
0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

Systematically Understanding Graph Accelerator
Dimensions and the Value of Hardware Flexibility

Vidushi Dadu Sihao Liu Tony Nowatzki
University of California, Los Angeles

{vidushi.dadu,sihao,tjn}@cs.ucla.edu

Because of the importance of graph workloads and the
limitations of CPUs/GPUs, many graph processing acceler-
ators have been proposed. Most prior such accelerators adopt
a single fixed algorithm. While helpful for specialization,
this leaves performance potential from flexibility on the table
and also complicates understanding the relationship between
graph types, workloads, algorithms, and specialization.

In this work, we explore the value of flexibility in graph pro-
cessing accelerators. Our approach is to identify a taxonomy
of key algorithm variants, and develop a modular architecture,
PolyGraph, which is flexible across them. The key to flexibility
is our novel Taskflow execution model, which unifies task
and dataflow parallelism. Overall we find that flexibility is
essential; PolyGraph outperforms similarly provisioned GPUs
by mean 49.6× (up to 275×), and the best prior accelerator
by mean 5.7×.

I. INTRODUCTION

Graphs are fundamental data structures in data mining,
navigation, social networks and AI. Graph processing work-
loads are challenging for traditional architectures (CPUs/G-
PUs) due to data-dependent memory access, reuse, and par-
allelism. However, these workloads present many hardware
specialization opportunities: commutative updates, resilience
to work reordering, and repetitive structure in memory access
and computation. This implies large advantages for hardware
accelerators.

Often for simplicity, these designs make strong assumptions
about certain aspects of graph processing and implement
only a single fixed algorithm, which can limit their ability
to generalize. This includes assuming a certain input graph
type (eg. high vs. low diameter) or workload property (eg.
order resilience, frontier density, computation intensity). Con-
sequently, it is difficult to know when to apply which kind
of accelerator, and what the value of flexibility in graph
processing might be.

To conceptualize the fundamental differences between ac-
celerators, we identify a taxonomy of four graph algorithm
variants i.e. algorithmic dimensions that significantly influence
hardware specialization: 1. Update Visibility: granularity when
vertex updates become visible, 2. Vertex Scheduling: fine-grain
scheduling policy for vertices, 3. Slice Scheduling: whether
and how the graph working set is controlled, and 4. Update
Direction: Whether vertices update their own or neighbors’
properties (pull/push). As we will demonstrate, these variants

A
lg

o
ri

th
m

 V
ar

ia
n

ts

HW Spec-
-ialization

Execution Time = func(throughput, work-efficiency)

Uniform
Graphs

Power-Law
GraphsGraphs

Work-
loads

Order Sensitivity
(Work-efficiency)Graph

Search
Graph
Conv.

Collab.
Filtering

Connectedness
(Diameter)

Page
Rank

Connect
Comp.

In
p

u
ts

Characteristics create variants

Together determine Performance

Optimized for throughput Optimized for work-efficiency

Sensitive to work-efficiency Sensitive to throughput

Comp. Intensity

Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord.
Vertex
Scheduling

Creation Ord.
Locality (by
vertex ID)

Priority Ord.
Vertex
Scheduling

Creation Ord.
Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord.
Vertex
Scheduling

Creation Ord.

Specialized
Compute?

Synchronous
Update
Visibility

Slice-Sync. AsynchronousSynchronous
Update
Visibility

Slice-Sync. Asynchronous Specialized
Compute?

Synchronous
Update
Visibility

Slice-Sync. Asynchronous

Specialized
Scheduling?

Locality (by
vertex ID)

Priority Ord.
Vertex
Scheduling

Creation Ord.

Specialized
Compute?

Synchronous
Update
Visibility

Slice-Sync. Asynchronous

Specialized
Memory Sys.?

Slice
Scheduling

Sliced
(rnd rbn)

Non-Sliced
(whole graph)

Sliced
(Work-Eff.)

Sliced
(locality)

Slice
Scheduling

Sliced
(rnd rbn)

Non-Sliced
(whole graph)

Sliced
(Work-Eff.)

Sliced
(locality)

Specialized
Memory Sys.?

Slice
Scheduling

Sliced
(rnd rbn)

Non-Sliced
(whole graph)

Sliced
(Work-Eff.)

Sliced
(locality)

Specialized
Network?

Pull Push Pull vs pushPull Push Pull vs push Specialized
Network?

Pull Push Pull vs push

Specialized
Memory Sys.?

Slice
Scheduling

Sliced
(rnd rbn)

Non-Sliced
(whole graph)

Sliced
(Work-Eff.)

Sliced
(locality)

Specialized
Network?

Pull Push Pull vs push

Fig. 1: Relationship between Inputs, Variants and Performance.

dramatically affect the tradeoff between throughput and work-
efficiency (i.e. how close to the optimal amount of computation
is performed), which are the two major factors that determine
performance.

Figure 1 depicts how different graph and workload proper-
ties influence algorithm variant choices, and how these both
influence the throughput versus work-efficiency tradeoff. Each
variant has profoundly different implications on hardware
codesign, as shown to the right of each variant in the figure.

We answer two key questions: First, to better understand the
space of graph processing techniques, what is the relationship
between different dimensions in the taxonomy and their overall
effect on performance? Second, what is the value of flexibly
supporting multiple algorithm variants? Our approach is to
create a modular execution model and accelerator which
can optionally support the hardware features necessary for
each variant, while limiting area, power, and performance
overheads. This flexibility requires supporting broad data-
structures, different task granularities (synchronous vs asyn-
chronous updates), fine-grain task scheduling, and working set
control.

Our design augments efficient decoupled-spatial acceler-
ators [4,6], which support general data-structures and suits
both memory-intensive (eg. Breadth-first Search (BFS)) and
compute-intensive workloads (eg. Graph Convolutional Net-
works (GCN)). The fundamental limitation of prior accel-
erators is the lack of support for fine-grain data-dependent

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

parallelism (i.e. task parallelism). Therefore, we developed
a novel execution model, called Taskflow, that integrates
task abstractions and data-dependent scheduling as first-order
primitives within a dataflow program representation.

Evaluation and Contribution: We evaluated our accelerator,
PolyGraph, with cycle-level simulation, supporting an archi-
tecture design space with features encompassing many prior
works [1,5,7,10]. We studied traditional and ML-based graph
workloads on real-world graphs. The best fixed-algorithm
PolyGraph design is 16.79× faster than a Titan V GPU (up to
275× for high diameter graphs). More importantly, the variant
flexibility provides 2.95× speedup.

Our work has two primary contributions. The first is the
graph algorithm taxonomy and observations that relate graph
accelerator dimensions and characterize the value of flexibility.
The second is the unification of task and dataflow execution
models in Taskflow, along with the novel microarchitectural
support within PolyGraph.

II. GRAPH ACCELERATOR DESIGN SPACE

We first overview graph and workload properties that creates
the need for flexibility. Then, we describe the vertex-centric
computational paradigm and how its specializable properties
give rise to graph algorithm variants.

A. Background: Graph and Workload Properties

Figure 2(a) visualizes graph and workload types. We define
them below:

Graph Property – Diameter: The diameter is the largest
distance between two vertices. Uniform-degree graphs (eg.
roads) have a similar/low number of edges-per-vertex, and thus
a high diameter, while power-law graphs (eg. social networks)
have low diameter, as some vertices are highly connected.

Workload Property – Order Sensitivity: Many graph work-
loads are iterative and converging, and thus are resilient to
work ordering of individual tasks. In some of these workloads,
different task orderings are more or less efficient; ie. their
work-efficiency is order-sensitive. For example, shortest path
algorithms (SSSP) on graphs with a wide distribution of edge
distances are order-sensitive.

Workload Property – Frontier Density: Dense frontier
workloads like PageRank (PR), Collaborative Filtering (CF)
usually have more than 50% active vertices, while sparse fron-
tier workloads (eg. SSSP, BFS) require much fewer. In general,
sparse frontier workloads require fewer passes through the
graph until convergence.

B. Graph Algorithm Variants Taxonomy

We rely on the vertex-centric execution model as the starting
point for defining algorithm variants, as shown in Figure 2(b1).
Here, the programmer may (or may not) split the input graph
into multiple temporal slices (T-slices), such that each slice
fits into on-chip memory (Figure 2(b2) shows execution over
T-Slices). Each T-slice is further split into spatial slices (S-
slices), across cores. Within an S-slice, the computation is

performed at the vertex granularity: For each active vertex, its
outgoing edges are accessed, then these destination vertices are
updated using user-defined functions (see Figure 2(b1-i, b1-
ii, and b1-iii)). The vertices are conditionally activated until
convergence (Figure 2(b1-iv)). We identify four critical graph
algorithm variants dimensions (shown in Figure 2(c)) with
tradeoffs in Figure 2(d).

Update Visibility: defines when writes become visible to other
computations, and hence this affects the granularity at which
new tasks are created. Writes may become visible after one
pass through the graph (graph-synchronous), after each slice
(slice-synchronous) or immediately (asynchronous). Barriers
are used to synchronize update propagation in synchronous
variants. Figure 2(c1) visualizes how dependence distance
(red arrows) shrinks when moving from synchronous to asyn-
chronous.
Tradeoffs: The static nature of synchronous algorithms makes
it easier to optimize for efficient memory access, while the
lower dependence distance of asynchronous variants leads to
faster convergence while avoiding barriers.

Vertex Scheduling: defines the processing order for active
vertices for asynchronous variants. Figure 2(c2) depicts the
variants for shortest path: Locality order: In order of vertex-id.
Creation order: In the order tasks are created. Work-efficiency
order: In the order of least redundant work (by distance in the
figure).
Tradeoffs: When active vertices are accessed in their storage
order, spatial locality enables high memory bandwidth; how-
ever, this costs work-efficiency, as it requires critical updates to
be delayed. Creation order requires simple FIFO logic, while
Work-efficiency order requires dynamic sorting.

Temporal Slice Scheduling: If using temporal slicing, slices
can be scheduled in different orders, forming new variants.
Figure 2(c3) depicts each: Round-robin: iterate through all
slices. Locality: similar, but repeatedly process each slice.
Work-efficiency: prioritize slices whose properties change
most [12]. In the example, slice 1 is chosen second, as its
properties changed most (v1 and v2).
Tradeoffs: Non-sliced avoids barriers and slice-switching data
movement, which is costly if there are few active vertices.
Slicing leads to more effective on-chip memory use but
can harm the optimal ordering by restricting the scheduling
scope. Sliced-work-efficiency ordering optimizes for work-
efficiency without requiring hardware support for fine-grained
scheduling.

Update Direction: defines whether a task updates its own
property (pull/remote read), or whether a task updates its
neighbor’s properties (push/remote atomic update).
Tradeoffs: Push reduces communication bandwidth by using
one-way communications (push updates to neighbors) and
efficient multicast, rather than the remote memory requests
in pull. Also, pull often requires more work while reading all
incoming edges of each active vertex.

Not included Variants: We did not explore all dimensions

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

Id1
=vid

Prio1
= dist

edge[]

index L

edge[]

index L

+

-

(b) Single-source Shortest Path
Version: AsyncworkSlicedlocality

Task: Update distance of all
outgoing neighbors

prev edge
idx

edge idx

min

dest vid

prev dist

!=

filter

Id1
=vid

Prio1
= dist

filter

New task
(for dest

node)

curDist[]

index 1index 1

curDist[]

index 1

vertList[]

index 2

vertList[]

index 2

(a) Memory Node Definitions

Memory
ld/st stream

+1

Acc. updates
for slice-switch

shMem

0 1

shMem

0 1

while indices_left():
 idx = pop_index()
 len = pop_length()
 for i = idx to idx + len:
 access array[i]

array base
addr.

index length
array base

addr.

index length
array base

addr.

index length

while indices_left():
 idx = pop_index()
 len = pop_length()
 for i = idx to idx + len:
 atomic:
 array[i]=f(array[i])

Behavior

Note: index& length can be fixed to a constant

Executed
On Remote

Core

nextDist[]

index 1

nextDist[]

index 1

dist
diff?

num
edges

Atomic RMW
stream

array base
addr.

index length
array base

addr.

index length
array base

addr.

index length

f()

Legend

Task nodes

Memory nodes

Compute nodes

Dependence

Atomic access

Remote Compute

(c) Mapping TaskFlow to
Reconfigurable Hardware

v1
v4

v2v3

v5 v6

1 2 1

7 4 5

edge length

v1
v4

v2v3

v5 v6

1 2 1

7 4 5

edge length

Core 0

Core 1

Task
scheduler

Compute
unit

Address
generator

Task
scheduler

Compute
unit

Address
generator

Core 1

On-chip
network

Task
scheduler

Compute
unit

Address
generator

Core 1

On-chip
network

v4
Remote

task
creation

Task
scheduler

Compute
unit

Address
generator

Task
scheduler

Compute
unit

Address
generator

On-chip
network
On-chip
network

v5

Core 0
v2

v2v5

Core 0
v2

v2

Task
scheduler

Compute
unit

Address
generator

On-chip
network

v5

Core 0
v2

v2

Fig. 2: Key Variants of Graph Processing Algorithms

of graph processing as the space is very large, and some opti-
mizations are more narrowly useful: 1. Edge-centric paradigm,
where edges are streamed without sparse access through vertex
indices. It is incompatible with key optimizations like priority
ordering and vertex-based dynamic tasks. 2. Complex schedul-
ing, where certain traversal information is memoized to reduce
the required work (e.g. [12]). 3. Dynamic graph partitioning,
where slice-assignment changes dynamically, which could be
useful when the graph is modified dynamically. 4. Processing-
in-memory Support: use of bit vector or resistive memory
crossbars for processing-in-memory.

III. TASKFLOW: UNIFYING TASK PARALLELISM AND
DATAFLOW EXECUTION

A flexible graph processing accelerator should provide
accelerator-like throughput while enabling task-parallelism.
Specifically, the accelerator must: 1. Allow fully pipelined per-
vertex computation. 2. Support high-throughput task creation
and scheduling, and 3. Enable streaming, atomics and memory
reuse.

To this end, we create a unified task-parallel and dataflow
model called Taskflow. In taskflow, a task is invoked by its
type t and input arguments. Each task type is defined by a
graph of compute, memory and task nodes:
• Compute nodes: are passive, and may maintain a single

state item. This enables them to be mapped to systolic-like
fabrics [4,6] for high efficiency.

• Memory nodes: represent decoupled patterns of mem-
ory access, called streams [4,6]. Stream parameters can
either be constant or dynamic (consumed from another
node using a FIFO interface). Figure 3(a) defines stream
parameters and behaviors.

• Task nodes: represent arguments, and are ingress and
egress points of the graph. An instance of a task is started
by providing a value to each ingress task node, and a task
is created when values arrive at all egress task nodes.

Atomics: Shared-memory atomics are critical due to the need
for correct handling of memory conflicts on vertex updates. In
taskflow, a memory stream can be marked as “read-modify-
write” (RMW) and will be atomic. See example in Figure 3a.

Priority and Spatial Scheduling: One task argument may be
designated at compile time as the task’s priority, which serves
as a schedule-order hint. Another task argument is a unique
ID, which indicates the task’s temporal-slice and spatial-slice.
Tasks are deferred until their temporal-slice is active and are
scheduled at their spatial-slice’s core.

Taskflow Example: Figure 3(b) shows an example taskflow
graph for SSSP, implemented as Asyncwork.

Taskflow Graph: This workload has two tasks: Task type 1
iterates over outgoing edges of a vertex to compute distances,
and creates a type 2 task for each destination vertex to carry
out distance updates. The ID is the vertex-ID, and tasks
execute on the corresponding core. Type 1 tasks are prioritized
by vertex distance for work-efficiency. Type 2 tasks also check
if the vertex should become active, and if so create a new type
1 task. The number of task 1 invocations is accumulated to
determine when to switch slices (§IV).

Mapping to hardware: To demonstrate taskflow on hard-
ware, consider a simplified multi-core view in Figure 3(c).
Here the input graph is partitioned across two cores. Each
task can be in the: 1. network waiting for remote creation at its
assigned core (v4 at Core 1), 2. task scheduler before execution
(v5), or 3. compute and memory unit during execution (v2).

Spatial Partitioning: For multicore taskflow to be effective,

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

Id1
=vid

Prio1
= dist

edge[]

index L

edge[]

index L

+

-

(b) Single-source Shortest Path
Version: Asyncwork-effT-slicelocality (AwTl)

Task: Update distance of all
outgoing neighbors

prev edge
idx

edge idx

min

dest vid

prev dist

!=

filter

Id1
=vid

Prio1
= dist

filter

New task
(for dest

node)

curDist[]

index 1index 1

curDist[]

index 1

vertList[]

index 2

vertList[]

index 2

(a) Memory Node Definitions

Memory
ld/st stream

+1

Acc. updates
for slice-switch

shMem

0 1

shMem

0 1

while indices_left():
 idx = pop_index()
 len = pop_length()
 for i = idx to idx + len:
 access array[i]

array base
addr.

index length
array base

addr.

index length
array base

addr.

index length

while indices_left():
 idx = pop_index()
 len = pop_length()
 for i = idx to idx + len:
 atomic:
 array[i]=f(array[i])

Behavior

Note: index& length can be fixed to a constant

Executed
On Remote

Core

nextDist[]

index 1

nextDist[]

index 1

dist
diff?

num
edges

Atomic RMW
stream

array base
addr.

index length
array base

addr.

index length
array base

addr.

index length

f()

Legend

Task nodes

Memory nodes

Compute nodes

Dependence

Atomic access

Remote Compute

(c) Mapping TaskFlow to
Reconfigurable Hardware

v1
v4

v2v3

v5 v6

1 2 1

7 4 5

edge length

v1
v4

v2v3

v5 v6

1 2 1

7 4 5

edge length

Core 0

Core 1

Task
scheduler

Compute
unit

Address
generator

Task
scheduler

Compute
unit

Address
generator

Core 1

On-chip
network

Task
scheduler

Compute
unit

Address
generator

Core 1

On-chip
network

v4
Remote

task
creation

Task
scheduler

Compute
unit

Address
generator

Task
scheduler

Compute
unit

Address
generator

On-chip
network
On-chip
network

v5

Core 0
v2

v2v5

Core 0
v2

v2

Task
scheduler

Compute
unit

Address
generator

On-chip
network

v5

Core 0
v2

v2

Fig. 3: Taskflow Examples

we spatially partition the graph. Spatial partitioning introduces
a tradeoff between locality and load balance. Naively cluster-
ing connected vertices will reduce network traffic, but may
hurt load balance, especially for sparse frontier workloads.
We propose a “multi-level” slicing scheme that respects both
load balance and locality. First, the graph is split into many
small clusters of fixed size to preserve locality, then these
clusters are distributed equally among cores for balanced load.
To implement, we use a simple bounded-depth first search
(with depth=8) to find small clusters (of a parameterizable
size), then distribute these round-robin to different S-slices. It
requires O(V) time.

IV. SLICE DATA ORCHESTRATION

While taskflow handles the cycle-by-cycle execution, the
slice scheduler manages tasks and data for slice-based execu-
tion. As it is invoked infrequently, our implementation uses a
simple control core with limited extensions. We overview its
operation next, more details are in the original paper [3].

Data Pinning: Depending on the algorithm variant, we may
know which data has the most reuse. For e.g. for graph-
synchronous non-sliced variant, edges have a large reuse
distance but vertices with high-degree are reused many times.
In sliced-locality variants, edges have a smaller reuse distance.
Thus, the slice-scheduler has an interface to pin a range of
data to the on-chip memory at a particular offset, essentially
reserving a portion of the cache.

Slice Switching for Asynchronous Variants: The decision of
when to switch slices for asynchronous variants is a tradeoff
between work-efficiency (switch sooner) and reuse (switch
later). Information at the slice’s boundary becomes “stale”
over time, as it may depend on an inactive slice’s execution,

thus hurting work-efficiency. Therefore, we approximate “stal-
eness” by counting the number of vertex updates, and switch
slices when these exceed a threshold. This is carried out by
giving all cores a highest priority stop task, to interrupt task
execution.

Temporal Slicing and Slice Transition: For sliced execution,
graphs are preprocessed to keep updates within a T-slice.
Specifically, the source vertex of any cross-slice edge is
replaced with a mirror vertex in the destination slice. The
mirror properties are only updated during slice transition.

Here the main memory contains vertex properties, pending
tasks for each slice, and a copy of each mirror vertex. During
slice transition, old slice’s information is sent to memory and
the new slice’s information is loaded to pinned memory. If a
mirror’s property is detected to have changed, a new task is
created in the destination slice.

Algorithm Variant Selection: Variant selection is performed
after each slice, or after every 100k cycles for asynchronous
variants. To transition, the control core will initialize data-
structures, configure taskflow graphs, and perform pinning
operations. On-chip memories may need to be flushed, and
taskflow may require reconfiguration. The pending tasks are
managed just as they would be during slice transition. The
following heuristics decide the next algorithm variant:

1) Update visibility: Asynchronous versions are preferred for
order-sensitive workloads. Dense frontier algorithms have
high inherent spatial locality, so Slicesync is preferred, as
it is memory efficient while maintaining moderate work-
efficiency.

2) Temporal Slicing: The effective throughput depends on
whether the work during phase is sufficient to hide barrier

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

On-chip Memory Banks

Task
Coalescer

Task
Queues

&Prio. Sched

Task computation
Atomic
Inter-
face

Task Creation Interface

Conflict check

R
o

u
ter

Control Core
(config. & t-slice

scheduling)

Ex
p

lic
it

 t
as

k
e
n
q
u
e
u
e

Implicit
task enqueue

Mem. Ctrl.Mem. Ctrl. Mem. Ctrl.Mem. Ctrl.

M
em

. C
trl.

M
em

. C
trl.

M
em

. C
trl.

M
em

. C
trl.

Mem. Ctrl.Mem. Ctrl. Mem. Ctrl.Mem. Ctrl.

M
em

.
C

tr
l.

M
e

m
. C

tr
l.

M
em

.
C

tr
l.

M
e

m
. C

tr
l.

Polygraph

Example Config:
16 Cores + Mesh

Reconfig. Dataflow Unit (CGRA)

8x8 crossbar

Task
Mgmt
Unit

NoC
Module

Region Translation

Stream-based Address Generation

O
ve

rf
lo

w
to

 m
em

o
ry

To TQ
mgmt unit

Fig. 4: PolyGraph Modular Hardware Implementation

overhead. This work can be approximated from active
vertices. Therefore, our algorithm switches to non-sliced
when number of active vertices are below a threshold (e.g.
usually active vertices are low for high diameter graphs).

3) Spatial Partitioning: High diameter graphs prefer load
balanced multi-level partitioning (i.e. smaller clusters) as
connectivity is regular. For low diameter, larger clusters
are helpful for locality.

V. POLYGRAPH HARDWARE IMPLEMENTATION

PolyGraph is a multicore decoupled-spatial accelerator con-
nected by mesh networks1, overview in Figure 4. We first give
background on decoupled-spatial accelerators and integration
with task management. Then, we explain the design of task
management unit and shared memory for slice scheduling.

Integration of Tasks with Decoupled-spatial Accelerator: In
a decoupled-spatial accelerator, memory nodes are maintained
on stream address generators, and accesses are decoupled to
hide memory latency. A Coarse-grained Reconfigurable Array
(CGRA) [6] executes compute nodes in pipelined fashion.
Between the stream controller and CGRA are several “ports”
or FIFOs, providing latency insensitive communication. The
novel aspect is the task management: A priority-ordered task
queue holds waiting tasks. Task nodes define how incoming
task arguments into the queue are consumed by the stream
controller and CGRA.

If the stream controller can accept a new task, the task
queue will issue the highest-priority task. The stream controller
will issue memory requests from memory nodes of any active
task. The CGRA will pipeline the computation of any compute
nodes. The CGRA can also create new tasks by forwarding
data to output ports designated for task creation, and these
are consumed by the task management hardware. Tasks may
be triggered remotely to perform processing near data. Initial
tasks are created by the control core.

Task Management Unit: This unit includes three main com-
ponents: task management buffer, task scheduler and overflow
buffer. We describe these next.

1Multiple networks enable efficient scalar remote accesses.

A task argument buffer maintains the arguments of each
task instance before their execution. Statically, it is split into
the number of task types and each partition is configured
to the size of its corresponding task type arguments. The
task scheduler maintains pointers to the task argument buffer
entries. Note that we use the priority task scheduler (described
next) only for graph access tasks and FIFO scheduling for
others (eg. vertex update).

Our task scheduler uses a pipelined hardware-based
heap [2], with a throughput of one enqueue-dequeue every
two cycles. For low degree graphs, this throughput is insuffi-
cient. Therefore, we use multiple priority-heaps per core, and
alternate between them.

If the task queue is full, new tasks are pushed into a overflow
buffer in main memory (32kB is sufficient). This buffer is
drained to the queue as entries are freed, and the priority then
is re-calculated by using the updated vertex prop (in on-chip
memory).

Slice Scheduling: is implemented by the slice scheduler on
core 0’s control core, with support of a shared memory with
data pinning and atomic update capability. PolyGraph cores
communicate with the slice scheduler through shared memory
atomics to coordinate phase completion.

Our on-chip memory is a shared address-partitioned cache,
with multiple banks per PolyGraph core. The region translation
unit maintains the mapping of virtual address ranges to pinned
addresses. When the slice-scheduler in core 0 pins a memory
region, the region translation unit in all cores are sent the
base/bound and offset of the region. This causes some of the
sets of the cache to be set aside for pinned data. Pinning a new
data-structure flushes all cache regions in the pinned address
range; this is only required during variants transition, i.e. at
most twice in a program.

When atomic update requests are received from the local
core or network, they are pushed to the pending atomic request
queue at its corresponding bank. The conflict check logic uses
a small CAM (8 entries, to cover atomic latency) to detect and
delay aliasing requests.

VI. METHODOLOGY

PolyGraph Power/Area: We prototyped PolyGraph by ex-
tending DSAGEN [11] with task scheduling hardware, and
extended the stream-dataflow [6] ISA. We synthesized Poly-
Graph at 1GHz, with a 28nm UMC library. We used Cacti 7.0
for modeling eDRAM.

Baseline Architectures: For reference, we use a 24-core SKL
CPU running GAP benchmarks and a Titan V GPU using
Gunrock graph processing library.

We compare against four prior accelerators: Graphi-
cionado [5], Ozdal [7], Chronos [1], and GraphPulse [10].
We provision all accelerators with 32MB on-chip memory,
1024 FP units and 512 GB/s memory bandwidth, with the
GPU having more FP units and memory bandwidth. All
prior accelerators use crossbar network, except Chronos and
PolyGraph which rely on a mesh.

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

ord.highDia
unord.highDia

ord_spFront.lowDia
unord.lowDia

ord_densFront.lowDia

ord_vector.lowDia
Geomean0.1

100

101

102

No
rm

al
ize

d
Sp

ee
du

p
SyncgraphSlicedrndrbn

SyncsliceSlicedrndrbn

AsyncworkSlicedloc

AsyncworkNonSliced
SyncgraphSlicedrndrbnPull
AsynccreateSlicedloc

AsynclocSlicedloc

AsyncworkSlicedwork

Static-opt

Static-opt
unord.highDia

0
50

100

GT
EP

S

Static-opt
ord_spFront.lowDia

Static-opt
unord.lowDia

0 0.2 0.4 0.6 0.8 1
Work-eff

0
50

100

GT
EP

S

Static-opt
ord_densFront.lowDia

0 0.2 0.4 0.6 0.8 1
Work-eff

Static-opt
ord_vector.lowDia

0
50

100

GT
EP

S

Static-opt
ord.highDia

Fig. 5: Comparison of Algorithm Variants.

For accelerator performance modeling, we developed a
custom cycle-level simulator where main memory is modeled
using DRAMSim2. We assume preprocessing, only O(V), is
done offline and reused across queries.

Datasets: We compare against practical graphs, categorized
into low and high diameter.

Workloads: We study workloads in three categories: 1. Or-
dered with sparse frontier: SSSP, 2. Unordered with sparse
frontier: BFS, and connected components (CC) 3. Ordered
with dense frontier: PR, and 4. Ordered with vector computa-
tion: CF, and GCN.

VII. EVALUATION

Our evaluation broadly addresses the question of how much
and which kinds of flexibility are useful, across graph and
workload types.

Algorithm Variants Comparison: Figure 5 compares strong
algorithm variants – those which perform well on at least
one workload/graph type. Overall, we find that asynchronous-
sliced, AsyncworkSlicedloc, is the optimal variant (2.91× ge-
omean speedup over typical SyncgraphSlicedrndrbn), while static
flexibility can further improve speedup by 3×. We explain the
trends below, grouped by their choice of the best algorithm
variant:
1) High Diameter Graphs: Here the synchronization

overheads of synchronous/sliced variants (eg. Syncgraph,
Syncslice, AsyncworkSliced) are the critical bottleneck.
Therefore, AsyncworkNon-Sliced performs best/similar for
all workloads.

2) Low Diameter Graphs: The power-law degree distribu-
tion makes random accesses more critical than synchro-
nization. Sliced variants improve reuse, and thus perform

better. For order-sensitive workloads (e.g. SSSP), faster up-
dates in asynchronous variants lead to faster convergence.
Among vertex-scheduling schemes, Asyncwork performs
best while Asynccreation/Asynclocality provides only modest
work-efficiency. Overall AsyncworkSlicedrndrbn is sufficient.

3) Dense Frontier workloads: For PageRank, which has
a dense frontier, SyncsliceSlicedrndrbn provides speedups
through memory efficiency while retaining some work-
efficiency benefits of asynchronous updates within a graph
slice.

4) Vector Workloads: With asynchrony, vector workload,
CF sees high gains, however priority scheduling is not
required. Non-sliced is similar to sliced as large vertex
properties have high spatial locality that reduces cache
miss overhead.

Less Competitive Variants: We generally find that with suf-
ficient hardware for asynchronous priority scheduling, sliced-
work-efficiency does not help as asynchronous variants require
less iterations due to dynamic task creation.

Finally, the best pull variant, SyncgraphSlicedrndrbnPull con-
sistently performs worse due to pipeline stalls waiting on
random reads and work-efficiency loss from accessing all
incoming edges irrespective of whether they are active.

Work-efficiency vs Throughput for Algorithm-Variants:
Figure 5 further explains the workload and graph type trade-
offs. Slicing improves memory efficiency for low diameter
graphs, while Asyncwork improves work-efficiency for order-
sensitive workloads. Since high diameter graphs are regular,
Non-sliced is superior as it achieves high hit rate while
avoiding barrier overheads. For dense frontier workloads, slice
synchronous balances memory and work-efficiency. For the
vector workload, CF, memory efficiency is implicitly high,
thus asynchronous variants dominate due to faster conver-
gence.

Area Tradeoffs: PolyGraph occupies 72.56mm2, with
eDRAM consuming 91.1% of the total area. The task man-
agement structures occupy 2% of the total area. Compared to
Graphicionado, PolyGraph is similar area with 84% power due
to using a mesh instead of a crossbar.

Comparison to Prior Accelerators: Figure 6 classifies prior
accelerators using our algorithm variants taxonomy and com-
pares their speedup and area. Overall, PolyGraph has similar
area as Graphicionado while achieving 7.2× speedup due
to its optimizations and flexibility. We also examine area
tradeoffs for PolyGraph by removing the components that
consume significant area (eliminating certain variant options).
Without caches, memory flexibility is not available, hurting
high diameter graphs. Without a priority queue, the gains on
order-sensitive workloads is reduced. With no dynamic tasks,
SyncsliceSlicedrndrbn is the best variant, as it balances work-
efficiency and memory-efficiency.

VIII. DISCUSSION AND CONCLUSION

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

Accelerators Update Vertex Slice Update
Visibl. Sched. Sched. Dirn.

Graphcnd. [5] Sync Locality Slice-round Push
Ozdal [7] Async Locality Non-sliced Pull
Chronos [1] Async WorkEff Non-sliced Pull
GraphPls. [10] Async Locality Sliced-loc Push
PG-
SingleAlg (Ours)

Async WorkEff Sliced-loc Push

0.7 0.8 0.9 1.0 1.1 1.2
Area Normalized to Graphicionado

0.5
1
2
4
6

Sp
ee

du
p

ov
er

 G
ra

ph
ici

on
ad

o

Graphicionado

OzdalChronos

GraphPulse
PG (no cache)

PG (no prio Q)
PG

PG (no tasks)

Fig. 6: Performance Comparison with Prior Accelerators.

As the scale and scope of graph processing continues to
expand, there is an increasing need for robust and high-
performance accelerators. Yet, a universal graph-processing
accelerator has not yet been found; our results support the
viewpoint that this is because many algorithm variants work
dramatically better for specific combinations of graph inputs
and workloads. Our approach embraces this complexity by
creating an accelerator execution model, Taskflow, that flexibly
supports important graph algorithm variants.

To understand the value of flexibility in this complex
space with much prior art, the crux of our approach was
to systematize the codesign process: We created a modular
execution model and accelerator which can optionally support
hardware features leading to efficient execution of certain al-
gorithm variants (e.g. caches for non-sliced execution, remote
tasks/atomics for push-based algorithms, etc.). This framework
enabled us to make both strong statements about the effec-
tiveness of various algorithm variants, as well as about the
value of flexibility across these codesign dimensions – without
being hampered by differences in evaluation (e.g. simulator &
preprocessing assumptions). This systematic approach could
help understand other important and complex domains (e.g.
databases) for pushing the bounds of accelerator capabilities.

For graph processing, we found that flexibility is essential
for even a modest range of graph workloads, and we believe
this has significance for future research in this area. An
aggressive view is that this predicts the decline of narrowly
defined graph accelerators, and perhaps accelerators in other
irregular domains (e.g. recent sparse tensor work makes similar
observations [8,9]). At a minimum, to get the most insight,
future evaluations should use baselines with multiple algorithm
variants and avoid narrow selections of input types.

Beyond graph processing, our work is the first step towards
unifying task parallelism and dataflow acceleration, and this

has implications for future programmable accelerators. Up to
this point, reconfigurable dataflow processors (e.g. [4,6]) were
only suitable for static-parallel workloads; dynamic task par-
allelism on such architectures would have required centralized
coordination and pipeline fill/drain overheads that overwhelm
short tasks. Taskflow makes tasks a first-class primitive in
the dataflow model: task nodes introduce a breaking-point in
the pipelined dataflow to re-order tasks in time (for work-
efficiency), or in space (to enable near-data processing). Tasks
can also be scheduled in hardware, enabling distributed task
management, and efficient task pipelining of even tiny tasks.
Overall, the unification of task parallelism and dataflow is a
new direction with the potential to broaden the scope of future
programmable accelerators.

BIOGRAPHIES

Vidushi Dadu is currently working toward the Ph.D. de-
gree with the Department of Computer Science, University
of California Los Angeles. Her research interests include
hardware–software codesign and programmable acceleration.
Dadu received the B.Tech. degree in Electronics and Commu-
nication Engineering from the Indian Institute of Technology
Roorkee. She is a student member of IEEE. Contact her at
vidushi.dadu@cs.ucla.edu.

Sihao Liu is currently working toward the Ph.D. degree
with the Department of Computer Science, University of
California Los Angeles. His research interests include spatial
architecture prototyping and design space exploration. Liu
received the B.Eng. degree in Electrical Engineering from
Xi’an Jiaotong University. He is a student member of IEEE.
Contact him at sihao@cs.ucla.edu.

Tony Nowatzki is an Assistant Professor with the Depart-
ment of Computer Science, University of California Los An-
geles. His research interests include architecture and compiler
codesign and novel hardware/software interfaces. Nowatzki
received a Ph.D. in Computer Science from the University
of Wisconsin-Madison. He is a member of IEEE. Contact him
at tjn@cs.ucla.edu.

REFERENCES

[1] M. Abeydeera and D. Sanchez, “Chronos: Efficient speculative
parallelism for accelerators,” ser. ASPLOS ’20, 2020.

[2] R. Bhagwan and B. Lin, “Fast and scalable priority queue architecture
for high-speed network switches,” in INFOCOM, 2000.

[3] V. Dadu, S. Liu, and T. Nowatzki, “Polygraph: Exposing the value of
flexibility for graph processing accelerators,” in ISCA, 2021.

[4] V. Dadu, J. Weng, S. Liu, and T. Nowatzki, “Towards general
purpose acceleration by exploiting common data-dependence forms,”
ser. MICRO ’52, 2019.

[5] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in MICRO, Oct 2016.

[6] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” ser. ISCA ’17, 2017.

[7] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and
O. Ozturk, “Energy efficient architecture for graph analytics accelera-
tors,” in ISCA, June 2016.

[8] S. Pal, A. Amarnath, S. Feng, M. O’Boyle, R. Dreslinski, and
C. Dubach, “Sparseadapt: Runtime control for sparse linear algebra on
a reconfigurable accelerator,” in MICRO, ser. MICRO ’21, 2021.

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

0272-1732 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MM.2022.3160862, IEEE Micro

[9] E. Qin, R. Garg, A. Bambhaniya, M. Pellauer, A. Parashar, S. Rajaman-
ickam, C. Hao, and T. Krishna, “Enabling flexibility for sparse tensor
acceleration via heterogeneity,” arXiv preprint arXiv:2201.08916, 2022.

[10] S. Rahman, N. Abu-Ghazaleh, and R. Gupta, “GraphPulse: an event-
driven hardware accelerator for asynchronous graph processing,” in
MICRO, 2020.

[11] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki,
“DSAGEN: synthesizing programmable spatial accelerators,” in ISCA,
2020.

[12] Y. Yang, Z. Li, Y. Deng, Z. Liu, S. Yin, S. Wei, and L. Liu,
“GraphABCD: scaling out graph analytics with asynchronous block
coordinate descent,” in ISCA, 2020.

Authorized licensed use limited to: UCLA Library. Downloaded on April 01,2022 at 06:02:43 UTC from IEEE Xplore. Restrictions apply.

