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We study the dynamics of a driven non-Hermitian superconducting qubit which is perturbed by quantum
jumps between energy levels, a purely quantum effect with no classical correspondence. The quantum
jumps mix the qubit states leading to decoherence. We observe that this decoherence rate is enhanced near
the exceptional point, owing to the cube-root topology of the non-Hermitian eigenenergies. Together with
the effect of non-Hermitian gain or loss, quantum jumps can also lead to a breakdown of adiabatic evolution
under the slow-driving limit. Our study shows the critical role of quantum jumps in generalizing the
applications of classical non-Hermitian systems to open quantum systems for sensing and control.
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Dissipation is ubiquitous in nature; as in radioactive decay
of an atomic nucleus and wave propagation in absorptive
media, dissipation results from the coupling of these systems
to different environmental degrees of freedom. These dis-
sipative systems can be phenomenologically described by
effective non-Hermitian Hamiltonians, where the non-
Hermitian terms are introduced to account for the dissipa-
tion. The non-Hermiticity leads to a complex energy
spectrum with the imaginary part quantifying the loss of
particle or energy from the system. The degeneracies of a
non-Hermitian Hamiltonian are known as exceptional
points (EPs), where both the eigenvalues and the associated
eigenstates coalesce [1,2]. The existence of EPs has been
demonstrated in many classical systems [3–11] with appli-
cations in laser mode management [12–14], enhanced
sensing [15–20], and topological mode transfer [21–24].
Though the effective Hamiltonian approach was devel-

oped decades ago as part of quantum measurement theory,
recent experiments with single electronic spins [25,26],
superconducting qubits [27], and photons [28–30] have
expanded interest in uniquely quantum effects in non-
Hermitian dynamics. Two approaches have been taken to
study non-Hermitian dynamics in the quantum regime. The
first is to simulate these dynamics—through a process
known as Hamiltonian dilation—by embedding a non-
Hermitian Hamiltonian into a larger Hermitian system
[25,26,30]. A second approach is to directly isolate the
non-Hermitian dynamics from a dissipative quantum sys-
tem [27]. To understand this approach, recall that dissipa-
tive quantum systems are usually described by a Lindblad
master equation that contains two dissipative terms: the first
is a term that describes quantum jumps between the energy
eigenstates of the system, and the second is a term that
yields coherent nonunitary evolution [31–33]. By sup-
pressing the former term, the resulting evolution is

described by an effective non-Hermitian Hamiltonian.
This can be achieved through postselection to eliminate
trajectories that contain quantum jumps [Fig. 1(a)] [27].
However, additional sources of energy dissipation or pure
dephasing can alter this non-Hermitian evolution [34,35].
The combination of nonunitary dynamics and decoherence
will lead to evolution that is starkly different than what is
encountered with conventional open quantum systems. In
this Letter, we characterize these dynamics using experi-
ments on a superconducting qutrit. We observe quantum
dynamics that result from the competition of the nonunitary
effect of complex energies and quantum jumps. This leads
to decoherence enhancement near the EP, nonstationary
evolution of system eigenstates, and a quantum jump-
induced breakdown of adiabaticity when a system param-
eter is slowly varied.
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FIG. 1. (a) Formation of a non-Hermitian qubit through a
dissipative three-level system. The ground level jgi acts as a
continuum and can be used to monitor the quantum jumps from
the fjei; jfig submanifold. When postselection is used to
eliminate this dynamics, the evolution in the fjei; jfig submani-
fold is governed by a non-Hermitian Hamiltonian. J denotes the
coupling rate from an applied drive with frequency detuning Δ
relative to the jei–jfi transition, and γe denotes the dissipation
rate of the jei level. (b) The quantum jumps from the jfi level at
rate γf are only recorded by the environment, and this missing
information necessitates a hybrid-Liouvillian formalism (see
main text).
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Ourexperimentuses the lowest three energy levels (jgi, jei,
and jfi) of a transmon superconducting circuit [36] that
consists of a pair of Josephson junctions in a superconducting
quantum interference device (SQUID) geometry shunted by a
capacitor. The transmon circuit is placed within a three-
dimensional copper microwave cavity that serves two pur-
poses in the experiment. First, it mediates the interaction
between the circuit and a nonuniform density of states of the
electromagnetic field, allowing us to tune the dissipation rates
of the transmon energy levels such that γe (the decay rate of
the jei level) is much larger than γf (the decay rate of the jfi
level). Second, the dispersive interaction between cavity
mode and the circuit results in a state-dependent cavity
resonance frequency [37]. We achieve a high-fidelity, single-
shot readout of the transmon state by probing the cavitywith a
weak microwave signal and detecting its phase shift.
The dynamics of this three-level quantum system

[Fig. 1(b)] is described by a Lindblad master equation
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where ρtot denotes a 3 × 3 density operator. The jump
operators Le ¼

ffiffiffiffiffi
γe

p jgihej and Lf ¼
ffiffiffiffiffiγf

p jeihfj describe the
energy decay from jei to jgi and from jfi to jei,
respectively. Here we only consider a drive at the
fjei; jfig submanifold, and in the rotating frame
Hc ¼ Jðjeihfjþ jfihejÞ þ Δ=2ðjeihej − jfihfjÞ, where Δ
is the frequency detuning (relative to the jei—jfi tran-
sition) of the microwave drive that couples the states at
rate J. The dissipative dynamics of the qutrit to its steady
state can be captured by a Liouvillian superoperator defined
by Eq. (1), exhibiting the so-called Liouvillian EPs
[34,38,39]. A classical analogy of this EP transition is a
damped harmonic oscillator, where an EP (corresponding
to the critical damping) marks the transition from an
overdamped to an underdamped regime [34,38,39].
We utilize the high-fidelity single-shot readout to isolate

dynamics in the fjei; jfig submanifold by eliminating any
experimental trials where the qubit undergoes a jump to the
state jgi [27]. The resulting dynamics in the submanifold is
governed by

∂ρ
∂t ¼ −iðHeffρ − ρH†

effÞ þ LfρL
†
f ð2Þ

where ρ denotes a 2 × 2 density operator. The effective non-
Hermitian Hamiltonian Heff ¼Hc− iL†

eLe=2− iL†
fLf=2

takes into account the coherent nonunitary dissipations
of both levels and possesses a second-order EP at JEP ¼
ðγe − γfÞ=4 and Δ ¼ 0. This EP separates “broken” and
“unbroken” regions of effective parity-time (PT) symmetry,
where the difference between eigenvalues is either purely
imaginary, or purely real. As shown in Eq. (2), if there are no

quantum jumps from the jfi level (Lf ¼ 0), or these jumps
can be removed from the dynamics using postselection, the
system would evolve coherently under Heff.
To capture the effect of jumps from the jfi level, we

adopt a hybrid-Liouvillian formalism [35], which describes
the non-Hermitian dynamics of an open quantum system
under different postselection efficiencies. The dissipative
dynamics of the qubit is then written as

∂ρ
∂t ¼ ðL0 þ L1Þρ: ð3Þ

Here, the qubit dynamics is captured by two hybrid-
Liouvillian superoperators L0ρ≡ −iðHeffρ − ρH†

effÞ
and L1ρ≡ LfρL

†
f. Compared with the Liouvillian super-

operator defined by Eq. (1), the hybrid-Liouvillian super-
operator does not lead to a completely positive and
trace-preserving map [35]. In contrast to the non-
Hermitian Hamiltonian approach based on a Hilbert space
of dimension N ¼ 2, this hybrid-Liouvillian formalism is
based on a Liouville space of dimension N2 ¼ 4. In the
Liouville space, ρ is represented as a 4 × 1 vector, and
Li¼0;1 is represented as a 4 × 4 non-Hermitian matrix.
Because L0 encodes the evolution due to Heff , it also
exhibits an EP (denoted as “HLEP”) at J ¼ ðγe − γfÞ=4
and Δ ¼ 0. One key difference is that three eigenvectors of
L0 coalesce at the EP, implying that a second-order
Hamiltonian EP corresponds to a third-order HLEP [40].
In addition, the non-Hermitian qubit can also suffer

from pure dephasing at a rate γϕ, described by a jump
operator Lϕ ¼

ffiffiffiffiffiffiffiffiffiffi
γϕ=2

p
σz. Its effect includes two aspects: on

one hand, it modifiesHeff (and subsequently L0) by adding
a term −iγϕI=4 (I denotes an identity operator), which only
shifts the overall loss and does not affect the position of EP
in the parameter space; on the other hand, it provides
another perturbation of quantum jumps, the effect of which
can be included in L1 [41].
Before proceeding to our experiments, we summarize the

possible scenarios of non-Hermitian dynamics of an open
quantum system. Depending on the postselection efficiency
η of quantum jumps through all possible channels, the
resulting non-Hermitian dynamics is described by (i) a
Liouvillian superoperator with η ¼ 0, i.e., no postselection;
(ii) a hybrid-Liouvillian superoperator with 0 < η < 1, i.e.,
imperfect postselection; and (iii) an effective non-
Hermitian Hamiltonian with η ¼ 1, i.e., perfect postselec-
tion [35]. In the semiclassical limit, the quantum jumps are
neglected, that is, equivalent to η ¼ 1; subsequently, the
dynamics of a dissipative classical system can be described
by an effective non-Hermitian Hamiltonian [34].
We first investigate the quantum-jump-induced

decoherence in the PT-symmetry unbroken regime.
Figure 2(a) shows the complex eigenvalues λ of the
hybrid-Liouvillian superoperator (L0 þ L1) in the
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unbroken regime, with the real and imaginary parts
indicated as projections. Note that the roles of the imagi-
nary and real parts of Hamiltonian and hybrid-Liouvillian
spectra are reversed because the “−i” term in Eq. (2) is
absorbed into the hybrid-Liouvillian superoperator. The
perturbative effect of quantum jumps (L1) lifts the degen-
eracy of the third-order HLEP of L0 and generates a new
second-order HLEP (see Supplemental Material [41] for
further details). By lifting the degeneracy, this perturbation

leads to decoherence, whose rate is determined by the real
part of the eigenvalue difference. The effect of the pertur-
bation is enhanced by proximity to the EP due to the cube-
root topology of the third-order degeneracy of L0 [35,41].
To experimentally measure the decoherence rates in the

vicinity of the HLEP, we initialize the circuit in the jfi state
and then apply a microwave drive with amplitude J. We
take 104 measurements per time point and only keep the
results with the transmon remaining in the fjei; jfig
submanifold for analysis. We record the final jfi popula-
tion as a function of time. These dynamics are characterized
by damped oscillatory behavior of the population, as shown
in Fig. 2(b). We extract the decoherence rate and oscillation
frequency for different values of J, as shown in Fig. 2(c).
The observed damping rates and oscillation frequencies
are in good agreement with the real and imaginary parts of
hybrid-Liouvillian spectra, respectively. In particular, we
note that by proximity to the HLEP, the dissipation is
dramatically enhanced over its background rate (i.e., the
rate when far from the HLEP).
We now turn to the PT-symmetry broken regime,where the

quantum jumps competewith the relative non-Hermitian gain
and loss effects. In the absence of quantum jumps, the qubit
has two stationary states, corresponding to the two eigenstates
j'i of Heff [Fig. 3(a)]. The corresponding eigenvalues are
purely imaginary. Recalling that imaginary eigenvalues
correspond to gain or loss, here with 0 ≥ Im½λþ# > Im½λ−#,
both states exhibit loss, but the jþi state has gain relative to
j−i. Therefore, the non-Hermitian dynamics favor the jþi
state. The eigenmatrices ρ0;3 of L0 with the smallest and
largest damping rates represent the same states, i.e.,
ρ0 ∝ jþihþj, ρ3 ∝ j−ih−j.With the perturbation of quantum
jumps (L1), the eigenmatrix ρ0 becomes slightly mixed
ρ0 → ρ̃0 and corresponds to the effective steady state of
the non-Hermitian qubit, while the eigenmatrix ρ3 → ρ̃3, a
state that is not physically accessible [Fig. 3(a)].
The physical intuition can be understood at the quantum

trajectory level. Given a trajectory with only a single
quantum jump from the jfi to jei level, the jump places
the qubit in a superposition of jþi and j−i. After that,
though no further quantum jumps occur, the non-
Hermiticity (of Heff ) selects the eigenstate with less loss,
and the renormalization of the state subsequently leads to a
nonexponential decay [31–33]. Hence, the eigenstate j−i of
Heff is unstable and will decay to a steady state in a process
that involves both quantum jumps and the non-Hermitian
(gain versus loss) evolution. Figure 3(a) displays an
illustration of one possible trajectory. Since the trajectories
contain an unknown number of quantum jumps, the steady
state is slightly mixed rather than at the eigenstate jþi.
This prediction is experimentally confirmed through

quantum state tomography. Here, we prepare the qubit at
the eigenstate j−i ofHeff , andmeasure the expectation values
of the qubit Pauli operators fx;y;zg≡fhσxi;hσyi;hσzig.
Figure 3(b) displays these expectation values for different
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FIG. 2. (a) Complex eigenvalues of the hybrid-Liouvillian
superoperator L0 þ L1 in the unbroken regime (solid curves).
The dashed curves are the projections of the eigenvalues on the
J–Re½λ# and J–Im½λ# planes. The arrows mark the eigenvalue
difference. J is normalized by the value at the second-order
hybrid-Liouvillian EP (JHLEP2). Only three of the four Liouvillian
eigenvalues involved in this study are shown. The blue dashed
curve on the J–Re½λ# plane has been slightly offset for clarity.
(b) Population dynamics versus evolution time for three different
values of J, marked by (i)–(iii) in (c). The red curves are
experimental results, and the black curves are fits to decaying
sine function. (c) The measured oscillation frequency (blue
squares, left axis) and decay rate (red circles, right axis) for
different drive amplitudes J. The solid lines are calculated from
the Liouvillian spectra, where the dissipation rates γe ¼ 4.5 μs−1,
γf ¼ 0.3 μs−1, and γϕ ¼ 0.5 μs−1 are used.
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evolution times.Wehighlight several features of the evolution
that are different than the dissipative evolution of a Hermitian
qubit, where we expect exponential decay to steady state.
The non-Hermitian evolution, perturbed by quantum jumps,
exhibits (i) nonexponential evolution, (ii) occurring on a
timescale much faster than the quantum jump rate γf. This
occurs due to the nonzero overlap h−jfi; jumps from jfi to
jei create a mixed state. Thereafter the relative gain of the jþi
state causes its population to grow, leading to the nonexpo-
nential population evolution. This is further confirmed by
examining the evolution of the entropy, defined as

S≡ −
P

pilog2ðpiÞ, where pi is the eigenvalue of the
density matrix ρ of the qubit [Fig. 3(c)]. The quantum
jumps increase the entropy; this distinguishes the evolution
from imperfect (pure) eigenstate preparation, which would
also seed non-Hermitian evolution toward jþi, but with fixed
zero entropy [42].
Finally, we study the qubit dynamics under slow param-

eter variation to reveal the effects of quantum jumps on
non-Hermitian adiabatic evolution. We choose a straight
parameter path with J¼30 radμs−1 (≫JEP¼1.5 radμs−1)
and Δ ¼ −30π sinð2πt=TÞ rad μs−1, where T ¼ 4 μs is the
loop period [Fig. 4(a)]. The initial state at t ¼ 0 is chosen to
be an eigenstate of Heff (approximated as jþ xi). Along
this parameter path, the energy gap is large enough to
satisfy the slow-driving condition Tjλþ − λ−j ≫ 1. For
t < T=2, the initial state follows the instantaneous eigen-
state jþi with relative gain. At t ¼ T=2, the parameter path
crosses a branch cut for the imaginary Riemann surface at
Δ ¼ 0. Here, the instantaneous eigenstates exhibit a loss-
switch behavior; the eigenstate with relative gain becomes
the eigenstate with more loss [Fig. 4(b)].
The results of quantum state tomography are shown in

Fig. 4(c). At t ¼ 2 μs, adiabatic evolution would return
the qubit to the state jþ xi. The qubit returns close to this
state, with slight mixing induced by the quantum jumps.
For t > T=2 the qubit is now predominantly in the
eigenstate with greater loss, seeding non-Hermitian evolu-
tion toward the eigenstate j−i. At the end of the parameter
sweep, the qubit has undergone a switch between eigen-
states, induced by the small perturbation of quantum jumps.
This transition is accompanied by a sharp increase in the
entropy as shown in Fig. 4(d).
Similar nonadiabatic state or energy transfer has been

observed when dynamically encircling an EP [21–24] as a
result of nonadiabatic coupling between eigenstates and
non-Hermitian gain and loss effects [43]. To verify that our
parameter variation is sufficiently slow to prevent this
nonadiabatic coupling, we plot the calculated dynamics in
the absence of quantum jumps in Fig. 4(c), observing that
there is no eigenstate switch. This reveals how quantum
jumps effectively serve as a new source of nonadiabatic
coupling, breaking adiabatic evolution even when param-
eter variation is sufficiently slow.
Quantum jumps, even when introduced at very modest

rates, produce significant effects on non-Hermitian dynam-
ics. The dissipation induced by these jumps is greatly
enhanced by proximity to the EP, with dynamics driven
by non-Hermitian evolution. In addition, quantum jumps
introduce a new timescale relevant to adiabatic state
transport in non-Hermitian systems. Our study elucidates
the role and effect of dissipation on quantum non-
Hermitian evolution, highlighting how controlling these
dissipation mechanisms will be critical for harnessing non-
Hermiticity and complex energies in quantum information
processing and quantum sensing [40,44–48].
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FIG. 3. (a) Left: illustration of the eigenstates and Liouvillian
eigenvectors on the Bloch sphere. With no quantum jumps, the
two eigenstates j'i ofHeff represent the same states as two of the
Liouvillian eigenvectors (ρ0;3, dashed blue and red arrows). With
quantum jumps, the two eigenvectors are perturbed: one corre-
sponds to the steady state (ρ̃0, solid red arrow), and the other one
is outside of the Bloch sphere and corresponds to an unphysical
state (ρ̃3, blue solid arrow). Right: illustration of one quantum
trajectory with the qubit prepared at j−i, where the qubit
first jumps to the jei level and then evolves to jþi due to the
non-Hermitian gain and loss effects. (b),(c) Time evolution of
the Bloch components (b) and the entropy (c) with the qubit
initially prepared at the eigenstate of Heff with more loss. J ¼
0.85 rad μs−1 places the system in the PT-symmetry broken
regime. The symbols are experimental results, with shaded bands
indicating the experimental uncertainty [41], and the curves are
theoretical results from Eq. (3). The parameters used are
γe ¼ 6.38 μs−1, γf ¼ 0.24 μs−1, and γϕ ¼ 0.9 μs−1. Residual
oscillations in the data are likely due to technical fluctuations
of the tomography calibration.

PHYSICAL REVIEW LETTERS 127, 140504 (2021)

140504-4



This research was supported by NSF Grant No. PHY-
1752844 (CAREER), AFOSR MURI Grant No. FA9550-
21-1-0202, and the Institute of Materials Science and
Engineering at Washington University.

*wchen34@wustl.edu
†murch@physics.wustl.edu

[1] M. A. Miri and A. Alù, Exceptional points in optics and
photonics, Science 363, eaar7709 (2019).

[2] S. K. Özdemir, S. Rotter, F. Nori, and L. Yang, Parity–time
symmetry and exceptional points in photonics, Nat. Mater.
18, 783 (2019).

[3] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine,
W. D. Heiss, H. Rehfeld, and A. Richter, Experimental

Observation of the Topological Structure of Exceptional
Points, Phys. Rev. Lett. 86, 787 (2001).

[4] C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christo-
doulides, M. Segev, and D. Kip, Observation of parity-time
symmetry in optics, Nat. Phys. 6, 192 (2010).

[5] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda,
G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity-time-symmetric whispering-gallery microcavities,
Nat. Phys. 10, 394 (2014).

[6] J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and
T. Kottos, PT-symmetric electronics, J. Phys. A 45, 444029
(2012).

[7] C. M. Bender, B. K. Berntson, D. Parker, and E. Samuel,
Observation of PT phase transition in a simple mechanical
system, Am. J. Phys. 81, 173 (2013).

[8] C. Shi, M. Dubois, Y. Chen, L. Cheng, H. Ramezani, Y.
Wang, and X. Zhang, Accessing the exceptional points of
parity-time symmetric acoustics, Nat. Commun. 7, 11110
(2016).

[9] X. Zhu, H. Ramezani, C. Shi, J. Zhu, and X. Zhang, PT-
Symmetric Acoustics, Phys. Rev. X 4, 031042 (2014).

[10] J. Li, A. K. Harter, J. Liu, L. de Melo, Y. N. Joglekar, and L.
Luo, Observation of parity-time symmetry breaking tran-
sitions in a dissipative Floquet systems of ultracold atoms,
Nat. Commun. 10, 855 (2019).

[11] M. Partanen et al., Exceptional points in tunable super-
conducting resonators, Phys. Rev. B 100, 134505 (2019).

[12] B. Peng, Ş. K. Özdemir, M. Liertzer, W. Chen, J. Kramer, H.
Yılmaz, J. Wiersig, S. Rotter, and L. Yang, Chiral modes
and directional lasing at exceptional points, Proc. Natl.
Acad. Sci. U.S.A. 113, 6845 (2016).

[13] M. Brandstetter, M. Liertzer, C. Deutsch, P. Klang, J.
Schöberl, H. E. Türeci, G. Strasser, K. Unterrainer, and S.
Rotter, Reversing the pump dependence of a laser at an
exceptional point, Nat. Commun. 5, 4034 (2014).

[14] Z. J. Wong, Y.-L. Xu, J. Kim, K. O'Brien, Y. Wang, L. Feng,
and X. Zhang, Lasing and anti-lasing in a single cavity,
Nat. Photonics 10, 796 (2016).

[15] J. Wiersig, Enhancing the Sensitivity of Frequency and
Energy Splitting Detection by Using Exceptional Points:
Application to Microcavity Sensors for Single-Particle
Detection, Phys. Rev. Lett. 112, 203901 (2014).

[16] W. Chen, S. K. Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical micro-
cavity, Nature (London) 548, 192 (2017).

[17] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R.
El-Ganainy, D. N. Christodoulides, and M. Khajavikhan,
Enhanced sensitivity at higher-order exceptional points,
Nature (London) 548, 187 (2017).

[18] W. Langbein, No exceptional precision of exceptional-point
sensors, Phys. Rev. A 98, 023805 (2018).

[19] H.-K. Lau and A. A. Clerk, Fundamental limits and non-
reciprocal approaches in non-Hermitian quantum sensing,
Nat. Commun. 9, 4320 (2018).

[20] M. Zhang, W. Sweeney, C. W. Hsu, L. Yang, A. D. Stone,
and L. Jiang, Quantum Noise Theory of Exceptional Point
Amplifying Sensors, Phys. Rev. Lett. 123, 180501 (2019).

[21] H. Xu, D. Mason, L. Jiang, and J. G. Harris, Topological
energy transfer in an optomechanical system with excep-
tional points, Nature (London) 537, 80 (2016).

(a)

EP
J

∆ T

(b)

-1

-0.5

0

0.5

1(c)

0

0.5

1

S

(d)

Time (µs)

x
y
z

x,
y,

z

Time

0 1 2 3 4

∆ (rad/µs)
J (rad/µs)

R
e[
λ]

 (
ra

d/
µs

)

∆

R
e[
λ]

 

FIG. 4. (a) Illustration of the parameter path in the parameter
space. (b) The real part of the Riemann surface, where the red
(blue) surface represents the energy surface with relative gain
(loss). The real part of the energy of the qubit (Tr½ρHeff #) along
the trajectory is plotted on the Riemann surface (black line)
and also shown in the inset. The time evolution of the Bloch
components (c) and the entropy of the corresponding density
matrix (d) are displayed for the initial state jþ xi and the loop
period T ¼ 4 μs. The solid curves are experimental results,
with shaded bands indicating the experimental uncertainty
[41], and the dashed curves are calculations from Eq. (3). For
comparison, the evolution of the x component with no
quantum jumps (due to L0 only) is also shown [dashed green
curve in (c)]. The parameters used are γe ¼ 6.34 μs−1,
γf ¼ 0.26 μs−1, and γϕ ¼ 0.5 μs−1.

PHYSICAL REVIEW LETTERS 127, 140504 (2021)

140504-5

https://doi.org/10.1126/science.aar7709
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1038/s41563-019-0304-9
https://doi.org/10.1103/PhysRevLett.86.787
https://doi.org/10.1038/nphys1515
https://doi.org/10.1038/nphys2927
https://doi.org/10.1088/1751-8113/45/44/444029
https://doi.org/10.1088/1751-8113/45/44/444029
https://doi.org/10.1119/1.4789549
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1038/ncomms11110
https://doi.org/10.1103/PhysRevX.4.031042
https://doi.org/10.1038/s41467-019-08596-1
https://doi.org/10.1103/PhysRevB.100.134505
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1073/pnas.1603318113
https://doi.org/10.1038/ncomms5034
https://doi.org/10.1038/nphoton.2016.216
https://doi.org/10.1103/PhysRevLett.112.203901
https://doi.org/10.1038/nature23281
https://doi.org/10.1038/nature23280
https://doi.org/10.1103/PhysRevA.98.023805
https://doi.org/10.1038/s41467-018-06477-7
https://doi.org/10.1103/PhysRevLett.123.180501
https://doi.org/10.1038/nature18604


[22] J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik,
F. Libisch, T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter,
Dynamically encircling an exceptional point for asymmetric
mode switching, Nature (London) 537, 76 (2016).

[23] Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, and P. Berini,
Extremely broadband, on-chip optical nonreciprocity en-
abled by mimicking nonlinear anti-adiabatic quantum jumps
near exceptional points, Nat. Commun. 8, 14154 (2017).

[24] X. L. Zhang, S. Wang, B. Hou, and C. T. Chan, Dynamically
Encircling Exceptional Points: In Situ Control of Encircling
Loops and the Role of the Starting Point, Phys. Rev. X 8,
021066 (2018).

[25] Y. Wu, W. Liu, J. Geng, X. Song, X. Ye, C.-K. Duan, X.
Rong, and J. Du, Observation of parity-time symmetry
breaking in a single-spin system, Science 364, 878 (2019).

[26] W. Liu, Y. Wu, C.-K. Duan, X. Rong, and J. Du, Dynami-
cally Encircling an Exceptional Point in a Real Quantum
System, Phys. Rev. Lett. 126, 170506 (2021).

[27] M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K.W. Murch,
Quantum state tomography across the exceptional point in a
single dissipative qubit, Nat. Phys. 15, 1232 (2019).

[28] L. Xiao et al., Observation of topological edge states in
parity time symmetric quantum walks, Nat. Phys. 13, 1117
(2017).

[29] F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel,
and A. Szameit, Observation of PT-symmetric quantum
interference, Nat. Photonics 13, 883 (2019).

[30] S. Yu et al., Experimental Investigation of Quantum PT -
Enhanced Sensor, Phys. Rev. Lett. 125, 240506 (2020).

[31] J. Dalibard, Y. Castin, and K. Mølmer, Wave-Function
Approach to Dissipative Processes in Quantum Optics,
Phys. Rev. Lett. 68, 580 (1992).

[32] K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wave-
function method in quantum optics, J. Opt. Soc. Am. B 10,
524 (1993).

[33] M. B. Plenio and P. L. Knight, The quantum-jump approach
to dissipative dynamics in quantum optics, Rev. Mod. Phys.
70, 101 (1998).

[34] F. Minganti, A. Miranowicz, R. W. Chhajlany, and F. Nori,
Quantum exceptional points of non-Hermitian Hamiltonians
and Liouvillians: The effects of quantum jumps, Phys. Rev.
A 100, 062131 (2019).

[35] F. Minganti, A. Miranowicz, R.W. Chhajlany, I. I. Arkhipov,
and F. Nori, Hybrid-Liouvillian formalism connecting excep-
tional points of non-Hermitian Hamiltonians and Liouvillians
via postselection of quantum trajectories, Phys. Rev. A 101,
062112 (2020).

[36] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from
the Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[37] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer,
M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Ap-
proaching Unit Visibility for Control of a Superconducting
Qubit with Dispersive Readout, Phys. Rev. Lett. 95, 060501
(2005).

[38] N. Hatano, Exceptional points of the Lindblad operator of a
two-level system, Mol. Phys. 117, 2121 (2019).

[39] I. I. Arkhipov, A. Miranowicz, F. Minganti, and F. Nori,
Quantum and semiclassical exceptional points of a linear
system of coupled cavities with losses and gain within the
Scully-Lamb laser theory, Phys. Rev. A 101, 013812 (2020).

[40] J. Wiersig, Robustness of exceptional-point-based sensors
against parametric noise: The role of Hamiltonian and
Liouvillian degeneracies, Phys. Rev. A 101, 053846 (2020).

[41] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.127.140504 which provides extensive
detail on the experimental procedures and statistical analysis
as well as further information about the calculation of the
Liouvillian spectrum.

[42] D. C. Brody and E. M. Graefe, Mixed-State Evolution in the
Presence of Gain and Loss, Phys. Rev. Lett. 109, 230405
(2012).

[43] T. J. Milburn, J. Doppler, C. A. Holmes, S. Portolan, S.
Rotter, and P. Rabl, General description of quasiadiabatic
dynamical phenomena near exceptional points, Phys. Rev.
A 92, 052124 (2015).

[44] A. Pick, S. Silberstein, N. Moiseyev, and N. Bar-Gill,
Robust mode conversion in NV centers using exceptional
points, Phys. Rev. Research 1, 013015 (2019).

[45] P. Kumar, H.-G. Zirnstein, K. Snizhko, Y. Gefen, and B.
Rosenow, Optimized quantum steering and exceptional
points, arXiv:2101.07284.

[46] P. Kumar, K. Snizhko, and Y. Gefen, Near-unit efficiency of
chiral state conversion via hybrid-Liouvillian dynamics,
arXiv:2105.02251.

[47] S. Khandelwal, N. Brunner, and G. Haack, Signatures of
exceptional points in a quantum thermal machine, arXiv:
2101.11553.

[48] F. Minganti, V. Macrì, A. Settineri, S. Savasta, and F. Nori,
Dissipative state transfer and Maxwell’s demon in single
quantum trajectories: Excitation transfer between two non-
interacting qubits via unbalanced dissipation rates, Phys.
Rev. A 103, 052201 (2021).

PHYSICAL REVIEW LETTERS 127, 140504 (2021)

140504-6

https://doi.org/10.1038/nature18605
https://doi.org/10.1038/ncomms14154
https://doi.org/10.1103/PhysRevX.8.021066
https://doi.org/10.1103/PhysRevX.8.021066
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1103/PhysRevLett.126.170506
https://doi.org/10.1038/s41567-019-0652-z
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/s41566-019-0517-0
https://doi.org/10.1103/PhysRevLett.125.240506
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1364/JOSAB.10.000524
https://doi.org/10.1364/JOSAB.10.000524
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.100.062131
https://doi.org/10.1103/PhysRevA.101.062112
https://doi.org/10.1103/PhysRevA.101.062112
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.95.060501
https://doi.org/10.1103/PhysRevLett.95.060501
https://doi.org/10.1080/00268976.2019.1593535
https://doi.org/10.1103/PhysRevA.101.013812
https://doi.org/10.1103/PhysRevA.101.053846
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.140504
https://doi.org/10.1103/PhysRevLett.109.230405
https://doi.org/10.1103/PhysRevLett.109.230405
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevA.92.052124
https://doi.org/10.1103/PhysRevResearch.1.013015
https://arXiv.org/abs/2101.07284
https://arXiv.org/abs/2105.02251
https://arXiv.org/abs/2101.11553
https://arXiv.org/abs/2101.11553
https://doi.org/10.1103/PhysRevA.103.052201
https://doi.org/10.1103/PhysRevA.103.052201

