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Abstract

As one of the triumphs and milestones of robust statistics, Huber regression plays an important role
in robust inference and estimation. It has also been finding a great variety of applications in machine
learning. In a parametric setup, it has been extensively studied. However, in the statistical learning
context where a function is typically learned in a nonparametric way, there is still a lack of theoretical
understanding of how Huber regression estimators learn the conditional mean function and why it works
in the absence of light-tailed noise assumptions. To address these fundamental questions, this paper
conducts an assessment of Huber regression from a statistical learning viewpoint. First, we show that
the usual risk consistency property of Huber regression estimators, which is usually pursued in machine
learning, cannot guarantee their learnability in mean regression. Second, we argue that Huber regression
should be implemented in an adaptive way to perform mean regression, implying that one needs to tune
the scale parameter in accordance with the sample size and the moment condition of the noise. Third,
with an adaptive choice of the scale parameter, we demonstrate that Huber regression estimators can
be asymptotic mean regression calibrated under (1 + €)-moment conditions (¢ > 0) on the conditional
distribution. Last but not least, under the same moment conditions, we establish almost sure convergence
rates for Huber regression estimators. Note that the (1 4 €)-moment conditions accommodate the special
case where the response variable possesses infinite variance and so the established convergence rates
justify the robustness feature of Huber regression estimators. In the above senses, the present study
provides a systematic statistical learning assessment of Huber regression estimators and justifies their
merits in terms of robustness from a theoretical viewpoint.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction and motivation

In this paper, we are concerned with the robust regression problem where one aims at
seeking a functional relation between input and output when the response variable may be
heavy-tailed [11,15,18,22]. In such scenarios, the traditionally frequently used least squares
regression paradigms may not work well due to the amplification of the least squares loss to
large residuals. As an alternative, the Huber loss was proposed in the seminal work [13] in the
context of robust estimation of location parameters. The Huber loss and the theoretical findings
in location parameter estimation then applied and carried over to robust regression problems.
The regression paradigm that is associated with the Huber loss is termed as Huber regression
and the resulting estimator is termed as the Huber regression estimator. The introduction of
Huber regression led to the development of various subsequent M-estimators and fostered the
development of robust statistics into a discipline.

Denoting X as the input variable that takes values in a compact metric space X C R? and
Y the response variable taking values in Y C R, given i.i.d observations z = {(x;, y;)}/_,, in
the context of parametric regression, the Huber regression estimator f, ,(X) = X ,3 is learned
from the following empirical risk minimization (ERM) scheme

1
fuo = arg min — ;eo(yi — flx)), (1)

where H is the function space from X to R consisting of linear functions of the form
f(x)=x"p and ¢, is the well-known Huber loss defined by

12, if |t| < o,

lo(t) = . _ )
20t — o7, otherwise.

Assuming that the conditional mean function f*(X) = [E(Y|X) can be parametrically

represented as f*(X) = X' B* and the noise ¥ — f*(X) is zero mean when conditioned on
X, asymptotic properties of B and its convergence to 8* have been extensively studied in the
literature of parametric statistics. An incomplete list of related literature includes [11,12,14—
16,18,20,22,28] and many references therein. Note that in the aforementioned studies, the scale
parameter o in the Huber loss is set to be fixed and chosen according to the 95% asymptotic
efficiency rule. In a high-dimensional setting, Huber regression with a fixed scale parameter,
however, may not be able to learn 8* when the noise is asymmetric, as argued recently in [9,25].
There the authors proposed to choose the scale parameter by relating it to the dimension of the
input space, the moment condition of the noise distribution, and the sample size so that one
may debias the resulting regression estimator and the scale parameter can play a trade-off role
between bias and robustness.

In a nonparametric statistical learning context where functions in H, in general, do not admit
parametric representations, theoretical investigations of Huber regression estimators are still
sparse though they have been applied extensively into various applications where robustness is
a concern. To proceed with our discussion, denote H as a compact subset of the space C(X)
of continuous functions on X, p the underlying unknown distribution over X x ), and R°(f)
the generalization error of f : X — R defined by

R(f) =EL:(Y — f(X)),

where the expectation is taken jointly with respect to X and Y. Recall that the objective is to
learn the conditional mean function f*(X) = E(Y|X) robustly. Existing studies in the literature
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of statistical learning theory remind that Huber regression estimators are R°-risk consistent,
i.e., R7(fo) — mingey RO(f) as n — oo. To see this, one simply notes that the Huber loss is
Lipschitz continuous on R and so the usual learning theory arguments may apply [2,6,7,10,21].
However, such a risk consistency property neither says anything about the role that the scale
parameter o plays nor implies the convergence of the regression estimator f,, to the mean
regression function f*.

In the present study, we aim to conduct a statistical learning assessment of the Huber
regression estimator f;,. More specifically, we pursue answers to the following fundamental
questions:

e Question 1: Whether R?-risk consistency implies the convergence of f;, to f*?

e Question 2: What is the role that o plays when learning f* through ERM (1)?

e Question 3: How to develop exponential-type fast convergence rates of f;, to f*?
e Question 4: How to justify the learnability of f,, in the absence of light-tail noise?

Answers to these questions represent our main contributions. In particular, if R7-risk
consistency implies the convergence of f,, to f*, we say that Huber regression (1) is
mean regression calibrated. We show that Huber regression is generally not mean regression
calibrated for any fixed scale parameter o. Instead, it should be implemented in an adaptive
way in order to perform mean regression, where the adaptiveness refers to the dependence
of the scale parameter on the sample size and the moment condition. We also show that
the scale parameter needs to diverge in accordance with the sample size to ensure that the
Huber regression estimator f,, learns the mean regression function f*, which we term as
the asymptotic mean regression calibration property. Furthermore, such an asymptotic mean
regression calibration property can be established under (1 4 €)-moment conditions (¢ >
0) on the conditional distribution. This is a rather weak condition as it admits the case
where the conditional distribution possesses infinite variance. To develop fast exponential-type
convergence rates, we establish a relaxed Bernstein condition. The idea is to bound the second
moment of associated random variables by using their first moment and an additional bias term
that diminishes towards O when the sample size tends to infinity. These preparations allow us
to establish fast exponential-type convergence rates for f; .. Interestingly, but not surprisingly,
it is shown that o plays a trade-off role between bias and learnability, and the convergence
rates of f,, depend on the order of the imposed moment conditions.

The rest of this paper is organized as follows. In Section 2, we argue that risk consistency is
insufficient in guaranteeing learnability and so does not necessarily imply the convergence of
Huber regression estimators to the mean regression function. In Section 3, we demonstrate that
Huber regression is asymptotically mean regression calibrated if the scale parameter is chosen
in a diverging manner in accordance to the sample size and the moment condition. Some efforts
are then made in Section 4 to develop fast exponential-type convergence rates by relaxing the
standard Bernstein condition in learning theory. In Section 5, we establish fast convergence
rates for Huber regression estimators under weak moment conditions. Proofs of Theorems are
collected in Section 6. The paper is concluded in Section 7.

Notation and Convention. Throughout this paper, we assume that f* is bounded and H C
C(X) is uniformly bounded and denote M = max{|| /*[lcc, SUp sy, Il f lloc}. Denoting p as the
marginal distribution of p on X, then || - ||, , defines the L,-norm induced by px. The notation
a < b denotes the fact that there exists a positive constant ¢ such that a < cb. For any ¢ € R,
let £ = max(O0, t).
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2. Risk consistency is insufficient in guaranteeing learnability

In this section, we shall make efforts to answer Question 1 listed in the introduction by
arguing that risk consistency is insufficient in guaranteeing learnability of the Huber regression
estimator, where by risk consistency we refer to the convergence of R°(f, ) to min ey, R7(f)
while learnability refers to the convergence of f,, to f*.

Following existing studies on empirical risk minimization schemes induced by convex loss
functions, it is easy to deduce that f,, is R7-risk consistent for any fixed o value. Moreover,
under certain mild assumptions, probabilistic convergence rates may also be established. To see
this, note that the deduction of the risk consistency property of Huber regression estimators as
well as their convergence rates involves the following set of random variables

Gu =&/ 167 = LY = FX) = LY = fua X)), f € H].

where f3; , = argminycy R7(f) is the population version of f, ;. Notice that the Huber loss
¢, in (2) is Lipschitz continuous on R with Lipschitz constant 2¢. Therefore, the random
variables in G and their variances can be uniformly upper bounded by constants involving
o. Applying learning theory arguments and concentration inequalities to Gz, under mild
assumptions, convergence rates can be derived. However, due to the dependence of f;,
on the scale parameter o, it may possess much flexibility and can be quite different with
different choices of the o values. Consequently, the R -risk consistency property as well as the
convergence rates of R7(f,,) — min ey R°(f) may not be informative and may not indicate
the learnability of f,, in learning f* even if H is perfectly chosen such that f* € H.

To illustrate this phenomenon numerically, consider a toy example with the model

Y =2sin(wX) + (1 4+ 2X)e,

where X follows a uniform distribution on [0, 1] and ¢ ~ 0.5N(0, 2.5%) + 0.5N(0, 0.5%). It
is apparent that the noise distribution admits zero mean and is skewed. Simple calculation
shows that for this regression model, the conditional mean function f*(X) = 2sin(zw X).
In this experiment, we visualize the function f,, and compare it with f*. We choose the
hypothesis space H as a ball of the reproducing kernel Hilbert space associated with the
Gaussian kernel K (x;, x;) = exp{—|lx; —x; 1>/ h?}. Both the kernel bandwidth / and the radius
of the ball are tuned via cross-validation under the least absolute deviation error criterion while
the scale parameter o in the Huber loss is set to be fixed with o = 0.01. A set of independent
observations are sampled from the above regression model and are used as the training data.
Then f, . is plotted in Fig. 1. The conditional mean function is also plotted for comparison. As
discussed earlier, due to the Lipschitz continuity of the Huber loss, with the choice of o = 0.01,
the risk consistency can be guaranteed. However, from the plots in Fig. 1, clearly, f,, does
not approach the conditional mean function.

The fact that R?-risk consistency of Huber regression estimators cannot guarantee their
ability to learn the conditional mean function can be further justified through the following
example. Let M be the space of measurable functions from X to R and define

fo = arg }1;1/\1}1 R(f). 3)

Intuitively, f, can be regarded as the best Huber regression estimator learned in an ideal case
where infinite observations are available and the hypothesis space is perfectly selected.
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Fig. 1. The bottom black curve gives the conditional mean function. The top blue curve represents the learned
Huber regression estimator with o = 0.01.

Example 1. Consider the Huber regression problem where one aims to learn the conditional
mean function f* from the following homoscedastic regression model

Y = f1(X)+e,

where ¢ is the zero-mean noise variable with density
1 .

Te Y ifr > —1

1 .
20+, if t < —%.

De(t) =
Then there exists a constant ¢ with ¢ # 0 such that f,(x) = f*(x)+c forall x € X. As a
result, if f, € H and R°(f,,») converges to min ey R°(f) as n — oo with large probability,
then f;, does not converge to f* with large probability.
Proof. Recalling the definition of f; in (3), for any x € X, we can re-express it as follows
fo(x) = arg min/ Lo(t — V) Py ix=.(t)dt
veR R

= arg min/ Lot —v)p(t — f*(x))dt
veR R

= arg min/ Lo(u — (v — f*(x))pe(u)du.
veR Jr

Therefore, for any x € X, we have

fo(x) — f*(x) = arg miﬂg/ Lo(u —v)p,(u)du.
IS R

5
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The assumption that the noise ¢ is independent of x tells us that

arg min/ Lo(u —v)p(u)du “4)
veR R

is a unique constant for all x € X. To prove the first part of the assertion, we only need to
show that 0 is not a solution to the above minimization problem.
From the definition of the Huber loss (2), we know that

/ Co(u — v)p(u)du = / Lo(u — V) p(u)du + / (u — v)*p.(u)du — / (u — v)*po(u)du
R R R R

= / (u — v)* pe(u)du + Q2o lu — v — o) p.(u)du
R

lu—v|>o

— (u — v)*p.(u)du

lu—v|>o

_ / (= ) poGu)du — / (= v| = o p(u)du
R lu—vi=o

= / (u — v)*p.(u)du — / (u—v—0)p(u)du
R

u—v>o

— / (u—v+ G)Zpg(u)du.

u—v<—o
Therefore, we have

_ +o0
d(fg bou = v)p.(u)du) _ 5 / = W)pudu + 2 f = v — o))
dv R v+o

+2 / = v+ o)p(wydu.

oo

The zero-mean noise assumption tells us that

d( [ € — v) p.(u)du)
dv

+oo -o
0= 2/ (u — o)p.(u)du + 2/ (u + o)p.(u)du.

—00

=
If 0 > 1, then we have

+oo g
2/ (u — o) pe(u)du + 2/ (u + o) pe(u)du

—00

+00 1 —0 !
=/ (u—o)e “Fdy 4+ 2/ (u 4 0)e*“FDdy

o]

1
e2727 5,

| =

. o 1 _
where we used the fact that g(a) = a—§a2 is positive for a € (0, %) and0 <e 477 <e

If0<o < %, then we have

Bf—
A
LR

+00 -0
2/ (u —o)p:.(u)du + 2/ (u+o)p:(u)du

—00

1

400 | —c 1 1 2 1
= / (u —o)e “Fdu +/ (u+o)e " dy + 2/ (u + o)e* ) dy
1
o -1 —00
i > 0,

g1
=20 +e 7% —¢°
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where we used the fact that the function g(o) = 20 + e=7"1 — ¢4 has g(0) = 0 and is

strictly increasing.

d(fg Lo (u—v)pe(u)du)
dv

solution to the minimization pr(;)gloem (4). This proves the first claim in Example 1.

To prove the divergence of f,, to f* for any fixed o, first note that, by the convexity of
the Huber loss, f, is the unique minimizer of R°(f). Since f, = f* 4+ c # f*, we have
R (fo) = R7(f*). If fo € H and R°(f,,) converges to min ey R7(f) = R°(f,) with large
probability, then there exists some large enough N such that for any n > N,

1
IR (foe) =R (fo)l = 5 IR (fo) = R7(f™)

holds with large probability. By the Lipschitz property of the Huber loss, we have

Therefore, is non-zero for fixed o > 0, which implies that O is not a

1
I fo.o = f¥ll20 = - R (fr.0) = R (S|

1 . ) )
> (IR (o) = REG = [R7(fuo) = R (1))

v

1
2o [R7Uo) =R
o
This proves that f, , does not converge to f* for any fixed o. 0

Example 1 tells us that in some scenarios, f,, may not converge to the conditional mean
function which one aims to learn even if infinite samples are given and the hypothesis space
is perfectly chosen. This is due to the inherent bias brought by the integrated scale parameter
in the Huber loss when pursuing robustness. Continuing our discussion at the beginning of
this section, the general answer to Question 1 is that, R?-risk consistency cannot guarantee its
learnability as the gain in robustness may entail a bias. That is, in general, the Huber regression
scheme (1) may not be mean regression calibrated. To address this problem and to learn the
conditional mean function f* through Huber regression, one needs to tune the scale parameter
o to reduce the bias and learn in an adaptive way, as argued in the next section.

3. Huber regression is asymptotically mean regression calibrated

In this section, we shall show that, in a distribution-free setup, with properly selected scale
parameter o, Huber regression can be asymptotically mean regression calibrated, meaning that
risk consistency implies the convergence of f,, to the conditional mean function f* when
o — 00.

3.1. Mean regression calibration property

Recall that in the context of regression learning, one of the central concerns is the
convergence of the learned empirical target function to the unknown truth function of interest,
that is, the conditional mean function f* in this study. While the distance between the
empirical target function and f* is not directly accessible, one settles for bounding the excess
generalization error. The underlying philosophy is that the generalization error of a learning
machine can be approximated by using its empirical counterpart and the excess generalization
error can be bounded via learning theory arguments. As mentioned in the introduction, the
regression estimator is called mean regression calibrated if the convergence of the excess

7
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generalization error towards O implies the convergence of the empirical target function to the
conditional mean function [23].

Translating into the context of Huber regression, one is concerned with whether the
convergence of the excess generalization error R°(f;,) — R(f,) towards O implies the
convergence of f;, to f*. However, the numerical experiment and the counterexample in the
preceding section suggest a negative answer and demonstrate that the desired mean regression
calibration property may, in general, not be true. This conflicts with our intuition and common
understanding that the Huber loss can serve as a robust alternate of the least squares loss
when the scale parameter is chosen sufficiently large. To bypass this problem, in what follows,
noticing our interest in learning the conditional mean function f*, we turn to investigate the
relation between the convergence of R?(f;,) to R°(f*) and the convergence of f,, to f™*.
More specifically, we shall show that under mild conditions, the convergence of R°(f,,) to
R°(f*) does imply the convergence of f,, to f* when ¢ — oo and n — oo. This justifies
the mean regression calibration property in an asymptotic sense.

3.2. A comparison theorem

We now look into the asymptotic mean calibration property by establishing a comparison
theorem. For regression estimators that are produced by empirical risk minimization schemes
with convex loss functions, some efforts on investigating their mean regression calibration
properties have been made in the literature; see e.g., [23]. For Huber regression estimators,
it was concluded that they are mean regression calibrated if the response variable is upper
bounded or the conditional noise variable £| X admits a symmetric probability density function.
Recall that one of the most prominent merits of Huber regression estimators lies in that they can
perform mean regression in the absence of light-noise assumptions. In this sense, boundedness
or symmetry constraints on the noise variable should be considered as stringent ones. In this
study, we are seeking to assess the Huber regression estimator f,, and investigate its mean
regression calibration properties without resorting to light-tail distributional assumptions on the
conditional distribution or on the noise. To this end, we introduce the following weak moment
condition.

|1+e

Assumption 1. There exists a constant € > 0 such that E|Y < 4o00.

The moment condition in Assumption | is rather weak in the sense that it admits the case
where the response variable Y possesses infinite variance. The same comment condition also
applies to the distributions of the conditional random variable Y|X and the conditional noise
variable ¢|X under the additive data generating model, implying that heavy-tailed noise is
allowed.

As discussed earlier, without further distributional assumptions on the noise variable, f; . is,
in general, biased and its population version f, may be different from f* almost everywhere
on X. However, such a bias can be upper bounded and may decrease with the increase of the o
values. Results in this regard are stated in the following theorem under the above (1+4¢)-moment
condition.

Theorem 1. Let 0 > max{2M, 1}. Under Assumption 1, there exists a constant c. > 0
independent of o such that for any measurable function f : X — R with || fllce < M, we
have

[[ROH =R = If = 13, = == )

€
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Theorem 1 states that for any bounded measurable function f, under the (1 + €)-moment
conditions, the gap between R7(f) — R°(f*) and || f — f*||§,p is up to O(c~¢). With a
sufficiently large o value or sufficiently light-tailed noise, this gap could be sufficiently small.
This is called the asymptotic regression calibration property. It characterizes the relationship
between the loss function £, and the L’-distance and is independent of the sample. When
applying the property specifically to f;,, the sample z is involved and one may choose
o = o(n) so that 0 — 0o as n — ©00. As a special case, let us consider the presence
of Gaussian or sub-Gaussian noise where the moment condition holds for arbitrarily large €
values. In this scenario, the gap between the above two quantities can be arbitrarily small. These
findings remind us that in order to debias the Huber regression estimator, one may relate the
o value to the sample size n. In other words, from an asymptotic viewpoint, with diverging o
values, according to Theorem 1, Huber regression is asymptotically mean regression calibrated.
Following this spirit, we shall proceed with the assessment based on diverging o values by
deriving their convergence rates to the conditional mean function f*.

4. Relaxing the Bernstein condition for assessing Huber regression

From our previous discussions, in order to derive convergence rates for f;,, one needs to
bound the excess generalization error R°(f;,) — R°(f*) which essentially requires us to deal
with the following set of random variables

Fu={€160X.V) = £,(¥ = FX) = 6,(Y = f*X)). f € M},

The existing studies in learning theory remind us that it is crucial to establish the so-called
Bernstein condition, i.e., bounding the second moment of £ € F3; by using its first moment.
We will show that while the standard Bernstein condition does not hold, one can relax it to
develop fast convergence rates for R7(f; ,)—R(f*). Let us start with recapping the Bernstein
condition in learning theory.

4.1. Bernstein conditions in learning theory

Originally introduced in [2] in the context of empirical risk minimization, the standard
Bernstein condition can be restated as follows: a set F of random variables is said to satisfy
the (B, B)-Bernstein condition with 0 < 8 < 1 and B > 0 if for any f € F, it holds
that Ef? < B(Ef)?. In other words, the second moment of the random variable (and so the
variance) can be upper bounded by its first moment. Later, the standard Bernstein condition was
generalized and extended into various other Bernstein-like conditions for analyzing learning
algorithms in different contexts; see e.g., [5,24,26]. It turns out that the Bernstein condition and
its variants play an important role in establishing fast convergence rates for learning algorithms
of interest because they provide tight upper bounds for the variance of the random variables
induced by the resulting estimators.

In the context of Huber regression, a Bernstein-like condition is also desired in order
to establish fast convergence rates for the excess generalization error R°(f;,) — R (f).
However, as shown in the preceding section, without further distributional restrictions to the
noise variable, f* may not be the optimal hypothesis that minimizes R’ (f) over the measurable
function space M. Consequently, R?(f) —R°(f*) is not necessarily positive. As a result, the
usual Bernstein condition, namely, E&> < B(E£)? for & € Fp with constants B > 0 and
0 < B < 1, may not hold. This brings barriers to the development of fast convergence rates

9
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for R°(f) — R?(f*). To circumvent this problem, in our study, we shall establish a relaxed
Bernstein condition, which takes the form

E£? < B(EE) + g(o),

with B > 0,0 < B < 1, and g a nonnegative function of . A motivating observation for
establishing such a relaxed Bernstein condition is that the gap between E(¢) and || f — f *||§. 0
can be upper bounded by O(c ~°) for any f € H, as stated in Theorem 1.

4.2. A relaxed Bernstein condition

To establish our relaxed Bernstein condition, we prove the following variance bound for
é;_ € f’;.[.

Theorem 2. Let Assumption 1 hold and o > max{2M, 1}. For any measurable function
f:X - Rwith | flleo < M, the random variable § = £,(Y — f(X)) — £, (Y — f*(X))
satisfies

2Ae—1)y

EE? <cillf = [l +eo'™,

where c| and c, are positive constants independent of o or f.

Recall the results in Theorem 1 that states || f — f *”%, p = E& 4 c.o~¢. This in connection
with Theorem 2 immediately yields the following relaxed Bernstein condition:

5 (=1 e .
E&” < ci(B&) &1 4 ci(cco™ ) FT 40 ¢,

This relaxed Bernstein condition will be crucial in establishing error bounds and fast exponen-
tial-type convergence rates for the Huber regression estimator f; ;.

5. Assessing Huber regression under weak moment conditions

In this section, we present fast exponential-type convergence rates for the Huber regression
estimator under the (1 + €)-moment condition in Assumption 1. Specifically, we are interested
in bounding the L%X -distance between f;, and f*.

To state the result, we introduce the following capacity assumption. For any n > 0, let
N(H, n) denote the covering number of H by the balls of radius n in C(X), that is,

k
N(H,n) = min { k € N : there exist fieH, j=1,...k suchthat'HCUB(fj,n) ,
j=1

where B(f;,n) ={f € C(X): |If — fillo < n}. Our capacity condition is stated as follows.

Assumption 2. There exist positive constants ¢ and ¢ such that log N (H, n) < cn™4, Vi > 0.

Generalization error bounds in terms of the covering number argument under Assumption 2
is typical in statistical learning theory; see e.g., [1,7,23] and references therein.

10



Y. Feng and Q. Wu Journal of Approximation Theory 273 (2022) 105660

To state our results on the convergence rates, we introduce a new function f3;, which is
defined as

: *112
= arg min — .
fu=argminllf - £°13,

The function f3; is the optimal function in A that one may expect in approximating the truth
function f*. The distance || fy — f *||§, , can be regarded as the approximation error when
working with the hypothesis space H and so corresponds to the bias caused by the choice of
the hypothesis space H.

Theorem 3. Suppose that Assumptions |1 and 2 hold and let o > max{2M, 1}. Let f,, be
produced by (1). For any 0 < § < 1, with probability at least 1 — §, it holds that

o = F13, S s — 1113, +10g2/8) ¥(n, €, o),

where
1 .
5 T e if 0<ex<l,
U(n, € 0):= g 26\ V@+D
g_le+<a nl+e> ) if €>1.

The proof of Theorem 3 is based on a ratio probability inequality and standard learning
theory argument [1,7,8,23,27], where the results established in Theorems 1 and 2 play crucial
roles.

The error bound in Theorem 3 involves three components: the approximation error due to
the imperfect choice of the hypothesis space H, the inherent bias caused by the integrated
parameter o, and the sample error. In practice, the hypothesis space could be chosen by
structural risk minimization so that the approximation error decreases to a tolerably small
level [10,27]. The value of o affects both the inherent bias and the sample error. The best
choice depends on the sample size, the moment condition, and the capacity of the hypothesis
space. To see this, consider a special case when f* € H so that the approximation error
N fu—f *||§’ , disappears. With properly chosen o values, we immediately obtain the following
convergence rates.

Corollary 4. Under the assumptions of Theorem 3, let f* € H and o be chosen as o = n®©9
with
1
(I+e)xl+q)
1+4¢€
g1+ €)? +e(e+3)
For any 0 < 6 < 1, with probability at least 1 — §, we have

I fro — £7113., < log(2/8)n <,

According to Corollary 4, with properly chosen diverging o values, we obtain exponential-
type convergence rates for f; . In particular, if the noise variable is bounded or sub-Gaussian
and hence the moment condition in Assumption | holds for any € > 0, one can select an

if 0<e<l,
P(e, q) =

if €e>1.

_
arbitrarily large € to obtain convergence rates of order arbitrarily close to O(n ¢). As a

_ 1
comparison, recall that for least square estimators convergence rates of order O(n 4/2) can

11
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usually be established; see e.g., [1,3,23] and references therein. Moreover, note that with weaker
moment conditions, i.e., smaller € values, one gets slower convergence rates for f; ., indicating
increased sacrifice for robustness. This coincides with our intuitive understanding of robust
regression estimators. On the other hand, if f* is smooth enough and one selects a smooth
hypothesis space (such as the reproducing kernel Hilbert spaces induced by radial basis kernels
or neural networks with smooth activate functions), then ¢ — 0 and the difference between
Huber regression and least square method could be minimal, indicating less sacrifice necessary
for learning smooth functions. Finally, we stress that we obtain exponential convergence rates
even for the case when 0 < € < 1 where the distribution of the conditional variable Y |X
does not possess finite variance and a least square based estimator cannot even be defined.
This further explains the robustness of Huber regression estimators. We also remark that the
parameter choice suggested by Theorem 3 and Corollary 4 requires the knowledge of the
constant in Assumption 1, which is usually not available. In practice, o may be chosen through
cross validation or the balance principle [4,17,19].

6. Proofs of theorems

6.1. Proof of Theorem 1

Let f : & - R with || f|loc < M be a measurable function. For any ¢ > max{2M, 1}, we
denote the two events Iy and IIy as follows

IY:=|y:|y|z%}, and HY:={y:|y|<%}.

Noticing that
/X /y (v — ) = (v — f* @) 1dp(y1x)dpx(x) = | f — £*113,,-
we have

‘ [RO(S) =RI(fH] = I f — f*ll%,p‘

= | [, [l = 700 - o6 = 7] 10 F07 -0 7P o)

IA

] T = 60 - ot = @] dprindento)
X JIy Uy

[ 1= 02 = = PR dp o)
x Jiy Ully
For any (x, y) € X x Ily, since o > max{2M, 1}, we see that
y—fl=Iyl+ 1 fllo <o,
and
y = Ol = Iy + 1/ e <o
Consequently, for any (x, y) € X x Ily, we have

[6o(y — fO) — Loy — fXD] — [y — F())* — (v — ()1 =0,
12
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and hence

(RO =R = 1F = 115,

<| [ [ 1= 00 = ot = ] dnr1epno)
Y

+ | /X 0= 7@ = 0 = M1 ). (©)

Recall that the Huber loss (2) is Lipschitz continuous with Lipschitz constant 2o. The first
term of the right-hand side of Eq. (6) can be upper bounded as follows

[ Tty = 100 = o3 = @] dptr1donto)
Y

< 20| [ [ 170 Feolnoiode)
< 2001/ = Sl PrCly).

The quantity Pr(Iy) can be bounded by applying Markov’s inequality which yields

21+€E (|Y|1+e)

Prly) <

@)
Therefore, we have

2 f = frllaE (Y1)

O—G

/X /1 [€a(y — FG) — oy — £7CN] do(rlx)dpa(x) <
Y
®)

The second term in the right-hand side of Eq. (6) can be upper bounded as follows:

[ [ 10 £02 = 0 = 70 Kptsindenco)
x Jiy
<1f = £ [ [ 12 = 10 = o)
Y
<1F = £ [ [ Y o+ 1 oMo )
Y

=If = flle (2/ Iy1do(y) + 1/ oo + ”f”oo)Pr(IY)) .
Iy
By applying Holder inequality and recalling the estimate in (7), we have

€ 1 € 14€
/ yldo(y) < (Pr(ly)) T (E( Y|+ T < 2E(Y™)
Iy

O—-G

13
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As a result, we conclude that

[ [ 6= 160 = 0= R0t
X Jly

_ 27N — IR (Y1) 2M( flloo + ILf* o)’ E (1Y]'F€)

- o€ + Jl+e :
[RO()—R (S —If — f*||§’p| can be upper bounded by
22T 42791 f — K (1Y]'F€) N 27 flloo + I f* o) *E (1Y]1F€)

o€ olte

9
From (8) and (9),

Therefore, the desired estimate (5) holds with ¢, = 2*T*ME (| Y| l+E). This completes the proof
of Theorem 1.

6.2. Proof of Theorem 2

Let f : & - R with || f|loc < M be a measurable function. For any ¢ > max{2M, 1}, we
again consider the following two events

= {viblz 2] and mv={y:pi<2).

Based on the above notation, it is obvious to see the following decomposition

E&* = /X (o0 = ) = 0 = S @)t )
_ /X oy = S = by = £ W)Pdpr. )

+ f (Coly — FGO) = Ly — FHCONdp(x. )
X xIly

=01+ 0.

The first term Q; can be easily bounded by applying the Lipschitz continuity property of the
Huber loss (2) and Markov’s inequality:

01 <40 [ (00~ ') dptr. ) = 160307 Picly) = 25 MPEIY oo
XXIY

To bound the second term Q,, noticing that for any (x, y) € & x Ily, since o0 > max{2M, 1},
we have

ly = fOI = Iyl + 1 flle <0,

and

[y = <+ 1/l <o
By the definition of the Huber loss ¢, for any (x, y) € X x Ily, we have

Ce(y — X)) = Lo(y — fX(X) = (v — FO)* = (y — fX (X))

Therefore,

0, = / (& — £ — (v — F P dp(x. )
X xIly

14
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= / (f(x) = A2y — f(x) — X)) dp(y]x)dpr(x).
x Jiy
If € > 1, applying Holder’s inequality, we obtain

0, < L/;/(f(X) — P22y — ) — FH )2 dp(r1x)dpa(x)

oy T o 262 )
<If = FIEE(1F) - £ @I @yl +2M7)
2e=2
< 64(M + D’ EIY |+ M2+ DI f = f11,5°

If 0 < € <1, we have the following estimate

0, < 48M° f (31131 + M2)do(yn)dpx (x)
x Jiy

< 48M2(E|Y|1+E +M1+€)O_17€.

Combining the above estimates for Q; and Q,, we come to the conclusion that
2e—1)4

EE? <cillf = [l +eo'™,

with ¢; = 64(M + D*(E|Y|'"* + M? + 1) and ¢, = 48M*(E|Y '€ + M!*€) + 16 M?E|Y | *<.
This completes the proof of Theorem 2.

6.3. Proof of Theorem 3
We first prove a ratio inequality in Section 6.3.1 which plays an important role in the proof

of Theorem 3. The detailed proof of Theorem 3 will then be given in Section 6.3.2. To proceed,
for any measurable function f : X — R, we denote

o 1 -
R =~ ;e(,(y,» — f(x),
and recall the notation
fr.o = arg 5}22 R (f).
6.3.1. A ratio inequality

Proposition 5. Let 0 > max{2M, 1}. Under Assumptions 1 and 2, for any y > <, we have

b ! [[R7(f) — RO(fH] — [RE(f) — RIS
T4 S

> 4ﬁ} <N (H, ZL) e—e(n,y,tr)’
o

up
feH VRI(f)=R(f*) +2y
where
%, if0<e<l,
1
.y, 0) = e, ife > 1,
choetl

with ¢ and ¢}, being two positive constants independent of n, y, or o that will be explicitly
specified in the proof.

15
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To prove Proposition 5, we need the following Bernstein concentration inequality that is
frequently employed in the literature of learning theory.

Lemma 6. Let & be a random variable on a probability space Z with variance o* satisfying
|& — E&| < Mg almost surely for some constant Mg and for all z € Z. Then for all A > 0,

Pl S ey mezal < -
rq— z;) —E& > <expy{———— ¢ -
n = Pl 202+ IM:2)
Proof of Proposition 5. Recall that F3; denotes the following set of random variables

Fu= {61600 = (¥ = FOO) = £(Y = X, f € M.

For each & € Fy, by the fact that the Huber loss (2) is Lipschitz continuous with Lipschitz
constant 20, we have

[§lle = 2011f = f'lloc <4Mo and [[§ —Eéllc <40l f — [Tllec <8Mo.

According to Theorem 2, we know that

2Ae—1)y

2 1—
E&* <cillf — frlly, " +eo'™

By Assumption 2, we know that there exist a finite positive integer J = N(#, %) and
{fj}f:, C H such that B(f;,n),j=1,...,J form a %—cover of H. We next show that for
each j =1,..., J, it holds that

pr [[R7(f)) = R (S = [R (f)) = Ry (S]] -
VRE(f) = Re(f*) +2y

for y > <. To see this, we apply the Bernstein inequality in Lemma 6 to the following random
variables

Vi3 T (10)

E/(X.Y) =L (Y — (X)) — Le(Y — fX(X)), j=1,....J,
and obtain
Pr { [R7(f) — R(f] = [Rg(f1) — Ry (S]] > V¥VR(f) —R°(f*) + 2y}
Pr{|[R7(f/) — RO (f)] = [Ry(f) — Ry (fN)]| > w7}

IA

2
n -
exp } — VR (11)

2e—1)4 )
BM/3+ ¢ +¢2) («/7#]0 +ol=+|fj — f*||2,;+1 >

IA

where u? =R(f})—R°(f*)+2y. Since y > 2, by Theorem 1, we have for j =1,...,J,
1 =R =R +2y > R(f) = R(f) +co ™ +y
>\fi= 5, +v =y (12)

16
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We proceed with the proof by considering the two cases when 0 < € < 1 and when € > 1. If
0 < € <1, by the assumption ¢ > 1 and (12), we have
ny
2=t
BM/3+c1+c2) (ﬁﬂjff SRl AR A P )
- ”VM% - ny
28M/3+c1 + ) (Jymjo +0'7€) o’

where ¢] = 2(1 + c;l)(SM/3 4+ c1 + ¢y). If € > 1, note that (12) implies ,u? > |\ fj — f*”%p
and ,u? >y > c.0”¢. We have

ny i’
2Dy
(Mﬁ3+q4ww<JﬂwG+U“f+Wﬁ—f”hﬁl)
ny
— 2D
(&Wﬂ+4n+cﬁ(¢ﬂw0+0“‘+ﬂﬂ—rﬁhil)
ny i ny

>

20e—1) 2
(8M/3+Cl+62) («/7/1*1'0- _{_0-176 +/’Lj€+l ) C/206+1

2
where ¢, = (8M/3 + ¢1 + ¢2) (1 + c;l + ce ‘“). Combining the above estimates for two

cases and recalling (11), we thus have proved the result in (10).
Denote the two events A and B, respectively, as

o IR7G = Ror1 = [R5 () = Ry (1)
Py YR = R°([*) + 27

< 4ﬁ}
and

B =

LR G — REGEIN = [RZ(f) — RIS
o VRO —Re(f) + 2y

We next prove B C A. To this end, we assume that the event B occurs, that is, for all
j=1,...,J,

[[R7(f) = RS = [R (f1) = Ry (S]] < \/J/ (RO(f)) = R (f*) +27). 13)

Recall B(f;,n),j=1,...,J,isa %-cover of H. For every f € H, there exists f; € H such
that [| f — filleo < 2. Since y > cc.o ¢, we have

§,¢?}.

J

RO) =R +2y = If — f*I5, —cco ™ +2y = v. (14)
Therefore, by the Lipschitz continuity of the Huber loss, for each j = 1,..., J, we have

IRO(S) = REUDI =201 f = fillo S ¥ = VY (RO(F) = RO(f*) +29). (15)
and

IR7(f) = Ry <2011 f — fille =¥ < /¥ (RO(f) — R (f*) +2y). (16)

17
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By (15) and (14), we also have
R () =R+ 2y = (R7UHD = RIH) + R () = R(F) +2y
< VY (RO(f) = RI(f) +2y) + R7(f) = R7(f) +2y
<2R7(S) = R(fM)+2p). a7
Combining the estimates (15), (16), (17) with the assumption (13), we obtain
[[R7(f) = R7(f] = [R7 () = Ry (S]]
< IR7(f) = ROUNI+ [RO(f)) = R7(*) = [RY(f) — Ry (f )| + IR (fj) — Ry ()]
< 2y (RZ(F) — ROGF) + 21) +1Jv (R (f) = RO (f*) +2y)
<4y RO(f) = R7(f*) +2y). (18)

Since (18) holds for every f € H, we have proved B C A or equivalently A° C B°. This
together with (10) leads to

b [[R?(f) = R (f)] — [RS(f) — R (S
T § sup
Fen VR(F) — R°(f*) + 2y
Pr(A€) < Pr(B°)
J o N\ RO( £\ o ) — RO(f*
S ZPr{ IR (f;) — R (f)] = [RS(f;) — RS N
= VR () — R7(f*) + 2y

<N (H,yo™'/2)e Oy,

This completes the proof of Proposition 5. [

>4ﬁ}

)

6.3.2. Proof of Theorem 3
We first prove that for any 0 < § < 1, with probability at least 1 — §/2, we have

1
[R?(fr.0) = R7(f = [R; (fao) = R (S — E[Rg(fz,d) —R7(fH] =,
where yy is given by

O (3 +10g(2) srem ) if0<e<I,

Yo = 2¢ \ Vg+D (19)
o ((;l€ +1log (3) <“q+nl+€ ) ) , ife>1.

Note that Proposition 5 implies that, for any y > c.o ¢,

[[R°(f) — R (f)] = [Rg(f) — Rg (S]]
sup <4
fer VR =R7(f*)+2y
holds with probability at least
— Y\ emyo
1-N (’H, 20) e .
We know from Assumption 2 that

N(H, %) Sexp{29co?/yT}.

JY (20)

18
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Consequently, the event (20) holds with probability at least 1 — exp{29co?y 1 — O(n, y, 0)}.
For any 0 < § < 1, let

exp{29coly™ — O(n, y,0)} =§/2,
or equivalently
29coly™ — O(n, y, o) = log(§/2).

The equation has a unique positive solution y* satisfying
log (%) (m) , ife <1,
A g 26\ V@D
log (2) (L) , ife> L.
Choose yp = c.o0 ™ + y*. Then yy satisfies the condition (19) and for any 0 < § < 1, with
probability at least 1 — §/2, it holds that
w [[R7(F) = RSN = [RG(H) =Ry (] _
fer VR =R7(f*) + 20
which immediately yields
[R(fro) = RO = [R] (fro) — Ry ()] < 410V R (fro) — RO(f*) + 210
1
=5(R7 ) =ROUM) + 9. @D

By a similar procedure we can prove that for any 0 < § < 1, with probability at least 1 —§/2,
it holds that

1
[R5 (fre) = RPN = R (frue) = RN = 5 (RO (fruo) = R (F)) + -

This in connection with the fact that R? (o) < R°(fy) and Theorem 1 implies that for any
0 < § < 1, with probability at least 1 — §/2, we have

= 4/,

1
[RZ(fr.0) = Ry (SO = [R°(fr.e) = R(SDI = Sl o — f*15, + 10y (22)

Combining the two estimates in (21) and (22), we come to the conclusion that for any
0 < § < 1, with probability at least 1 — §, it holds that

[Ra(fz,a) - Ra(f?—[,a)] - [Rg(fz.a) - R;(f?—[,a)]
1 1
= S[R7Feo) = REUD] + 51 2 = £1112, + 1990, (23)
On the other hand, from the definitions of f3 ,, fx, and f;,, we have
R (fr.0) = R7(S™)
= [R7(fzo) = R (fr.0)] + [R° (fr.0) — R7(f)]
< [R7(fro) = R (fr.0)] = [R; (fro) — Ry (fr.o)]l + R (f2) — R7(f7)
< R (fuo) = R (frt.o)] — [RY (fro) — Ry (fre)] + I fre = f¥13,, + cco ™,
where the first inequality is due to the following two facts

R, (fre) = R;(fro) and R7(fr.o) = R°(fr)
19
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By (23), we know that for any 0 < § < 1, with probability at least 1 — &, it holds that

1 3
R (foo) = R7(f*) = E(Ra(fz,a) - R"(f*)) + E”f?—[ — 15, + 20%0,
which implies that
R (foo) — RO <3l fr — f*13,, + 400

holds with probability at least 1 —§. By Theorem 1 again, we conclude that for any 0 < § < 1,
with probability at least 1 — §, it holds that

I fro = 15, S I f — £215., + v

Recalling the definition of ¥ and noticing that y, < log(2/38) ¥, we complete the proof of
Theorem 3.

7. Concluding remarks

In this paper, we studied the Huber regression problem by investigating the empirical risk
minimization scheme induced by the Huber loss. In a statistical learning setup, our study
answered the four fundamental questions raised in the introduction: the R?-risk consistency is
insufficient in ensuring their convergence to the mean regression function; the scale parameter
o plays a trade-off role in bias and learnability; fast exponential-type convergence rates can
be established under (1 4+ €)-moment conditions (¢ > 0) by relaxing the standard Bernstein
condition and allowing some additional small bias term; the merit of Huber regression in terms
of the robustness can be reflected by its learnability under the (1 + €¢)-moment conditions
which are considered to be weak conditions in that heavy-tailed noise can be accommodated
in regression problems. Moreover, it was shown that with higher moment conditions being
imposed, one can obtain faster convergence rates. In the above senses, we conducted a complete
and systematic statistical learning assessment of Huber regression estimators.

We remark that in the present study a general hypothesis space H is considered. In practice,
the implementation of learning with Huber regression requires to specify a particular hypothesis
space. It can be a reproducing kernel Hilbert space, a neural network, or other families
of functions. Functions in such a hypothesis space are generally not uniformly bounded.
Regularization could be used to restrict the searching region of the Huber regression scheme
and consequently controls the capacity of the working hypothesis space. The techniques
developed in this study may still be applicable to assessing the regularized Huber regression
schemes. Additionally, the development of these techniques for assessing Huber regression
estimators may also shed light on the analysis of other robust regression schemes.
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