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Abstract
Given 2 ≤ p < ∞, s ∈ (0, 1) and t ∈ (1, 2s), we establish interiorWt,p Calderón-Zygmund
estimates for solutions of nonlocal equations of the form

∫
�

∫
�

K

(
x, |x − y|, x − y

|x − y|
)

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dxdy = g[ϕ], ∀φ ∈ C∞
c (�)

where � ⊂ R
n is an open set. Here we assume K is bounded, nonnegative and continuous

in the first entry – and ellipticity is ensured by assuming that K is strictly positive in a
cone. The setup is chosen so that it is applicable for nonlocal equations on manifolds, but
the structure of the equation is general enough that it also applies to the certain fractional
p-Laplace equations around points where u ∈ C1 and |∇u| �= 0.
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1 Introduction andmain results

Let s ∈ (0, 1) and� ⊂ R
n be an open set. In this work, we study the interiorWt,p-regularity

theory for functions u ∈ Ws,2(�) that satisfy the nonlocal equation
∫
�

∫
�
K

(
x, |x − y|, x − y

|x − y|
)

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dx dy = f [ϕ], ∀ϕ ∈ C∞
c (�) (1.1)

where f [ϕ] represents the action of the distribution f on the smooth function ϕ. We take
K (·, ·, ·) : R

n × [0,∞) × S
n−1 → [0,�] as our coefficient kernel and is a nonnegative

bounded and measurable function which is strictly positive on a substantial subset of S
n−1.

The model case is K (x, r , h) = |φ(x)−φ(x+rh)|
|r | for a map φ with |∇φ(x)| > 0. In particular,

if φ is a diffeomorphism that parameterizes an n-dimension manifold M, then (1.1) could
be a nonlocal differential equation on M. Other choices of naturally appearing kernels will
be studied later. For simplicity, we always assume K (·, ·, h) = K (·, ·,−h).

For t ≥ s, local Wt,p-Calderón Zygmund theory has been studied in [11] for a different
type of kernels by three of the authors. On the other hand the first author recently studied
Hölder regularity theory for (1.1) in [13]. To some extent, with respect to motivation, tech-
niques, and results, this paper is a combination of the ideas in [13] and [11], and we refer to
those papers for a background and motivation of equations of the type we are considering.

The following theorem states the first main result of the paper.

Theorem 1.1 Suppose that � ⊆ R
n is open and �1 ⊂⊂ � is bounded. Assume � > 1,

η > 0, s1 + s2 = 2s and s1, s2, s ∈ (0, 1), p ∈ (1,∞).
Let K : R

n × R+ × S
n−1 → R be in all entries bounded and measurable, assume that

the kernel is nondegenerate in the following sense

0 ≤ K (x, r , h) ≤ � ∀x ∈ R
n, r ≥ 0, h ∈ S

n−1,

and there exists � ⊂ S
n−1 with |�| > 0 such that for every x ∈ R

n,

η ≤ inf
h∈�

K (x, 0, h). (1.2)

Assume also the following continuity around points on �1: for every x0 ∈ �1, and some
R > 0 such that B(x0, 5R) ⊂⊂ �, and each ε > 0, there exists λ > 0 such that

sup
r<λR

sup
x∈B(x0,λR)

sup
|h|=1

|K (x, r , h) − K (x0, 0, h)| ≤ ε. (1.3)

Now, for a given distribution g, let u ∈ Ws,2(�) satisfies∫
�

∫
�

K

(
x, |x − y|, x − y

|x − y|
)

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dx dy = g[ϕ], ∀ϕ ∈ C∞
c (�1).
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Then, if for some � > 0, we have the estimate

|g[ϕ]| ≤ �
(
‖ϕ‖L p′ (Rn)

+ [ϕ]Ws2,p′ (Rn)

)
,

for all ϕ ∈ C∞
c (�1), then u ∈ Ws1,p

loc (�1).

The regularity result comes with a corresponding estimate

‖u‖Ws1,p(�1) ≤ C(‖u‖Ws,2(�) + ‖g‖)
where the constant C depends only on s, p,�1,�, and ellipticity, continuity, and bounded-
ness constants of K . See [11] for details. In the statement above, p′ is the Hölder conjugate
of p. Notice that the theorem is interesting when s2 < s. For p = 2 the result of the theorem
is only slightly better than [4] where Hölder continuity of K is assumed, but for s1 �= s and
p �= 2 this is a new result. Recently, S. Nowak developed Ws,p-regularity theory under the
weaker vanishingmean oscillation assumptions on the kernel, [14–18]. It is a natural question
if for our main theorem the continuity condition (for t < 1) can be relaxed to a VMO-type
condition, but we will leave this issue for a future work.

We conjecture that the condition s1 < 1 in Theorem 1.1 to be sharp, although we do not
have a counterexample. However, if we additionally assume Hölder continuity of the kernel,
the result of Theorem 1.1 holds for s1 > 1 as well. The following theorem states the second
main result of the paper.

Theorem 1.2 Assume all the conditions of Theorem 1.1 hold. Assume additionally α-Hölder
continuity of K in the first variable, i.e.

sup
x,y∈Rn

sup
|h|=1,r≥0

|K (x, r , h) − K (y, r , h)| ≤ �|x − y|α. (1.4)

Then the conclusion of Theorem1.1 hold for s1 < min{2s, 1+α} (instead of s1 < min{2s, 1}).
We refer to [13] for applicability of our result to the fractional mean curvature, cf. [9].
The structure of the kernel K appears naturally in applications that leads to linear nonlocal
differential equations on n-manifolds M, say

LM,s(u, ϕ) :=
∫
M

∫
M

(u(x) − u(y)) (ϕ(x) − ϕ(y))

dM(x, y)n+2s dx dy.

for smooth φ ∈ C∞
0 (M). For simplicity, we may assume that all of M is parametrized by

a bi-lipschitz diffeomorphism � : � → M (otherwise one can work on a coordinate patch
with the help of a decomposition of unity). Then for anyψ ∈ C∞

c (�), by change of variables
we have

LM,s(u, ψ ◦ �−1) =
∫

�

∫
�

(ũ(x) − ũ(y)) (ψ(x) − ψ(y))

dM(�(x),�(y))n+2s Jac(D�(x)) Jac(D�(y)) dx dy

where ũ := u ◦ �. Thus, if we set

K (x, r , h) :=
(

r

dM(�(x),�(x + rh))

)n+2s

Jac(D�(x)) Jac(D�(x + rh))

we have

LK ,s(ũ, ψ) = LM,s(u, ψ ◦ �−1).

Observe that

K (x, 0, h) ≈ |D�(x)h|−n−2s
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which is uniformly bounded from below because D� hasmaximal rank as a diffeomorphism.
In particular, we have the following corollary.

Corollary 1.3 The conclusion of Theorem 1.1 is true for the equation∫
�

∫
�

(u(x) − u(y))(ϕ(x) − ϕ(y))

|φ(x) − φ(y)|n+2s dx dy = g[ϕ] ∀ϕ ∈ C∞
c (�)

where φ : � ⊂ R
n → R

m is bi-Lipschitz and C1,α-differentiable.

Lastly, let us illustrate a consequence of our arguments for the higher regularity theory of
the fractional p-Laplacian in the regime where |∇u(x0)| > 0 for s ≈ 1.

Corollary 1.4 Let s ∈ (0, 1), p ≥ 2 such that s >
p

p+1 . For a given � ⊆ R
n open set, let

u ∈ Ws,p ∩ L∞(�) be a solution to

∫
�

∫
�

|u(x) − u(y)|p−2(u(x) − u(y)) (ϕ(x) − ϕ(y))

|x − y|n+sp dx dy =
∫
�

f ϕdx ∀ϕ ∈ C∞
c (�). (1.5)

If f ∈ C∞
c (Rn), u is continuously differentiable around some point x0 ∈ �, and |∇u(x0)| >

0, then there exists a small neighborhood B(x0, r) such that u ∈ C2(B(x0, r)).

Let us stress a subtlety of Corollary 1.4. The idea here is to take the solution u as part of the

kernel K (x, r , h) = |u(x)−u(x+rh)|p−2

|h|s(p−2) . Even if we assume that |∇u(x0)| �= 0, we still might
have

|u(x0) − u(x0 + rh)|
r

≈ |∇u(x0) · h| ≈ 0,

that for sufficiently small r > 0, for example, whenever h is perpendicular to ∇u(x0).
However, we know that for a substantial subset� ⊂ S

n−1, that depends on x0, we have for all
h ∈ � that |∇u(x0)h| � |∇u(x0)|, namely this is true for all h ∈ Sn−1 with |∠(h,∇u(x0))| >

λ > 0. Condition (1.2) on the kernel in Theorem 1.1 will allow us to apply the theorem to
handle such cases. The details of Corollary 1.4 are explained in Sect. 6.

Let us stress that Corollary 1.4 is an expected result but likely not optimal. The a priori
L∞-condition on u can be waived, indeed in view of [6] we can even assume that u is Hölder
continuous. Also, it may be possible to remove the conditions on p and s in Corollary 1.4 and
as well obtain differentiability for the solution aboveC2. The crucial condition |∇u(x0)| > 0
makes the equation “somewhat uniformly elliptic” with coefficients which regularize with
u. All these are the crucial ingredients to bootstrap towards C∞-regularity – however, there
is some subtlety here that we do not address in this paper: differentiating the equation even
for p > 2 the fractional p-Laplacian becomes singular elliptic (even around points where
|∇u(x0)| > 0).

Another point to keep in mind with respect to Corollary 1.4 is that the more challenging
case is around points x0 with vanishing derivative, |∇u(x0)| = 0 and the (here a priori
assumed) C1-regularity cannot be obtained by Theorem 1.1. Perhaps other techniques such
as those developed by Brasco–Lindgren [2,3] may be needed.

The statement of Corollary 1.4 is also somewhatmotivated by the recent extention formula
for the (sublinear, p < 2) p-Laplacian obtained in [5] – where they assumed u ∈ C2 and
|∇u(x0)| > 0. While our arguments do not immediately apply for p < 2 we hope that our
techniques have some use for this equation to remove the (very strong) C2-assumption.

We conclude the introduction by describing the organization of the paper as well as the
approach we follow to prove the main result. We use a perturbation argument to obtain
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the interior regularity estimate stated in Theorem 1.1. We compare the nonlocal equation of
interest locally with a nonlocal equation on the n-torus whose solutions are periodic functions
with better regularity. Results pertaining to regularity theory to solutions to nonlocal equation
on the n-torus are presented in Sect. 2.

2 The torus and periodic maps—Dong-Kim’s regularity result

To facilitate the perturbation argument that we use to obtain the main result, we develop
regularity theory for nonlocal PDE with convolution-type kernel on the periodic domain the

n-torus which is the cube

[
− 1

2 ,
1
2

]n
with opposite sides identified. The regularity results

that we obtain in this section are a reformulation of the results obtained in [8,12] where a
regularity theory is developed for nonlocal equations over R

n .

First we fix some notations. The n-torusT
n =

[
− 1

2 ,
1
2

]n
is given as the set of equivalence

class R
n/ ∼ where the equivalence relation ∼ on R

n defined as follows: we say that, for
x, y ∈ R

n , x ∼ y if x − y ∈ Z
n . With this identification, periodic functions on T

n are
characterized as f defined on R

n and satisfy f (x + m) = f (x) for all x ∈ R
n and m ∈ Z

n .
The space of infinitely differentiable functions on T

n denoted by C∞(Tn). For 1 ≤ p ≤ ∞,
f is in L p(Tn) if ‖ f ‖L p(Tn) < ∞. For a complex-valued function f in L1(Tn), we define
the Fourier transform of f , F( f ), and for m ∈ Z

n as

F( f )(m) =
∫
Tn

f (x)e−2π ı〈m,x〉 dx,

where 〈m, x〉 = ∑n
i=1 mi xi is the dot product of m and x . The inverse Fourier transform

(also known as Fourier series of f ) at x ∈ T
n is the series

∑
m∈Zn

F( f )(m)e2π ı〈m,x〉.

We can define other operators on function spaces of T
n-periodic functions. For example, for

s > 0, we define the fractional Laplacian on T
n , �s/2

Tn , via the Fourier series as

�
s
2
Tn f (x) =

∑
m∈Zn

|m|sF( f )(m)e2π ı〈m,x〉.

See [19] for more on the fractional Laplacian on T
n .

For 1 < p < ∞ and s > 0 we define the inhomogeneous Sobolev and Bessel potential
spaces on the torus are defined, respectively, as

Ws,p(Tn) =
{
u ∈ L p(Tn) : [u]pWs,p(Tn)

=
∫
Tn

∫
Tn

|u(x) − u(y)|
|x − y|d+ps

dxdy < ∞
}

and

Hs,p(Tn) =
{
u ∈ L p(Tn) : |u|Ḣ s,p(Tn) = ‖�

s
2
Tn u‖L p(Tn) < ∞

}
.

For p = 2, Ws,2(Tn) = Hs,2(Tn), which can be shown via Plancherel Theorem. We denote
Hs,2(Tn) just simply by Hs(Tn). The homogeneous Bessel potential space Ḣ s,p(Tn) on the

torus collects all periodic distributions u such that |u|Ḣ s,p(Tn) = ‖�
s
2
Tn u‖L p(Tn) < ∞. We

123
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should mention the Sobolev inequality for potential spaces: for s > 0 and 1 < p < q < ∞
such that s

n ≥ 1
p − 1

q , we have

‖u − (u)Tn‖Lq (Tn) ≤ C |u|Ḣ s,p(Tn),

where C = C(s, n, p, q) > 0 and (·)Tn represents the average operator, see [1].
Themain result of this section is stated in the following theoremwhich obtains a Calderón-

Zygmond type result for nonlocal equations on the torus with kernels that are homogeneous
of degree zero. We denote by S

n−1 ⊂ R
n the n − 1 sphere.

Theorem 2.1 Let η > 0, s1+s2 = 2s, s2 < s, and s1, s2, s ∈ (0, 1). Suppose that p ∈ (1,∞)

and � ⊂ S
n−1 such that |�| > 0. Let K : S

n−1 → [0,�] be a symmetric nonnegative,
bounded and measurable function, such that

0 < η := inf
�

K . (2.1)

Then there exists a constant C = C(η, s1, s2, s, �) > 0 such that the following holds: for any
g with ‖g‖W−s2,p(Rn) ≡ ‖g‖(

Ws2,p′ (Rn)
)∗ � �, i.e. |g[ϕ]| ≤ � [ϕ]Ws2,p′ (Rn)

, and a solution

u ∈ Ws,2(Tn) to the equation
∫
Tn

∫
Tn

μ (x − y) (u(x) − u(y))(ϕ(x) − ϕ(y)) dx dy = g[ϕ] ∀ϕ ∈ C∞(Tn)

with

μ(h) :=
∑
m∈Zn

K ( h+m
|h+m| )

|h + m|n+2s ,

we have u ∈ Ws1,p(Tn). Moreover, we have the estimate

[u]Ws1,p(Tn) ≤ C � + ‖u‖L2(Tn).

Our proof of the theorem follows that of a similar result proved by H. Dong and D. Kim in [8]
for nonlocal equations posed on R

n . There are some distinctions however. First, the nonlocal
equation we study is posed over the torus. Second, we have a relaxed ellipticity condition,
namely, ellipticity of K is assumed over subset of S

d with positive measure as opposed to the
whole of S

d . As the following lemma demonstrates, this is enough to establish the ellipticity
of the associated operator.

Lemma 2.2 Let K : S
n−1 → [0, 1] be measurable and satisfy (2.1) with � ⊂ S

n−1 and
|�| > 0. Then, for any r̄ , R, R′ > 0 with RR′ ≥ r > 0, there exists c = c(n, s, �, r) > 0
such that for all ξ ∈ R

N \ B(0, R′),
∫
B(0,R)

1 − cos(2ξ · h)

|h|n+2s K (h/|h|) dh ≥ c η|ξ |2s . (2.2)

If R = +∞ and R′ = 0, then (2.2) holds with r = 1. In particular, for any k ∈ Z
n, we have

∫
Tn

(1 − cos(2π〈k, h〉))
∑
m∈Zn

K
(

h+m
|h+m|

)

|h + m|n+2s dh ≥ c(n, s, �)η|k|2s .

123
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Proof By (2.1), for ξ ∈ R
N \ B(0, R′), we have

∫
B(0,R)

1 − cos(2ξ · h)

|h|n+2s K (h/|h|) dh =
∫
SN−1

∫ R

0

1 − cos(2ξ · tθ)

t1+2s K (θ) dθdt

= |ξ |2s
∫
SN−1

∫ |ξ |R

0

1 − cos(2ξ/|ξ | · rθ)

r1+2s K (θ) dθdr

≥ η|ξ |2s
∫

�

∫ R′R

0

1 − cos(2ξ/|ξ | · rθ)

r1+2s dθdr

≥ η|ξ |2s
∫

�

∫ r

0

1 − cos(2ξ/|ξ | · rθ)

r1+2s dθdr . (2.3)

From the Taylor expansion of cosine, we can find a constant r0 ∈ (0, r) such that

1 − cos(2σ · rθ) ≥ r2
|σ · θ |2

4
for all σ, θ ∈ S

n−1and r ∈ (0, r0). (2.4)

Moreover, it is clear that the map

S
n−1 → R, σ �→ f (σ ) :=

∫
�

|σ · θ |2 dθ

attains itsminimumat some σ0 ∈ S
n−1. It is plain that f (σ0) > 0, because otherwise σ ·θ = 0

for all θ ∈ �, which contradicts that |�| > 0. Using this and (2.4) in (2.3), we obtain
∫
B(0,R)

1 − cos(2ξ · h)

|h|n+2s K (h/|h|) dh ≥ η
|ξ |2s
4

∫
�

∫ r0

0

|ξ/|ξ | · θ |2
r−1+2s dθdr ≥ ηr2−2s

0 f (σ0)

8(1 − s)
|ξ |2s .

This gives (2.2). ��
Lemma 2.3 With K and μ as in Theorem 2.1, let

Lu(x) :=
∫
Tn

(u(x) − u(y)) μ(x − y) dy.

Let u ∈ Ws,2(Tn) satisfying Lu = g in the distributional sense in T
n, where g ∈ L2(Tn).

Then

|u|H2s (Tn) � ‖g‖L2(Tn).

Proof First, we consider the Fourier transform of Lu on torus. Observe that for u ∈ Ws,2(Tn)
the expression Lu is a distibution on T

n - in particular F Lu(k) is well-defined since
e−2π ı〈k,x〉 ∈ C∞(Tn). Then

F(Lu)(k) =
〈
Lu(x), e−2π ı〈k,x〉〉 = 1

2

∫
Tn

∫
Tn

(u(x) − u(y)) μ(x − y)
(
e−2π ı〈k,x〉 − e−2π ı〈k,y〉) dy dx .

Changing variable x − y = h, we obtain

F(Lu)(k) = 1

2

∫
Tn

∫
Tn

(u(x) − u(x − h)) μ(h)
(
e−2π ı〈k,x〉 − e−2π ı〈k,x−h〉) dx dh

=
∫
Tn

∫
Tn

(u(x) − u(x − h)) μ(h) e−2π ı〈k,x〉 dx dh

= F(u)(k)
∫
Tn

(1 − e2π ı〈k,h〉) μ(h) dh.

123
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By Plancherel’s identity, we get

‖Lu‖2L2(Rn)
=

∑
k∈Zn

|F(Lu)(k)|2

=
∑
k∈Zn

|F(u)(k)|2
∣∣∣∣
∫
Tn

(1 − e2π ı〈k,h〉) μ(h) dh

∣∣∣∣
2

≥
∑
k∈Zn

|F(u)(k)|2
∣∣∣∣�

∫
Tn

(1 − e2π ı〈k,h〉) μ(h) dh

∣∣∣∣
2

=
∑
k∈Zn

|F(u)(k)|2
(∫

Tn
(1 − cos(2π〈k, h〉)) μ(h) dh

)2

=
∑
k∈Zn

|F(u)(k)|2
(∫

Tn
(1 − cos(2π〈k, h〉))

∑
m∈Zn

K ( h+m
|h+m| )

|h + m|n+2s dh

)2

.

In view of Equation 2.2, we find that

‖g‖2L2(Tn)
= ‖Lu‖2L2(Tn)

�
∑
k∈Zn

||k|2sF(u)(k)|2 = |u|2H2s (Tn)
.

��

The above lemmata and related estimates not only say that for any λ > 0, the operator
λI − L : H2s(Tn) → L2(Tn) is bounded, but also that if for any g ∈ L2(Tn), there is
u ∈ H2s(Tn) such that λu − Lu = g. See [8, Remark 3.6.]. Moreover, if u ∈ Ws,2(Tn)

solves Lu = g, then ‖(−�)
2s
2
Tn u‖L2(Tn) � ‖g‖L2(Tn). In the event, g ∈ L p(Tn), we follow

almost the same arguments as in [8] to obtain the corresponding L p estimates. The argument

relies onmean oscillation estimates on u and (−�)
2s
2
Tn u which in turn uses a Hölder-regularity

estimates on smooth solution of Lu = g. A careful examination of the proof of [8, Theorem
2.1] reveals that in fact a Hölder estimate of smooth solutions for some small exponent is
sufficient in order to carry out the argument. An alternative argument to a proof of such
small exponent Hölder regularity estimate is sketched in Appendix 1. We summarize the
L p-regularity result in the following proposition.

Proposition 2.4 Let u, μ, g be as in Theorem 2.1. Then,

‖(−�)
2s
2
Tn u‖L p(Tn) � ‖g‖L p(Tn).

We also observe that we can differentiate the convolution type equation. Namely, we have

Lemma 2.5 Let u, μ, g be as in Theorem 2.1. Assume that u satisfies
∫
Tn

∫
Tn

(u(x) − u(y))(ϕ(x) − ϕ(y)) μ (x − y) dx dy = g[ϕ], ∀ϕ ∈ C∞
per (T

n).

Then v := (−�)
σ
2 u, for σ ∈ R, satisfies

∫
Tn

∫
Tn

(v(x) − v(y))(ϕ(x) − ϕ(y)) μ (x − y) dx dy = g[(−�)
σ
2 ϕ], ∀ϕ ∈ C∞

per (T
n).
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Proof For every fixed y ∈ T
n , by changing of variable choosing h = x − y, we get∫

Tn

∫
Tn

(v(x) − v(y))(ϕ(x) − ϕ(y)) μ (x − y) dx dy

=
∫
Tn

∫
Tn

((−�)
σ
2 u(x) − (−�)

σ
2 u(y))(ϕ(x) − ϕ(y)) μ (x − y) dx dy

=
∫
Tn

∫
Tn

((−�)
σ
2 u(y + h) − (−�)

σ
2 u(y))(ϕ(y + h) − ϕ(y)) μ (h) dh dy.

Then, using Parseval’s relation, we get

=
∫
Tn

∑
m∈Zn

|e2π ım·h − 1|2|m|σ û(m)ϕ̂(m) μ (h) dh

=
∫
Tn

∑
m∈Zn

|e2π ım·h − 1|2û(m)
̂

(−�)
σ
2 ϕ(m) μ (h) dh

=
∫
Tn

∫
Tn

(u(y + h) − u(y))((−�)
σ
2 ϕ(y + h) − (−�)

σ
2 ϕ(y)) μ (h) dh dy

=
∫
Tn

∫
Tn

(u(x) − u(y))((−�)
σ
2 ϕ(x) − (−�)

σ
2 ϕ(y)) μ (x − y) dx dy

= g[(−�)
σ
2 ϕ].

��
Now we obtain the full result of Theorem 2.1 from interpolation.

Proof of Theorem 2.1 Let T be the solution operator, i.e., for given g, Tg is the solution of∫
Tn

∫
Tn

(Tg(x) − Tg(y))(ϕ(x) − ϕ(y)) μ (x − y) dx dy = g[ϕ] ∀ϕ ∈ C∞(Tn).

Observe that Tg = u, where such a solution can be shown to exist inWs,2(Tn) via variational
methods. From Proposition 2.4, we obtain

‖(−�)
2s
2 Tg‖L p(Tn) � ‖g‖L p(Tn).

In view of Lemma 2.5 the above estimate implies that for any σ ∈ R

‖(−�)
2s+σ
2 Tg‖L p(Tn) � ‖(−�)

σ
2 g‖L p(Tn).

That is for any σ ∈ R,

T : Ḣσ,p(Tn) �→ Ḣ2s+σ,p(Tn)

is a linear, bounded operator. Take σ0 := −s and σ1 := 0. Observe that Hσ,p = Fσ
p,2. Then

we have

T : Ḣ−s,p(Tn) �→ Ḣ s,p(Tn),

T : Ḣ s,p(Tn) �→ Ḣ2s,p(Tn)

are both bounded operators.
By [20, 2.5.1, p.86, Proposition and Remark] we obtain by interpolation

T : Bσ
p,p(T

n) �→ B2s+σ
p,p (Tn)
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is continuous and bounded for any σ ∈ (−s, 0), that is

‖Tg‖B2s+σ
p,p (Tn)

� ‖g‖Bσ
p,p(T

n).

Since Bσ
p,p = W σ,p we conclude for σ := −s2,

‖Tg‖Ws1,p(Tn) = ‖Tg‖Bs1
p,p(T

n)
� ‖g‖

B
−s2
p,p (Tn)

≡ ‖g‖(
Ws2,p′ (Tn)

)∗ .

Since u = Tg we conclude. ��

3 Local estimates

Our proof of Theorem 1.1 uses a perturbative argument where we view the nonlocal equation
of interest as a small perturbation of a convolution-type equation on the torus. This is achieved
by a freezing of coefficient method facilitated by the uniform continuity assumption on
the kernel K given by (1.3). This leads to a convolution-type equation as treated in [8],
see Theorem 2.1. Applying Theorem 2.1 on the convolution-type equation leads to local
priori estimates (because of the term (3.3)). We convert these a priori estimates to regularity
estimates with the help of a fixed point argument in Sect. 3.2.

3.1 Local a priori estimates via freezing coefficients argument

Proposition 3.1 (Freezing the coefficient) Let s ∈ (0, 1), t ∈ [s, 1) and p ∈ [2,∞). Let
� ⊂ R

n and �′ ⊂⊂ �. Let u ∈ Ws,2(Rn) ∩ Wt,p(�′) be a solution to

∫
�

∫
�
K

(
x, |x − y|, x − y

|x − y|
)

(u(x) − u(y)) (ϕ(x) − ϕ(y))

|x − y|n+2s dx dy = g[ϕ] ∀ϕ ∈ C∞
c (�′). (3.1)

where K is bounded, nondegenerate, and satisfies Equation 1.2. Let x0 ∈ �′ and R > 0
such that B(x0, 60

√
nR) ⊂ �′, and η ∈ C∞

c (B(x0, 6R)) with η ≡ 1 in B(x0, 5R). Set

T̃ := x0 + 30R

[
−1
2 , 1

2

]n
⊂ B(x0, 60

√
nR) and define the T̃-periodic function

μ(h) :=
∑

k∈30RZn

K (x0, 0, h+k
|h+k| )

|h + k|n+2s , for h ∈ T̃.

Denote by v := ηu. Then
∫
T̃

∫
T̃

μ(x − y) (v(x) − v(y)) (ψ(x) − ψ(y)) dx dy

= g[ηψ] + H(v, ψ) + G(u, ψ), (3.2)

for all ψ ∈ C∞
per

(
T̃

)
, where H and G are bilinear forms with the property that for any

s1, s2 ∈ (0, 1) with s1 + s2 = 2s and any p1, p2 ∈ (1,∞) with 1
p1

+ 1
p2

= 1 we have

|H(a, b)| ≤ sup
x∈B(x0,10R),|h|=1,r∈[0,10R]

|K (x, r , h) − K (x0, 0, h)| [a]Ws1,p1
per (T̃)

[b]Ws2,p2
per (T̃)

, (3.3)
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Moreover for any max{0, 2s − 1} < t̃ < 2s − t and q ≤ p
p−1 such that

min

{
t − n

q
, t̃ − n

q

}
≥ − n

p′ (3.4)

wehave |G(a, b)| ≤ C(R, η, ‖K‖L∞ )
(
‖b‖Lq (Tn ) + [b]

Wt̃,q (T)

) (
‖a‖L2(T̃)

+ [a]Ws,2(T̃)
+ [a]Wt,p(T̃)

)
.

Proof Without loss of generality (otherwise we rescale and translate) we may assume that

x0 = 0 and R = 1
30 so that 0 ∈ �′ ⊂⊂ �, T̃ becomes the unit torus T

n =
[

−1
2 , 1

2

]n
, and

B(0, 2
√
n) contains a number of copies of T

n . The function μ now becomes

μ(h) =
∑
k∈Zn

K (0, 0, h+k
|h+k| )

|h + k|n+2s , for h ∈ T
n,

and η ∈ C∞
c (B(0, 1

5 )) with η ≡ 1 in B(0, 1
6 ).

For ψ ∈ C∞
per (T

n), by a slight abuse of notation, we can assume that ψ is equal to its
periodic extension ψ ∈ C∞(Rn).

After writing μ as

μ(x − y) = K (0, 0, x−y
|x−y| )

|x − y|n+2s + K̃ (x, y)

|x − y|n+2s

with K̃ (x, y) = ∑
k∈Zn\{0} K

(
0, 0, x−y+k

|x−y+k|
) |x−y|n+2s

|x−y+k|n+2s , we view it as a perturbation of

K (0,0, x−y
|x−y| )

|x−y|n+2s . This is motivated by the fact that

sup
x∈B(0, 15 ),y∈Tn

∑
k∈Zn\{0}

K
(
0, 0, x−y+k

|x−y+k|
)

|x − y + k|n+2s + sup
y∈B(0, 15 ),x∈Tn

∑
k∈Zn\{0}

K
(
0, 0, x−y+k

|x−y+k|
)

|x − y + k|n+2s � 1.

(3.5)

and thus for (x, y) ∈ T
n × T

n and either x ∈ supp v or y ∈ supp v (or both) then
∣∣∣∣∣μ(x − y) − K (0, 0, x−y

|x−y| )
|x − y|n+2s

∣∣∣∣∣ � 1.

Consequently we obtain the decomposition∫
Tn

∫
Tn

μ(x − y) (v(x) − v(y)) (ψ(x) − ψ(y)) dx dy

=
∫
Tn

∫
Tn

K

(
0, 0,

x − y

|x − y|
)

(v(x) − v(y)) (ψ(x) − ψ(y))

|x − y|n+2s dx dy + G1(u, ψ)

(3.6)

where

G1(u, ψ) =
∫
Tn

∫
Tn

K̃ (x, y)
(v(x) − v(y)) (ψ(x) − ψ(y))

|x − y|n+2s dx dy.

We are going to view the first term in the right hand side of (3.6) as a ’frozen coefficient’ of
the original nonlocal equation. To make proper comparison, we set ψ̃ := η̃(ψ − (ψ)Tn ) for
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a reasonable cutoff function η̃ ∈ C∞
c (2T

n) and η̃ ≡ 1 in T
n . Notice that 2T

n ⊂ �. It then
follows that∫

Tn

∫
Tn

K

(
0, 0,

x − y

|x − y|
)

(v(x) − v(y)) (ψ(x) − ψ(y))

|x − y|n+2s dx dy

=
∫
Tn

∫
Tn

K

(
0, 0,

x − y

|x − y|
) (v(x) − v(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy

=
∫
Tn

∫
Tn

K

(
x, |x − y|, x − y

|x − y|
) (v(x) − v(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy

+
∫
Tn

∫
Tn

EK (x, y)
(v(x) − v(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy,

where EK (x, y) = K
(
0, 0, x−y

|x−y|
)

− K
(
x, |x − y|, x−y

|x−y|
)
is the measure of the pointwise

deviation of the main kernel from K
(
0, 0, x−y

|x−y|
)
. We may thus write

∫
Tn

∫
Tn

K

(
0, 0,

x − y

|x − y|
)

(v(x) − v(y)) (ψ(x) − ψ(y))

|x − y|n+2s dx dy

= H1(u, ψ̃) + H2(v, ψ) + G2(u, ψ) + G3(u, ψ̃) + G4(u, ψ̃),

where H1(u, ψ̃)

H1(u, ψ̃) :=
∫

�

∫
�

K

(
x, |x − y|, x − y

|x − y|
) (v(x) − v(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy

and the remaining terms come from decomposing the deviation from the frozen term and are
given by

H2(v, ψ) :=
∫
B(x0,

1
3 )

∫
B(x0,

1
3 )

EK (x, y)
(v(x) − v(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy,

G2(u, ψ) :=
∫
B(x0,

1
3 )

∫
�\Tn

K

(
x, |x − y|, x − y

|x − y|
) (η(x)u(x) − η(y)u(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy,

G3(u, ψ) :=
∫
�\Tn

∫
B(x0,

1
3 )

K

(
x, |x − y|, x − y

|x − y|
) (η(x)u(x) − η(y)u(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy,

and after recalling that the support of η is in B(0, 1
5 ))

G4(u, ψ) :=
∫
B(0, 15 )

∫
Tn\B(0, 13 )

EK (x, y)
(η(x)u(x) − η(y)u(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy

+
∫
Tn\B(0, 13 )

∫
B(x0,

1
5 )

EK (x, y)
(η(x)u(x) − η(y)u(y))

(
ψ̃(x) − ψ̃(y)

)

|x − y|n+2s dx dy
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Using the identity (a−b)(cd − e f )+ (c− e)(bd −a f ) = (ac−be)(d − f )we may rewrite
the expression in the integrand of H1 as

(v(x) − v(y))(ψ̃(x) − ψ̃(y))

= (u(x) − u(y))(η(x)ψ̃(x) − η(y)ψ̃(y)) + (η(x) − η(y))
(
u(y)ψ̃(x) − u(x)ψ̃(y)

)
.

Consequently, using the fact that u solves the nonlocal equation (3.1) we have

H1(u, ψ̃) = g[ηψ̃] + G5(u, ψ),

where

G5(u, ψ) :=
∫

�

∫
�

K

(
x, |x − y|, x − y

|x − y|
) (η(x) − η(y))

(
u(y)ψ̃(x) − u(x)ψ̃(y)

)

|x − y|n+2s

dx dy.

We may now summarize the above discussion to rewrite (3.6) as
∫
Tn

∫
Tn

μ(x − y) (v(x) − v(y)) (ψ(x) − ψ(y)) dx dy = g[ηψ̃] + H(v, ψ) + G(u, ψ),

where H(v, ψ) = H2(v, ψ), and G(u, ψ) = ∑5
i=1 Gi (u, ψ), which is precisely the expres-

sion in (3.2). What remains is to estimate to each of the terms to conclude the proof of the
proposition. To that end, the estimate (3.3) follows from the expression H2(v, ψ) and from
Hölder’s inequality. For the estimate for G will estimate each of the terms of G. We begin
estimating G1. First observe that using (3.5) and since v = ηu ∈ Wt,p

0 (Tn) applying Poincaré
inequality to obtain

G1(u, ψ) �
∫
Tn

∫
Tn

|v(x) − v(y)||ψ(x) − ψ(y)| dx dy

� ‖u‖Wt,p(Tn)

(∫
Tn

∫
Tn

|ψ(x) − ψ(y)|p′
) 1

p′
.

By Sobolev-Poincarè embedding the last factor can be estimates as

(∫
Tn

∫
Tn

|ψ(x) − ψ(y)|p′
dx dy

) 1
p′

� [ψ]Wt̃,q (Tn)
,

so that we have

G1(u, ψ) � ‖u‖Wt,p(Tn) [ψ]Wt̃,q (Tn)
.

To estimate ofG2, we notice that for x ∈ �\T
n and y ∈ B(0, 1

3 )we have |x−y| ≈ |x−y|+1.
Thus,

|G2(u, ψ)| �
∫
B(0, 13 )

∫
�\Tn

1

|x − y|n+2s + 1
|u(y)|

∣∣∣ψ̃(x) − ψ̃(y)
∣∣∣ dx dy

�‖ψ̃‖L1(�) ‖u‖L1(B(0, 13 ) + ‖uψ̃‖L1(B(0, 13 )).

Observe that from periodicity and Sobolev embedding we obtain that

‖ψ̃‖L1(Rn) + ‖ψ̃‖L p′ (Rn)
� [ψ]Wt̃,q (Tn)

,
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and

‖u‖L1(B(0, 13 )) + ‖u‖L p(B(0, 13 )) �
(‖u‖L2(T) + [u]Ws,2(T) + [u]Wt,p(T)

)
.

Thus we obtain the estimate

G2(u, ψ) � [ψ]Wt̃,q̃ (Tn)

(‖u‖L2(T) + [u]Ws,2(T) + [u]Wt,p(T)

)
.

The procedure to estimate G3 is exactly the same as that of G2 and so we have

G3(u, ψ) �
∫

�\Tn

∫
B(0, 13 )

1

|x − y|n+2s + 1
|u(x)|

∣∣∣ψ̃(x) − ψ̃(y)
∣∣∣ dx dy

� [ψ]Wt̃,q̃ (Tn)

(‖u‖L2(T) + [u]Ws,2(T) + [u]Wt,p(T)

)
.

To estimate of G4 first notice that since the support of η is contained in B(0, 1
5 ),

|G4(u, ψ)| =
∣∣∣∣∣∣
∫
B(0, 15 )

∫
Tn\B(0, 13 )

∣∣∣−η(y)u(y)
(
ψ̃(x) − ψ̃(y)

)∣∣∣
|x − y|n+2s dx dy

∣∣∣∣∣∣
Now arguing in exactly similar way as the estimate for G2 we obtain

|G4(u, ψ)| �
∫
B(0, 15 ))

∫
Tn\B(0, 13 )

1

|x − y|n+2s + 1
|u(y)|

∣∣∣ψ̃(x) − ψ̃(y)
∣∣∣ dx dy

� [ψ]Wt̃,q (Tn)

(‖u‖L2(T) + [u]Ws,2(T) + [u]Wt,p(T)

)
.

Finally, we estimate G5 as follows: using |η(x) − η(y)| � |x − y| for x, y ∈ �′,

|G5(u, ψ̃)| �
∫

�′

∫
�′

|u(x)||ψ̃(x) − ψ̃(y)| + |ψ̃(x)||u(x) − u(y)|
|x − y|n+2s−1 dx dy

+
∫

�\�′

∫
�′

χ|x−y|�R
|u(x)||ψ̃(y)| + |ψ̃(x)||u(y)|

|x − y|n+2s dx dy.

For the first term, we observe that
∫

�′

∫
�′

|u(x)||ψ̃(x) − ψ̃(y)|
|x − y|n+2s−1 dx dy

=
∫

�′

∫
�′

|x − y|t̃−(2s−1)|u(x)| |ψ̃(x) − ψ̃(y)|
|x − y|n+t̃

dx dy

� [ψ̃]Wt̃,q

(∫
�′

∫
�′

|x−y|t̃q ′−(2s−1)q ′−n |u(x)|q ′
dx dy

) 1
q′

� [ψ̃]Wt̃,q ‖u‖Lq′
(�′)

� [ψ̃]Wt̃,q

(‖u‖L2(�′) + [u]Wt,p(�′)
)
.

The the second inequality follows from the fact that t̃ > 2s − 1 and

sup
x∈�′

∫
�′

|x − y|t̃q ′−(2s−1)q ′−ndy ≤ C(diam(�′), q ′, n, s, t̃).

Also since t > s and so t > 2s − 1 and s ∈ (0, 1), similarly as above we have
∫

�′

∫
�′

|ψ̃(x)||u(x) − u(y)|
|x − y|n+2s−1 dx dy � [u]Wt,p(�′) ‖ψ̃‖L p′ (�′) � [u]Wt,p(�′) [ψ]Wt̃,p′ (Tn)

.

123



Partial Differential Equations and Applications             (2022) 3:24 Page 15 of 27    24 

As for the second term: as in [11, Lemma 5.2.] for any r ∈ [1,∞],

sup
x∈�′

∫
�\�′

χ|x−y|�R
|g(y)|

|x − y|n+2s dy � ‖g‖Lr (�)

and thus∣∣∣∣∣
∫

�\�′

∫
�′

χ|x−y|�R
|u(x)||ψ̃(y)| + |ψ̃(x)||u(y)|

|x − y|n+2s dx dy

∣∣∣∣∣ �‖ψ̃‖L1(�′) ‖u‖L2(�) + ‖u‖L1(�′) ‖ψ̃‖Lq (�)

�‖ψ̃‖Lq (�′) ‖u‖L2(�)

�[ψ]Wt̃,q (Tn)
‖u‖L2(�).

Collecting the estimates for Gi for i = 1, 2 · · · , 5 completes the proof of the proposition. ��
Corollary 3.2 Fix u ∈ Wt,p ∩Ws,2(�′) under the assumptions for K , t, t̃ , s, p, and q as well
as R and T̃ as in Proposition 3.1.

For a given distribution g such that there is some � > 0 with the

|g[ϕ]| ≤ �
(
‖ϕ‖Lq (Rn) + [ϕ]Wt̃,q (Rn)

)
,

for all ϕ ∈ C∞
c (B(x0, 30R)), let v ∈ Ws,2(T̃) be a solution to (3.2). If in addition v ∈

W 2s−t̃,q ′
(T̃), then there exists a small enough ε > 0 (depending on x0, t, s, p) such that for

any K satisfying (1.3) we have

[v]W 2s−t̃,q′
(T̃)

� ‖u‖L2(T̃)
+ [u]Ws,2(T̃)

+ [u]Wt,p(T̃)
+ �.@ (3.7)

Proof We notice that (3.2) can be rewritten as∫
T̃

∫
T̃

μ(x − y) (v(x) − v(y)) (ψ(x) − ψ(y)) dx dy = ϒ[ψ],

where ϒ[ψ] := g[ηψ] + H(v, ψ) + G(u, ψ) for any ψ ∈ C∞
per (T̃). Next, under all the

assumptions of Proposition 3.1, the estimates for the bilinear formsH and G combined with
(1.3) we have the estimate for

|ϒ[ψ]| � [ψ]Wt̃,q (T̃)

(
ε[v]W 2s−t̃,q′

(T̃)
+ ‖u‖L2(T̃)

+ [u]Ws,2(T̃)
+ [u]Wt,p(T̃)

+ �
)

.

We can now apply Theorem 2.1 and obtain

[v]W 2s−t̃,q′
(T̃)

� ε[v]W 2s−t̃,q′
(T̃)

+ ‖u‖L2(T̃)
+ [u]Ws,2(T̃)

+ [u]Wt,p(T̃)
+ �.

Since by assumption [v]W 2s−t̃,q̃′
(T̃)

< ∞ we obtain (3.7) by absorption of the ε[v]W 2s−t̃,q̃′
(Tn)

term after choosing ε small enough. ��

3.2 Local improved regularity via a fixed point theorem

We remark that the estimate given in Corollary 3.2 is an a priori estimate because it relies on
the regularity assumption v ∈ W 2s−t̃,q ′

(T̃). In this subsection we prove this local regularity
result under the assumption of Proposition 3.1

Theorem 3.3 Fix u ∈ Wt,p ∩ Ws,2(�′) under the assumptions for t, t̃ , s, p, and q as in
Proposition 3.1. Assume that g is a distribution such that there is some � > 0 with the

|g[ϕ]| ≤ �
(
‖ϕ‖Lq (Rn) + [ϕ]Wt̃,q (Rn)

)
,
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for all ϕ ∈ C∞
c (B(x0, 30R)). Then there exists a small enough ε > (depending on x0, t, s, p

such that for any K satisfying (1.3), any solution v ∈ Ws,2(T̃) to (3.2) belongs toW 2s−t̃,q ′
(T̃).

Proof We prove the theorem in two steps. In the first step we show that anyWs,2(T̃) solution
to (3.2) is unique up a constant. Next, we demonstrate that there is a solution v ∈ W 2s−t̃,q ′ ∩
Ws,2(T̃) to (3.2). As a consequence, we conclude that any solution v ∈ Ws,2(T̃) to (3.2)
belongs to W 2s−t̃,q ′

(T̃).
For the uniqueness, assume there are two solutions v and ṽ in Ws,2(T̃). Set w := v − ṽ,

then (3.2) implies (recall that u and g are fixed)∫
T̃

∫
T̃

μ(x − y) (w(x) − w(y)) (ψ(x) − ψ(y)) dx dy = H(w,ψ).

Testing (by a density argument) with ψ = w we find in view of Equation 3.3

[w]2
Ws,2(T̃)

� sup
x∈B(x0,10R),|h|=1,r≤20R

|K (x, r , h) − K (x0, 0, h)| [w]2
Ws,2(T̃)

.

Then choosing ε sufficiently small, for any K satisfying (1.3), it follows that [w]2
Ws,2(T̃)

= 0

and thus w ≡ const .
Let us now demonstrate that there is a solution v that belongs to W 2s−t̃,q ′ ∩ Ws,2(T̃). To

that end, let

X :=
{
v ∈ Ws,2(T̃) : (v)

T̃
= 0

}
.

By Poincaré inequality X endowed with the [·]Ws,2 -seminorm is a Banach space.
Starting from v0 := 0 define vk+1 ∈ X inductively as the minimizer of infX Ek(·) where

Ek(v) := 1

2

∫
T̃

∫
T̃

μ(x − y) |v(x) − v(y)|2 dx dy − g[ηv] − H(vk, v) − G(u, v).

The minimizer vk+1 ∈ X exists by the direct method in the calculus of variations. The
minimizer vk+1 satisfies the Euler-Lagrange equation∫
T̃

∫
T̃

μ(x − y)(vk+1(x) − vk+1(y)) (ψ(x) − ψ(y))dx dy = g[ηψ] + H(vk, ψ) + G(u, ψ),

for all ψ ∈ C∞
per

(
T̃

)
.

Denote by (vk+1)τ = vk+1∗φτ the convolutionwith respect to T̃whereφτ is a approximate

identity in C∞(T̃). By the convolution type of the equation for vk+1 we have∫
T̃

∫
T̃

μ(x − y)((vk+1)τ (x) − (vk+1)τ (y)) (ψ(x) − ψ(y))dx dy

=
∫
T̃

∫
T̃

μ(x − y) (vk+1(x) − vk+1(y)) (ψτ (x) − ψτ (y)) dx dy

= g[ηψτ ] + H(vk, ψτ ) + G(u, ψτ ) ∀ψ ∈ C∞
per

(
T̃

)
.

We observe that the map

ψ ∈ C∞
per

(
T̃

)
�→ ϒ(k,τ )(ψ) := g[ηψτ ] + H(vk, ψτ ) + G(u, ψτ )

satisfies the estimate that

|ϒ(k,τ )(ψ)| ≤ C‖ψ‖Wt̃,q

(
ε[vk]W 2s−t̃,q̃′

(T̃)
+

(
‖u‖L2(T̃)

+ [u]Ws,2(T̃)
+ [u]Wt,p(T̃)

)
+ �

)
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for a given ε > 0 and K satisfying (1.3) where the constant C is uniform in τ, ε, k for any

ε. Since (vk+1)τ ∈ C∞
per (T̃) ⊂ W 2s−t̃,q ′

per (T̃) we can apply Corollary 3.2. and obtain uniform

W 2s−t̃,q ′
per (T̃)-estimates for (vk+1)τ , and as τ → 0 we thus obtain vk+1 ∈ W 2s−t̃,q ′

per (T̃) with
the estimate

[vk+1]W 2s−t̃,q′
(T̃)

� ε[vk]W 2s−t̃,q′
(T̃)

+
(
‖u‖L2(T̃)

+ [u]Ws,2(T̃)
+ [u]Wt,p(T̃)

)
+ �.

Repeating this argument for wk+1 := vk+1 − vk , which satisfies the equation
∫
T̃

∫
T̃

μ(x − y)(wk+1(x) − wk+1(y)) (ψ(x) − ψ(y))dx dy = H(wk, ψ) ∀ψ ∈ C∞
per

(
T̃

)
.

we obtain the estimate (recall (1.3))

[wk]W 2s−t̃,q′
(T̃)

≤ Cε[wk−1]W 2s−t̃,q′
(T̃)

.

Since (wk)T̃ = 0, this implies that vk is convergent in W 2s−t̃,q ′
(T̃), and passing to the limit

we find a solution v ∈ W 2s−t̃,q ′
(T̃) of (3.2).

Since 2s − t̃ > s and q ′ ≥ 2 we have W 2s−t̃,q ′
(T̃) ⊂ Ws,2(T̃) and thus by uniqueness (up

to a constant) of v for Ws,2-maps we have that any solution belongs to W 2s−t̃,q ′
(T̃). That

concludes the proof. ��

4 Wt,p-estimates, t > 1: differentiating the equation

Up to now we obtained Wt,p-estimates for t < 1 – under suitable assumptions on the
right-hand side, without assuming anything but continuity of the kernel involved. For Wt,p-
estimates for t ≥ 1, we need t − 1-Hölder continuity of the kernel in order to differentiate
the equation.

Theorem 4.1 Let s ∈ (0, 1) and α ∈ (0, 1). Assume K is as in Theorem 1.1, and additionally
we have Hölder continuity in the first variable,

|K (x, r , h) − K (y, r , h)| ≤ �|x − y|α ∀x, y ∈ R
n, |h| = 1, r ≥ 0.

Suppose also that, for t ∈ (s, 1), p ≥ 2, u ∈ Wt,p ∩ Ws,2(Rn) is a solution of
∫
Rn

∫
Rn

K

(
x, |x − y|, x − y

|x − y|
)

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dx dy = g[ϕ] ∀ϕ ∈ C∞
c (Rn).

Then for any r ∈ (0,min{t, α}), (−�)
r
2 u ∈ Wt−r ,2(Rn) satisfies

∫
Rn

∫
Rn

K

(
x, |x − y|, x − y

|x − y|
)

((−�)
r
2 u(x) − (−�)

r
2 u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dx dh

= g[(−�)
r
2 ϕ] + H(u, ϕ) ∀ϕ ∈ C∞

c (Rn),

(4.1)

where H(u, ϕ) is a bilinear form. Moreover, we have the following estimate for any for any
x0 ∈ R

n, ε > 0, and R > 0

H(u, ϕ) � C(ε, R) [u]Wt,p(Rn)(‖ϕ‖L p′ (Rn)
+ ‖ϕ‖W 2s−t+ε,p′ (Rn)

) (4.2)

for any ϕ ∈ C∞
c (B(x0, R)).
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Proof Let r ∈ (0, t − s). Then (−�)
r
2 u ∈ Ws,2(Rn), and we have for any ϕ ∈ C∞

c (Rn),

∫
Rn

∫
Rn

K

(
x, |x − y|, x − y

|x − y|
)

((−�)
r
2 u(x) − (−�)

r
2 u(y))(ϕ(x) − ϕ(y))

|x − y|n+2s dx dy

=
∫
Rn

∫
Rn

K

(
x, |h|, h

|h|
)

((−�)
r
2
x u(x) − (−�)

r
2
x u(x + h))(ϕ(x) − ϕ(x + h))

|h|n+2s dx dh

=
∫
Rn

∫
Rn

(u(x) − u(x + h))((−�)
r
2
x

(
K

(
x, |h|, h

|h|
)

ϕ(x)
)

− (−�)
r
2
x

(
K

(
x, |h|, h

|h|
)

ϕ(x + h))
)

|h|n+2s dx dh

=
∫
Rn

∫
Rn

K

(
x, |x − y|, x − y

|x − y|
)

(u(x) − u(y))((−�)
r
2 ϕ(x) − (−�)

r
2 ϕ(y))

|x − y|n+2s dx dh

+
∫
Rn

∫
Rn

(u(x) − u(x + h)) κ(x, |h|, h
|h| )

|h|n+2s dx dh,

where

κ(x, ρ,
h

|h| ) = c
∫
Rn

(
K

(
x, ρ, h

|h|
)

− K
(
z, ρ, h

|h|
))

(ϕ(z) − ϕ(z + h))

|x − z|n+r
dz.

Here we have applied the elementary formula

(−�)
r
2 (ab)(x) − a(x)(−�)

r
2 b(x) = c

∫
Rn

(a(x) − a(z))b(z)

|x − z|n+r
dz.

So we have shown (4.1) for

H(u, ϕ) :=
∫
Rn

∫
Rn

(u(x) − u(y)) κ(x, |x − y|, x−y
|x−y| )

|x − y|n+2s dx dy.

For a given ε > 0 and R > 0, it remains to prove the estimate (4.2) for H(u, ϕ) for any
ϕ ∈ C∞

c (B(x0, R)). To that end, first by Hölder’s inequality,

|H(u, ϕ)| ≤ [u]Wt,p(Rn)

⎛
⎝

∫
Rn

∫
Rn

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy

⎞
⎠

1
p′

.

Recall (cf. [21, Proposition 6.6]) that for any σ ∈ (0, 1),

| f (z) − f (z + h)| � |h|σ
(
M(−�)

σ
2 f (z) + M(−�)

σ
2 f (z + h)

)
,

whereM is a finite power of the maximal function. Then, by boundedness and the α-Hölder
continuity of K , (1.4), for any β ∈ (r , α) and σ ∈ (0, 1) we have

|κ(x, |x − y|, x − y

|x − y| )|

� |x − y|σ
∫
Rn

|x − z|β−r−n
(
M(−�)

σ
2 ϕ(z) + M(−�)

σ
2 ϕ(z + y − x)

)
dz

≈ |x − y|σ
(
I β−rM(−�)

σ
2 ϕ(x) + I β−rM(−�)

σ
2 ϕ(y)

)
.

(4.3)

123



Partial Differential Equations and Applications             (2022) 3:24 Page 19 of 27    24 

Now writing

∫
Rn

∫
Rn

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy

≤
∫
Rn

∫
|x−y|≤1

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy +
∫
Rn

∫
|x−y|≥1

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy

:= I1 + I2.

We estimate I1 and I2 separately.
We estimate I1 first. Choose ε > 0 such that 2s − t + ε < 1. This choice is possible

because t > s. Now for any σ1 ∈ (2s − t, 2s − t + ε) we apply (4.3) to obtain that

I1 �
∫
Rn

∫
|x−y|≤1

|I β−rM(−�)
σ1
2 ϕ(x)|p′

|x − y|n+(2s−t−σ1)p′ dxdy +
∫
Rn

∫
|x−y|≤1

|I β−rM(−�)
σ1
2 ϕ(y)|p′

|x − y|n+(2s−t−σ1)p′ dxdy

�
∫
Rn

|I β−rM(−�)
σ1
2 ϕ(x)|p′

dx,

where use the fact that
∫
|h|≤1

1
|h|n+(2s−t−σ1)p′ dh < ∞, since 2s − t − σ1 < 0. Similarly, to

estimate I2 we apply (4.3) for σ2 ∈ (0, 2s− t) and use the fact that
∫
|h|≥1

1
|h|n+(2s−t−σ2)p′ dh <

∞ to obtain that

I2 �
∫
Rn

|I β−rM(−�)
σ2
2 ϕ(x)|p′

dx .

Thus we have shown that
⎛
⎝

∫
Rn

∫
Rn

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy

⎞
⎠

1/p′

� ‖I β−rM(−�)
σ1
2 ϕ‖L p′ (Rn)

+ ‖I β−rM(−�)
σ2
2 ϕ‖L p′ (Rn)

.

Now we use the the continuous embedding Ht,p(Rn) ⊂ Hs,p(Rn) for 0 < s < t and
1 < p < ∞, see [20], with the inequality [ f ]Hs,p � ‖ f ‖L p + [ f ]Ht,p , for any given δ > 0
small, we may choose β > r sufficiently close to r so that

⎛
⎝

∫
Rn

∫
Rn

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy

⎞
⎠

1/p′

� ‖ϕ‖L p′−δ(Rn)
+ ‖(−�)

σ1
2 ϕ‖L p′−δ(Rn)

.

After noting that ϕ is supported on B(x0, R), we have that ‖ϕ‖L p′−δ(Rn)
� ‖ϕ‖L p′ (Rn)

. Also
using [11, Lemma 2.3] and the usual disjoint support argument we have

‖(−�)
σ1
2 ϕ‖L p′−δ(Rn)

� ‖ϕ‖L p′ (Rn)
+ ‖(−�)

σ1
2 ϕ‖L p′ (Rn)

Since σ1 < 2s − t + ε we can use yet again Sobolev embedding to obtain (here the constant
depends on ε > 0)

⎛
⎝

∫
Rn

∫
Rn

|κ
(
x, |x − y|, x−y

|x−y|
)

|p′

|x − y|n+(2s−t)p′ dx dy

⎞
⎠

1/p′

� ‖ϕ‖L p′ (Rn)
+ [ϕ]W 2s−t+ε,p′ (Rn)

.

This proves estimate (4.2). ��
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5 Proof of main results

Proof of Theorem 1.1 The proof uses an iterative argument similar to the one used in [22].
Here we present a sketch of the argument. Let k ∈ N, and choose bounded sets �′ ⊂ �k ⊂
�k−1 ⊂ . . . �1 ⊂ � = B(x0,R). Cover �1 by finitely many balls B(xi , 5R) where R
is chosen such that B(xi , 60

√
nR) ⊂⊂ �, i = 1, 2, · · · , l. Applying Proposition 3.1 and

then Theorem 3.3 we obtain that u ∈ Ws1,p1(B(xi , 5R)) (since u = v in B(xi , 5R)), and
thus u ∈ Ws1,p1(�1), for some s1 ≥ s and p1 ≥ p. Repeat this procedure on �2 and we
find for some s2 ≥ s1 and p2 ≥ p1 that u ∈ Ws2,p2(�2). After k steps we have obtained
u ∈ Wsk ,pk (�′). We can choose sk and pk so that Proposition 3.1 and Theorem 3.3 are
applicable in each step and after k steps we have pk = p and sk = s, and thus the theorem
is proven. ��
Proof of Theorem 1.2 We may assume that 2s > 1, otherwise there is nothing to show. By
the Theorem 1.1 we have already obtained a Wt,p

loc -estimate for any t < 1. Let r := t − s

for t < 1, t ≈ 1 then applying Theorem 4.1, we obtain that (−�)
r
2 u satisfies an equation

to which we can apply (locally) Theorem 1.1. In this way we can keep bootstrapping to the
claim. ��
Proof of Corollary 1.3 Set K (x, r , h) :=

(
r

|φ(x)−φ(x+rh)|
)n+2s

and recall that φ bi-Lipschitz,

that is

0 < inf
x∈�,r≥0,|h|=1

|φ(x) − φ(x + rh)|
|x − y| < sup

x∈�,r≥0,|h|=1

|φ(x) − φ(x + rh)|
|x − y| < ∞. (5.1)

We conclude that K is bounded from below (by a positive number) and above. Also K is
differentiable in Cα with respect to x . Indeed∣∣∣∣ r

|φ(x) − φ(x + rh)| − r

|φ(y) − φ(y + rh)|
∣∣∣∣

≤ r

|φ(x) − φ(x + rh)| |φ(y) − φ(y + rh)| ||φ(y) − φ(y + rh)| − |φ(x) − φ(x + rh)||

≤ r

|φ(x) − φ(x + rh)| |φ(y) − φ(y + rh)| |φ(y) − φ(y + rh) − (φ(x) − φ(x + rh))| .

By the fundamental theorem of calculus,

|φ(y) − φ(y + rh) − φ(x) − φ(x + rh)|

≤|r |
∫ 1

0
|Dφ(y + trh) − Dφ(x + trh)| dt

�|r ||x − y|α
Thus we have shown∣∣∣∣ r

|φ(x) − φ(x + rh)| − r

|φ(y) − φ(y + rh)|
∣∣∣∣

� r2

|φ(x) − φ(x + rh)| |φ(y) − φ(y + rh)| |x − y|α

� |x − y|α,

where the last inequality follows from (5.1). Since K (x, r , h) is a positive power of this
expression and K (x, r , h) is bounded, we also get the Cα-Hölder continuity of K .
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Now the claim follows from Theorem 1.1 and Theorem 1.2 if necessary. ��

6 Applications to the p-Laplacian: Proof of Corollary 1.4

The main idea of Corollary 1.4 is that locally around a point x0,

|u(x) − u(y)|p−2 ≈ |x − y|p−2
∣∣∣∣∇u(x0)

x − y

|x − y|
∣∣∣∣
p−2

.

The kernel K (h) := |∇u(x0)
h
|h| |p−2 satisfies the ellipticity assumptions as in (1.2).

So one expects that we can rewrite (1.5) into

∫
�

∫
�

K (
x−y
|x−y| )(u(x) − u(y)) (ϕ(x) − ϕ(y))

|x − y|n+sp−p+2 dx dy = F(u, ϕ) +
∫

�

f ϕ

where F is a small distortion. Since by assumption sp− p+ 2 > sp− p+ s > 0 this is still
a nonlocal differential equation of the type treated in our paper. Differentiating both sides,
we expect an equation of the form

∫
�

∫
�

K (
x−y
|x−y| )(∂αu(x) − ∂αu(y)) (ϕ(x) − ϕ(y))

|x − y|n+sp−p+2 dx dy = F(∂αu, ϕ) +
∫

�

∂α f ϕ

To make this more precise we apply discrete differentiation. Set

δτ f (x) := f (x + τ) − f (x).

Then we have the following result which obtains an equation for δτu to which Theorem 1.1
is applicable.

Proposition 6.1 Let s > 1 − 1
p+1 , p ≥ 2, s ∈ (0, 1), � ⊆ R

n open. Let u ∈ L∞(Rn) ∩
Ws,p(Rn) be a solution to (1.5).

Assume that moreover u ∈ W
sp−p+2

2 ,2(B(x0, 60
√
nR)) ∩ C1(B(x0, 60

√
nR)) where the

ball B(x0, 60
√
nR) ⊂ �.

For each τ ∈ B(0, R) there exist Kτ (x, r , h) that satisfies the conditions of Theorem 1.1,
and for all ψ ∈ C∞

c

(
B(x0,

1
2 R)

)
,

∫
�

∫
�

Kτ (x, y) (δτ u(x) − δτu(y)) (ψ(x) − ψ(y)) dx dy = Gτ (u, ψ) + Hτ ( f , ψ) (6.1)

where F and G and H are bilinear and have the following properties: for any β > 1

|Hτ ( f , ψ)| ≤ C(β, η, η̃)|τ |‖ f ‖Cβ ‖ψ‖L1 (6.2)

and for any q ≥ p,

|Gτ (u, ψ)| � ‖u‖p−2
L∞(�)

(|τ | + ‖δτu‖Lq (B(x0,R)) + ‖δτu‖L2(Rn)

) ‖ψ‖Lq′
(B(x0,R))

Moreover we have that if u ∈ C1,γ (B(x0, R)) then Kτ can be chosen in Cγ (�).

Proof In the following we center all balls at x0, i.e. we write B(R) instead of B(x0, R).
Let ψ ∈ C∞

c (B(λR)) and set

Hτ ( f , ψ) :=
∫
Rn

ψδτ f .

123



   24 Page 22 of 27 Partial Differential Equations and Applications             (2022) 3:24 

Observe that ψ is localizing this so that the integration domain lies well within �, and thus
we have (6.2)

|Hτ ( f , ψ)| ≤ C(β, η, η̃)|τ |‖ f ‖Cβ ‖ψ‖L1(�).

which readily implies (6.2).
We begin now our computations by observing that from (1.5)

∫
�

∫
�

|u(x) − u(y)|p−2(u(x) − u(y)) (δ−τψ(x) − δ−τψ(y))

|x − y|n+sp
dx dy

= Hτ ( f , ψ).

Next we have by the discrete integration by parts of δτ ,

∫
�

∫
�

δτ

(|u(x) − u(y)|p−2(u(x) − u(y))
)
(ψ(x) − ψ(y))

|x − y|n+sp
dx dy

= G1,τ (u, ψ) + Hτ ( f , ψ).

where

G1,τ (u, ψ) =
∫∫

D

(|u(x + τ) − u(y + τ)|p−2(u(x + τ) − u(y + τ))
)
(ψ(x) − ψ(y))

|x − y|n+sp
dx dy

with D = [� × �]�[(� − τ) × (� − τ)]. We can now define Kτ . Set

K̃τ (x, r , h) := r2−p(p − 2)
∫ 1

0
|t (u(x) − u(x + rh)) + (1 − t) (u(x + τ) − u(x + τ + rh))|p−2 dt .

We then have by the fundamental theorem of calculus (and since for g(a) = |a|p−2a we
have g′(a) = (p − 1)|a|p−2)

δτ

(
|u(x) − u(y)|p−2(u(x) − u(y))

)
= |x − y|p−2 K̃τ

(
x, |x − y|, x − y

|x − y|
)

(δτ u(x) − δτu(y)) .

Thus we have shown

∫
�

∫
�

K̃τ

(
x, |x − y|, x−y

|x−y|
)

(δτu(x) − δτu(y)) (ψ(x) − ψ(y))

|x − y|n+sp+2−p
dx dy

= G1,τ (u, ψ) + Hτ ( f , ψ).

Observe that for x ∈ B(R) and |r | ≤ R and |h| = 1 we have by the Lipschitz continuity of
u in B(0, 10R) that

|K̃τ (x, r , h)| ≤ C .

Moreover, since u is continuously differentiable in B(R), for each x ∈ B(x0, λR), λ, |τ | r
and h small,

K̃τ (x, r , h) =(p − 2)
∫ 1

0
|t (Du(x) + or (1)) h + (1 − t) (Du(x + τ) + or (1)) h|p−2

=(p − 2)
∫ 1

0

∣∣t (Du(x0) + oλ(1) + or (1)) h + (1 − t)
(
Du(x0) + oλ+|τ | + or (1)

)
h
∣∣p−2
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Since p − 2 > 0 (if p = 2 there is nothing to show),

|K̃τ (x, r , h) − K̃τ (x0, 0, h)| � or (1) + oλ+|τ |(1),

where

K̃τ (x0, 0, h) = (p − 2)
∫ 1

0

∣∣Du(x0) · h + (1 − t)o|τ |(1)h
∣∣p−2

.

Thus we have the required continuity from Theorem 1.1.
Next, we show the positivity of K̃τ (x0, 0, h). Let v := |∇u(x0)|−1∇u(x0) ∈ S

n−1 (by
assumption |∇u(x0)| > 0). Then, we can take � a small neighbourhood of v, so that

inf
h∈�

|〈h, v〉| ≥ σ > 0

for a given smallσ given. For each h ∈ � let t0 > 0 such that |∇u(x0)|−1|(1−t0)o|τ |(1)| ≤ σ
2 .

Then

|∇u(x0)|−1
∣∣Du(x0) · h + (1 − t)o|τ |(1)h

∣∣ ≥ σ

2
∀t ∈ [t0, 1].

Thus for each h ∈ �,

K̃τ (x0, 0, h) ≥(p − 2)
∫ 1

t0

∣∣Du(x0) · h + (1 − t)o|τ |(1)h
∣∣p−2 ≥ C > 0.

That is (1.2) is satisfied. It now easy to extend K̃τ to a kernel that satisfies the conditions of
Theorem 1.1 in all of �, and we call this kernel Kτ .

∫
�

∫
�

Kτ

(
x, |x − y|, x−y

|x−y|
)

(δτu(x) − δτu(y)) (ψ(x) − ψ(y))

|x − y|n+sp+2−p
dx dy

=G1,τ (u, ψ) + G2,τ (u, ψ) + Hτ ( f , ψ)

where

G2,τ (u, ψ) =
∫

�

∫
�

(K̃τ − Kτ )
(
x, |x − y|, x−y

|x−y|
)

(δτu(x) − δτu(y)) (ψ(x) − ψ(y))

|x − y|n+sp+2−p
dx dy.

Next we estimate each of the terms in the right hand side.
Estimate ofG1,τ Observe that |��[� − τ ]| � |τ |, and so also |[� × �]�[(� − τ) ×

(�− τ)]| � |τ |. Also if x, y ∈ [�×�]�[(�− τ)× (�− τ)] and either x or y ∈ suppψ =
B(x0,

1
2 R) then |x − y| ≈ |x − y| + 1 (with constant depending on R). So

G1,τ (u, ψ) � |τ |‖u‖p−1
L∞ ‖ψ‖L1 .

Estimate ofG2 Observe that since ψ ∈ C∞
c (B(x0,

1
2 R)) we have that

x, y ∈ � : (K̃τ − Kτ )

(
x, |x − y|, x − y

|x − y|
)

(ψ(x) − ψ(y)) �= 0

necessarily implies that |x − y| � R. So we have

G2,τ (u, ψ) �
∫

�

∫
�

(
1 + |u(x) − u(y)|p−2 + |u(x + τ) − u(y + τ)|p−2)

× |δτu(x) − δτu(y)| |ψ(x) − ψ(y)| dx dy

1 + |x − y|n+sp−p+2 .
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Arguing again with the support of ψ we should get for any q ≥ p,

G2,τ (u, ψ) � ‖u‖p−2
L∞(B(R))

(‖δτu‖Lq (B(R)) + ‖δτu‖L2(Rn)

) ‖ψ‖Lq′
(B(R))

.

��
Proof of Corollary 1.4 Set α := min{sp − p + 2, 1}. Iteratively applying Theorem 1.1 to the
equation in Proposition 6.1 on balls B(Ri )with Ri+1 < Ri , for any qi such that the right-hand
side is small, for arbitarily small ε > 0.

[δhu]Wα−ε,qi−ε(B(Ri+1))
�

(|τ | + ‖δτu‖Lqi (B(R)) + ‖δτu‖L2(Rn)

)
.

We choose q1 = p and qi+1 > qi such that qi+1 <
nqi

n−αqi
(qi+1 = ∞ if n − αqi < 0) then

by Sobolev inequality (choosing ε appropriately small)

‖δτu‖Lqi+1 (B(Ri+1))
�

(|τ | + ‖δτu‖Lqi (B(Ri )) + ‖δτu‖L2(Rn)

)
.

After finitely many steps N we reach qN = ∞. Thus we have obtained

[δτu]Cα−ε(B(RN+1) �
(|τ | + ‖δτu‖L p(B(Ri )) + ‖δτu‖L2(Rn)

)
.

Dividing by |τ |s we find that
[u]Cs+α−ε(B(RN+1)) < ∞.

By assumptions we have s + α > 1, so we can apply Theorem 1.2, since
( |u(x)−u(y)|

|x−y|
)p−2

is

Hölder continuous. Thus we continue to bootstrap regularity with the help of Theorem 1.2,
and finally obtain u ∈ Cs+min{sp−p+2,1}−ε. ��
Acknowledgements M.M.F. is fundedby theAlexander vonHumboldt foundation.T.M. is fundedbyNational
Science Foundation (NSF), grant no 1910180. A.S. is funded by the NSF Career award DMS-2044898 and
Simons foundation grant no 579261.

Appendix A: A remark on Hölder regularity for equations with coercive
kernels

We consider symmetric kernels K : R
n × R

n → [0,∞] measurable and satisfying

0 ≤ K (x, y) ≤ κ for all x, y ∈ R
n . (A.1)

Moreover, we assume that for all ϕ ∈ Ḣ s(Rn),

1

κ
[ϕ]2Hs (Rn) := 1

κ

∫∫
R2n

(ϕ(x) − ϕ(y))2

|x − y|n+2s dxdy

≤
∫∫

R2n
K (x, y)

(ϕ(x) − ϕ(y))2

|x − y|n+2s dxdy := [ϕ]2Hs
K (Rn).

(A.2)

This includes translation anisotropic kernels K supported on cones as in (1.2), see (2.2).
We recall that

LK u[ϕ] :=
∫∫

R2n
K (x, y)

(u(y) − u(x))(ϕ(y) − ϕ(x))

|x − y|n+2s dx dy.

We denote by L1
s the space of L

1
loc functions u such that x �→ u(x)

1+|x |n+2s is L
1(Rn). Our aim

is to re-prove the following theorem.
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Theorem A.1 Let f ∈ L∞(Rn) and u ∈ Hs
loc(R

n) ∩ L1
s such that LK u = f in B2. Then,

there exist α,C > 0 such

‖u‖Cα(B1) ≤ C(‖u‖L2(B2) + ‖u‖L1
s
+ ‖ f ‖L∞(Rn)).

To prove this result, we need some classical fundamental results: Caccioppoli inequality, a
nonlinear Sobolev inequality, and a Logarithmic lemma.

Lemma A.2 (Caccioppoli inequality)
Let v ∈ Hs(B(R)) ∩ L1

s be nonnegative and f ∈ L∞(B(R)) satisfy

LK v ≤ f in B(R). (A.3)

Then there exists c = c(n, s, κ) > 0 such that for every ϕ ∈ C∞
c (B(R)), we have

1

2
[ϕv]2Hs (Rn) ≤ c‖∇ϕ‖2L∞(B(R))R

2−2s‖v‖2L2(B(R))

+ c‖ϕ‖L∞(B(R))

[∫
Rn\B(R)

v(y)|x − y|−2s−n dy + ‖ f ‖L∞(B(R))

]
‖vϕ‖L1(B(R)).

Proof By direct computations, we get

(v(x) − v(y))[v(x)ϕ2(x) − v(y)ϕ2(y)] = (ϕ(x)v(x) − ϕ(y)v(y))2 − v(x)v(y)(ϕ(x) − ϕ(y))2.

Testing the equation (A.3) with vϕ2, and using the identity above together with the symmetry
of K , we get

1

2
[ϕv]2Hs

K (Rn ) ≤ 1

2

∫∫
R2n

v(x)v(y)(ϕ(x) − ϕ(y))2
K (x, y)

|x − y|n+2s dydx +
∫
Rn

f (x)v(x)ϕ2(x) dx .

(A.4)

By Hölder and Young’s inequalities, we get∫
Rn

| f (x)|v(x)ϕ2(x) dx ≤ ‖ f ‖L∞(B(R))‖ϕ‖L∞(B(R))‖vϕ‖L1(Rn). (A.5)

Next, we write∫∫
R2n

v(x)v(y)(ϕ(x) − ϕ(y))2
K (x, y)

|x − y|n+2s dydx (A.6)

=
∫∫

B(R)×B(R)

v(x)v(y)(ϕ(x) − ϕ(y))2
K (x, y)

|x − y|n+2s dydx

+ 2
∫∫

B(R)×Rn\B(R)

v(x)v(y)(ϕ(x) − ϕ(y))2
K (x, y)

|x − y|n+2s dydx . (A.7)

We put μ1(x, y) = |x − y|−2s−n . By (A.1), Hölder and Young’s inequalities, we get∫∫
B(R)×B(R)

v(x)v(y)(ϕ(x) − ϕ(y))2
K (x, y)

|x − y|n+2s dydx (A.8)

≤ 4κ
∫
B(R)

v2(y)
∫
B(R)

(ϕ(x) − ϕ(y))2μ1(x, y) dydx

≤ 4‖∇ϕ‖2L∞(B(R)) κ

∫
B(R)

|v|2(y)
∫
B(R)

|x − y|2μ1(x, y) dydx

≤ c‖∇ϕ‖2L∞(B(R))R
2−2s

∫
B(R)

v2(x) dx . (A.9)
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Here we used that
∫
B(R)

|x − y|2−2s−ndy ≈ R2−2s whenever x ∈ B(R).
Moreover, we estimate∫∫
B(R)×Rn\B(R)

v(x)v(y)(ϕ(x) − ϕ(y))2K (x, y) dydx

≤ κ

∫∫
B(R)×Rn\B(R)

v(x)v(y)ϕ(x)2μ1(x, y) dydx

≤ 2κ
∫
B(R)

v(x)|ϕ(x)| dx sup
x∈B(R)

|ϕ(x)|
∫
Rn\BR

v(y)μ1(x, y) dy. (A.10)

Using (A.2), (A.10), (A.9) and (A.7) we get the result. ��
An immediate consequence of the above Caccioppoli inequality and (A.2), which implies
the (nonlinear) Sobolev inequality, we can carry over the De Giorgi iteration, [10], to get the
following local L∞ estimate.

Theorem A.3 Let u ∈ Hs(B2r ) ∩ L1
s and f ∈ L∞(Rn) satisfy

LK u = f in B2r .

Then there exists C = C(n, s, κ) > 0 such that

sup
Br

|u| ≤ C

(
r−n/2‖u‖L2(B2r ) + r2s

∫
|y|≥r/2

|u(y)||y|−n−2s dy + r2s‖ f ‖L∞(B2r )

)
.

To obtain Hölder estimates, we need the following result.

Lemma A.4 (Logarithmic lemma) Let v ∈ Hs(B(R)) ∩ L1
s and f ∈ L∞(B(R)) such that

(A.3) holds and u ≥ 0 in B(R). Then there exists c = c(n, s, κ) > 0 such that for every
r ∈ (0, R/2), d > 0, we have∫

Br×Br
K (x, y)

∣∣∣∣log u(x) + d

u(y) + d

∣∣∣∣
2

dxdy

≤ crn−2s
(
r2s

R2s d
−1

∫
|y|≥R/2

|v−(y)||y|−n−2s dy + r2sd−1‖ f ‖L∞(Br ) + 1

)
.

Proof The proof uses precisely the argument in [7, proof of Lemma 3.1], where only the
upper bound of K was used. Note that in [7] a right hand side f was not considered, however

since the proof uses ϕ2

u+d , with ϕ ∈ C∞
c (B2r ), as a test function, we can easily obtain the

estimate of the term involving f . ��
Note that in view of (A.2), we have the following Poincaré inequality,

c
∫
Br

∣∣u − (u)Br
∣∣2 dx

≤ r2s−n
∫
Br×Br

(u(x) − u(y))2K (x, y) dxdy for all u ∈ Hs
loc(R

n). (A.11)

In view of this and Lemma A.4, we have

Corollary A.5 Under the assumptions of Lemma A.4, we have

c
∫
Br

∣∣w − (w)Br
∣∣2 dx

≤
(
r2s

R2s d
−1

∫
|y|≥R/2

|v−(y)||y|−n−2s dy + r2sd−1‖ f ‖L∞(Br ) + 1

)
, (A.12)

where w = min((log(a + d) − log(u + d))+, log b) for all a, d > 0 and b > 1.
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The Hölder continuity is a consequence of Theorem A.1, Corollary A.5, Lemma A.2 and
the following growth estimates of the oscillation of u.

Lemma A.6 Let f ∈ L∞(Rn) and u ∈ Hs
loc(R

n)∩L1
s such that LK u = f in B2. Then, there

exists σ, α ∈ (0, 1) depending only on n, s, κ such that, for i ∈ N,

sup
B

σ i

u − inf
B

σ i
u ≤ σαi

(∫
|y|≥1/2

|u(y)||y|−n−2s dy + ‖ f ‖L∞(B2) + ‖u‖L2(B2)

)
.

The proof is exactly the same as the [7, proof of Lemma 5.1]. We skip the details.
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