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Decoherence-Induced Exceptional Points in a Dissipative Superconducting Qubit
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Open quantum systems interacting with an environment exhibit dynamics described by the combination of
dissipation and coherent Hamiltonian evolution. Taken together, these effects are captured by a Liouvillian
superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are exceptional points, which
are associated with critical dynamics as the system approaches steady state. We use a superconducting
transmon circuit coupled to an engineered environment to observe two different types of Liouvillian
exceptional points that arise either from the interplay of energy loss and decoherence or purely due to
decoherence. By dynamically tuning the Liouvillian superoperators in real time we observe a non-
Hermiticity-induced chiral state transfer. Our study motivates a new look at open quantum system dynamics
from the vantage of Liouvillian exceptional points, enabling applications of non-Hermitian dynamics in the

understanding and control of open quantum systems.
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Exceptional points degeneracies (EPs) have been exten-
sively studied in classical dissipative systems with energy or
particle loss where the dynamics are governed by effective
non-Hermitian Hamiltonians [1,2]. Recently, there is growing
interest to harness non-Hermiticities for quantum applications
ranging from sensing [3-5] to state control [6,7]. Various
approaches have been used to implement non-Hermitian
Hamiltonians in quantum systems such as introducing a
mode-selective loss [8,9], embedding the desired non-
Hermitian Hamiltonian into a larger Hermitian system
[6,10], or removing quantum jumps from the evolution of
an open quantum system through postselection [7,11].
However, despite its essential role in quantum systems,
decoherence has not been a focus of these studies. Indeed,
decoherence and its effects cannot be captured by an effective
non-Hermitian Hamiltonian formalism. Liouvillian super-
operators have been proposed to take account of both the
energy loss and decoherence, capturing the full dynamics of a
decohering non-Hermitian system [12—17]. In the Liouvillian
formalism, the dissipative effects are captured by Lindblad
dissipators, whose effects come in two parts: one is a coherent
nonunitary evolution (i.e., energy or particle loss) and the
other is quantum jumps between the energy levels that lead to
decoherence [18,19]. This formalism provides a critical
examination when generalizing phenomena and applications
observed in classical systems to quantum systems such as EP
sensors [20-22]. The Liouvillian superoperators also exhibit
EPs, termed as Liouvillian EPs (LEPs), to differentiate from
those EPs obtained from Hamiltonians, but these LEPs and
their properties have not yet been experimentally observed.
In this Letter, we study the transient dynamics of a dissipative
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superconducting qubit as it evolves toward its steady state.
We observe LEPs that arise from the interplay of energy loss
and decoherence. By dynamically tuning the Liouvillian
superoperator in real time we observe a non-Hermiticity-
induced chiral state transfer. Further, by expanding the
dimension of the Hilbert space from two to three, we
construct a subspace where the non-Hermiticity is purely
due to decoherence. Our study shows the rich features and
potential applications of non-Hermitian physics and EPs
beyond the Hamiltonian formalism, further enriching appli-
cations of open quantum systems in quantum information
technology.

The dynamics of a driven dissipative two-level system
[Fig. 1(a)] can be described by a Lindblad master equation:

. . 1
p=—ilHepl+ > [LipLi - E{LZLIaP}] =Lp. (1)
k=e.p

where p denotes the density operator, and L, 4 are the jump

operators, defined as L, = \/7.|g)(e| and L, = +/v,/20.,
describing spontaneous emission from level |e) to level |g) at
a rate y, and pure dephasing at a rate y,, respectively.
He = J(|g){e| + le)(g]) + A/2(lg)(g| = |e)(e]), character-
izes coupling between two levels by a drive with the
frequency detuning A relative to the |g)—|e) transition at
arate J. The dynamics can be fully captured by a Liouvillian
superoperator £. Given a Hilbert space of dimension N,
the Liouvillian approach is based on representation of the
system state as a density operator and the corresponding
Liouville space has a dimension of N2. The four eigenvalues
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FIG. 1. Liouvillian EP in the dynamics of a driven dissipative qubit. (a) Schematic of the system; y, denotes the spontaneous emission
rate of the |e) level, and J denotes the coupling rate from an applied drive with frequency detuning A relative to the |g)—|e) transition. (b),
(c) Real (solid curves) and imaginary (dashed curves) parts of the Liouvillian spectra when A = 0; the LEP is indicated with a vertical
dashed line. The parameters used for calculations are y, = 4.4 us~! and Ye = 0.1 us~!. (d) The coupling between the Pauli expectation
values y and z with different losses can be viewed in terms of a two-mode system (y, z) with passive PT symmetry and EPs. (e) Population
dynamics versus evolution time at different J values with the qubit initialized at the |e) state. Two examples (marked by the white dashed
lines) of population evolution at J = 0.1 rad/us (black curve) and J = 1.8 rad/us (orange curve) are shown in (f). (g) Oscillation
frequency (blue squares) and decay rate (red circles) at different drive amplitudes; the transition marks a LEP. The shaded areas represent
the standard error of the oscillation frequency (blue) and decay rate (red) from fitting the qubit dynamics to a decaying sine wave. The
fitting error diverges below the LEP. The corresponding data are also processed by fitting to exponential decay, and the obtained decay rates
(red crosses) and frequencies (fixed to zero, blue plus symbols) and error bars are provided for comparison. The solid curves are calculated
from the Liouvillian spectra, where the dissipation rates y, = 4.4 us~' and ve = 0.1 us~! are used.

of the Liouvillian superoperator are provided in Figs. 1(b) = microwave cavity, leading to a state-dependent cavity
and 1(c) for A = 0: two of them are real numbers, and the = resonance frequency. High fidelity, single-shot readout of
other two exhibit a second-order LEP degeneracy at J1gp =  the transmon state can be realized by probing the cavity with
Ye/8 — v4/4 with a transition from real to complex numbers. a weak microwave signal and detecting its phase shift [25].

Physical intuition for this LEP can be obtained by Further, we shape the density of states of the electromagnetic
recasting the Lindblad equation into a Bloch equation field which allows us to adjust the dissipation rate of the

for the expectation values of the Pauli operators {x, y, z} = energy level |e) [11]. In this study, we set y, =~ 4.5 us~!,
{{oy). (oy).{c.)} [23], much greater than the pure dephasing rate y, ~ 0.2 us™' so
that there is a large difference between the losses of y and z.

% iy, A 0 x 0 To e?(perimentally i'denti'fy the LEP, we study .th'e. tr@sient
| v dynamics of the qubit to its steady state. We initialize the
V== A Stw 2yt 0] @) qubit in the |¢) state and then apply a resonant microwave

Z 0 =27 7. Z Ve drive to induce a coupling at rate J. Figure 1(e) displays

the measured evolution of the |e) state population for

The y and z components are coupled, yet exhibit different  different J. We observe a transition from exponential decay
losses, yielding effectively a passive parity-time (PT)  to exponentially damped oscillation as the coupling rate is
symmetric system [Fig. 1(d)]. The z component exhibits increased. Examples of the evolution at two different drive
a loss of excitation (energy), whereas the y component  amplitudes above and below the LEP are shown in Fig. 1(f).
exhibits decoherence from both spontaneous emission and A classical analogy of this observation is a damped harmonic
pure dephasing. There is one LEP for A = 0 except when  oscillator, where a second-order EP (corresponding to
Ye = 24, where the loss rates for y and z are the same. critical damping) marks the transition from an overdamped
In the experiment, we use the lowest two energy levels to an underdamped regime. The results are processed by
(lg), |e)) of a transmon superconducting circuit [24]. The  fitting to a decaying sine wave to determine the oscillation
transmon is dispersively coupled to a three-dimensional ~ frequency and decay rate [Fig. 1(g)], which show a transition
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at J ~y,/8, in agreement with the Liouvillian eigenvalues.
The fitting uncertainty [the shaded areas in Fig. 1(g)]
diverges when near or below the LEP, which we attribute
to the redundant free parameters for a decaying sine curve.
We further inspect those data by fitting them to simple
exponential decay: the obtained decay rates match with those
obtained from fitting to the decaying sine wave and have low
uncertainty. We therefore conclude our observation shows
the LEP transition.

One signature of Hamiltonian based EPs is the chiral state
transfer that occurs when the Hamiltonian parameters are
tuned to encircle an EP. As a result of the topological
structure of the Riemann manifold that describes the system’s
complex energy, one state will map to the other after the
encirclement. Relative gain or loss along different paths
results in chiral state or population transfer [6,7,26—28]. This
process has also been shown to induce a chiral geometric
phase on quantum states [7]. Here, we investigate whether
these population features persist when encircling the LEPs in
the parameter space (J, A).

For nonzero A, the Liouvillian exhibits second-
order LEP lines and two third-order LEPs, forming a
small “LEP structure” very near the LEP for A = 0 [inset
in Fig. 2(a)] [29]. We now investigate the effects
of dynamically tuning the Liouvillian parameters to
encircle this LEP structure. We choose a closed parameter

path defined as J(t) = 16cos?(xt/T) rad/us and A(r) =
+10zsin(2zt/T) rad/pus, where T =2 us is the loop
period, and 4+ and — correspond to counterclockwise
(CCW) and clockwise (CW) encircling directions, respec-
tively [Fig. 2(a)]. We choose the initial state | + x) at r = 0.
The results of quantum state tomography at different points
along the parameter path for both CW and CCW directions
are shown in Figs. 2(b) and 2(c). While for the CCW
direction, the initial state is transferred to a state close to
| — x), for the CW direction, the final state remains approx-
imately at | + x). Similar observations also apply to the
case with the initial state | —x) [Figs. 2(d) and 2(e)].
The deviations of experimental results from theoretical
calculations are mainly attributed to readout infidelity,
imperfect state preparation, and small errors in the
tomography calibration.

This chiral behavior can be understood from a quantum
trajectory picture. The qubit evolution can be described by a
non-Hermitian Hamiltonian evolution that is interrupted by
randomly occurring quantum jumps. The non-Hermitian
Hamiltonian evolution pertains to the Riemann structure
displayed in Fig. 2(f), which would induce a state transfer
upon one encircling. Figure 2(f) displays one such trajectory
where a quantum jump occurs. The initial state is | + x), and
a jump to |g) occurs shortly after the beginning of the
parameter sweep (at ¢ ~ 0.2 us), bringing x abruptly to zero.
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FIG. 2. Dynamical encircling of the Liouvillian EP structure. (a) Schematic of the parameter path (red ellipse) that encircles a LEP
structure (denoted as a green dot) in the parameter space (J, A). The Liouvillian superoperator exhibits second-order exceptional lines,
forming a triangle-shaped LEP structure (inset). Note that the LEP structure excludes the origin point (/ = 0 and A = 0), marked by the
empty circle in the inset. (b)—(e) Evolution of the Bloch components under two different initial states (| & x)) and two encircling
directions (CW, CCW). The solid curves are the experimental results. We sample 10* measurements per point, leading to a standard error
of ~0.01, similar to the thickness of the plotted lines. The dashed curves are the theoretical calculations from Lindblad master equation,
withy, = 4.6 us™! and vp =02 us~'. (f) lustration of one quantum trajectory (marked by gray arrows) on the Riemann surface, where
there is one quantum jump (vertical part of the trajectory). This trajectory is one example (black curve) from 1000 simulated trajectories
(red curves) shown in (g). The average of the trajectories is the solution of the Lindblad equation (blue curve).
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This state continues to evolve under the time dependent
Hamiltonian. Remarkably, at the end of the parameter sweep,
the final state is near | — x). An ensemble of such trajectories
is shown in Fig. 2(g). This chirality of state transfer
originates from the directionality of the quantum jumps
which favors the ground state and therefore disappears in
the Hermitian limit (see the Supplemental Material [29]).
Additionally, the chirality is relatively insensitive to small
changes in the loop parameters, occurring for loops that
come near, intersect, or encircle the LEP structure [31].

We highlight several aspects that are different from
previous studies of encircling EPs based on non-Hermitian
Hamiltonians. First, in previous studies, the initial state is
usually chosen to be an eigenstate. However, here the initial
states | + x) do not directly correspond to the eigenstates of
the Liouvillian superoperators; instead, they are approxi-
mately a superposition of two Liouvillian eigenstates, one of
which corresponds to the steady state, the other an unphysical
state [14,29]. Second, the evolution is trace preserving; in
contrast, for the evolution governed by a non-Hermitian
Hamiltonian [7], the state norm decreases with time, and a
state renormalization at each time step is then required. Third,
the quantum state is mixed due to the decoherence, which will
limit the practical applications of this chiral state transfer
protocol. As we show in the Supplemental Material [29],
the decoherence effects can be minimized by optimizing the
driving conditions while maintaining the chiral behavior.

So far, we have only focused on the lowest two levels of
the transmon circuit. By including a higher energy level (i.e.,
the |f) level, with spontaneous decay rate y, < y,) as a
coherence reference [Fig. 3(a)], we discover a second type of
LEP that is fully induced by decoherence and has no energy
loss involved. The corresponding Liouville space then has a
dimension of 9, and the Liouvillian spectra are provided in
the Supplemental Material [29]. The decoherence-induced
LEP results from the coupling between two coherences p,, ¢
and p, ; of this qutrit and occurs at J = y,/4 [Fig. 3(a)]. The
dissipation of the |e) level leads to the loss of the coherence
Pes> but not the coherence p ;. As with energy loss induced
EPs, the interplay between coupling and decoherence yields
this LEP.

To observe this LEP transition, we initialize the circuit in
the state (|g) — |f))/+/2 and then apply a resonant drive
with variable duration to {|g), |e) } transition, followed by a
tomography pulse to determine p,r [32,33]. As displayed
in Fig. 3(b), for large J, we observe damped oscillations in
pyr» yet for J <1 rad/us the oscillations are replaced with
exponential decay. We quantify this transition by fitting
the p,; evolution to a damped sine wave, extracting the
frequency and decay rate as displayed in Fig. 3(c).
We note that this decoherence-induced LEP is nonlocal
in the sense that it only relies on initial coherence between
the |f) and |g) states, but no further coupling between the
{|f)} and {|g), |e) } manifolds. Therefore, we expect such
decoherence-induced LEPs to play a critical role in how
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FIG. 3. Decoherence-induced Liouvillian EP. (a) Schematic of a
driven dissipative qutrit. The physical origin of this LEP arises
from the coupling between two coherences of the density matrix
pgr and p,  that experience unbalanced losses. The two coherences
have the same loss 7, from the dissipations of the reference level
|f), but p., has additional loss from y,. (b) The measured
coherence p,r versus evolution time at different J values. (c)
Oscillation frequency (blue squares) and decay rate (red circles) at
different drive amplitudes, where the transition marks a LEP. The
bands represent the standard error of the fit. The red crosses and
blue plus symbols indicate the results from an exponential fit. The
solid curves are calculated from the Liouvillian spectra. Parameters
usedarey, =4.2 us™',y, =02 pus™', andy; = 0.3 ps™', and an
additional overall loss 0.75 us™! is added to account for additional
decoherence of the |f) state.

many-body correlations decay due to local operations and
sources of dissipation.

Our study has revealed and quantified two new types of
EPs occurring in single dissipative quantum systems.
In contrast to prior work, these LEPs do not rely on
postselection to induce non-Hermitian dynamics but instead
are evident in the transient dynamics of an open quantum
system as it approaches steady state. Because the Liouvillian
formalism applies to all Markovian dissipative interactions
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it also encompasses the effects of quantum measurement
[34]. For instance, the quantum Zeno effect pertains to the
competition between coherent coupling and the dissipative
effects of measurement [35-38]. The transition from a
Zeno pinning regime can naturally be treated in the context
of LEPs introduced here [39-42]. Our study therefore
motivates a new look at open quantum system dynamics
from the vantage of Liouvillian exceptional points, enabling
applications of non-Hermitian dynamics in Floquet physics
[43], quantum steering [44], state transfer [45,46], measure-
ment induced dynamics [47,48], and quantum thermal
engines [49].
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