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Abstract: Compact laser plasma accelerators generate high-energy electron beams with increasing
quality. When used in inverse Compton backscattering, however, the relatively large electron energy
spread jeopardizes potential applications requiring small bandwidths. We present here a novel
interaction scheme that allows us to compensate for the negative effects of the electron energy spread
on the spectrum, by introducing a transverse spatial frequency modulation in the laser pulse. Such a
laser chirp, together with a properly dispersed electron beam, can substantially reduce the broadening
of the Compton bandwidth due to the electron energy spread. We show theoretical analysis and
numerical simulations for hard X-ray Thomson sources based on laser plasma accelerators.

Keywords: Compton scattering; chirped laser

1. Introduction

X- and <-ray radiation with significant spectral flux, high monochromaticity and
wide tunability allows the deepening of the knowledge of the fundamental properties of
materials and living systems by probing the matter on microscopic-to-nuclear scales in
space and time. One of the processes generating X-rays is the scattering between a highly
relativistic electron beam and a primary radiation source in the infrared /optical /ultraviolet
range. This interaction is called Thomson scattering when the quantum recoil of the
electron is negligible or inverse Compton scattering when quantum effects are important. A
common use in the field is, however, to refer generically to the process with the latter name.
Thomson [1-7] and inverse Compton [8,9] sources (both called ICSs) are among the most
performing devices in producing X-y radiation with high power, narrow bandwidth, large
transverse coherence and tunability. Most of the existing Thomson devices, actually devoted
either to experiments on the radiation characterization [10-15] or to imaging applications
on biological, animal and human samples [3,16-21], generate radiation through the collision
between a laser pulse and a relativistic electron beam. The maximum photon energy at
the Compton edge E,j, s depends on the energy of the electron beam and on the laser

wavelength according to the relationship E,j, g ~ 4<7>2Eph/ L, (77) being the mean Lorentz
factor of the electron beam and E, | the energy of the laser photon.

Maximizing the photon flux and spectral density within a selected bandwidth is a
primary issue in ICS operations. The relative bandwidth value bw = AE,;,/E,), can be
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attested at the level of a few percent in cases of imaging applications, such as mammography
screening campaigns [22], but is instead required to be much smaller (down to a few 10~3)
in sources devoted to nuclear photonic experiments [9,23].

Extremely positive aspects of ICSs are their sustainable cost of building and main-
tenance and the contained global dimension of their structure. Both can be further re-
duced considering the option of electron beams generated by laser plasma accelerators
(LPAs). These last devices have made astounding progress in generating high-energy,
high-quality electron beams, [24-35] to the point that they have already been tested in
the production of betatron [36-39], undulator [40-43] and SASE and seeded free-electron
laser radiation [44—49]. Active research and development efforts have also been pursued
to conceive compact Compton sources [50-54] based on these novel LPA accelerators.
Nevertheless, due to difficulties and challenges in controlling the injection process, LPA
beams, at the electron charge level of a consistent fraction of nC that is interesting for
Compton sources, still present a rather large energy spread Avy/(7y) of order of several
percent, compromising applications requiring a high level of monochromaticity. LPA elec-
tron beams with very low energy spreads [55] seem to remain under the level of 25 pC
and therefore they do not achieve the charge level necessary for Compton sources. On the
other hand, a further important advantage of ICSs compared to other types of radiation
sources is the large degree of freedom provided by their use in the collision of a laser pulse,
instead of magnetic elements. The optical technology of pulse manipulation permits in
principle to tailor the laser signal to specific needs. Various studies [56—63] have shown
that the bandwidth broadening due to nonlinearities can be controlled by modulating in
time the laser frequency, allowing one to push the pump intensity to large values deep
inside the nonlinear regime without deteriorating the spectrum. In fact, the different laser
phase values experimented by the electrons during the interaction compensate the velocity
change due to the nonlinearity.

In this paper, we demonstrate how a spatial transverse frequency modulation of the
laser pulse in the linear regime, combined with a proper dispersion of the electron beam,
is capable of counteracting the large spectral broadening due to the energy spread. The
interaction scheme investigated here is particularly suitable to LPA beams characterized by
a high charge, relatively low emittance, small rms spot radius and relatively large energy
spread, but can be applied to any acceleration scheme.

2. Interaction of Chirped Laser and Dispersed Electron Beam

Figure 1 presents a schematic rendering of the basic configuration of the source. In
the simplest scheme, the electron beam coming from the acceleration stage (element (a) in
Figure 1) is suitably dispersed in a bending magnet (b) and then refocused in a quadrupole
system (c). Beam lines able to angularly disperse the electrons, while maintaining good
quality, have been studied in the framework of the foreseen operations of LPA beams in
FELs with transverse gradient undulators [64-67]. An example of such lines, constituted by
a more sophisticated sequence of elements and that could represent an upgrade of our basic
scheme, is described in detail in [68]. The laser pulse (d) is spatially chirped by inserting
along its path a tilted window, or a sequence of prisms, either gratings or an equivalent
device (e) able to map wavelength in position, as shown in [69], and finally focused by a
telescopic system (f) to the Compton interaction point (g). The bandwidth of the emitted
radiation in the linear regime, in the absence of a laser chirp and electron beam dispersion,
is approximated by the expression [70]:

2
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where the acceptance ¥ = <0, scales with the collimation angle 8;¢, €, is the emit-

tance of the electron beam, oy is the rms electron dimension and Aw—“iL the proper rms
laser bandwidth.
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Figure 1. Dispersed electron beam and spatially chirped laser pulse in interaction: scheme and
geometry of the source. (a) Electron beam at the exit of the acceleration stage. (b) Dispersive system,
composed of a dipole with &« = L/pg bending angle and py bending radius of the central orbit.
(c) Refocusing system, composed of quadrupoles. (d) Laser pulse. (e) Spatial chirp apparatus,
composed of prisms, gratings, tilted window or equivalent devices. (f) Laser focusing system,
composed of lenses. (g) Compton interaction point (IP).

A large rms energy spread Ay/(7y) leads to a radiation bandwidth enlargement
bw ~ 2A7/{7) that dominates the other sources of linewidth increase: acceptance, emit-
tance and, in the usual operation without a chirp, laser polychromaticity.

While crossing a dispersive structure, the electrons acquire a transverse position distri-
bution correlated in energy as x — (x) = 57(y — (7)) /() (x and -y being the coordinates
and the Lorentz factor of the electrons, (x) and (v) the average values).

A transverse frequency modulation of the laser w; = wr(x) [71] can reduce the
bandwidth broadening due to the energy spread.

From the resonance condition applied with the dispersed beam,

w = 47w = 421+ (x = (2)) /1) wL(x), 2
it turns out that a transverse frequency modulation
wi (x) = {wr)/(1+ (x = {x))/n)? ®)

has the effect to compensate the inhomogeneous bandwidth broadening. This scheme,
even if different in substance and applied to a different set up, recalls the transverse gra-
dient undulator operation in free-electron lasers [72]. In the second column of Table 1,
the parameters of an ideal electron beam characterized by Gaussian distributions are
reported at the exit of the acceleration stage. The electron beam then crosses a disper-
sion section propagating within the bending magnet, acquiring an average dispersion
11 = ox{7)/Ay ~ 3.5 x 10~° and suffering from a slight increase in the emittance along x.
The final characteristics of the electron beam at the Compton IP, after the refocalization
provided by the final focusing system, are in the third column. In Figure 2, the beam is
presented before (1), after (2) the bending and at the interaction point (3).

The electric field of the laser at z = 0 in the presence of the spatial frequency modula-
tion can be written as:

2?22
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where 0} and o) are, respectively, the transverse and longitudinal rms dimensions and

1
1+ ¢(x = (x)))?

is the frequency modulation along x. Regarding the laser bandwidth, it is given by two
combined terms: the usual basic factor o7, ; inversely proportional to the rms laser time
duration 0| and one factor oy proportional to the transverse chirp, due to the local

difference in color along x. The total laser bandwidth Awy is the quadratic combination
of both.

flx)= ( (5)
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Figure 2. Electron beam: (1a,1b) after the acceleration stage; (2a,2b) after the dispersive section;
(3a,3b) after the refocusing system, at the Compton interaction point. (1a-3a) Electron energy AE/E
vs. x (m). (1b—-3b) Transverse projection y (m) vs. X (m).

The shape of the laser changes during the propagation, acquiring on a long time
scale a tilt and developing transverse envelope oscillations. Both these effects, which are
quite small due to the short duration of the radiation process during the collision, can be
minimized by containing the slope of the transverse chirp within the total laser bandwidth
Awy /wy «1. Regarding the time duration of the laser, we have assumed a quite long pulse of
3 ps, in order to avoid nonlinearities [73]. The laser parameter ag = eEo/ (mcwy, ) is indeed
much lower than 1, as shown in Table 1. The length of the emitted radiation, however, does
not depend on the laser length. The scattered radiation by each single electron is indeed
Lorentz-contracted by a factor 492, and the X-pulse acquires the same short time duration
of the electron beam.

Table 1. Electron, laser and radiation parameters. S is the spectral density, B the brilliance in
unit u* = s~ 'm~2rad 2 /bw (0.1%).

e-Beam Laser Radiation
Q (nC) 0.25 0.25 Ar(um) 0.8 Aed (A) 0.013
{(7) 391 391 Epp,r (€V) 1.55 Epped (KeV) 951

Ay /{vy) 0.1 0.1 o (um) 10 bw 0.026
ox (pm) 35 35 o)/ (ps) 3 Ny, 6 x 10°
oy (um) 35 35 ag 0.165 S (s71/bw (0.1%)) 7.6 x 101°
enx (Lm) 0.5 1.14 E() 0.5 B(u*) 6.2 x 1033
€ny (Hm) 0.5 0.5 Bace (rad) 1074

The laser parameters [6] are reported in the fifth column, and those for the scattered
radiation in the seventh.
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3. Numerical Results

The interaction between the electron beam and the chirped laser was investigated with
the classical model based on the Liénard—Wiechert potentials. We considered the double
differential energy spectrum:

2
PW AT (=B xp
-~ - = i(lt—n-=) = P E
dwdQ  4m2c /dte t nx (1—-n-B)3 ©)
- - ret
with: e
B ey [EL(1- B e) + B Enle—p)] @

where Ef (x,y,z,t) is the frequency modulated electric field obtained by propagating the
contour condition given by Equation (4). The interaction was assumed to be head-to-
head. An angle between the electron beam and the laser pulse should have the effect of
diminishing both the frequency and flux of the output radiation, and therefore it should
be limited within a few degrees. The laser was transversely chirped. The total bandwidth
Awy, was assumed to be about 10%, a situation that can be prepared when operating with a
Ti:Sa setup.

The photon spectrum as a function of the parameter ¢ entering the frequency modula-
tion of the laser with and without the chirp and dispersion apparatus is shown in Figure 3.
Cases with the same total laser energy were analyzed. The acceptance angle was assumed
to be 6;cc = 100 urad. The blue curve represents the spectrum of the radiation produced by
the interaction between the correlated and refocused electron beam (the one reported in
Figure 2(3a,3b)) and a laser with the best chirp, corresponding to the value ¢ = 2.9 x 10*,
close, as expected, to 1/17. The black spectrum was obtained with the same electron beam,
but with an unchirped laser. Intermediate cases (gray curves, with ¢ = 1.75 x 10* and
@ = 2.2 x 10*) are also reported for comparison. The optimum chirp case (¢ = 2.9 x 10%)
is in blue. The natural case, with an uncorrelated electron beam (the one reported in
Figure 2(1a,1b)) and an unchirped laser pulse is in dark red. The case obtained with the
same electron beam as the chirped series, but with the energy spread artificially set to
zero and an unchirped laser, is represented in light red. The laser relative bandwidth, in
these cases, increases from oy ;/wy =~ 1073 for the no chirp case to Awr /wp ~ 10%. In the
absence of a chirp, with 1073 of laser bandwidth, without correlation between energy and
the x-coordinate, the radiation bandwidth approaches 25%. The presence of the transverse
frequency modulation allows an optimum recovery of the spectral shape, which arrives
with a bandwidth bw = 2.67%, quite close to the value obtained with the beam with the
same shape and emittance but with the energy spread artificially set to zero and the laser
without a chirp and a factor 10 narrower than without a chirp. The bandwidth values (red
triangles) and the photon numbers (black squares) are presented in Figure 4 as a function of
the frequency modulation parameter ¢. On the left side, the triangles and the squares rep-
resent the bandwidths and the photon numbers of the natural case, with the laser without
a chirp and the electron beam without dispersion shown in Figure 2a, and of the artificial
case, obtained by suppressing the energy spread of the aforementioned beam. In both these
reference situations, the photon number is larger than in the cases with chirped laser and
dispersed electrons. The number of photons is indeed inversely proportional to the sum of
the laser and electron areas during the scattering and the case with electron dispersion and
chirped laser is characterized by a larger beam intersection area in the interaction point.
Moreover, the correlation between energy and the x-coordinateproduces an asymmetry of
the radiation pattern in the azimuthal angle, which entails a slightly narrower bandwidth
also in the absence of a chirp. However, other broadening factors, such as the electron
emittance and the intrinsic angle energy correlation term, limit the values of the bandwidth
that can be achieved. Effects like jitters or the pointing instability increase the bandwidth
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as well and decrease the flux. Cases with a lower energy spread can still take advantage
from this method. Using the same beam, but with an energy spread at 2.5%, collecting the
radiation in an acceptance angle of 0.6 mrad leads to a bandwidth of about 7.5%. Electron
dispersion and laser transverse chirp decrease it to 4%, the incomplete compensation of
the energy spread factor being due to the increase of the emittance term. This method
is suitable for imaging application. It should not, however, be able to generate gamma
radiation with a 10~ relative bandwidth such as for nuclear photonics, a regime that, when
reached, needs the strict optimization of a linac high-charge electron beam to energy spread
of few 10~%, emittances below 0.5 pm and the use of a narrow bandwidth laser [8,9].

‘—./‘-\ 1.5x10’1 without energy spread
: -
— 7
% 0= 2.2x10%
Z 5.0x10° 0=0
PO ¢ =1.75x10* / with061t correlation
’ T~ =
0

04  -02 00 02 04
(Eph'Eph,ed)/ Eph,ed

Figure 3. Number of photon density dN/dE,, vs. (Eph — Ephlgd) / Epn,eq as a function of the modula-
tion coefficient ¢, for acceptance angle 6, = 100 urad. The natural case with no correlation between
energy and x-coordinate and no chirp (red curve) is compared with the correlated electron beam with
no chirped laser (black curve) and with increasingly chirped laser (gray curves with, respectively,
¢ =175 x 10* and ¢ = 2.2 x 10%). In light red, the interaction between a not chirped laser with the
same electron beam as the chirped cases, but with energy spread artificially set to zero.

0.25
A
0.20_ 1 1X106
. 2 {8x10°
0.154 " . A
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B T LELLLL TR S PRI -1 6x10°
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without chirp
Figure 4. Bandwidth bw (triangles on the left axis) and photon number N (squares on the right axis)
as a function of the parameter ¢ appearing in the frequency modulation. The acceptance angle is
0acc = 100 urad. In the gray sector, the cases without correlation between energy and x-coordinate

and chirp, with and without energy spread are shown.



Photonics 2022, 9, 62 7 of 10

4. Conclusions

In conclusion, we demonstrate that a spatial transverse frequency modulation, com-
bined with suitable dispersion-refocusing stages of the electron beam, is able to compensate
the bandwidth broadening associated with the electron energy spread, decreasing the
bandwidth by a factor of order 10, maintaining the same photon yield, with a consequent
increase in the spectral density. This technique is particularly suitable in the operation of
Compton scattering sources based on plasma acceleration electron beams.

Author Contributions: Conceptualization, V.P., CM., G.K. and B.T.; methodology, I.D., M.R.,, M.R.C,;
writing—original draft preparation, V.P. Investigation, V.2, 1.D., GK., CM., ARR, M.R.C,, M.R. and
B.T. All authors have read and agreed to the published version of the manuscript.
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