Using distributional Little’s Law and [15, eq. (33)],
we obtain the Laplace transformation for waiting time under
duplication strategy as

E[ef.S'Wd]
v — A
= TI(, Mop)—2 2 4 11, M) 1
Hofy — Ad + 5
v"f' v T /1 +/1 +/1a
+H('a MofVa ) Mev)- flot fle ( d ! )
ﬂofv+ﬂev_ (/ld'f‘/lf'f‘/ld) + 5
T Mo Mg e e = (a2 4 )
Hofv + Hev — (Ad + j~f + j~a) +
v — A
_ Hof d (A7)
MHofv — Aa+s
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E[e_SW/]
= TI(-, Mey).1 4+ TI(-, Mygy).1
v+ v T /1 +/1 +/1a
+H(a MCV"’MOfV)- flof fle ( d ! )
Hofv + Hev — (id + j~f + jva) + s
v T v A + Af + A
+H(', Mofv»', Mev)~ el fle ( d ! 0)
Hofv + Hev — (id + j~f + jva) + s
(A.8)
E[e_SW“]
Hev — Aa
= TI(-, Moge).1 + TI(-, M) —2v —*a
( of) + ( E)ﬂev—ia‘i‘s
v+ v T /1 +/1 +/1a
+H(a MCV"’MOfV)- flof fle ( d ! )
Moty + ey — (/ld'f‘/lf"r‘/la)-i-s
v T v A + Af + A
+H(', Mofv»', Mev)~ el fle ( d ! 0)
Hofv + Hev — (id + j~f + jva) + s
v _/la
L (A.9)
ey — Aa + 5
where
00
II(., Moty) = ZH(”» Mosy)
u=0
Ad+20)Aag+ A+ Ay 1
_ Gatip)Gattatiy) 1)
(id + j«a + 2j~f')ﬂ0fv 1-— ﬁ
(A.10)
)
(-, Mey) = ZH(”» Mey)
u=0
Aa + A7) (A Aa + 4 1
_ Gatiplatiatin 1 g
(Ga+ Ao+ 20 ey 1= =
(A.11)
00 0
II(:, Mey, -, Moty) = ZZ II(u, Mey, t, Mosy)
u=0 t=0
_ j.a-‘rlf (/Id—f-/lf)(/ld'f‘/la +/1f)
Hofv + Hev (j«d + j«a + 2j~f')ﬂofv
1
— —— 10 (A12)
Hofv - HotvtHev
[SSIN)
H('s Mofv, i) Mev) = Zzn(u, Mofv, t, Mev)
u=0 t=0

Aa+ Ay (Aa+Ap)(Aa+Aa+ 2y)

Hofy + Hey (/Id + Aq + Q’/lf)/uev
1 1
1 Z 1_MH(0) (A.13)
Hev Hofvt ey

representing the steady-state probabilities of the system being
in these states.

Proof of Proposition 3: We first look at the office visit queue
in isolation. Let A = A4 + A7 be the total potential demand
for office visits and denote p = (1/uory) and pg = (Ag/ toty)-
Under the stability condition p; < 1, the average number of
patients and the average time in system are given by Los =
21 ipi, where po = [(1 — p")/(1 = p) + (p")/(1 = pa)] ™",
Pr = pkpo, 0 <k <n,and p, = p"ps_”po, k > n; and
Wotv = (Lofy)/(Aofv). The effective arrival rate of the office

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

visit queue Aoy = (A(1 = p")/(1 — p) +24(p™)/(1 — pa)) Po.
In addition, P(Noty < n) = (1 — p™)/(1 — p)po and P(Nopy >
n) =1 — P(Noty < n). We then determine the distribution of
each phase that modulates the e-visit queue.

Phase 1 Sojourn Time: Phase 1 indicates the duration of
time during which the queue length is less than the threshold
ngr. We are interested in the distribution of the duration of
Phase 1. Let the random variable 7,, be the time till the office
visit queue is equal to ny,, when there are n customers in the
system at the beginning, where 0 < n < ny,

Tn=Y+Tn+l, n=20

T, with probability Moty

n*l’ 5 . 4,
T =X jvd‘i‘if‘i‘/uofv
n=X+ da Ay

T,+1, with probability —————
jvd + if + Hofy

0 <n <ng

1,,. = 0.

Nthr

Here, X is an exponential random variable with parameter
Ad + Ay~ toy and Y is an exponential random variable with
parameter g + Ay.

Once the equilibrium is attained, we are interested in the
distribution of time duration which starts from the moment
the office visit queue length becomes ny, — 1 till the moment
it reaches the state ng,,. Hence, we need to characterize the
distribution for 7,,, ;.

Taking the Laplace transform, and letting 4 = A + Ay,
we get

TO(S) = T (s)

A.14
A+s ( )

Tn(s) = ,uofan—l(s) + jjjn-',—l@)]- (A.15)

/l'f‘,uofv"f‘s[

These recurrence relations can be solved by having 7, (s) =
c1x](s) + c2x3 (s), where xy, x, are the roots of the equation
Hofy + j«xz

X=——\ A.16
A+ fofy + 8 ( )
Using the boundary conditions, we have

Ty, (8) = 127" (s) + c2x5™(s) = 1 (A.17)
To(s) = c1 +c2 = TEs (c1x1(8) + c2x2(s)) = s Ty (s).
(A.18)

Solving the equations simultaneously, we get

—(Axa — (4
= — (Ax2 = (4 4 5) (A.19)
X" (Ax1 — (A +5)) —x]"(Ax2 — (A + )
Ax; — (4

o (Ax1 — (A +)) (A20)

T XX — (G 5) — X" (s — (A +5))

The desired phase sojourn time distribution is given by

Tun—1(s) = crx{™ " + cpxym™! (A21)
Gt = QA ) — Qaa — A+ s)ap !
T X0 — (A +9) — X (A, — (A + 9))
(a—Db)(c+b)"" —(a+b)(c—b)"
(a — b)(c + b)"™ — (a + b)(c — b)"™
= fi'(s)

(A.22)
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where a = (oty — (4 +5))/(2), ¢ = (A + foty +5)/(2) and
b = (((A+ tofy +5)* — 4 p0r)"?)/(2). The mean time is
derived as vy := (uby, — A7)/ ((oty — A)A™).

Phase 2 Sojourn Time: Phase 2 indicates that the office visit
queue length is ny, or greater. Let n* = n — ny, + 1, where n
is the queue length and n > ng,. Let the random variable C,,+
be the time till n* = 0 which implies the time till the queue
length becomes ng, — 1. We are interested in the distribution
of the time duration starting from when the queue length is
nyr till it becomes ny, — 1. Hence, we seek the distribution
for C]

Hofv

C *—1»
" d T Hofv

with probability

Cp» =X+

with probability
d + Moty

where X is an exponential random variable with parameter

Ad+ oy Let uopy = w. Taking the Laplace transform, we get

Cn*+1 5

Cn* (S) = [/uofvén*—l (S) + jvdc_‘n*-'rl (S)] (A.23)

A+ poty + 5
The solution takes the format

Co(5) = c1x] (5) + 205 () (A.24)

where x| (s) and x;,(s) are the roots of the equation: (A + u +
§)x = Agx? + p satisfying 0 < x;(s) <1 < x2(s). Cpe(s) < 1
implies ¢; = 0, and Cy(s) = 1 implies ¢; = 1. The required
distribution for the phase sojourn time is

_ 1
Cy (S) = ﬁ (Ad‘i‘ﬂofv‘i‘s_\/(/{d‘i‘,uofv + 5)2 - 4j~d,uofv )
d
(A.25)

The average phase sojourn time is given by v, :=
(U/(,uofv - jvd)

Proof of Corollary 1: Here, we present the renewal approx-
imation. The system is approximated by a G/M/1 queue. Let
the steady-state probability of e-visit queue being in state n
be of the product form a, = (1 — )", we then try to obtain
the root of ¢ in the equation

0 =¢"(Uev(1 —0))

where ¢*(s) is defined in (1) in the main text. This can be
expanded as

22| (a2 sy
2(Aa + Ag) " eyl = 0) + Ad]

(A.26)

(a+25)°
(ot — Aa)[ttev(1 = @) + Af + L]
1

+

’ 1 (atig)" g™ iy
a 2(/14-&-/1/)“‘” Hotv—2d
2
_ Ay
A (Ratrg)" g™ ety
a 2(/1d+if)n‘hr Hotv—Ad
2
Uev(1 — o)

(tev(1 = ) + 2a) (ptey(l = @) + Ag + A7)

1+ (6—b)y — Ay — =2
@by -Ay -3 (A27)

where

A+ poty + pev(l — 0)

2
VA pton + ptev(1 = 0))2 — 4A gy
2

(a —b)(c + b)Y ' — (a+b)(c — by
T @—b)c+b)y" — (a+b)(c— by
A =1, +ﬂ.f + Aq.

S

Then, the waiting time W,, as a function of ny, is given by
Wey = (1)/((1 - O-)/uev)-
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