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Abstract
Given2 < p < 00,5 € (0, 1) andt € (1, 2s), we establish interior W’-? Calder6n-Zygmund
estimates for solutions of nonlocal equations of the form

/QfQK <x, oyl Y ) (u(x) — u(y))(p(x) —w(y))dxdy — glol, Vo € CX(Q)

lx —yl lx — y|n+2s

where 2 C R” is an open set. Here we assume K is bounded, nonnegative and continuous
in the first entry — and ellipticity is ensured by assuming that K is strictly positive in a
cone. The setup is chosen so that it is applicable for nonlocal equations on manifolds, but
the structure of the equation is general enough that it also applies to the certain fractional
p-Laplace equations around points where u € C! and |Vu| # 0.
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1 Introduction and main results

Lets € (0, 1) and  C R" be an open set. In this work, we study the interior W7 -regularity
theory for functions u € W*2() that satisfy the nonlocal equation

f/ K<x’|x_y" X =y ) (M(X)—u(y))wﬁ:;)—(p(y)) dxdy = flol, Ve ec®@ (L.1)
ela [x — ¥l |x — y[rss

where f[@] represents the action of the distribution f on the smooth function ¢. We take
K(, - ) : R" x [0,00) x S"! — [0, A] as our coefficient kernel and is a nonnegative
bounded and measurable function which is strictly positive on a substantial subset of §" .
The model case is K (x, r, h) = %W for a map ¢ with [V¢(x)| > 0. In particular,
if ¢ is a diffeomorphism that parameterizes an n-dimension manifold M, then (1.1) could
be a nonlocal differential equation on M. Other choices of naturally appearing kernels will
be studied later. For simplicity, we always assume K (-, -, h) = K (-, -, —h).

For ¢ > s, local W'-P-Calderén Zygmund theory has been studied in [11] for a different
type of kernels by three of the authors. On the other hand the first author recently studied
Holder regularity theory for (1.1) in [13]. To some extent, with respect to motivation, tech-
niques, and results, this paper is a combination of the ideas in [13] and [11], and we refer to
those papers for a background and motivation of equations of the type we are considering.

The following theorem states the first main result of the paper.

Theorem 1.1 Suppose that Q@ C R" is open and 1 CC Q is bounded. Assume A > 1,
n>0,s14+s =2sandsy,s2,s € (0,1), pe(l,00).

Let K : R" x Ry x §""! — R be in all entries bounded and measurable, assume that
the kernel is nondegenerate in the following sense

0<K(x,r,h) <A VxeR"r>0 heS" ',
and there exists ¥ C "~ with |Z| > 0 such that for every x € R",
n < inf K(x,0,h). (1.2)
hex
Assume also the following continuity around points on 21: for every xo € Q1, and some
R > 0 such that B(xo, 5R) CC 2, and each & > 0, there exists A > 0 such that

sup sup sup |K(x,r, h) — K (xg,0, h)| <e. (1.3)
r<AR xeB(xp,AR) |h|=1

Now, for a given distribution g, let u € W*2(Q) satisfies
f / % (x’ =y, lx -y ) (u(x) —u(y)) () — () dxdy = glpl, Vo € CX(Q).
QJa

x =yl x — y|rt2s
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Then, if for some A > 0, we have the estimate
181611 = A (12l oy + 9oz ) -

forall g € C°(Q), thenu € W27 (Q).
The regularity result comes with a corresponding estimate

lullwsir@)y < Clllullws2q) + 181D

where the constant C depends only on s, p, 21, €2, and ellipticity, continuity, and bounded-
ness constants of K. See [11] for details. In the statement above, p’ is the Holder conjugate
of p. Notice that the theorem is interesting when s, < s. For p = 2 the result of the theorem
is only slightly better than [4] where Holder continuity of K is assumed, but for s; # s and
p # 2 this is a new result. Recently, S. Nowak developed W*'?-regularity theory under the
weaker vanishing mean oscillation assumptions on the kernel, [14—18]. It is a natural question
if for our main theorem the continuity condition (for # < 1) can be relaxed to a VMO-type
condition, but we will leave this issue for a future work.

We conjecture that the condition s; < 1 in Theorem 1.1 to be sharp, although we do not
have a counterexample. However, if we additionally assume Holder continuity of the kernel,
the result of Theorem 1.1 holds for s; > 1 as well. The following theorem states the second
main result of the paper.

Theorem 1.2 Assume all the conditions of Theorem 1.1 hold. Assume additionally a-Holder
continuity of K in the first variable, i.e.

sup sup |K(x,r,h) — K(y,r,h)| < Alx — y|“. (1.4)

x,yeR" |h|=1,r>0
Then the conclusion of Theorem 1.1 hold for s < min{2s, 1+a} (instead of s1 < min{2s, 1}).
We refer to [13] for applicability of our result to the fractional mean curvature, cf. [9].

The structure of the kernel K appears naturally in applications that leads to linear nonlocal
differential equations on n-manifolds M, say

. (u(x) —u(y)) (p(x) —o(y))
Lms, )= /M /M s (r y) s dxdy.

for smooth ¢ € C§°(M). For simplicity, we may assume that all of M is parametrized by
a bi-lipschitz diffeomorphism @ : & — M (otherwise one can work on a coordinate patch
with the help of a decomposition of unity). Then for any ¢ € CZ°(2), by change of variables
we have

B () — i) (W) — ()
Lams,yrod 1 :/
Mo = T (@), D)y

where it := u o ®. Thus, if we set

Jac(D®(x)) Jac(DD(y)) dx dy

;
dp(®(x), ®(x +rh))

n+2s
K(x,r,h) = ( > Jac(D®(x)) Jac(DD (x + rh))

we have

L, y) = Lagsu, o dh.
Observe that

K(x,0,h) ~ |D®(x)h| "%
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which is uniformly bounded from below because D ® has maximal rank as a diffeomorphism.
In particular, we have the following corollary.

Corollary 1.3 The conclusion of Theorem 1.1 is true for the equation

/ (w(x) —u(y)(px) — o))
oJa lp(x) — @ (y)|"+2s

where ¢ : 2 C R" — R™ is bi-Lipschitz and C " -differentiable.

dxdy = glp] Yo € CX(Q)

Lastly, let us illustrate a consequence of our arguments for the higher regularity theory of
the fractional p-Laplacian in the regime where |Vu(xo)| > 0 fors ~ 1.

Corollary 1.4 Let s € (0, 1), p > 2 such that s > ﬁ. For a given Q C R" open set, let
u € WP N L*°(Q) be a solution to

/ / lu(x) — uMIP2w(x) — u(y)) (p(x)
QJQ

g —9(») dxdy:/ fedx Yo eC®@). (1.5)
|x — y|ntsp Q

If f € C°(R™), u is continuously differentiable around some point xo € 2, and |Vu(xo)| >
0, then there exists a small neighborhood B(xo, r) such thatu € C 2(B(xq, ).

Let us stress a subtlety of Corollary 1.4. The idea here is to take the solution u as part of the
kernel K (x,r, h) = Wipﬁ;’)lp—z Even if we assume that [Vu(xo)| # 0, we still might
have
|u(xo) — u(xo +rh)l
r

~ |Vu(xo) - h| ~ 0,

that for sufficiently small » > 0, for example, whenever / is perpendicular to Vu(xp).
However, we know that for a substantial subset ¥ C $"~!, that depends on xg, we have for all
h € S that|Vu(xo)h| 2 |Vu(xp)|, namely thisis true forall 4 € §"Vwith | Z(h, Vu(xg))| >
A > 0. Condition (1.2) on the kernel in Theorem 1.1 will allow us to apply the theorem to
handle such cases. The details of Corollary 1.4 are explained in Sect. 6.

Let us stress that Corollary 1.4 is an expected result but likely not optimal. The a priori
L°°-condition on u can be waived, indeed in view of [6] we can even assume that u is Holder
continuous. Also, it may be possible to remove the conditions on p and s in Corollary 1.4 and
as well obtain differentiability for the solution above C 2 The crucial condition |V (xq)| > 0
makes the equation “somewhat uniformly elliptic” with coefficients which regularize with
u. All these are the crucial ingredients to bootstrap towards C°-regularity — however, there
is some subtlety here that we do not address in this paper: differentiating the equation even
for p > 2 the fractional p-Laplacian becomes singular elliptic (even around points where
[Vu(xg)| > 0).

Another point to keep in mind with respect to Corollary 1.4 is that the more challenging
case is around points xo with vanishing derivative, |Vu(xo)| = O and the (here a priori
assumed) C!-regularity cannot be obtained by Theorem 1.1. Perhaps other techniques such
as those developed by Brasco—Lindgren [2,3] may be needed.

The statement of Corollary 1.4 is also somewhat motivated by the recent extention formula
for the (sublinear, p < 2) p-Laplacian obtained in [5] — where they assumed u € C? and
[Vu(xo)| > 0. While our arguments do not immediately apply for p < 2 we hope that our
techniques have some use for this equation to remove the (very strong) C2-assumption.

We conclude the introduction by describing the organization of the paper as well as the
approach we follow to prove the main result. We use a perturbation argument to obtain

@ Springer
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the interior regularity estimate stated in Theorem 1.1. We compare the nonlocal equation of
interest locally with a nonlocal equation on the n-torus whose solutions are periodic functions
with better regularity. Results pertaining to regularity theory to solutions to nonlocal equation
on the n-torus are presented in Sect. 2.

2 The torus and periodic maps—Dong-Kim’s regularity result

To facilitate the perturbation argument that we use to obtain the main result, we develop

regularity theory for nonlocal PDE with convolution-type kernel on the periodic domain the
n

n-torus which is the cube —%, % with opposite sides identified. The regularity results

that we obtain in this section are a reformulation of the results obtained in [8,12] where a

regularity theory is developed for nonlocal equations over R”.
n

First we fix some notations. The n-torus T" = |:— % %} is given as the set of equivalence

class R"/ ~ where the equivalence relation ~ on R” defined as follows: we say that, for
x,y € R", x ~ yif x —y € Z". With this identification, periodic functions on T" are
characterized as f defined on R” and satisfy f(x +m) = f(x) forallx € R" and m € Z".
The space of infinitely differentiable functions on T” denoted by C*°(T"). For 1 < p < oo,
fisin LP(T") if || fllLr(Try < 00. For a complex-valued function f in L(T™), we define
the Fourier transform of f, F(f), and form € Z" as

F(f)(m) Z/ Flx)e 2mHmx) gy
T

where (m,x) = Y_*_; m;x; is the dot product of m and x. The inverse Fourier transform
(also known as Fourier series of f) at x € T" is the series

Z f(f)(m)eZT[l(m,X) .
meZl

We can define other operators on function spaces of T"-periodic functions. For example, for

s > 0, we define the fractional Laplacian on T", Afﬂ,/,?, via the Fourier series as

AL F) = Y ImP F e )
meZn

See [19] for more on the fractional Laplacian on T".
For 1 < p < oo and s > 0 we define the inhomogeneous Sobolev and Bessel potential
spaces on the torus are defined, respectively, as

: ny . |u(x) — u(y)l
WHP(T") = {MELP(’]Tl) Wsp(’]rn /n f” X — ydtrs ———————dxdy < o0

and
HP(T") = {u € LP(T") : [ulgopzny = 1 A2t Loy < oo}.

For p =2, W**(T") = H**(T"), which can be shown via Plancherel Theorem. We denote
H*2(T") just simply by H*(T"). The homogeneous Bessel potential space H**” (T") on the

torus collects all periodic distributions u such that |u/ g, p(Tny = ||A%,,u|| Lp(Tny < 00. We
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should mention the Sobolev inequality for potential spaces: fors > 0and 1 < p < ¢ < c©

such that % > % - é, we have

lu — @O llzacrny < Clul gs.pepnys

where C = C(s, n, p,q) > 0 and (-) represents the average operator, see [1].

The main result of this section is stated in the following theorem which obtains a Calderén-
Zygmond type result for nonlocal equations on the torus with kernels that are homogeneous
of degree zero. We denote by S"~! ¢ R” the n — 1 sphere.

Theorem 2.1 Letn > 0,s1+s52 = 25,50 < s, and sy, s2,s € (0, 1). Suppose that p € (1, 00)
and © C S" 7 such that || > 0. Let K : S — [0, A] be a symmetric nonnegative,
bounded and measurable function, such that

0<n:= irzlfK. 2.1

Then there exists a constant C = C(n, s1, 52, s, £) > 0 such that the following holds: for any

g with ||gllw—s2.p@ny = ||g|I<W32,,,/(Rn))* S A e glell = Al@lys.p gn)» and a solution

u € WS2(T") to the equation

/,, fT 1 = ) @) — u()) @) — p(y) dxdy = glg] VYo € C(T")

with

ht
K ()

w(h) = Z W,

mezn

we have u € WS- (T"). Moreover, we have the estimate
[ulwsirrmy < C A+ ullp2(pn)-

Our proof of the theorem follows that of a similar result proved by H. Dong and D. Kim in [8]
for nonlocal equations posed on R”. There are some distinctions however. First, the nonlocal
equation we study is posed over the torus. Second, we have a relaxed ellipticity condition,
namely, ellipticity of K is assumed over subset of S¢ with positive measure as opposed to the
whole of S?. As the following lemma demonstrates, this is enough to establish the ellipticity
of the associated operator.

Lemma2.2 Let K : S"' — [0, 1] be measurable and satisfy (2.1) with ¥ C S"! and
|Z| > 0. Then, for any 7, R, R > 0 with RR' > ¥ > 0, there exists c = ¢(n, s, 2,7) > 0
such that for all € e RN \ B(0, R'),

1 —cos(2§ - h) g
——————K/Ih])dh °. 2.2
/B(O,R) e K@/IkD dh = el 2.2)

If R = +ooand R’ = 0, then (2.2) holds with 7 = 1. In particular, for any k € 7", we have

h+m
K ()

Wdh >c(n,s, z:)77|k|2s-

(1 = cos@m (k. h))) Y

T mezn"
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Proof By (2.1), for € € RN \ B(0, R'), we have

_ k -
/ 1 — cos(2¢ - h)K(h/|h|)dh _ / / 1 — cos(2§ - t0) K(0) dodt
B(O,R)

|h|n+2v tl+2\“

[EIR 1 — .
S§N-1

yl+2s

RR 1- 2 ]
anEIZS/E/ LD,

1 — 2 0
zn|&|2S/E/O Cosr(lfz/lg' 0 goar.  3)

From the Taylor expansion of cosine, we can find a constant g € (0, 7) such that

.01?
1 —cos(20 - rf) > rz% forall o, 6 € S" 'and r € (0, ro). 2.4)

Moreover, it is clear that the map
"' SR, o f(o) ::/ lo - 6)>do
)

attains its minimum at some g € S" 1. Itis plain that f (o9) > 0, because otherwise o -6 = 0
for all & € ¥, which contradicts that | 2| > 0. Using this and (2.4) in (2.3), we obtain

_ ) 2s ro .02 272
f MK(h/W)dh > nﬂ/ / wd@dr ﬁmzs
B(0,R) 4 Jzlo

k| +2s 142 = 81—
This gives (2.2). O
Lemma 2.3 With K and p as in Theorem 2.1, let

Lu(x) := /Tn @ (x) —u(y) p(x —y)dy.

Let u € WS2(T") satisfying Lu = g in the distributional sense in T", where g € L*(T").
Then

il s (ony S gl L2y

Proof First, we consider the Fourier transform of Lu on torus. Observe that foru € W*2(T")
the expression Lu is a distibution on T” - in particular F Lu(k) is well-defined since

e~2mikx) ¢ Co°(T"). Then
F(Luyk) = (Lu(x), e=2m1E2)) = / / W) = u ) plx = y) (727 k) — =2 U ay v,
Changing variable x — y = h, we obtain
F(Lu)(k) = / / W) — ux — h)) wh) ( “2milkx) _ =2tk x—h) ) dx dh
= / N (u(x) — u(x — h)) w(h) e %% dx dn

= f(u)(k)/ (1 — ™ &Ry 1u(h) dh.
'Jl‘n
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By Plancherel’s identity, we get

Ll oy = Y 1F (L) ()
keZ
2

= > IFwmP

kezZ"

> Y 1F@ k)

keZ"

2
= > IFwmP (/ (I — cos2m (k, h))) ju(h) dh)

kezZ"

/ (1 ankh)ﬂ(h)dh

2

gh/ (1 27‘[1 k h ),LL(]’Z) d]’l

2
K G
=Y IFw k) (/ (I —cos2m ik, 1)) Z mdk '

kezZ"
In view of Equation 2.2, we find that
lgZ2epm = ILulGagpny 2 D WK F@RP = [l -
keZ

[m}

The above lemmata and related estimates not only say that for any A > 0, the operator
A — L 0 H®(T") — L%(T") is bounded, but also that if for any g € LZ(T"), there is
u € H?>(T") such that A\u — Lu = g. See [8, Remark 3.6.]. Moreover, if u € W*2(T")

solves Lu = g, then ||(— A)TnM”LZ(Tn) S llgllL2¢pny- In the event, g € LP(T"), we follow
almost the same arguments as in [8] to obtain the corresponding L? estimates. The argument
2s

relies on mean oscillation estimates on « and (—A)%, u which in turn uses a Holder-regularity
estimates on smooth solution of Lu = g. A careful examination of the proof of [8, Theorem
2.1] reveals that in fact a Holder estimate of smooth solutions for some small exponent is
sufficient in order to carry out the argument. An alternative argument to a proof of such
small exponent Holder regularity estimate is sketched in Appendix 1. We summarize the
LP-regularity result in the following proposition.

Proposition 2.4 Let u, i, g be as in Theorem 2.1. Then,

2
I(=A)puuellrerny S gl erm-

We also observe that we can differentiate the convolution type equation. Namely, we have

Lemma 2.5 Let u, p, g be as in Theorem 2.1. Assume that u satisfies
/Jr /11‘ @) —u((ex) =) p(x —y)dxdy = glpl, Vo € Cpp . (T").
Then v := (—A)%u, for o € R, satisfies

/” / W) = v(PE) — p() 1 (x — y)dx dy = g[(—A) T ¢], Vg € Coeo, (T".
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Proof For every fixed y € T", by changing of variable choosing i = x — y, we get
/Tn /T”(U(X) —v()(@) =) u(x —y)dxdy
= f - (=A)Tu@) = (—A) Tu()) (@) — () p (x — y) dx dy

= / | (E0Tu0 ) = (=8)Tu() (@O +h) =9 () () dhdy.

Then, using Parseval’s relation, we get

= /\H‘n Z |62nzm.h _ 1|2|m|”ﬁ(m)§5(m)pc(h) dh

mez"

= / S 1P i) (=) S pom) o (h) d
T"

mezZ"

B / ), @O = a0 e+ ) = (=) T () 1 (h) dh dy

- /T /T @(x) = u(M (=M Te(x) = (=A) 2 p(y) p (x — y) dx dy

= gl(=A)Z gl

Now we obtain the full result of Theorem 2.1 from interpolation.

Proof of Theorem 2.1 Let T be the solution operator, i.e., for given g, T'g is the solution of
/ . (Tg(x) —=TgN(p(x) — (M) u (x — y)dxdy = glg] Ve € C=(T").

Observe that Tg = u, where such a solution can be shown to exist in W* “2(T") via variational
methods. From Proposition 2.4, we obtain

2
I(=A)2 TgllLrery S lgllecrny-

In view of Lemma 2.5 the above estimate implies that for any o € R

2st+0 a
I(=A) 2 Tgllprerny S I(=A)Z gllLe(Tmy-
That is for any o € R,
T : HOP(T") > H>Tor(T")

is a linear, bounded operator. Take op := —s and o := 0. Observe that H>? = F,(;,z- Then
we have

T : HSP(T") — HSP(T"),
T : HSP(T") — H>P(T")
are both bounded operators.

By [20, 2.5.1, p.86, Proposition and Remark] we obtain by interpolation

T : B (T") > B2 3o (T")

@ Springer
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is continuous and bounded for any o € (—s, 0), that is
”Tg”B]z)f;U(Tn) 5 ”g”BZ,,;(T”)'
Since Bg,p = WP we conclude for o := —s3,

ITgllwsrcrny = ITgllgst () N ||g||B;»fpz(T,z) = ||g||(wszvﬁ’('ﬂ*n))*'

Since u = T'g we conclude. O

3 Local estimates

Our proof of Theorem 1.1 uses a perturbative argument where we view the nonlocal equation
of interest as a small perturbation of a convolution-type equation on the torus. This is achieved
by a freezing of coefficient method facilitated by the uniform continuity assumption on
the kernel K given by (1.3). This leads to a convolution-type equation as treated in [8],
see Theorem 2.1. Applying Theorem 2.1 on the convolution-type equation leads to local
priori estimates (because of the term (3.3)). We convert these a priori estimates to regularity
estimates with the help of a fixed point argument in Sect. 3.2.

3.1 Local a priori estimates via freezing coefficients argument

Proposition 3.1 (Freezing the coefficient) Let s € (0,1), t € [s,1) and p € [2,0). Let
QC R and Q' CcC Q. Letu € WS2(R") N WP (Q') be a solution to

/ f K(x, ‘x_yl’ X =y ) (M(X)—M(y)) (w(J;)—W(Y))dxdy:g[(p] V(p c C?O(Q,) (31)
aJa Ix — ¥l lx — y|tas

where K is bounded, nondegenerate, and satisfies Equation 1.2. Let xy € Q' and R > 0
such that B(xo, 60/nR) C @/, and n € CX(B(xp, 6R)) withn = 1 in B(xp,5R). Set

n
T := xo + 30R [%1, %:| C B(xo, 60/nR) and define the 'ﬁ‘—perioa’icfunction

K (x0, 0, (3547 -
phy = Y ———00, forheT.
ke30RZ" |h+k|

Denote by v := nu. Then
/T/frﬂ(x =) W) —v() (W) —¥(y)dxdy
=gyl +H@, ¥) + G, ¥), (3.2)

forall Y € C;‘;r (%) , where H and G are bilinear forms with the property that for any

s1, 52 € (0, 1) with s1 4+ s5 = 2s and any p1, p> € (1, 00) with ﬁ + é = 1 we have
[H(a, b)| < sup
x€B(xo,10R),|h|=1,re[0,10R]
|K(x, r, h) - K(-XOv O, h)| [a]W;le’rpl ('ﬂ‘) [b]W;QK'rPZ ('ﬂ‘)v (33)

@ Springer



Partial Differential Equations and Applications (2022) 3:24 Page 110f27 24

Moreover for any max{0,2s — 1} < <2s —tand q < % such that
) n . n n
mm{t—f,t—f}z——/ (3.4)
q q P
we have G(a, b)| < C(R 0, 1K1l o) (IbllLacrny + Blyig e ) (lall 2, + @lys 2y + @y n s, ) -
Proof Without loss of generality (otherwise we rescale and translate) we may assume that
n
xo=0and R = 31—0 sothat 0 € Q' ccC , T becomes the unit torus T" = |:_71, %] , and

B(0, 24/n) contains a number of copies of T". The function y now becomes

K(0,0, 1)
_ > Y Thk|
w(h) = Z TR for h e T",
kezZr
and 1) € C2°(B(0, 5)) with 7 = Lin B(0, 7).

For y € Cpg, (T™), by a slight abuse of notation, we can assume that v is equal to its
periodic extension ¢ € C*°(R").
After writing u as

K(O 0, x— Vl) I%()C,y)

nx —y) =

lx — |n+2s |x — y|n+2:
) ~ n+2s

with K (x, y) = ZkeZ“ (0 0, Ij ii’;l) \x‘i\—ys-lk\"”“ we view it as a perturbation of
KOO LD i is motivated by the fact th

Ty LSS motivated by the fact that

x—y+k x—y+k
K (0.0, 5=5) K (0.0 i 55%)
sup + sup

|x_y+k|n+2s |x_y+k|n+2s ~

xeB(0,1).yeT" kezm\(0) YEB(0. 1) xeT" keZ\{0)

(3.5)
and thus for (x, y) € T" x T" and either x € supp v or y € supp v (or both) then

K (0,0, = yl)
|x |n+Zs

ulx —y) —

N

Consequently we obtain the decomposition
/n / px —y) () —v(y) (Y x) — ¥ (y)dxdy

/ / (0 0, 1= ) (W(x) — v(y)) (wo;) ‘”(”)dxdwgl(u,w
n n - yl |x - y|n+ '
3.6)

where

gl(u,w)sz fT Ry W) V0D ) )

|X _ y|n+25

We are going to view the first term in the right hand side of (3.6) as a "frozen coefficient” of
the original nonlocal equation. To make proper comparison, we set ¢ := (¢ — (¢)») for
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a reasonable cutoff function 77 € CZ°(2T") and 77 = 1 in T". Notice that 2T" C €. It then
follows that

[ [ x (o0 o) s v,
n n x — y| |.X - |”+2v

_ W) =) (T) =)
=[ / K(0,0, al y) ( )dxdy

lx — |x — y|rt2s
_ W) —v() (¥ x) = ¥ ()
://K(x,lx—ny y> ( 5 )dxdy
n n |x—y| |x_y|n+ Ky

)=o) (V& =T )
+/ / Ek(x,y) dxdy,

|x _ y|n+23

where Ex (x, y) = (0 0, |§ ;‘) K (x, lx — I, |§:§|> is the measure of the pointwise
deviation of the main kernel from K (0,0, ;= f‘ . We may thus write

/ / (00 )(v(x)—v(y))w(x) von,
 Joo x =)l e =y

= Hy(u, ) + Ha(u, ¥) + Go(u, W) + G3(u, ) + Ga(u, W),
where H (u, 1})
3 _ W) — v (T&) — ()
Hi(u, ¥) ::/ / K(x, [x — vy, il y) ( 5 )dxdy
ala lx — I |x — y|nt2s

and the remaining terms come from decomposing the deviation from the frozen term and are
given by

W) o) (¥ =)

x — y|rt2s

Ho(v, ¥) := / Eg(x,y) dxdy,
B(x0,%) /B(x0. 1)

vy @0u =06 (V@ - F))
Go(u, ) :=/ / K (x, [x —yl, ) =y dxdy,
B(x.§) Ja\T" e =l x — y|r+2s

ey 00U =G (¥ - 7))
G3(u, ¥) == / K (x, [x =yl ) T2s dxdy,
T JB(xo. ) lx =yl lx — y|rt=
and after recalling that the support of 7 is in B(0, %))
) = nu) (T - 7))
Galu, ¥) := / / Ek(x,y) TP dx dy
B0, 1) JT\B(0,}) |x — y|r+=
(ue) =) (70 - F)
+/ / Eg(x,y) s dxdy
T\B(0.5) /B(x0. ) lx — y|r+=
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Using the identity (@ —b)(cd —ef) + (c —e)(bd —af) = (ac — be)(d — f) we may rewrite
the expression in the integrand of H; as

W) =N ) = F ()
= () = uONOEOPE) = 1P ) + 06 = 1) (kT = u@F ).
Consequently, using the fact that u solves the nonlocal equation (3.1) we have

Hi(u, ¥) = gln¥l + Gs(u, ¥),

where

— v\ @) =) ()P ) — ux)P ()
Gs(u, 1) :=/Q/QK<x,|x—y|, |i_y> ( )

yl |x — y|n+2s

dxdy.

We may now summarize the above discussion to rewrite (3.6) as

f" /Tn nx =) @) = o) W) =) dxdy = gl +Hw, ¥) + Gu, ¥),

where H(v, ¥) = Ha(v, ¥), and G(u, ) = Z?:l Gi(u, ), which is precisely the expres-
sion in (3.2). What remains is to estimate to each of the terms to conclude the proof of the
proposition. To that end, the estimate (3.3) follows from the expression H> (v, ¥) and from
Holder’s inequality. For the estimate for G will estimate each of the terms of G. We begin
estimating G . First observe that using (3.5) and since v = nu € W(;’p (T") applying Poincaré
inequality to obtain

G ¥) < /T /T () — v () — Y ()l dx dy

L
7

S Nullwerern </Tn /{I‘" [ (x) — 1/f(y)|p/>p .

By Sobolev-Poincaré embedding the last factor can be estimates as

1
<[}1 /'];‘n |¢(X) o w(y)|p/ d.X dy) ! 5 [W]Wf,q(']rﬂ)y

so that we have
G1(u, ¥) S Nullwercrny [V g epny-

To estimate of G, we notice that forx € Q\T" and y € B(0, %) we have |[x —y| &~ [x —y|+1.
Thus,

G2 (u, ¥)| < lu))| | (x) — ¥ ()| dx dy

1
B, /s-z\?r" lx — ylr 2+ 1
S i@ lull s, 1) + 189110, 1) -

Observe that from periodicity and Sobolev embedding we obtain that

”&”LI(R") + ”&”LP’(Rn) S [w]wf.q(']rny
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and
”u”Ll(B(O,%)) + ||14||Lp(3(0,%)) < (”“”LZ(’E) + [ulys2m + [M]Wf-p(']r)) .
Thus we obtain the estimate
Gau, ¥) S [W]Wt'.é(’]l‘n) (”u”LZ(T) + [u]WS,Z(’]T) + [M]Wf,p(’[[‘)) .

The procedure to estimate G3 is exactly the same as that of G, and so we have

Ga(u. ) S @) |0) = )| dx dy

1
Q\T" /B(o,_;) Ix — y|+2 +1
S Wyiaern (lull2emy + ulys2 ey + lwere) -

To estimate of G4 first notice that since the support of 7 is contained in B(0, %),

‘—n(y)u(y) (&(x) - @(y))‘
awwi=|[ - dx dy
B, 1) JT\B(0,1) lx —yl

Now arguing in exactly similar way as the estimate for G, we obtain

Gatat, )| S uO |F0) = )| dx dy

1
B©,1)) /H\B(o,;) |x — 2 +1
N [1//]Wr',q(11~n) (||u||L2(11‘) + [ulws2m + [M]Wt~l'('11‘)) .

Finally, we estimate Gs as follows: using |7(x) — n(y)| < |x — y| forx, y € €/,
\Gs (. )| 5///, | Q[ (x) — ¥ ()] + [P (x)[Ju(x) —u(y)l

|)C _ y|n+23 1

/ / lu ()Y (0] + Ilﬁ(x)llu(y)l
+ Xx—y|>R
Q\Q/ /

x — y|rt2s

For the first term, we observe that

/ / |u(x)||&(x>—x/7(y)|dxdy

|x _y|n+2s—]

:/ lx —y =250 (x )|M
/ Q/

| |n+l

1
Wi ( / / e—y|f4' =G =Da" =y ()4 dxdy)

[Jf]wﬁq flull L4 ()

A

S
S/ [&]Wﬂq (”M”LZ(Q/) + [u]WH’(Q’)) .

The the second inequality follows from the fact that 7 > 2s — 1 and

sup [ |x — y[4"@=Dd'=ngy < C(diam(R), ¢’ n, 5, 7).
xeQ JQ

Alsosincet > sandsot > 2s — 1 and s € (0, 1), similarly as above we have

19 COlu(x) — u(y)] -
[ [ Rt s dy S vy 1y S W@y Oy oy
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As for the second term: as in [11, Lemma 5.2.] for any r € [1, oo],

g
Sup/ Xx—yZ2R 5 4y S lIgllier @
ey Jonar [x=y12 |x_y|n+2s

and thus

[ ) [ ()] + [ () [u(y)] . >
/S;\Q/ f/ Xix—y|>R T dxdy| SVl lull2@) + lullipyeny 1 llLa @)

SV Loy lull 2
S i ey el 22 (-

Collecting the estimates for G; fori = 1,2--- , 5 completes the proof of the proposition. O

Corollary 3.2 Fixu € WP A WS2(Q) under the assumptions for K , t, 1, s, p, and q as well
as R and T as in Proposition 3.1.
For a given distribution g such that there is some A > O with the

lglell = A (gl + [¢lyragn)

for all ¢ € C°(B(xg,30R)), let v € Ws’z('ﬁ‘) be a solution to (3.2). If in addition v €
Wzs’t’q’('ﬁ‘), then there exists a small enough ¢ > 0 (depending on xo, t, s, p) such that for
any K satisfying (1.3) we have

[v]WZ.v—f,q/(ﬁ‘) 5 ”u”LZ('ﬁ‘) + [u]wsZ('ﬁ‘) + [M]th('ﬁ‘) + A.@ (37)

Proof We notice that (3.2) can be rewritten as
[ L= @60 =000 0w = o dxdy = Y11

where Y[y¥] := glnv] + H(v, ¥) + G(u, ¢) for any ¢ € C;"e’,('ﬁ‘). Next, under all the
assumptions of Proposition 3.1, the estimates for the bilinear forms H and G combined with
(1.3) we have the estimate for

OIS ey (00 hyasiar iy + Nl 2y + lelyszgay + sy + A)
We can now apply Theorem 2.1 and obtain
Wlyasrg (@) S el0]aia @) + 1l 2q) + sz + Wy g + A
Since by assumption [v] 274 () < oo we obtain (3.7) by absorption of the e[v] 275 (™)

term after choosing & small enough. O

3.2 Local improved regularity via a fixed point theorem

We remark that the estimate given in Corollary 3.2 is an a priori estimate because it relies on

. . c—7 g’ s . . . .
the regularity assumption v € W2~¢ (T). In this subsection we prove this local regularity
result under the assumption of Proposition 3.1

Theorem 3.3 Fix u € WP N W2(Q') under the assumptions for t,1, s, p, and q as in
Proposition 3.1. Assume that g is a distribution such that there is some A > 0 with the

1glell = A (Iglzo@n + [¢lyiagn)
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Sforall ¢ € CZ°(B(xo, 30R)). Then there exists a small enough ¢ > (depending on xg, t, s, p
such that forany K satisfying (1.3), any solutionv € W*2(T) 1o (3.2) belongs to w214 (T).

Proof We prove the theorem in two steps. In the first step we show that any W*-2(T) solutlon
to (3.2) is unique up a constant. Next, we demonstrate that there is a solution v € W2~ td'n
ws 2('11‘) to (3.2). As a consequence, we conclude that any solution v € W* 2(?1’) to (3.2)
belongs to W2~ La' (T,

For the uniqueness, assume there are two solutions v and v in W‘Y’z(’ﬁ“). Setw:=v—10,
then (3.2) implies (recall that  and g are fixed)

/fr/fru(x —y) (W) —wy) W) — ¥ (y)dxdy =Hw, ).

Testing (by a density argument) with ¥ = w we find in view of Equation 3.3

(Wl S sup K (x,r.h) — K(x0,0, )] [w?, , - .
WMD) ™ | B(xo,10R), [h|=1,r<20R we2(T)
Then choosing ¢ sufficiently small, for any K satisfying (1.3), it follows that [w]W& 20 =0

and thus w = const.
. . Py ind
Let us now demonstrate that there is a solution v that belongs to W2~-4" N W*2(T). To
that end, let

X ={vew2@: @y =0].

By Poincaré inequality X endowed with the [-]yys.2-seminorm is a Banach space.
Starting from vy := 0 define vi4; € X inductively as the minimizer of infy & (-) where

1
Ee(v) == E/T/;_TM(X—YHU(X)—U(y)|2dXdy—g[77U]—H(Uk,v)—g(uvv)-

The minimizer vi4; € X exists by the direct method in the calculus of variations. The
minimizer v satisfies the Euler-Lagrange equation

/T /T B = D)Wk (0 — vt () (W () — Y (dx dy = gl ] + H(v, ¥) + G, ),

forall y € C° ']T‘) .

per
Denote by (vk+1)r = Vk+1*¢- the convolution with respect to T where ¢ isaapproximate
identity in C (). By the convolution type of the equation for vy we have

/fr/frﬂ(x = (kD)7 () = WD (¥) (Y (x) — ¥ (y))dx dy

= / / px =) k1 () = V1 (0) (Yo (x) = Yo (y)) dx dy
= glnyre] + H(u Ye) + Gu, Y)Y € C, (%).
We observe that the map

¥ e 3%, (F) o Yo (0 1= gl + Hwk, Yo + G, )
satisfies the estimate that

M ry @ = Cl Ny (el iy + (1l 2y + ey + elynogey ) + A)
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for a given € > 0 and K satisfying (1.3) where the constant C is uniform in 7, €, k for any

€. Since (Vk+1)¢ € C;‘;r (']T) C ngr_ t‘q/('ﬁ‘) we can apply Corollary 3.2. and obtain uniform

—~ 4 nd . . —~ ! nd .
W;i, "4 (T)-estimates for (vg41), and as T — 0 we thus obtain vi4 € W;i, L4(T) with
the estimate

[Uk+1]W2:—T.q’('ﬁ*) S, S[Uk]WZ:—Z.q’('ﬁ*) + <”u”L2('ﬂ*) + [M]W:,Z(']'I') + [u]wt,p('ﬂ*)) + A.

Repeating this argument for w4 := vr41 — vk, wWhich satisfies the equation

/~ / 0 = )Wk (6) = w1 (D) (B (6) = Y (0)dx dy = Hwe, ) Yo € Cox, (T).
TJT
we obtain the estimate (recall (1.3))

[wk]WZSfl',q’(fT) < Cs[wk—l]WZS*T.q'('ﬁ‘y

Since (wi)4 = O, this implies that vy is convergent in w2s—i *q/(’ﬂ‘), and passing to the limit
we find a solution v € W2~4'(T) of (3.2). _

Since 2s —f > s and ¢’ > 2 we have W2S’t*q’('}~1‘) - WS’Z('TI‘) and thus by uniqueness (up
to a constant) of v for W*2-maps we have that any solution belongs to W2~"-4'(T). That
concludes the proof. O

4 W' P-estimates, t > 1: differentiating the equation

Up to now we obtained W':P-estimates for ¢+ < 1 — under suitable assumptions on the
right-hand side, without assuming anything but continuity of the kernel involved. For W':”-
estimates for # > 1, we need ¢ — 1-Holder continuity of the kernel in order to differentiate
the equation.

Theorem4.1 Lets € (0, 1) anda € (0, 1). Assume K is as in Theorem 1.1, and additionally
we have Holder continuity in the first variable,

IK(x,r,h) = K(y,r,h)] < Alx —y|* Vx,y eR", |h|=1,r > 0.

Suppose also that, fort € (s, 1), p > 2, u € WP N WS’Z(]R”) is a solution of

f,, / K (x’ — oyl 2 > (ux) —u(y)(ex) — () dxdy = glg] Vo € CX(R").

Ix — yl |x — y|nt2s

Then for any r € (0, min{t, a}), (—A)%u € WI—r2(RM) satisfies
/ / X (x’ x— g, 222 ) (=) 2u(x) - (—A)%u(g))(w(x) —)
n JRn [x — ] [x — y[rt2s 4.1
= g[(~A)2¢] + H(u, ¢) VYo € C(RM),

where H(u, @) is a bilinear form. Moreover, we have the following estimate for any for any
x0 e R, ¢ >0,and R >0

Hu, ¢) S Cle, R) ludwrr @y (@l Lo gy F 101 y2s—i+e.p @e)) (4.2)
forany ¢ € C°(B(xg, R)).
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Proof Letr € (0,t — s). Then (—Aﬁu € W%2(R™), and we have for any ¢ € CX(RM),

(=D)2u(x) — (=A)2u()) (@) — ()
x, |lx —yl, yl dxdy

|)C _ y|n+2.\'

:/ / (x . 7) (=8 u(x) — (= A)x%u(X+h))(<p(X)—<p(X+h))

m GES dx dh

dxdh

oy (W) = + (M) (K (1l ) 00) = 207 (K (x4, ) o +h)

‘h‘n+23

f / <x Ixfyl ;) @) —uGN(=A)29(x) = (=A)20() ,

|x — y|n+2x

(u(x)—u<x+h>>x(x Ihl, lﬁ;‘)
+/ [ dxdh,

| h |n+2A
where

K (x p,£)=C/ (K <x’p’lll%l> —K<z,p,|2i|)) (9(2) — @(z+h))

dz.
|72] |x — z|"*r

Here we have applied the elementary formula

(—A)E (@b)(x) — a(r) (—A) () = ¢ [ LN Za@PE)
Re  Jx —z|"T

So we have shown (4.1) for

() = u(y)eCr. v = yl, 2=0)
Hu, ¢) 1=/n /n dxdy.

|x _y|n+2s

For a given € > 0 and R > 0, it remains to prove the estimate (4.2) for H(u, ¢) for any
@ € C°(B(xp, R)). To that end, first by Holder’s inequality,

L
I

e (s e = y1, 7= 7
MG, )] < [l @ // )7 axay

|)C _ y|n+(2s71)p
Recall (cf. [21, Proposition 6.6]) that for any o € (0, 1),

1@ = £+ S I (M-8 @)+ MEA)T G +h),

where M is a finite power of the maximal function. Then, by boundedness and the «-Holder
continuity of K, (1.4), forany 8 € (r,®) and o € (0, 1) we have

x-y
lx — I
<lx—yl° /R |x —z|f" (M(—A)%w(z) + M(=A) TGz +y— x)) dz (4.3)

)

|K(~x7 |'x _y|7

~x =yl (P MED T + 1P M=) T00).
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Now writing

e (e, b = vl 5=3) 17
/ / ] dx dy

|x _ y|n+(257t)p’

e (e, e = vl 5=3) 17 e (. e = vl 7=2) 17
5[ / Gl dxdy+/ f Gl dxdy
" e—yl=1 " x—yl=1

lx — y|n+(2s—t)p’ |x — y|n+(2s—1)p’

=1+ 1.

We estimate /7 and I, separately.
We estimate [ first. Choose € > 0 such that 2s — # 4+ & < 1. This choice is possible
because ¢ > s. Now for any o1 € (2s —t,2s —t 4 ¢) we apply (4.3) to obtain that

B=r M(—A) T I3 B=r M(—A) T I
I 5[ / [P M(=A)2 p(x)] dxdy—l—[ / [1P7"M(=A)2 p(y)] dxdy
" lx—yl=1 " x—yl=<l1

|x _ y‘n+(2s—t—ol)p’ |x _ y|n+(2s7t7rr])p’
5/ 1P~ M(—=D) T ()P dx,
R!l

where use the fact that |, _, W

s dh < oo, since 25 —t — o1 < 0. Similarly, to

estimate I, we apply (4.3) for o» € (0, 25 —t) and use the fact that f|h|>1 W‘ih <
o0 to obtain that

125/ 1P~ M(=A) 7 o(x) |7 dx.
Rn

Thus we have shown that
1/p

e (. 1x =yl 5=3) 17
/ / dxdy

|x _ y|n+(23—z)p’

_ a1 — 2
SIHPT MDY 0l oy + 1P M) T 0l any -

Now we use the the continuous embedding H"-?(R") c H*P(R") for0 < s < r and
1 < p < oo, see [20], with the inequality [ f1gsr» < || fllLe + [f]gr.r, for any given § > 0
small, we may choose > r sufficiently close to r so that

1/p

lie (x.1x =yl 225 ) 17
X o
U axdy| g IS
- Ix — y|n+(2s—t)p’ xay ~ ||¢||LP/*5(R") +[1(=4) (p”LDLB(Rny

After noting that ¢ is supported on B(xg, R), we have that ||<p||L,,/_5(R,,) < el ®n)- Also
using [11, Lemma 2.3] and the usual disjoint support argument we have

al Il
”(_A) 2 (p“LP/—S(]R”) S ”goHLP’(R”) + ”(_A) 2 gD”LP/(R")

Since 01 < 25 —t 4+ ¢ we can use yet again Sobolev embedding to obtain (here the constant
depends on ¢ > 0)

1/p

IK X,|X y|a x,y | /
X
n n |.X y|n+(25—f)[7/ Y ~ ” “LP,(R") [ ]Wzs ! e,p’(Rn)-

This proves estimate (4.2). O

@ Springer



24 Page 20 of 27 Partial Differential Equations and Applications (2022) 3:24

5 Proof of main results

Proof of Theorem 1.1 The proof uses an iterative argument similar to the one used in [22].
Here we present a sketch of the argument. Let k € N, and choose bounded sets ' C € C
Q-1 C ... Q1 C Q = B(xp,R). Cover Q by finitely many balls B(x;, 5R) where R
is chosen such that B(x;, 60,/nR) CC Q,i = 1,2, --- 1. Applying Proposition 3.1 and
then Theorem 3.3 we obtain that u € WP (B(x;, SR)) (since u = v in B(x;, 5R)), and
thus u € WS-P1(Q), for some s; > s and p; > p. Repeat this procedure on €2, and we
find for some s > s1 and p» > pp that u € W:P2(Q,). After k steps we have obtained
u € W% Pk(Q'). We can choose s and py so that Proposition 3.1 and Theorem 3.3 are
applicable in each step and after k steps we have py = p and s; = s, and thus the theorem
is proven. O

Proof of Theorem 1.2 We may assume that 2s > 1, otherwise there is nothing to show. By
the Theorem 1.1 we have already obtained a Wlt(;f -estimate forany t < 1. Letr :=1¢ —s
fort < 1,t =~ 1 then applying Theorem 4.1, we obtain that (—A)%u satisfies an equation
to which we can apply (locally) Theorem 1.1. In this way we can keep bootstrapping to the
claim. O

+2s
Proof of Corollary 1.3 Set K (x,r, h) := ( and recall that ¢ bi-Lipschitz,

that is

-
| (x)—¢ (x+rh)] )

0 < inf 9() —ptx +rh)l _ sup pC) —dpx+ri)l _ 5.1)

xeQ,r=0,lhl=1 [x — ¥l x€Q,r>0,|h|=1 lx — yl

We conclude that K is bounded from below (by a positive number) and above. Also K is
differentiable in C* with respect to x. Indeed

r r

() —dp(x + 1) 1p(y) — ¢y +rh)|
.

- h)| — - h
S G TR0 =30 T 180 — @0 il = 8 = g il
r

- h) - - m)l.
S M) — G T B0) =G Friy] P T W ) = (@) = dlx +rh))]

By the fundamental theorem of calculus,
() —d(y +rh) —¢(x) — ¢(x +rh)|
1
<|r| / | Do (y +trh) — Do (x + trh)| dt
0

Slrlle = yI*

Thus we have shown

r r
lp(x) —p(x + 1) 1p(y) — ¢y +rh)|
r2
< lx — y|*
6(x) — d(x + r)| ¢ (y) — ¢ (y + rh)|
< e —yl%,

where the last inequality follows from (5.1). Since K (x,r, k) is a positive power of this
expression and K (x, r, k) is bounded, we also get the C*-Holder continuity of K.
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Now the claim follows from Theorem 1.1 and Theorem 1.2 if necessary. O

6 Applications to the p-Laplacian: Proof of Corollary 1.4

The main idea of Corollary 1.4 is that locally around a point xo,
—y |P2

lx — yl

The kernel K (h) := |Vu(xp) |Z—| |P—2 satisfies the ellipticity assumptions as in (1.2).
So one expects that we can rewrite (1.5) into

lu(x) —u(y)P~% ~ |x — y|P~% |Vu(xo)

// K (=) @) —u() (p(x) — ¢(y)

Ix — y[+sp—p+2 dXdy=f(”"/’)+/Qf‘p

where F is a small distortion. Since by assumption sp — p+2 > sp — p+s > 0 this is still
a nonlocal differential equation of the type treated in our paper. Differentiating both sides,
we expect an equation of the form

// K (=37 @t (x) — 3au()) (9(x) — 9 ()

Ix — y|rtsp—p+2 dxdy = F(dqu, ¢) + /Q do f

To make this more precise we apply discrete differentiation. Set

S f(x) = flx+1)— f(x).

Then we have the following result which obtains an equation for §;u to which Theorem 1.1
is applicable.

Proposition 6.1 Lets > 1 — 17+1’
WP (R™) be a solution to (1.5).
Assume that moreover u € W™
ball B(xg, 60/nR) C Q.
For each t € B(0, R) there exist K, (x, r, h) that satisfies the conditions of Theorem 1.1,
and for all € C° (B(xo, %R)) ,

p=>215¢€(0,1), 2 C R"open Letu € L*([R") N

2(B(x0, 60./nR)) N C'(B(xg, 60/nR)) where the

/Q/QKr(x,y)wTum—sfu(y»(w)—w(y))dxdy=gf<u,w)+m(f,z/f) ©.1)

where F and G and 'H are bilinear and have the following properties: for any > 1

He(f, 91 = CB DI flles 11l (6.2)
and for any q > p,

-2
|G (u, )| S ||M||£oo(9) (Il + I8 uellLa (Bxo. RY) + 871l p2Rm)) 191l Lo (Bxo. R))
Moreover we have that ifu € CLY(B(xo, R)) then K. can be chosen in CY ().

Proof 1In the following we center all balls at xg, i.e. we write B(R) instead of B(xq, R).
Let ¢y € C°(B(AR)) and set

Hr(fv ¥) = / 1ﬁ5rf~
R”
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Observe that v is localizing this so that the integration domain lies well within €2, and thus
we have (6.2)

[He(f, )l = CBn Tl flles 11l L1 o)-

which readily implies (6.2).
We begin now our computations by observing that from (1.5)

// |M(x)—M(y)l”_z(u(x)—u(y))(fS—rlﬁ(x)—5—rlﬁ(y))d
xdy
QJQ

e = yp

= Hr(fv lﬁ)

Next we have by the discrete integration by parts of .,

_ -2 _ —
//Sz (lu () = uIP2 @) = u(y))) W x) = ¥() dx dy
aJo

|x _y|n+sp

= gl,t(u’ 1,0) + Hf(fa W)

where

gl,z(u,xl/)sz (ux + ) —u(y + DIP 2@ + 1) —uly + 1)) @) — ¥ O) dxdy
D

|x _ y|n+sp
with D = [Q x Q]A[(R2 — ) X (2 — 7)]. We can now define K. Set

1
Ke(x,r h) =r""P(p - 2)[ It u(x) —u(x +rh)) + (1 — 1) u(x +7) — ulx + 1 +rh) [P~ dr.
0

We then have by the fundamental theorem of calculus (and since for g(a) = |a|”‘2a we
have g'(a) = (p — 1)|a|"~?)

X =y
lx =yl

e () = uIP2w(@) = u()) = v = 1" 2Ks (x, =1, ) (Beu(x) = Seu(y))

Thus we have shown

Re (.l = 1, 1=37) Grae() = 8eu(v) (¥ () = Y (3)
/ / dxdy
QJQ

|x _ y|n+sp+2—p
=G1.:(u, ) +H (f, ¥).

Observe that for x € B(R) and |r| < R and |h| = 1 we have by the Lipschitz continuity of
u in B(0, 10R) that

|K.(x,r, h)| <C.

Moreover, since u is continuously differentiable in B(R), for each x € B(xp, AR), A, |T| 1
and & small,

1
K. (x,r h) =(p — 2)/ It (Du(x) + 0, (1)) b + (1 — 1) (Du(x + ) + 0,(1)) h|P~>
0

1
=(p - 2)/0 |t (Du(x0) 4+ 01(1) + 0, (1) h + (1 — 1) (Du(x0) + 0r-412| + Or(l))h|p72
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Since p — 2 > 0 (if p = 2 there is nothing to show),
Ko (x,r, h) = Ke(x0,0, )| S 0,(1) + 0341 (1),

where
1
K (x0,0,h) = (p—2>/ | Dutxo) - h + (1 = oy (DA
0

Thus we have the required continuity from Theorem 1.1.
Next, we show the positivity of K, (xo, 0, k). Let v := [Vu(xo)|~ ' Vu(xg) € S"~! (by
assumption |Vu(xg)| > 0). Then, we can take ¥ a small neighbourhood of v, so that

inf [(h,v)| >0 >0
heX

foragiven small o given. Foreachh € X letry > Osuchthat|Vu(x0)|_1|(1—t0)0|,‘(1)| < %
Then

IVau(xo)| ™" [Ducxo) - h + (1 = 1oy (DA > % vt € [to, 1.

Thus foreach h € X,
1
K (x0,0,h) =(p — 2)[ | Dutxo) - b+ (1 = Doy (DA["> = € > 0.
0]

That is (1.2) is satisfied. It now easy to extend K to a kernel that satisfies the conditions of
Theorem 1.1 in all of €2, and we call this kernel K;.

Ke (w1 = vl £2) (e @) = 8eu () () = ¥ ()
// dxdy
QJIQ

|x — y|n+sp+2—p
=01, ¥) + Goc u, ¥) + He (f, ¥)

where

(K: — Kr) (JC, lx =yl ﬁ) (Sru(x) — dzu(y)) (Y (x) — ¥ (¥)
G, (u, ) =/ / - dxdy.
elJa

|x — y|n+xp+2—p

Next we estimate each of the terms in the right hand side.

Estimate of G; ; Observe that |[QA[Q — 7]| < |7|, and so also |[Q x QJA[(2 — 7) %
Q=1 < |rl. Alsoif x, y € [2 x QIA[(R — 1) x (2 —7)] and either x or y € supp =
B(xo, %R) then |x — y| & |x — y| 4+ 1 (with constant depending on R). So

-1
Greu, ) Sltlllul o 1l

Estimate of G Observe that since ¥ € C2° (B (xo, %R)) we have that
X —y
lx —yl

necessarily implies that |x — y| 2 R. So we have

x,yeQ: (K, —Ky) (x, lx — yl, )(W(X)—w(y))#o

gz,fm,w)sf/(1+|u<x>—u<y>|"—2+|u<x+r)—u(y+r>|"—2)
QJIQ

dxdy
= P

X 8zu(x) = Sru()[ [ (x) — ¥ (y)l T
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Arguing again with the support of ¥ we should get for any ¢ > p,
g2 ‘[(u W) S ||u||L°°(B(R)) (HBII/‘HL‘i(B(R)) + ||8'ru||L2(R")) ”w”[‘q’(B(R))-
]

Proof of Corollary 1.4 Set « := min{sp — p + 2, 1}. Iteratively applying Theorem 1.1 to the
equation in Proposition 6.1 on balls B(R;) with R; 1 < R;, for any g; such that the right-hand
side is small, for arbitarily small ¢ > 0.

[Shu]wﬂ—e-qi—S(B(R[H)) < (|T| + ||5t”||L‘fi(B(R)) + ||5ru||L2(Rn)) .

We choose g1 = p and g;+1 > g; such that gj+1 < = aq (gi+1 = oo if n — ag; < 0) then

by Sobolev inequality (choosing ¢ appropriately small)
I8zl it B(Rvyy S (1T 4 I8zt Lai ((ryy) + 18cull 2 @n)) -
After finitely many steps N we reach gy = 0o. Thus we have obtained
[Beulca-sary,n) S (1] + 18cullraery + 18rull 2n)) -
Dividing by |z|* we find that
[ulcs+a—e (B(Ry41)) < OO

-2
ue)—u\P7;
W) N
Holder continuous. Thus we continue to bootstrap regularity with the help of Theorem 1.2,
and finally obtain u € CS+minlsp—p+2.1}—¢ i

By assumptions we have s +« > 1, so we can apply Theorem 1.2, since (

Acknowledgements M.M.F. is funded by the Alexander von Humboldt foundation. T.M. is funded by National
Science Foundation (NSF), grant no 1910180. A.S. is funded by the NSF Career award DMS-2044898 and
Simons foundation grant no 579261.

Appendix A: A remark on Holder regularity for equations with coercive
kernels

We consider symmetric kernels K : R” x R" — [0, oo] measurable and satisfying

0<K(x,y) <« forall x,y € R". (A.1)
Moreover, we assume that for all ¢ € HS (R™),
1 (p(x) —o(y)” p(y)?
Ty = / / PO dxdy
K R2n |x — yl (A 2)
" (fp(X) rp(y))zd
o C O s = (0T on)-

This includes translation anisotropic kernels K supported on cones as in (1.2), see (2.2).
‘We recall that

crulgli= [ /R K U O gD

x — y[rtas

We denote by £! the space of L [10 . functions u such that x — % is L' (R™). Our aim

is to re-prove the following theorem.
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Theorem A1 Let f € L*(R") and u € H} (R") N 55 such that Lxu = f in By. Then,
there exist o, C > 0 such

lullcasy) = Clull2p,) + Nlullgr + I fllLeo@n)-

To prove this result, we need some classical fundamental results: Caccioppoli inequality, a
nonlinear Sobolev inequality, and a Logarithmic lemma.

Lemma A.2 (Caccioppoli inequality)
Letv € H*(B(R)) N ESI be nonnegative and f € L°°(B(R)) satisfy

Lxkv<f in B(R). (A.3)

Then there exists ¢ = c¢(n, s, k) > 0 such that for every ¢ € CZ°(B(R)), we have
1 2 2 2-2s 2
E[(pU]HS(RIl) S C”V(p”LOO(B(R))R ||U||L2(B(R))
+cllellesry |:/. v)lx — y[TH " dy + ||f||L°°(B(R))] lvell Lt s(ry-
RP\B(R)

Proof By direct computations, we get

W) — V)P () — V(MNP (M] = (PE)V(E) — PNV — vV (@) — 9(1)?.

Testing the equation (A.3) with vp?, and using the identity above together with the symmetry
of K, we get

1 1 K(x,y)
St =5 [ v6w0I0w - 000 s v+ [ fewenicn ds.
(A4)
By Holder and Young’s inequalities, we get
/R | £ () dx < || fllosry el mry lvel L1 @n)- (A5)
Next, we write
K(x,y)
f f VOV (P() — (1)) 2 dydx (A.6)
R2n lx — yl
K(x,y)
-/ VOV @) — e 2y
B(R)x B(R) [x — y|rt=
, K(x,y)
+2 V@)V (@) — @(¥) 5 dydx. (A7)
B(R)xR"\B(R) [x — y|rt=
We put py(x,y) =[x — y| 725, By (A.1), Holder and Young’s inequalities, we get
K(x,y)
/ / VOV (@E) — () T dydx (A8)
B(R)x B(R) lx — y|rt=
sac [ 20 [ 00 - 000t dydx
B(R) B(R)
< 4IVeliesnry x/ |v|2<y>f lx — y[ui(x, y) dydx
B(R) B(R)
< el Vel sy R / v?(x) dax. (A.9)
B(R)
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Here we used that fB(R) lx — y|>=2"dy ~ R*25 whenever x € B(R).
Moreover, we estimate

/ / V)V (@) — e(1))*K (x, y) dydx
B(R)xR"\B(R)
<k / / V()P w1 (x. y) dydx
B(R)xR"\B(R)

52:«/ v(x)|g(x)|dx sup Iw(X)I/ v(Yuri(x, y)dy. (A.10)
B(R) xeB(R) R"\Bg

Using (A.2), (A.10), (A.9) and (A.7) we get the result. ]

An immediate consequence of the above Caccioppoli inequality and (A.2), which implies
the (nonlinear) Sobolev inequality, we can carry over the De Giorgi iteration, [10], to get the
following local L estimate.

Theorem A3 Letu € H*(Ba,) N L) and f € L®(R") satisfy
Lxu=f in By,.
Then there exists C = C(n, s, k) > 0 such that

sup lu| < C (r—"ﬂuuan(Bz,.) +r f lu(y)[1y| ™" dy + r2s||f||m32,)) :
B, |y‘2r/2

To obtain Holder estimates, we need the following result.

Lemma A.4 (Logarithmic lemma) Let v € H*(B(R)) N le and f € L°°(B(R)) such that
(A.3) holds and u > 0 in B(R). Then there exists c = c(n,s, k) > 0 such that for every
re0,R/2),d > 0, we have

/ K(x.y) ulx)+d
B, xB,

u(y)+d
2s
N o .
<o 25( d 1/‘ =l ¥dy+r¥d 1||f||moueer>+1)-
YI=R

2
log

R2s

Proof The proof uses precisely the argument in [7, proof of Lemma 3.1], where only the
upper bound of K was used. Note that in [7] a right hand side f was not considered, however

. 2 . . . .
since the proof uses fw, with ¢ € CZ°(By,), as a test function, we can easily obtain the
estimate of the term involving f. O

Note that in view of (A.2), we have the following Poincaré inequality,

c/ |u — (u)p,
B,

< r2s—"/ () —u(y)?K(x,y)dxdy  forall u € Hi (R"). (A.11)
B, x B,

2dx

In view of this and Lemma A.4, we have

Corollary A.5 Under the assumptions of Lemma A.4, we have

c/ |w — (w)p,
B,

rs P oo
< (std ‘fll /2|v7(y>||y| " dy +r¥d 1||f||mo<3,>+1>, (A.12)
yIZR

where w = min((log(a + d) — log(u + d))+,logh) foralla,d > 0 and b > 1.

2dx
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The Holder continuity is a consequence of Theorem A.1, Corollary A.5, Lemma A.2 and

the following growth estimates of the oscillation of u.

LemmaA.6 Let f € L°(R") andu € H}, (R") ﬂl:sl such that Lxu = f in By. Then, there
exists o, € (0, 1) depending only on n, s, k such that, fori € N,

supu — inf u < o </ lu)IYI™" > dy + | f | LBy + ||M||L2(Bz)> :
B,i lyl=1/2

; i
B(,l o

The proof is exactly the same as the [7, proof of Lemma 5.1]. We skip the details.
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