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Abstract

We present a fast sweeping method for a class of Hamilton-Jacobi equations that arise from
time-independent problems in optimal control theory. The basic method in two dimensions
uses a four point stencil and is extremely simple to implement. We test our basic method
against Eikonal equations in different norms, and then suggest a general method for rotating
the grid and using additional approximations to the derivatives in different directions in
order to more accurately capture characteristic flow. We display the utility of our method by
applying it to relevant problems from engineering.
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1 Introduction
The general Hamilton-Jacobi (HJ) equation in d-dimensions is given by
H(x,Vp(x)) =0, xeQ (1)

where @ ¢ R? and H : Q x RY — R is the Hamiltonian function. Along with Eq. (1),
one is often supplied boundary data ¢ (x) = g(x) on a set ' C R?, which typically has
dimension smaller than d. Common scenarios are I' = 902 or I' = {xy}, a single point. These
equations have diverse application in fields including traffic modeling [30], medical imaging
[32], path-planning [41], and dynamic visibility [27,34,56] to name a few.

The fast sweeping method is a type of finite difference scheme used to approximate (1).
The basic strategy involves discretizing the domain and devising update rules
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that locally approximate the equation at grid nodes i, where N (i) is comprised of the nodes in
some neighborhood of node i. Using these update rules, one sweeps through the domain in the
Gauss-Seidel manner, iteratively updating the solution values at grid nodes until convergence.
As far as this author can discern, the fast sweeping method was first used by Boué and
Dupuis [10] and Zhao et al. [63]. Shortly afterwards, there was much work on developing
fast sweeping methods for different types of Hamiltonians, and using different strategies
for numerical approximation [24-26,57,64]. Subsequent effort was devoted to adapting fast
sweeping methods to irregular grids [43,44], improving the accuracy [29,31], and extending
them to other equations, such as conservation laws [19,20]. Luo and Zhao [33] provide a nice
overview of fast sweeping methods, which we will refer to in Sect. 3.1.

Besides fast sweeping schemes, other grid-based methods used to approximate steady-
state HJ equations can be largely divided into two categories. The first category is fast
marching methods for monotonically advancing fronts, pioneered by Tsitsiklis [58]. These
methods—as well as their generalization to ordered upwind methods—rely on a single-pass,
Dijkstra-type algorithm to update the solution value at grid nodes as characteristics flow
outward from boundary data [1,2,48-50]. Besides these, Bornemann and Rasch [9] proposed
a variational method based on the Hopf-Lax formula. Their approach is to localize the HJ
equation to finitely many simplices, approximate the solution with linear elements, and solve
a discrete version of the Hopf-Lax formula. Their method is similar in spirit to fast marching
methods in that it involves updating nodes in a specific order. However, it relies on a Gauss-
Seidel iteration, rather than a single pass update. The second category is time-dependent
methods. Osher showed that in many cases one can recast the steady-state HJ equation
in a time-dependent manner [36]. There are very general methods which can approximate
time-dependent HJ equations at high accuracy, and also allow for non-monotonic flow of
information [23,38,51]. More recently, there has been increased interest in algorithms for
numerical solutions of HJ equations which break the curse of dimensionality. These typically
rely on Hopf-Lax or Lax-Oleinik type formulas for time-dependent HJ equations, and use
optimization routines to approximate the solution at individual points [12,17,28]. However,
due to the wide applicability and relative ease of both implementation and analysis, fast
sweeping methods have remained a popular option for approximating solutions of steady-
state HJ equations.

We present an exceedingly simple fast sweeping scheme for a class of Hamilton-Jacobi
equations arising from optimal control theory. For simplicity of exposition, we develop our
method in two spatial dimensions. The method applies in higher dimensions, though for
dimensions d > 3, one will encounter the curse of dimensionality. In two dimensions, our
most basic method includes a four-point stencil on a rectangular grid, using only the ordinary
forward and backward difference operators. We then describe a general method for using
rotated coordinates to improve the accuracy of the scheme. We implement our method with
special application toward Eikonal equations in different norms, and also mention a few
other applications. Because one of the strengths of our method is ease of implementation,
we compare it with the Lax-Friedrichs sweeping scheme [25], another easily implementable
method.

2 Hamilton-Jacobi Equations in Optimal Control Theory

We will address a specific class of Hamilton-Jacobi equations arising from deterministic
optimal control theory. A basic problem in optimal control theory is to choose the best
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control plan a : [0, T] — A to steer a trajectory x obeying

x(t) = f(x@®),a(t),t), 0<t<T,

x(0) = xo, .

to an optimal destination x(7). Here A C R™ is the set of admissible control actions and
f 1 RY x R™ x [0, T] — R? is a function describing the dynamics along the trajectory. The
“optimal destination” is determined in view of a cost functional

T
Clx(),a()] = g(x(T)) +/O r(x(t), a(t), n)dt “

that one wishes to minimize. The function r : RY x R™ x [0, T] — R accounts for a running
cost along the trajectory, and g : R? — R is the exit cost. While it is not necessary in all
cases, we will assume that r, g > 0, which is common in many applications where cost
cannot be negative. To analyze this problem using dynamic programming [7,8], one defines
the value function ¢ : RYx[0,T]— R by

¢(x,0) = inf Cyilx(),a()] ®)
x().a()

where Cy ;[x(-), a(-)] is the remaining cost functional, restricted to trajectories x on the time
interval (¢, T'] and satisfying x () = x. Thus ¢ is the optimal remaining cost for a trajectory
that is at position x at time ¢. Under mild conditions on the data, this value function is the
unique viscosity solution [15] of the terminal value Hamilton-Jacobi-Bellman equation [3,5]

¢,(x, 1) + inf {(f(x,a, 1), Vé (x, D)) + r(x, a, r)] -0,
acA

¢, T) = g(x).

Note that the viscosity solution of (6) should remain non-negative: by (5), ¢ is non-negative
whenever r and g are non-negative.

We observe that (6) is of the form (1) if we consider generalized coordinates x = (¢, x)
and V; = (0;, Vy). In this case Q = R? x [0,T) and T = R? x {T}. Thus this can be
analyzed in the framework of the more general equation (1), but time-dependent equations
like (6) are so ubiquitous in application that they are often analyzed independently. Indeed,
in their two original papers, Crandall and Lions established the notion of viscosity solutions
specifically for time-dependent Hamilton-Jacobi equations [14,15], and later the theory was
extended to more general equations; see, for example, [13].

(©)

2.1 Our Class of Equations

We restrict our focus to a special class of optimal control problems. We consider the case
that the dynamic function f does not depend explicitly on ¢, and the running cost function r
does not depend explicitly on either # or a(-). The removal of the explicit dependence on ¢
is not a particularly stringent condition; this is very natural in many applications. Removing
the dependence of r on a(-) is a more serious restriction. For example, this will exclude
essentially any problem from mathematical finance where the control variable could represent
the fraction of capital one wishes to invest or the amount of goods a company would like to
produce [42]. In this case, the cost and profit very explicitly depend on the value of the control
variable. However, control problems of our type still have diverse application. Minimal-time
path-planning [41] and reach avoid games [65] are two classical problems in applied optimal
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control theory that fit into this framework. Otherwise, four of the five examples given by
Evans [21, chap. 1] fall into this category. This includes the moon lander problem, optimally
stopping a pendulum, and a model for growth of ant colonies originally proposed by Oster
and Wilson [39].

When neither f nor r depend on #, one can neglect the time horizon T and formulate a
steady-state Hamilton-Jacobi-Bellman equation for the value function. Given that r does not
depend on a(-), this takes the form

—r() = inf {{£(x, ). Vo)), )
or alternately
d
—r(x) = inf i; fe(x. @)y, (x)I ®)
where x = (x1,...,xq) and f(x,a) = (fi(x,a),..., fa(x,a)). We focus on numerical

solutions for this equation with boundary data ¢ (x) = g(x) on a set I' C R¥. For example,
in the case of optimal-time path-planning, we will take I' = {xr}, where xy € R? is the
desired ending point, and let ¢(x) = 0. This signifies that paths ending at the desired
location incur no exit cost, while other paths are not admissible (i.e., they incur infinite cost).

Many classical Hamilton-Jacobi equations can be expressed in this form. Notably, the
Eikonal equation

1 =v(x)|VoXx)| )

is of this form. The travel-time function for isotropic motion x () = v(x(¢))a(z), where a(-)
is a unit vector, is the viscosity solution of this equation, and in the case that v(x) = 1, this
yields a signed distance function [37]. Assuming v > 0, Eq. (9) can be re-written

— 1/ = inf [a : v¢>] (10)

whereupon casting the equation in the form (8) is accomplished by parameterizing the unit
sphere S?~!. For example in dimension d = 2, we have

~1pey) = nf [qsx cos(a) + sin(a)}, (11)
or in dimension d = 3,
— /v, y,2) = inf {¢x cos(a) cos(b) + ¢y sin(a) cos(b) + ¢ sin(b)], (12)

where (a, b) € [0, 2m) x [—m /2, /2] represent the x y-planar angle and the angle of inclina-
tion from the x y-plane, respectively. We return to Eikonal equations when testing our method
in Sect. 3.2 and Sect. 4.1.

3 A Basic Fast Sweeping Scheme for (8)

As stated in Sect. 1, for simplicity of exposition, we will describe our fast sweeping scheme
in dimension d = 2. We consider a rectangular domain [Xmin, Xmax] X [Ymin, Ymax] and a
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uniform grid discritization with / + 1 points in the x-direction, and J + 1 points in the
y-direction. Thus the grid is given by

Xmax — Xmin

Xi = Xmin +i1AX, Ax=————, 1=0,1,...,1,
1
S (13)
Yj = Ymin + jAY, A)’:H, j=0,1,...,J.
In two-dimensions, the equation of interest is
—r(ry) = inf {Ai0r Y. @ge(r3) + folx v 0y (0 | (14)

Let ¢;; be the numerical approximation to ¢ (x;, y;), and for a fixed a € A, let f;;;(a) =
fe(xi, yj,a) for £ =1, 2. Further let

€pij(a) = sign(fe(xi, yj, @), £=1,2. 5)

Then the upwind approximations to the derivatives are given by

(fl(x’ Y, @) (. y)>ij - }fl,if(“” W

(fZ(x’ ¥, a)gy(x, y)>l_j = | fr.ij(@)| d)’”&‘i—(;)_%

(16)

Supposing that a is the correct control value at the node (i, j), we can insert these approxi-
mations into (14) to arrive at

Pite i @),j — Dij Gi,j+&2:5(@) — Dij

—rij = |frij(@| Ax + | frij (@] A (17)
where r;j = r(x;, y;). Isolating ¢;;, we see that
Siij(@) frij(a@)
bk (a) = rij + | lij |¢i+§l,ij(¢l)»j + | ZAI), |¢i,j+.§z,ij(a) (18)
R |frLij@| | |fuij@]

Ax + Ay
is a first-order upwind approximation to Eq. (14), when a is the correct control value at node
(i, j). This suggests the fast sweeping scheme detailed in Algorithm 1.
We include some comments regarding the algorithm. First, at each iteration, we sweep
through the indices in alternating directions until all combinations of sweeping directions
have been performed. Thus each iteration consists of four sweeps; in MATLAB notation:

Hi=1:1—-1, j=1:J-1,
Qi=1:1-1, j=J—-1:-1:1,
Bi=I1-1:-1:1, j=J—-1:-1:1,
@Hi=I—-1:-1:1, j=1:J-1.

Generally, in dimension d, there will be 2¢ sweeps in each iteration. Second, it is important
that we assign ¢inj <« ¢lflj*l at the beginning of each iteration and then operate only with
¢l"j This ensures that sweeping is carried out in the Gauss-Seidel sense: updating values,
and then using the most recently updated values to resolve the ensuing values. Third, for the
convergence criterion, we use the L°°-norm so that the iteration halts when ||¢" — "l =

max; q)l?’j — ¢! < ¢ for some prescribed tolerance ¢, though other criteria could be used.

ij
Fourth, the scheme is fully upwind meaning that numerical characteristics flow away from
the boundary set I". If I" corresponds to the computational boundary, then information flows
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Algorithm 1 A fast sweeping scheme to solve (14)

Initialization: Input boundary data (a function g and set I'), a grid discretization as in (13), and a small
error tolerance ¢ > 0. Initialize ¢?i = g(x;, y;) for the grid nodes corresponding to I" and ¢[Qi = 400 (or

some large positive number) for all other grid nodes. Initialize ¢i1j = 0 at all grid points, and n = 1.
while |¢" — ¢" || > ¢ do
. n—1 .
Assign ¢inj <« ¢ij for all (i, j).
fori =1to/ —1do

for j=1toJ — 1do
For each a € A, compute

gl ol
o* (a) < rij + Ay i€ ;i (a).j + Ay e (@
N [frij@] | £ @) :

Ax + Ay

Assign ¢inj < min{min, ¢i*j (a), ¢in/‘_1}
end for '
end for

Repeat the above for loops, sweeping in alternating directions until all combinations of sweeping direc-
tions have been completed (a total of 4 sweeps).

Assignn <—n +1
end while

return the values ¢If°j“d for all (i, j)

into the domain. If T is contained in the computational domain, then characteristics will flow
out of the computational boundary. In this case, no special considerations are necessary at the
computational boundaries. The values at the boundary nodes will remain large, but will not
affect the solution at interior nodes. In this way, our scheme is similar to Godunov-inspired
methods such as [57]. In a different approach, Kao et al. [25] devise a sweeping method with
a Lax-Friedrichs Hamiltonian, wherein added numerical diffusion will cause information to
seep into the domain from the computational boundary, requiring special consideration. We
will discuss the Lax-Friedrichs sweeping method in more detail later.

Perhaps the most important notes regard the minimization overa € A, which takes place at
each grid point in each sweep. A single iteration in two dimensions requires this minimization
to be resolved roughly 47/ times. Because of this, the shape of A is somewhat crucial to the
algorithm. For example, in the Eikonal equation, we have A = S!, meaning this optimization
is performed over a continuous set. One can either discretize the set and choose from finitely
many values, or introduce an optimization routine of their choosing. Either way, this is likely
to represent the largest computational burden. The minimization problem is nontrivial due
to the switching between the values ¢;+1,; and ¢; ;j+; for different values of ¢ € A. In
some cases, one may be able to isolate regions of A where certain values are used, and
thus simplify the problem. However, it is difficult to guarantee efficiency in general, since
the computational complexity will depend on the fineness of the grid and resolution of the
minimization problem.
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The algorithm performs extraordinarily well when A is finite. For example, this occurs
in bang-bang control problems, where the optimal controls switch between finitely many
control values [52]. In this case, the minimization problem reduces to checking finitely many
points, and the complexity depends only on the grid discretization. One application of this
is in kinematic models for simple self-driving cars [18,46]. Takei and Tsai were the first
to analyze this problem in the Hamilton-Jacobi setting [54,55], and they used a sweeping
scheme much like ours. We will return to the example of self-driving cars in Sect. 5 where
we display the utility of our method.

3.1 Upwinding, Monotonicity and Convergence

Luo and Zhao [33] discuss and analyze fast sweeping methods in some generality. In partic-
ular, they consider (1) with a Hamiltonian H that is

(i) continuous on  x R”",
(ii) convex and coercive in V¢,
(iii) compatible, in that H (x,0) < 0 for x € Q.

Under these conditions and some mild conditions on the boundary data g, they prove that if
a fast sweeping scheme is consistent, monotone, and obeys a causality condition, then the
approximate solution produced by the scheme will converge to the viscosity solution of the
Hamilton-Jacobi equation under grid refinement.

An annoying but necessary facet of the theory of viscosity solutions is that orientation
matters. Formally, the viscosity solution of H (x, V¢ (x)) = 0 is the negative of the viscosity
of —H (x, V¢ (x)) = 0. Our orientation is reversed from that in [33] but modulo some sign
changes and inequality flips, the analysis is the same. Our scheme is consistent to first order,
as can be shown by a simple Taylor expansion. In our case, the monotonicity requirement
is trivially satisfied since the update rule (18) is clearly non-decreasing in the values at
the surrounding grid nodes. The causality condition states in essence that the characteristic
flowing into grid node (i, j) is contained in the polygon formed by the nodes used for the
finite difference approximations at (i, j). This is illustrated in Fig. 1, where the characteristic
curve (blue) enters from the positive-x and positive-y direction, specifying that one should
use nodes (i, j), (i+1,j), (i, j+1) toapproximate (V¢);;. For us, the causality condition
corresponds exactly to the upwind approximations (16). Note that because of the negative
sign in the equation, the characteristic direction at (x, y) is — f (x, ¥, a) when a is the correct
control value at (x, y). Thus our scheme fits into their framework, and we have convergence
to the viscosity solution of (7) as the grid parameters go to zero.

Determining the order of covergence is subtle. Classical proofs of convergence for numer-
ical solutions of Hamilton-Jacobi equations depend not only on the order of local truncation
error, but also on the regularity of the viscosity solution [4,6,53]. Typically one can guarantee
convergence at order no less than 1/2 when the scheme is consistent at order 1. However, one
often sees full first-order convergence in regions where the solution is smooth [33], and in
some cases, one can achieve higher order accuracy using techniques such as ENO or WENO
schemes [23,38,51,62], though the application of these concepts to fast sweeping methods
presents some challenges. We discuss this further in Sect. 3.3.
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Fig.1 The causality condition (i, i+ 1)
specifies that the nodes used to
approximate (V¢);; form a
polygon containing the
characteristic (blue) flowing into
(i, j). Here, one would use nodes
@ j), G+1,7), (A, j+1).The
characteristic direction is given
by — f;j(a) if a is the correct
control value at the grid node
(Color figure online)

(6,5 —1)

3.2 Application of the Basic Method to Eikonal Equations

To empirically study error and convergence, we test our method on three different Eikonal
equations:

1= Vo)l (19)
where p = 1, 2, co. Given the boundary data ¢ (0) = 0, we see that the unique (positive)
viscosity solution of (19) is ¢, (x) = ||x|[,» where L 4 L — 1. This fact can be intuited

from the ensuing optimal control problem, and essentially follows from the dual definition
of the norm:

lzllp = sup (z,a). (20)

lall <1

However, proving this in full generality is surprisingly intricate. A discussion of such equa-
tions is included in [35], and a full analysis is given in [11].

Each of these equations is solved by travel time function for a minimal-time path-planning
problem of the form above. Indeed, consider the equation of motion

i) =a(t). a()eB?, 1)

where Bl(p ) is the unit ball in the p’-norm (centered at the origin). If we pair this equation
with the cost functional

T
Clx(). a()] = 10(x(T) + /O Ldr 22)

where (¢ is the convex indicator of the origin (0 at the origin; 400 elsewhere) and allow
for infinite horizon time, then the Hamilton-Jacobi-Bellman equation for the value function
is the p-norm Eikonal equation (19), and the optimal control plan steers the trajectory to
the origin in the minimal possible time, where distance from the origin is computed in the
p/-norm. In particular, since the unit ball has finitely many extreme points in the case that
p' = oo or p’ = 1, this leads to a bang-bang control problem for p = 1 or p = oo.

In two-dimensions, Eq. (11) shows that the 2-norm Eikonal equation can be written in the
form (14). We can write the other equations in this form as well. For p = 1, we have

—1= inf [arg. (e ) + a2, x. )] 23)

ay,aze{*1}
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and for p = 0o, we have

~1=_inf | , ) 24
ae{:tlg,:tez} ajgx(x,y) +a2¢y(x y) (24)
where in the latter equation, e1, e, are the standard basis vectors, and a = (ay, az).

We would like derive the specific update formula (18) for each of these cases. For the
ordinary Eikonal equation in the 2-norm, we find

ISm(a)\

1 4 kos@l

¢1+51gn(cos(a)) j + ¢l ]+51gn(sm(a))

\COS(a)\ + \Sln(a)l

¢3%(a) = (25)

and use the update ¢> = min{minge[0,27) ¢>” (a) ¢>l"/ L 2} To use this update, we will
need to resolve the mlnlmlzatlon overa € [0, 2m). To do so, we simply sample a = 2wk /K
fork =0, ..., K — 1 and choose the minimum from these finitely many points. In our tests,
we fix K = 400. This will incur some small error. We discuss this briefly below.

For the 1-norm and co-norm equations, we can explictly write the update rule by consid-
ering all possible combinations of control variables. For the case p = 1, we have

1+ Ax¢t+l J + Ay(z)l ]+1 1+ Ax¢l l] + A}¢l ]+1

ml a1
¢,’j —mln{¢ij ,

Ax + A) Ax + Ay (26)
1+Ax¢l+l]+Av¢lj l 1+Ax¢l 1]+Ay¢z] 1}
Ax + Ay Ax + Ay

In the p = oo case, the update is even simpler since one of a1, ay in (24) is zero. Plugging
the values into the general update formula (18) and clearing the denominator yields

¢/ —mln{¢n 100’ Ax+¢ln+oloj’ Ax+¢t 1,j° Ay-"_(z)lnjoil’ Ay+¢l[ 1} (27)

We note that (27) is perfectly satisfied by the exact solution ¢ (x, y) = [[(x, ¥)|[1 = |x[+]yl,
and thus when p = oo, our scheme will solve the equation exactly, so long as the origin is a
grid node. Otherwise, the error in the approximation will only depend on the distance from
the origin to the nearest grid node in each direction.

Using these update rules, and the boundary condition ¢ (0, 0) = 0, we simulated Eq.
(19) for p = 1, 2, oo. The results are included in Fig. 2. Specifically, results for p = 1 are
included in Fig. 2a—c; p = 2 in Fig. 2d—f; and p = oo in Fig. 2g—i. Recall again the exact
solution ¢, (x, y) = [|(x, y)|l,». The left most figure in each column shows contour plots
of the approximate solutions [—1, 1] x [—1, 1] with a 401 x 401 grid, along with level sets
of the approximate solutions. The middle figure in each column shows a contour plot of the
error in the approximation. The right most figure includes the convergence table in each case.
We note that there is a different scale in each plot.

When p = 1, the level sets should be perfect squares since these are balls in the co-norm.
At the corners of those squares, the ordinary forward and backward difference operators
cannot capture the sharp edges, which leads to some rounding off. Because of this, the error
is large along the lines y = =%x, and the order of convergence is roughly 1/2; the minimal
convergence rate guaranteed by the classical theory [4,53].

When p = 2, the maximum error is less than in the p = 1 case, and the error itself
is more evenly spread throughout the entirety of each quadrant, rather than being focused
along specific lines. The convergence rate here is roughly 3 /4, showing improved convergence
behavior compared with the p = 1 case. An interesting note here is that along the lines x = 0
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4 1,J L*> Err.  Conv.

50 1.4057e-01 —

100 9.3988e-02  0.5807

2 200 6.3636e-02 0.5626
400  4.3544e-02  0.5474

1 800 3.0049e-02 0.5352
1600  2.0872e-02  0.5257

EEEEEE 05 1 (€) Conv. table for p = 1.
(b) Error when p = 1.

x10°%

8 1,J L*> Err. Conv.
: 50 4.3754c-02 —
. 100 2.6310e-02  0.7338
B 200 1.5464e-02 0.7666
3 400 8.9201e-03 0.7938
0 2 800 5.0668e-03 0.8160
1 1600 2.8431e-03 0.8336
T 05 0 05 0

(f) conv. table for p = 2.

(e) Error when p = 2.

1,J L Err. Conv.

50 1.7764e-15 —
100 1.7764e-15  0.0000
200 1.7764e-15  0.0000
400 2.0428e-14 -3.5236
800 4.2633e-14 -1.0614

1600 4.2633e-14  0.0000

(i) conv. table for p = co.

(g) Approx. soln., p = oco. (h) Error when p = oco.

Fig.2 Approximation of |Vé| , = 1 using our fast sweeping method. Plots display results from the 401 x 401
grid. Red lines are level sets of the solution (Color figure online)

and y = 0, the error is effectively zero. This is because the finite difference approximations
are focused in those directions, and the cross sections of the exact solution in those directions
are linear rays increasing outward from the origin. Thus, for example, when x > 0, the
exact solution satisfies ¢, (x + Ax, 0) = Ax + ¢2(x, 0), and our discretization captures this
relationship with no error. We will return to this line of thought momentarily. Before doing
so, we make a further remark regarding the discretization of the control set. Recall, the update
rule for the 2-norm Eikonal equation requires that we resolve a minimization problem over
[0, 27), and to do so we simply discretized the interval into K = 400 points and chose the
minimum from the discrete set. We found empirically that error produced by approximating
the control set is smaller than the error in the discrete derivative approximations. To test
this, we instead resolved the minimization to a tolerance of 10! using built-in optimization
routines in MATLAB. For a 400 x 400 grid, the approximate solution found using the exact
minimization differed from that found using discrete minimization with K = 400 by only
1.4x 1073, whereas the error between the exact solution and each of the approximate solutions
was roughly 8.9 x 1073, It bears mentioning that when finding the exact minimum at every
point, the algorithm required roughly 150 times the CPU time to resolve the solution. In
general, as long as the minimization problem is solved so that the approximation using the
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1
0.8}
06}
N
04}
0.2} Cross section ¢y(z,1/2)
Cross section ¢(z,1/2)
Cross section ¢ (z,1/2)
0
-1 -0.5 0 0.5 1

x

Fig. 3 Horizontal cross section of ¢, ¢, oo at y = 1/2

exact minimum and the approximation using an approximate minimum differ by no more than
O(Ax, Ay), then the approximation of the control set will not ruin convergence. Beyond that,
one must choose how to balance accuracy and efficiency, as well as ease of implementation.
To this last point, one of the strengths of this method is the ease of implementation, which is
why it is particularly suited to problems where the minimization can be resolved explicitly
(for example, bang-bang problems such as the 1-norm or co-norm Eikonal equation or the
kinematics of the self-driving car presented in Sect. 5).

When p = oo, we noted earlier that our scheme should be exact. Indeed, we see that
the level sets of the approximate solution are sharp-edged diamonds, exactly mirroring the
level sets of ¢oo(x,y) = |x| 4 |y|. In this case, the error is near machine-¢, and thus the
convergence table is not informative.

We remarked about the low error along the lines x = 0 and y = 0 in the p = 2 case, and
the relationship between this low error and the cross sections of the exact solution along those
lines. This remark very closely relates to the improved order of convergence for larger p. As
p increases (and thus p’ decreases), the cross sections of the exact solution ¢, (x) = | x|| p in
the vertical or horizontal directions more closely resemble the absolute value function, and
thus can be captured more accurately by the finite difference approximations. This is seen in
Fig. 3, where we have plotted horizontal cross sections of ¢1, ¢» and ¢, at level y = 1/2.
For ¢oo(x, ¥) = |x| + |y|, this cross section is exactly |x| + 1/2. For ¢n (x, y) = /x2 + y2,
the cross section is a smooth curve, which cannot be captured perfectly by our discretization,
but is better approximated than the cross section of ¢ (x, y) = max{|x|, |y|}, which has
two kinks. The accuracy of the method depends on how well these cross sections can be
approximated, since any error in these approximations will propagate to other regions.

With this in mind, we note that for ¢; (x, y) = max{|x|, |y|}, while the cross sections in
the horizontal and vertical direction have these two kinks, the cross sections in the diagonal
directions y = x¢ =+ x will look like absolute value functions. If we used first-order approxi-
mations to V¢, along these diagonals, we would perfectly capture these cross sections, and
thus reconstruct the solution exactly. This suggests that we should rotate the grid and consider
alternative approximations to V¢;. Section 4 develops this idea.
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3.3 Increasing Accuracy with WENO Approximations

We noted earlier that in some cases, one can increase the order of accuracy using
(Weighted) Essentially Non-Oscillatory (WENO) schemes. The philosophy of ENO and
WENO schemes—pioneered by Osher, Shu and Jiang, among others [23,38,51]—is to use
multiple higher order approximations of ¢, and ¢y, and deftly combine the approximations
so as to minimize oscillations in the numerical solution near kinks. These methods were orig-
inally developed for time-dependent Hamilton-Jacobi equation, but have since been adapted
to fast sweeping methods. We demonstrate the application of the third-order WENO approx-
imations to our method, following the work of Zhang et al. [62]. One could use higher order
WENO approximations if desired.
The third-order WENO approximations to ¢, are given by

w) +wt <—¢>i+z,,- +4dis1j = 3¢”"> ,

+ 1+
(¢X)ij =1 —wy) ( 2Ax 2Ax

(28)
_ _ A Pit1,j — Pi-1,j _(Gi—2,j —4pi—1,j + 3
@)y = A =wr) (W M 2Ax ’
where the weights w;™ and w} are given by
Wt — 1 o+ &+ (Biva) — 20it1.) + ¢ij)*
T4 20hH? et (G — 20 +dio1 ) (29)
o — 1 - + (pi—2,j — 2¢i—1,; + ¢ij)?
420 Y et (i1 — 20 + div1,)?

Here ¢ is some small number which we fix at 107¢. We define (¢y);; and (¢y)l.; analogously.
Notice that each of the divided differences in (28) is a second-order approximation to
¢y . The weighted averages—which favor the less oscillatory approximations—ensure that
(qu)]; and (qu)l._j are third-order approximations to ¢, in regions where ¢ is smooth. For a
derivation and discussion of these formulas, see [51] and the references therein.
The question then becomes: how to include these approximations in a fast sweeping
scheme? If we simply replace the finite difference approximations in (16) with (qu);; or

(fx);; as appropriate, then we will not be able to isolate ¢;; and arrive at a simple update rule
of the form (18). The idea presented by Zhang et al. [62] is to start from the update rule itself.
Note that the update rule (18) gives ¢;; as a function of ¢;+1,; and ¢; j+1. A finite difference
approximation exploits the formal relationship ¢ (x + Ax,y) = ¢(x,y) £ Axd,(x, y).
Thus to arrive at a higher order approximation of the form (18), we can replace ¢; 1, ; with
oij + Ax(qu);;, and replace ¢; 1, ; with ¢;; — Ax(qu) and similarly for ¢; j+1. Doing so
results in the update rule

rij + 9L (g 4 s @ @05 ) + 129 (g + ave @ @5 )

|f1ij (@) |_f2,ij(a)|
Ax Ay

i (@) =

+
(30)

Using this update rule in Algorithm 1 yields a higher order approximation of (8).

Formally, the approximation is third-order accurate when the solution ¢ (x, y) is smooth.
In practice, the convergence can be corrupted by non-smoothness of the solution, and by the
non-monotone nature of higher order approximations, which affects the numerical causality.
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Table 1 Error in solution of ||V¢||2 = 1 when using the Basic Method with (a) first-order approximations or
(b) third-order WENO approximations

1,J L Err. L% Conv. L' Err. L1 Conv.

(a) Convergence table with first-order approximations to V¢

50 4.3754e—02 - 9.7606e—02 -

100 2.6310e—02 0.7338 5.9553e—02 0.7128
200 1.5464e—02 0.7666 3.5451e—02 0.7484
400 8.9201e—03 0.7938 2.0691e—02 0.7768
(b) Convergence table with third-order WENO approximations to V¢

50 9.0508e—03 - 2.0426e—02 -

100 4.4930e—03 1.0104 8.7373e—03 1.2252
200 2.2253e—03 1.0137 3.8868e—03 1.1686
400 1.0668e—03 1.0607 1.9013e—03 1.0316

Because of this last concern, when using the WENO approximations, it is crucial to seed the
Gauss-Seidel iteration with a good initial guess qb?j, rather than simply setting ¢?j = gjj near
the prescribed boundaries, and ¢?A = +o0 elsewhere. If one uses this crude initialization,
it is easily checked in simple examples that (30) will not correctly propagate information
from the boundaries. We suggest first running the basic scheme with the ordinary first-order
approximations, and using the resulting solution to initialize the iteration that uses the WENO
approximations.

We have carried out the implementation for two example problems. Both are of the form

r(x,y) = Vo x, yll2, #(0,0) =0. €2V

In the first, we take r(x, y) = 1 so that it is the same 2-norm Eikonal equation as above, and
the solution is given by ¢ (x, y) = v/x2 + y2, which has a kink at the origin. In the second,
we take 7(x, y) = v/x2 + y2, in which case the exact solution is ¢ (x, y) = (x2 + y2)/2
which is smooth throughout the domain. The results are summarized in Tables 1 and 2. In this
case we report both the L™ and L' errors. In some cases, the L' error is more appropriate
for evaluating the performance of WENO schemes, since the most significant errors can
propagate along very small sets, whereas error remains small in the majority of the domain
[62]. In Table 1, we see that for the Eikonal equation ||[V¢|> = 1, the non-smoothness of
the solutions corrupts the effects of the WENO approximations, and while the errors are
smaller and convergence rate is improved, we do not nearly have third-order convergence.
By contrast, in Table 2 when the solution remains smooth, we do see a greatly improved rate
of convergence which is near third-order as the grid refines.

4 A Rotating-Grid Fast Sweeping Scheme

In this section, we would like to append the basic algorithm with additional approximations
to the gradient V¢ in directions that are not vertical and horizontal (with respect to the
rectangular domain). In doing so, we can increase accuracy while maintaining a monotone
scheme, since we do not use higher order approximations to the derivatives.
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Table 2 Error in solution of || V|2 = v/x2 + y2 when using the Basic Method with (a) first-order approxi-
mations or (b) third-order WENO approximations

1] L™ Err. L Conv. L' Em. L' Conv.
(a) Convergence table with first-order approximations to V¢
50 4.0010e—02 - 8.0016e—02 -
100 2.0009e—02 0.9997 4.0014e—02 0.9998
200 1.0010e—02 0.9992 2.0014e—02 0.9995
400 5.0103e—03 0.9985 1.0014e—02 0.9990
(b) Convergence table with third-order WENO approximations to V¢
50 2.3922e—03 - 5.4938e—03 -
100 1.1609e—03 1.0431 2.3126e—03 1.2483
200 1.5113e—04 2.9413 3.7584e—04 2.6213
400 3.9126e—05 1.9496 6.0658e—05 2.6314

4y

» >

Fig.4 Cartesian coordinates rotated by 8 € (0, /2) in the counterclockwise direction

In order to accomplish this, we must first recast Eq. (14) in new coordinates (x, y), rotated
versions of the standard Cartesian coordinates. Again, we describe this procedure in two
dimensions. Here the extension to higher dimensions is not as straightforward but can still be
accomplished in a somewhat principled, if tedious, manner. We discuss the three-dimensional
implementation in Appendix A.

Suppose that (x, y) are the typical Cartesian coordinates, rotated counterclockwise by an
angle 8 € (0, w/2), as pictured in Fig. 4. Note that it is sufficient to consider this range of
angles; rotations by larger angles results in the same transformation up to renaming coordi-

nates and flipping positive and negative directions. One easily verifies the relationship

X\ _ ( cos(B) sin(B) <x
v)  \—sin(B) cos(B)) \y
Thus the derivatives in the (x, y) directions can be expressed

bx

by

@ Springer
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Inserting these representations into (14) yields

—r(x.y) = inf {[COS(ﬁ)fl (&, ¥, a) +sin(B) (X, ¥, A)]px(X, ¥)

+[c05(B) L2(F. 3. @) = sin(B) i (F. 5. )l (7. 7) |. o
Defining
Zl(i y.a) = cos(B) fi(X. ¥, a) + sin(B) 2(X, ¥, @), 35)
f2(x,y,a) = cos(B) f2(X, Y, a) — sin(B) f1(X,V, a),
we arrive at
—r@ ) = inf {[1(%.5, O¢rE ¥) + [, 5, )¢y M} (36)

The idea is now to write the upwind finite difference approximations in the directions of
(¥, y). Doing so shows that

re ) + L2y 1 7 v y) + 25T @ 5 4 A7)
[11&yal | [F2G5.9)
AX Ay

¢(x.y) = (37

is a first-order, upwind approximation to (36) at the point (x, y) when a is the correct control
value, and &, = sign(f,(X, y, @)). Thus one could add this approximation into the sweeping
scheme and use the update rule

¢i; = min {¢/;", min ¢ (@), min g, @)}, (38)

where a,*/ (a) is computed from (37). However, this raises the question of how to evaluate
(37) on the grid, since for example, (x £ AX, y) may not be grid nodes.

Rotated finite differences are extensively used in computational wave mechanics. So-
called rotated-staggered-grid methods were introduced by Saenger et al. [47] and are still
being developed and improved today [16,22,45,59,61]. The philosophy of these methods is
the same: using finite differences in multiple orientations will more accurately capture the
upwind direction. Their strategy is to define a new grid corresponding to the points (x, y)
and keep track of solution values ¢;; and b; ; separately, while using both sets of values to
approximate the derivatives on both grids. To this author’s knowledge, the idea of fixing a
square grid and computing approximations to V¢ in different directions has not been widely
used in the context of fast sweeping methods. Takei et al. [54] suggest using approximations
along different directions. However, in their case, the upwind direction is fixed (in analogy
to our setup, they have fi, f» independent of a) which simplifies the matter.

We would like to maintain a single grid (x;, y;). To do so, one could interpolate values of
¢ij to off grid values, and compute the upwind approximation in any direction 8. This would
be computationally expensive since, in order to maintain the Gauss-Seidel sweeping, this
interpolation will need to be performed separately for every (i, j) using the newest updated
values. Alternatively, we can choose particular values of § and AXx, Ay such that the points
(x £ AX,y), (x,y &£ AY) fall on the grid.

Explicitly, rather than choosing B and the rotated grid parameters (AXx, Ay), we choose
natural numbers (7, ), and define 8 = arctan(j /7). We then let this 8 determine the grid
rotation, so that the positive x-direction is parallel with the vector (z, ). This is pictured in
Fig. 5. Here we have used (7, j) = (2, 1). As pictured, the nodes used to approximate ¢ at
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Fig.5 Rotated stencil at (i, j) L] L] L] ® ° L ] °
using the rotation determined by . .. R
i.j)=@1 (i—33+%)

[ J ° ° L ] ° [ ]

E+55+7)

[ ]
l
L]
[ ]
L]
(i+j’j_i)
[ ] L] L] ® L] L] [ ]

@i, jywillbe {(, j), (i +2, j+ 1)} for the forward approximation, and {(i —2, j — 1), (i, j)}
for the backward approximation. Similarly, the nodes used to approximate ¢y at (i, j) will
be {(i, j), (i — 1, j + 2)} for the forward approximation and {(i + 1, j — 2), (i, j)} for the
backward approximation.

We note that as described, this will only work on a square grid (Ax = Ay). The extension
to a non-square grid is a bit more complicated. In that case, there would be two rotation angles
that rotate the x-axis and y-axis differently, and thus the resulting coordinate system would
no longer be orthogonal. For the remainder of this document, we will assume that Ax = Ay
so that the rotation method works as described.

With these parameters (7, ) determining the rotation, we define the new grid discretization
parameter As = /(1Ax)2 + (jAy)2. Note that this As will take the place of AX, AY in the
case of a square grid. Thus we can translate Eq. (37) onto the grid:

e rijAs + [F1ij @ $iiz, @i 5 @i T 2@ 08, @i E @
Y |f1ij@|+ | f2@)]

which, one sees, is exactly analogous to (18), except that the coordinates are rotated and
the grid parameters are equal. Inserting this approximation into (38) provides a new update
rule that can be used in Algorithm 1. Of course, it is not necessary to limit oneself to a
single rotation (z, J). To further improve the scheme, one can choose as many pairs (Z, J)
as desired, compute the rotated derivative approximations in each of these directions, and
take the minimum over all such approximations. Since the stencil at each grid node will
be larger, the scheme will require a larger layer of ghost nodes padding the computational
boundary; otherwise, Algorithm 1 will operate in the exact same fashion, but with extra
approximations included in the update rule. In general, if one imposes 1 < 7, J < M, one
should buffer the computational domain with M layers of grid nodes, and there will be some
finite number C (M) of distinct angles 8 created by different pairs (7, 7).!. This is pictured

(39)

! In fact, one has C(M) = 2(2%:1 (p(m)) — 1 where ¢ is the Euler totient function, as detailed in the
Online Encyclopedia of Integer Sequences: http://oeis.org/A018805
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Fig. 6 If we restrict 1 < 7, ] < M there will be some finite number C(M) of distinct rotation angles
B = arctan(j /1), each represented by a colored line (Color figure online)

in Fig. 6, where each colored line represents a distinct rotation angle § when M = 3. Fixing
M, we propose two strategies for choosing different rotation angles: first, one could simply
use every possible rotation angle. This may be computationally expensive since, for example,
when M = 5, there are C(M) = 19 angles to consider. Accordingly, our second strategy
will be to choose some fixed size subcollection at random. This will not be able to guarantee
the same level of accuracy, but will be significantly cheaper computationally. It may also be
better than choosing a fixed subcollection of angles since, in application, one may not be
able to intuit the “principal” directions that need to be captured as we can for the Eikonal
equations. Another possibility would be to change the rotation angle g for each grid point,
perhaps accounting for the admissible control actions and possible upwind directions; this
is essentially what is done by rotating the grid by § = /4 for the 1-norm Eikonal equation
below. To do so more generally, one would need to carefully analyze the particular update
rule (39) for one’s problem in order to determine a range of possible upwind directions. As
presented, we fix the rotation angles 8 before each iteration.

Note that we will always use the ordinary forward and backward approximations in the
(x, y) directions, and include approximations in other directions as desired. This is to establish
a baseline. In this manner, using derivative approximations in additional directions can only
improve upon the accuracy of the basic method presented in Algorithm 1.

It is natural to consider the optimal number of grid rotations—or similarly, the optimal
width of a stencil—for a given problem. Unfortunately, it is difficult to address this point
generally. In specific examples, the answer is simple. For example, in the 1-norm Eikonal
equation, one can achieve an exact solution with a single grid rotation, as we demonstrate in
the succeeding section, and thus additional rotations will offer no benefit. However, for the
2-norm Eikonal equation, each new rotation will serve to better capture the solution at certain
points, since characteristics travel outward from the origin in every direction. For general
steady-state HIB equations, one may not know the characteristic directions ahead of time,
so while adding more rotations can do no worse than the basic scheme, the benefits may be
marginal, and they come at the cost of increasing the computational burden. Accordingly, this
point would need to be addressed on an ad hoc basis, and depends both on the problem and
on the user’s desire to balance the possibility of large accuracy gains against the increased
computation.
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(a) Approximate solution (b) Error in approximation.

Fig.7 Numerical solution of || V¢||; = 1 with additional approximations to V¢ in the direction of § = /4.
Compare with Figs. 2a, 2b

4.1 Application of the Rotating-Grid Method to Eikonal Equations

We apply the sweeping scheme with rotated derivative approximations to the Eikonal equation
in the p = 1 and p = 2 norms. We remarked earlier that cross sections of the solution
¢1(x, y) = max{|x|, |y|} along the diagonal lines y = xo = x could be captured exactly by
our scheme if we use the rotation 8 = /4, which is the same as (7, j) = (1, 1). In this case,
the rotated coefficients are ?1 = %(al + ap) and ?2 = %fz(az —ay), where ay, ap € {£1}.
Since one of these is zero, the update rule is

1 ,n,l 1 n,l 1 4nl 1 4nl
net1 LT ax®in T Ay L+ axdili + ay®iiv

nd _ .
¢l.j _mln{(bij ,

1 1 ’ l 1 ’
A T &y A& T ay
Ll | ol | ol |l
L+ 20050+ 200 1t ardion + a8 -1
i i . i i .
i T &y a T ay (40)
As As
n,1 n,1
biti 1t Ve byt NG
As As
,1 1
AR Nek O o1t ﬁ}

We use this update rule in Algorithm 1 to solve | V¢||; = 1. The results are seen Fig. 7. We
note that the level sets of the solution have sharp edges, as opposed to Fig. 2a, where they
were rounded off. In this case, the error in the solution is on the order of machine-¢.

Next we solve |Vl = 1. Here, in contrast with [|[V@|l; = 1 or ||[V@| e = 1, we will
never be able to solve the equation exactly with finitely many grid rotations. The solution
will be resolved exactly along any line through the origin if we consider the derivatives in
the direction along that line. We saw this in Fig. 2e; the error is approximately zero along the
x-axis and y-axis. We see it further in Fig. 8. In that figure, we first solve | V||, = 1 using the
basic method (Figs. 8a—c). We then compare this to results when using approximations to the
derivatives in one additional direction (Fig. 8d—f), and three additional directions (Fig. 8g—i).
As expected, we see that for a fixed 7, J, the error only decreases as we incorporate additional
appoximations to V¢ in different directions. Interestingly, the order of convergence appears
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1,J L*> Err.  Conv.

50 4.3754e-02 —
100 2.6310e-02  0.7338
200  1.5464e-02 0.7666
400 8.9201e-03 0.7938
800 5.0668e-03 0.8160

1600 2.8431e-03 0.8336
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(C) Conv. table, no additional
(a) Approx. soln., no additional (b) Error in approx., no additional directions.
directions. directions.
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I,J L*> Err. Conv.

50 1.7901e-02 —
100 1.1567e-02  0.6300
200 7.2269e-03  0.6789
400 4.3888e-03 0.7192
800 2.6063e-03 0.7518

1600  1.5202e-03  0.7777
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(d) Approx. soln., one additional (e) Error in approx., one additional direction.
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(g) Approx. soln., three additional () Error in approx., three additional

directions. directions.

x10°3
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I,J L> Err.  Conv.

50 8.7787e-03 —
100 5.9351e-03  0.5647
200 3.8508e-03 0.6241
400 2.4134e-03  0.6741
800  1.4720e-03 0.7133

1600 8.7876e-04  0.7443
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Fig. 8 Numerical solution of ||V¢|l» = 1 using our fast sweeping method with additional approximations to
V¢ in different directions. Scale on error plots is fixed. Error is approximately zero in the directions of the
derivative approximations

to slightly decrease when additional directions are included. However, we also note that when
using three additional directions one only needs 51 grid points in each direction to achieve
the same approximation error as the basic method with 401 points in each direction.
Finally, we solve the same equation using a 401 x 401 grid and all 19 grid rotations
B = arctan(j/7) corresponding to 1 < 7, j < 5. In Fig. 9a, we see that when using all 19
rotations, we achieve an approximation error of 8.7914 x 10~*. In this case, the algorithm
required 12 iterations to terminate, and each iteration requires 20 times the computation as in
the basic method (since there are 20 total approximations to V¢ being computed). In Fig. 9b,
we use the same 19 possible grid rotations, but for each iteration we choose only two rotations
to use at random. We achieve similar approximation error: 8.7941 x 10~*. The algorithm
required 40 iterations to converge, but each iteration is 3 times as costly as in the basic
method. Thus while there are roughly 3 times as many iterations, each iteration requires only
15% of the computation, meaning one can achieve similar approximation error with roughly
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(a) Error in approximation when all 19 grid (b) Error in approximation when each iteration
rotations are used in each iteration. Maximum uses 2 grid rotations chosen randomly from the

error is 8.7914 X 10_4. 19 possibilities. Maximum error is 8.7941 X 1074

Fig.9 Error in approximation using rotations g = arctan(j/7) where 1 <7, 7 <5

half the computation. It should be mentioned that these results have some randomness, but
the numbers presented are quite typical.

We note that Darbon and Osher [17] solve similar Eikonal equations using a variational
method based on the Hopf-Lax formula. Their method is applicable in high dimensions
and can resolve the solution with essentially no error. However, the method only applies to
Hamiltonians which are state-independent: H = H (V¢). Fast sweeping methods are more
general, but suffer from the curse of dimensionality. We have included Eikonal equations as
an example because they are the prototypical steady-state Hamilton-Jacobi equations.

4.2 Iteration Counts and Comparison with the Lax-Friedrichs Sweeping Scheme

One final consideration when weighing the efficiency of a sweeping scheme is the iteration
count necessary for the scheme to converge. Accordingly, we include a brief discussion
regarding the iteration counts for the algorithm with different derivative approximations. We
note again that one of the primary strengths of our algorithm is its ease of implementation. One
other fast sweeping method which shares this ease of implementation is the Lax-Friedrichs
(LF) sweeping scheme devised by Kao, Osher and Qian [25]. In two dimensions, their scheme
approximates the equation H (x, y, ¢y, ¢y) = r(x, y) using the update rule

iv1,j—Pi-1j Pijr1—Pij-1 Pitl,jTPi-1,j Gij+11i-1
« Fij — H (xi’ Yjo = éAxl : ’ : ]+2Ayl : + oy = éAxl -+ Oy : J+2Ayl :
— (.
ij = o 4 O @D
Ax Ay

Intuitively, one arrives at this formula by using the centered difference approximations to
¢ and ¢y, and adding artificial viscosity at strength O(Ax, Ay). Here o, and oy, are the
artificial viscosity coefficients; they are bounds on 0 H/d¢, and 0 H /d¢y respectively.

This method applies to general steady-state Hamilton-Jacobi equations, and is easily
implemented regardless of how complicated the Hamiltonian may be. This is in contrast
to other fast sweeping schemes, wherein the local update rule entails solving a nonlinear
equation whose complexity depends on the Hamiltonian [43,44,62]. The tradeoff is that due
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Table 3 The iteration counts for different versions of our algorithm and for the Lax-Friedrichs sweeping
scheme when solving ||[Vé|r =1

Lax-Friedrichs Basic Basic+1 Basic+3
1,J Tter. L Err. Tter. L Err. Tter. L Err. Tter. L Err.
50 34 1.0958e—01 1 4.3754e—02 5 1.7901e—02 5 8.7787¢—03
100 43 6.1799e—02 1 2.6310e—02 8 1.1567¢—02 7 5.9351e—03
200 59 3.4387e—02 1 1.5464e—02 14 7.2252e—03 10 3.8508¢—03
1

400 91 1.8932e—02 8.9201e—03 24 4.3888e—03 18 2.4134e—03

Here Basic+1 designates the basic method appended with derivative approximations in one additional direc-
tion; Basic+3 designates the basic method appended with derivative approximations in three additional
directions

to the diffusive nature of the LF numerical Hamiltonian, there is no causality condition being
enforced, and consequently, a very large number of iterations are required for convergence.

We demonstrate this using the 2-norm Eikonal equation || V¢|» = 1 on[—1, 1] x [—1, 1].
Note that because the characteristics are straight lines flowing out of the origin, our basic
scheme, being fully upwind, converges in a single iteration. When we include additional
approximations to the derivatives in rotated directions, this is no longer true. The scheme is
still upwind, but there are multiple approximations to a given derivative which obey the causal-
ity condition, and alternate iterations may prefer different approximations, which means the
algorithm requires more than one iteration to converge. The results are contained in Table 3.
As seen in the table, the LF sweeping scheme requires significantly more iterations in order
to converge, and results in a larger L° error. As expected, the basic method converges in one
iteration for any grid resolution. If we add derivative approximations in different directions,
the algorithm no longer converges in one iteration, but empirically, we notice that when we
add more approximations, fewer iterations are required. In all of these tests, the convergence

. —¢l~"fl) <1078,

It should be noted that, while the LF scheme requires more iterations, each iteration is
more efficient since there is no minimization problem or nonlinear inversion. The LF scheme
also applies to more general problems. However, in cases where the minimization in our
scheme is easily resolved, it is likely to outperform the LF scheme both in terms of efficiency

and accuracy. We see this with the last example in Sect. 5.

criterion is max;;

5 Other Applications

Lastly, we present two applications of our method to problems arising in engineering. First
we consider the visibility problem. Here one could imagine placing cameras at fixed points
in a domain. The cameras have omnidirectional view, but the view is occluded by obstacles.
The problem is to find the region that is visible to the cameras.

This problem was first formulated using partial differential equations and the level set
method by Tsai et al. [56]. However, that formulation involves a nonlocal equation. More
recently, Oberman and Salvador were able to recast the problem in terms of a simple, local
equation [34]. Specifically, supposing that g : R? — R is the signed distance function to
the obstacles (positive inside the obstacles) and x* € R is the vantage point, the visibility
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function ¢ : R? — R satisfies

0 = min{$ (x) — g(x), (x —x™, Vo (x))} (42)

with the boundary condition ¢ (x*) = g(x*). The visibility set is then given by {¢ < 0}. To
include multiple vantage points, one solves (42) individually for each point, and combines
the solution via minima and maxima to account for different scenarios (for example, the
minimum of all such solutions will provide the set of points visible from at least one vantage
point, while the maximum of all such solutions provides the set of points that are visible from
all vantage points simultaneously).

Note that while Eq. (42) does not directly follow from an optimal control problem, it does
fit into our framework. If one sets ¢?j = g;; for the nodes closest to the vantage point (x*, y*)

and d)?j = —oo at other nodes, one can use the update rule

]

yi—=y
% ¢z mgn(xlfx*)] | / |¢z ,J—sign(y; —y*)
¢,’j = s (43)
Jxi—x*| Iy/ |
+
Ax Ay

and iterate qb” = max{qb" ' gii iz ¢>l*,} [Note that the upwind direction is reversed, which
explains the shght dev1at10ns between these formulas and those above.] One can then use
additional approximations to V¢ as desired. We used this update rule and applied Algorithm 1
with a 401 x 401 grid and with approximations to V¢ along the x-axis and y-axis as well as
the § = m/4 direction. The results are seen in Fig. 10, where the yellow set represents the
visible set, the black shapes are obstacles and the green dots are the vantage points. In this
case, because there is no control variable, the upwind direction is fixed and characteristics
are straight lines flowing away from the vantage points. Because of this simple geometry, the
scheme requires only one iteration and values at grid nodes are resolved during one of the
directional sweeps depending on where they lie relative to the vantage point. For example,
if the vantage point is at grid node (i*, j*), then the forward-forward sweep will resolve
all values ¢;; with i > i* and j > j*. It should be noted that Oberman and Salvador also
devised an upwind sweeping scheme that approximates (42) with one sweep in each direction
by using interpolation to explicitly capture the exact upwind direction. Our method is not an
improvement of theirs; we include this example only to demonstrate the diverse applicability
of our method. For a full discussion of the visibility problem including rigorous analysis of
(42), see [34].

Our final application is in time-optimal path planning for simple self-driving cars. This
problem was first analyzed by Dubins [18] and Reeds and Shepp [46] in a purely geometric
sense, and later analyzed in the Hamilton-Jacobi formulation by Takei, Tsai and others
[40,54,55]. Let (x, y) denote the location of the center of mass of the vehicle and 6 denote
the orientation. If W is the maximum angular velocity of the car (which enforces a minimum
turning radius) and d is the distance from the rear wheels—which drive the car—to the center
of mass, then the kinematics are

x = vcos(f) — wWd sin(0),
y = vsin(0) + oWd cos(6), (44)
6=Wo,

where v, v € [—1, 1] are normalized control variables representing tangential and angular
velocity respectively [60].
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(a) One vantage point. (b) Two vantage points.
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-1 -1
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(C) Three vantage points. (d) Four vantage points.

Fig. 10 Computing the visibility set using (42). The green dots represent the vantage points. The black shapes
are obstacles. The yellow set is comprised of points visible from at least one vantage point. The grey set is the
unobserved set (Color figure online)

With these kinematics, the optimal travel time function solves the Hamilton-Jacobi equa-
tion

— 1 =inf [[u c0s(0) — wWd sin(0)1¢x + [vsin(0) + @Wd cos(0)1py + oWy ] (45)

For a full derivation of this equation, we direct the reader to [55]; they consider the case
that d = 0 so the car is simplified to a point mass, but otherwise the derivation is the same.
One notes that the minimization is linear in (v, w), and thus, since the minimization set
[—1, 1] x [—1, 1] has finitely many extreme points, there are finitely many values that the
pair (v, ) will take. For technical reasons, one should allow v € {—1, l}andw € {—1,0, 1}
[55].

Equation (45) fits directly into our framework. Discretizing (x;, y;, 6k), Eq. (45) is approx-
imated by the update rule
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|[Ar (v, )]
00,0 = {1+ 0k
| B (v, w)]
+ i j+b(v.w) .k
oy (46)
PletW |
AD i, j,k+sign(w)
[Ax(v, w)| | Bi(v, w)| IwIW}
/{ Ax + Ay + AG
where
Ar(v, ) = vcos(Or) — oWd sin(6y),
Bi (v, w) = vsin(6y) + oWd cos(6y),
47)

ar (v, w) = sign(v cos(6x) — wWd sin(6y)),
by (v, w) = sign(v sin(6x) + wWd cos(6x)).

One can use this update rule in Algorithm 1 (accounting for three dimensions by performing
8 sweeps per iteration) with the boundary condition ¢?* g = 0 for the desired ending

configuration and ¢>?j ¢ = +oo otherwise. Then ¢;jx will represent the approximate time
needed to travel from grid node (i, j, k) to grid node (i*, j*, k*) while obeying (44).

In three dimensions, it is less obvious how to incorporate grid rotations in a fully principled
manner. We discuss this further in Appendix A. One approach is to restrict ourselves to
rotations of the xy-plane while keeping the #-axis fixed. In doing so, we can again trade
(x,y) for (x,y) exactly as in the two-dimensional case. Using this strategy, if the rotation
angle is B = arctan(j /1), the new update rule is

— _
¢ijk(v’ w) = {AS + ’Ak(v’ w)| Pi-tidy (u,v). j+ far (u.v) .k

+ ’Bk(v’ w)’ d)i—fzk(v,w),j—&-jgk(v,a)),k

+ M@,],Hsign(m} (%)
A6
As lo| W
/14w @)l +1Biw, o) + 252
where As = \/m as before, and
Ar(v, w) = veos(B; + B) — wWd sin(O; + B),
B (v, w) = vsin(@ + B) + wWd cos(6; + B), )

ay (v, w) = sign(v cos(Gx + B) — wWd sin(6x + B)),

b (v, w) = sign(vsin(@; + B) + wWd cos(6; + B)).

‘We used these formulas on a 201 x 201 x 201 discretization of [—1, 1] x[—1, 1] x [0, 27]
to compute the travel-time function for this control problem when the ending configuration is
(%, %, 0) meaning the car should end at (x 7, yr) = (%, %) facing in the positive x-direction.
In all these tests, the convergence criterion is max,-jk|¢[’l’/.k — ¢" 1| < 10™*. The results in
Figs. 11 and 12 were generated using three additional directions to approximate ¢y, ¢y: the
directions of 8 = arctan(1/2), arctan(1), arctan(2/1). One way to evaluate the results is to
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(a) Level set ¢(z,y, 0) = % (b) Level set ¢(z,y, 0) = %

27 2w
> 7 > T
0 o 0
1 1
1
0 %
Yy -1 z
(C) Level set ¢(z,y, 0) = % (d) Level set ¢(z,y,0) = 1.

Fig. 11 Level sets (cyan) of the travel-time function ¢ (x, y, #) with ending point (%, %, 0). Plotted in red

is the point (—%, %, 0). This point should have a travel time of 1, and indeed the level set ¢ (x, y,0) = 1
includes the point (Color figure online)

compare them against known values of the travel-time function. For example, anywhere along
the line (x, %, 0), the optimal travel time is |x — %l since the optimal path simply requires
pulling forward or reversing into the final configuration. Accordingly, on the level set plots
in Fig. 11, we plot the point (—%, %, 0) in red. This point should satisfy (b(—%, %, 0)=1
and indeed, it seems to approximately lie in the level set ¢ (x, y, #) = 1 (Fig. 11d). Likewise,
in Fig. 12, we display the contours of ¢ (x, y, 0) which show the values of the travel-time
function given that the car is facing in the positive x-direction. Using these, we can directly
compare values of ¢ (x, %, 0) and |x — %I and the results line up very well.

Again, we compare our results to those of the Lax-Friedrichs (LF) sweeping scheme [25].
Because the LF scheme includes artificial viscosity, it has trouble resolving the value function
in the neighborhood surrounding the source point (xz, yr, 6r). Indeed, we computed the
solution of the same problem using the LF scheme. Values analogous to those in Fig. 12 are
displayed in Fig. 13. We note there is some error in the values of ¢ (x, %, 0). We also notice
that the solution suggested by the LF scheme takes larger values throughout the domain,
which hints that the optimal travel time is being overestimated.

Table 4 lists the iteration counts for different grid resolutions, and different solution meth-
ods. In the table, “Basic” denotes the basic scheme, and “Basic+M " denotes the basic scheme
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(a) Contours of ¢RGU(ac, y,0). (b) Vilus ot @ 2! o
Fig. 12 Contour plot of the approximate travel-time function #RGU (x, y,0) with ending point (%, %, 0)

[green], computed using our Rotating Grid Upwind (RGU) method. Along the line (x, %, 0) [red] the exact
solution value is [x — 1/2], and our results match these values (Color figure online)

— ¢t (2, 1,0)
---lz—1/2|
15}
;
05
0 N
-1 A 05 0 05 1

-1 -0.5 0 0.5 1

LF, 1
(a) Contours of ¢LF(w, y,0). (b) Value of ¢ (=, 27 0).

Fig. 13 Contour plot of the approximate travel-time function oLF (x, v, 0) with ending point (% s % , 0) [green],

computed using the Lax-Friedrichs (LF) method. Along the line (x, %, 0) [red] the exact solution value is
|x —1/2|, and due to the diffusive nature of the scheme, the approximate solution incurs some error (Color
figure online)

appended with M grid rotations. A first note is that for this problem, including additional
derivative approximations in different directions lowers the number of iterations required for
our algorithm to converge. Due to diffusivity, the LF method requires vastly more iterations.
In this case, the LF iterations are no more or less efficient than those of our method. Prob-
lems where the control values can be resolved explicitly are well-suited to our method. For
problems of this type, our method is very likely to ourperform the LF method and is equally
easy to implement. It bears repeating that the LF method is more generally applicable and
easier to implement for problems with very complicated Hamiltonians [25].

Another way one can verify the results of these simulations is to compute the actual paths
given by the control problem. Having computed the travel-time function ¢, one can determine
optimal trajectories by integrating (44) using control values

v = —sign(¢, cosf + ¢y sin6),

. . (50)
® = —sign(—dey sin 6 + d¢py cos 0 + ¢g).
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T'able 4 The ¥terat10n counts for Iteration counts: self-driving car example

dlffer.ent A 1,J,K LF Basic Basic+1 Basic+3
algorithm, and for the

Lax-Friedrichs sweeping scheme, 5 99 17 16 17

when resolving the optimal

travel-time function for the 100 187 25 22 21
simple self-driving car 200 309 32 26 24

Here Basic+1 designates the basic method appended with derivative
approximations in one additional direction; Basic+3 designates the basic
method appended with derivative approximations in three additional

directions

*

(a) Initial configurations.

(C) 2/3 of the way along the paths.

(d) Final configurations.

Fig. 14 Optimal paths for cars with initial configurations (7%, % ) [blue], (7%, 7%, 0) [green], and

(0, —1, 57”) [pink]. Final configuration is (%, %, 0) [red star] (Color figure online)

Some optimal paths are seen in Fig. 14. In those plots, the final location is marked by the
red star, and the initial locations are marked by colored dots. The positions of the vehicles
are displayed at several points along their respective optimal trajectories. Note, these optimal
paths were computed independently and are simply plotted on top of each other; the paths
will require different amounts of time to traverse and there is no interaction between the cars.
The results appear to agree with a theoretical result of Reeds and Shepp [46] that states that
optimal trajectories consist of straight lines and arcs of circles of minimum radius.
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6 Conclusion and Discussion

Fast sweeping methods provide a simple and robust framework for numerical solutions of
steady-state Hamilton-Jacobi equations. We have developed a fast sweeping scheme for
a class of Hamilton-Jacobi equations arising from steady-state optimal control problems
wherein the running cost is independent of the control variables. Our method is exceed-
ingly simple to implement and applies to a wide range of problems. We tested our method
against Eikonal equations in different norms, and demonstrated how one can use WENO
approximations to improve accuracy. We then suggested a general method for maintaining a
square grid, but using approximations to derivatives in rotated directions, so as to more accu-
rately capture the information flow along characteristics. We compare our method against the
Lax-Friedrichs method [25] and demonstrate that in some cases, our method is preferable.
Finally, we demonstrated the utility of our method by applying it to two problems arising
from engineering applications.

There are several ways in which our method could be modified or adjusted for other sce-
narios. We suggest two such modifications now. First, a further exploration of the efficacy of
WENO approximations in conjunction with our method could prove interesting. In Sect. 3.3,
we demonstrated one method for including WENO approximations, following [62]. How-
ever, especially when the solution was non-smooth, we did not achieve the full increase in
accuracy that one may desire. It is possible that one could improve this with a closer analysis
of the scheme near the point source. One may also try to include WENO approximations with
the grid rotations. This is likely to be difficult due to the different sizes of the rotated grid
parameters AX, Ay which may skew convergence results, so one would need to be cautious.
Second, when using a single grid rotation with angle 8 = /4, we are essentially using a 9
point stencil for local derivative approximations, which yields a structured triangulation of
the domain. It would be interesting to modify the method for unstructured and/or triangulated
domains such as those in [44]. In these domains, our method may provide a simpler update
rule for Eikonal equations, though a careful analysis would be required.
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A Appendix: 3D Implementation

In this appendix, we briefly describe the implementation of the rotating-grid method in three
dimensions. In this case, the equation of interest is

_r(xv Vs Z) :;22 {fl(-x7 yazaa)¢x +f2(-x7 y7Zaa)¢y +f3(-x7 y7zva)¢z}' (51)

The extension of the basic method to 3D is straightforward. We discretize the domain into
(xi, yj, zx) with uniform grid parameters Ax, Ay and Az. Then following the work in Sect. 3,
we arrive at the local upwind approximation
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frijil@) S @ )
i+ LDl a2 g B L @y, ey @

| f1.ijk(@)] |f2.: @] | |fuijk@]
Ay TRy T A

¢,‘*jk(ﬂ) =

)

(52)

where ’;‘g ijk(a) = sign(fy;jk(a)) as before. One can then use the update rule ¢l."jk =

mm{q&l k , Mingea @ ik (a)}, while performing 8 sweeps per iteration to account for all com-
blnatlons of sweeping directions.

In theory, introducing a rotation in R is not too different from introducing a rotation in
R2. One can choose an orthogonal matrix U = [ u; | uz | uz ] whose columns represent the
directions of the new axes, and set

X
=U"|y sothat V¢ =UVe, (53)
Z

a | =]

where V represents the gradient in the original coordinates, and V represents the gradient
with respect to the new coordinates. Plugging this representation of V¢ into (51) and denoting

f = (f1, fa, f3) gives
—r= ini{(.f(a),UVQf))} = ing{(U’f(a),Vqﬁ)}, (54)
Thus, defining £ (¥, 5.2, a) = (u¢, f(X, 5.7, a)) for £ = 1,2, 3, the rotated equation is

—r(¥.5,2) = inf {?1 @532 a)¢x + [L(X. 3.2 a)py + f3(X, 5.2, a)qbz}. (55)

Now the question arises of how to discretize this equation. Similar to the 2D formulation,
we would like to avoid defining a new grid, but rather restrict ourselves to rotations which
allow us to use the already-defined grid points to approximate derivatives in different direc-
tions. There is a practical complication to address here. As demonstrated above, in 2D it is
sufficient to choose a grid point (7, j) and rotate the grid so that the x-axis points at (z, ).
Having done so, the new y-axis points at (—J, 7) as shown in Fig. 5. However, in 3D, there
are infinitely many rotations which fix the Xx-axis in a specified direction. Thus, in analogy to
the 2D scenario, there needs to be a principled manner by which to point the x-axis toward
a desired grid point (7, J, 12) while ensuring that the y- and z-axes are still pointed toward
other grid points, so as to avert the need to define a new grid.

We suggest two ways for doing this. The first, which is simpler but not as general, is to
restrict oneself to rotations which fix one of the axes, as we did in the example of time-
optimal path planning for self-driving cars in Sect. 5. Here one chooses (7, J) as before, and
also specifies which axis is to remain fixed. In doing so, the 3D implementation is effectively
reduced to a 2D implementation, since one of the derivatives follows through the computation
without changing.

The second method can handle general rotations, but is slightly more difficult to describe.
Here, we suggest choosing a grid point (7, J, k) and using the rotation which orients the X-axis
toward (7, J, 12) by viewing it as the image of the x-axis under two successive rotations: first, a
rotation by B = arctan(j/7) about the z-axis, and then a rotation by y = arctan(k/y/1% + j2)
about the line 7x + jy = 0. This is illustrated in Fig. 15 where the black lines are the original
axes, the red lines are the axes resulting from the first rotation (note, the z-axis is unchanged
under the first rotation), and the blue lines are the new axes after both rotations.
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Fig. 15 We orient X to point at (7, J, 5) by viewing it as the image of the x-axis under successive rotations:
first a rotation by B about the z-axis, and then a rotation by y about the line ix + jy =0

In terms of the old coordinates, the new orthogonal coordinates are given by
positive x direction: (7, J, 12),
.1, 0), (56)

positive Z direction: (—ik, —jk, 1> + j2).

positive y direction: (—,

As formulated in (54), the columns of U are normalized versions of the three vectors in
(56). Using these, we can write the upwind approximations to the derivatives ¢x, ¢y and ¢z
necessary to approximate (55). Indeed,

Bisi8, 004 o @ ke ) ~ B
X,V,2 F 1,ijk (@), j+i& 1 ijk (@), k+k&y i (a) J
(71():, v, z,a)qby)i‘k = ’fl,ijk(a)’ j (@) i ’
/ AX

i—7& k@), j+i&s 1k (a) .k ¢ijk

57
A5 (57

_ é
(fo(x. 5.2, a)d)?)ijk = |f2ix(@)]

i—flzg,%,ijk(a),j—flgg&i_/k (@) k+@2+]NE5 jjx (@) Pijk
AZ

_ _ ¢
(f3&. 7.2 a)%)ijk = |f3:jk@)]

where, as before, EZ, ijk(@) = sign (75’ ij k(a)) , and the new grid parameters are given by

AX = \/(iAx)l + (FAY? + (kA2)?,
Ay = \/(jAX)* + (Ay)?, (58)

AF =\ (A% + (GRAY? + (@ + AP

We will demonstrate both of these methods of implementation using the 1-norm Eikonal
equation as an example; first for its simplicity, and second because the level sets of the
solution have sharp edges which allow us to easily verify the results. In 3D, the 1-norm
Eikonal equation is given by

—1=—l¢gul = |by] = l¢:| = inf {alm + arpy +a3¢z}. (59)
aje{+1}
We use the boundary condition ¢ (0, 0, 0) = 0. The solutionis ¢ (x, y, z) = max{|x|, ||, |zl},

and the level sets of this solution are perfect cubes. In all cases, we use a 201 x 201 x 201
discretization of [—1, 11> and display the level set ¢(x, y,z) = 1/2 which should be a
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(a) Level set of the solution using the
update rule (61).

(b) Level set of the solution using the
update rule (63).
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(c) Level set of the solution using the
update rule (71).

(d) Level set of the solution using the
update rule (72).

Fig. 16 The 1/2-level set of the approximate solution to ||V¢|;{ = 1 resulting from our method when using
the update rules (61) (no rotated directions), (63) (rotations which keep one axis fixed), (71) (an additional
rotation to resolve the corners along (1, —1, 1)), and (72) (rotations to capture all the corners)

cube centered at the origin of side length 1. We successively build better approximations
of the solution by including additional approximations to the derivatives in different rotated
directions.

Applying the basic method, we find that the local upwind approximation to the solution
is

1 1 1
1+ R Bitsign(ar).jk + ayPij+signa.k + 2z Pi.j k+signaz)

¢;’; k ((1) = 1 1 1 (60)
artayta
Then the local update rule for the iteration is
. —1 .
¢;’jk = min {¢’injk , Irzmqb;kjk(a)}. (61)

A level set of the solution produced by this update rule is displayed in red in Fig. 16a. Note
the rounding along the edges and at the corners.

Next, we implement the first method for incorporating grid rotations, wherein we use
rotations which keep one axis fixed. Since the level sets of the solution are cubes, we will
use rotations of § = 7 /4 in attempt to capture the edges. We will implement three rotations,
alternately keeping the x-, y-, or z-axis fixed. The local upwind approximations are then
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+a| lag—a, | |
|y Jatal o L o L
¢*-Z(a) 3 + ﬁA.va ¢1+sngn(a1+a2)~/+slgn(a]+a2)~k + ﬁA.va bi sign(ap —ay), j+sign(ap—ay).k + Az ¢r./,k+mgn(a3)
R laytap| | Jap—ar] | 1
«/EAS:(y ﬁASxy Az
laytas| . Ly o lag—ai| ;. -
¢*‘y(a) B 1 ﬁASXz ¢[+slgn(a1+a3),j,k+slgn(a1+a3) + Ty¢1_/+slgn(a2),k + ﬁAS,xz ¢1—slgn(a3—nl),j,k+s|gn(a3—al)
ijk Jaj+a3) L L n laz—ay | ’
V2Asx; Ay T V2Asx:
1 |ag +as)| a3 —ay|
14 10 o . 1927y . it B S _ . _
o + Ax ¢1+51gn(a1),_/,1< + \/EASyz ¢I4/+stgn(u2+a3),k+51gn(a2+a3) + ﬁAs’yz ¢1,./ sign(az —ap),k+sign(az —ap)
¢ijk (a) = s
1 Japtas] | Jas—ay]

Ax T 2Asy; V2Asy;

(62)

where the superscript denotes the axis that is fixed, Asyy = / (Ax)2 + (Ay)? and similarly
for Asy; and Asy,. The update rule for the iteration is then

#is = min {(pinj;l, min ¢5 (@), min ¢ (@), min i (@), min ¢;ﬁj’1§(a)}. (63)

The level set of the solution created using this update rule is seen in magenta in Fig. 16b.
Note that while the edges are captured fairly sharply, the corners are still rounded off.

In order to capture the corners sharply, we need to consider derivative approximations
in the directions pointing toward the corners. It is a happy coincidence in 2D, that we can
use a single rotation to capture all four corners of the square, since the vectors (1, 1) and
(1, —1) are orthogonal. In 3D, the vectors that point to alternate corners of the cube are no
longer orthogonal; for example, (1, 1, 1) is not orthogonal to (1, —1, 1). Thus the rotation
which captures the corners along the directions (£1, £1, £1), will not capture any of the
other corners. Hence, if we want to capture all corners, we need to use four separate rotated
approximations to the derivatives.

We will describe the rotation that captures the corners in the directions of (, ], 12) =
(1, —1, 1), detailing every step along the way. To orient the x-axis toward (1, —1, 1), we first
rotate about the z-axis by an angle of § = —m /4, and then about the line x = y by an angle
of y = arctan(1/+/2). The matrix that accomplishes this transformation is

1/4/3 1/4/2 —1/J6
U=|-1/V3 1/V2 1/J6 (64)
1/V/3 0 2/V6

Following the computations above, the new grid directions are
positive X direction: (1, —1, 1),
positive y direction: (1, 1, 0), (65)
positive z direction: (—1, 1, 2),

and the rotated coefficient functions—which in this case depend only on a—are

1

V3

1
7

1

f1@) = —=(a—ay+a3), fal@)=—=(@+ap), fzl)= \fﬁ(—m +a + 2a3),

(66)
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and thus the rotated equation is

. ay —ay +az aj +an 7a]+a2+2a3> }
—-1= f _ _ - . 67
aiér{lil}{< V3 )d)ﬁ( V2 )%Jr( NG v ©7

At grid points (x;, y;, zx), the upwind derivative approximations are given by

lay — az + az| Pitsign(a) —az+as), j—sign(a —ay+az) k-+sign(a; —az+az) — Pijk

(F1@¢p)ijx =

V3 AX
— la1 + az| itsignar+az), j+sign(ar +az).k — Pijk
a)py)iik = s
(fz( )¢’_V)t/k «/i Ai
(T (a)qf)"k _ |_a1 +ax + 2a3| ¢i—sign(—a|+a2+2ug).j+sign(—a1+az+2a3),k+2sign(—a|+az+2a3) - ¢i/’k
3 Z)ijk = — s

NG Az
(68)

where the new grid parameters are given by

AX = \/(Ax)2 + (AY)? + (Az)?,

AY =/ (Ax)2 + (Ay)?, (69)

A7 = \/(Ax)2 + (Ay)? + 2A2)%.

Plugging these into the equation gives the upwind approximation to the equation at grid
points:

SFF (@) = {1 . laj — ap + a3

ijk «/§Ax ¢i+sign(a] —ap+az), j—sign(a) —ax+az),k+sign(a; —ay+az)
laj +asl o
Tﬁ‘bhtmgn(a]+a2),1+8|gn(a1+a2),/<
|—ay + ap + 2a3|
T@—sign(—al +azy+2az), j+sign(—ay+ax+2a3),k+2sign(—aj +ay+2a3)
/{Ial—a2+a3| lay +az| | |—a1 +az +2a3|}
V3AT V2Ay V6AZ '

(70)

where the superscript + — + denotes the fact that the X-axis points at the corners along the
line parallel to (1, —1, 1). Finally, we can include this approximation, and iterate using the
update rule

¢l = min {¢;;;1, min g7 (@), ming (@), ming; (@), mingE (@),
n}ziw;‘j:***(a)} (71)
In doing so, we will capture all of the edges of the level set fairly well, and perfectly capture the
corners in the directions of (1, —1, 1). This is demonstrated by the cyan level set in Fig. 16c¢.

Note that the remaining corners, along the directions (1, 1, 1), (1,1, —1) and (1, —1, —1)
are still rounded, while the corners along (1, —1, 1) are sharp.
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Table 5 Maximal error in our approximation to the solution of ||V¢||; = 1 resulting from the update rules
(61) (no rotated directions), (63) (rotations which keep one axis fixed), (71) (an additional rotation to resolve
the corners along (1, —1, 1)), and (72) (rotations to capture all the corners)

Update rule (61) (63) (71) (72)

Max error 1.0429e—01 4.2424e—02 3.9865e—02 1.4433e—14

Each approximation was computed on a 201 x 201 x 201 grid. Notice that when all corners and edges are
accounted for, the solution is accurate to machine precision

Finally, if we want to perfectly capture all corners, we simply need to devise similar upwind
approximations ¢:‘Jk+ t (a), d)l*jlj - (a), (bl*jk+ " (a), and include these using the update rule

noo_ - n—1 . * . *,X P . *,2
¢ijk_mm{¢ijk s Mingjy (@), ming; 5 (a), ming, ;i (@), ming;;(a),

et e NI S e
n}}nd)ijk (a), Hgn(i)ijk (a), H}}n¢ijk (a)mam, ¢ijk (a)}

(72)

The level set of the solution resulting from this update rule is shown in yellow in Fig. 16d.
In this case, the level set is (to machine precision) a perfect cube, with all corners and edges
sharp.

Lastly, Table 5 documents the maximal error in the numerical solution resolved using
each update rule (61),(63),(71),(72). As expected, including more approximations to the
derivatives in additional directions only improves the accuracy. In the last trial, when we
perfectly capture all edges and corners, the method is accurate to machine precision.
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