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Abstract

As one of the triumphs and milestones of robust statistics, Huber regression plays an important role
n robust inference and estimation. It has also been finding a great variety of applications in machine
earning. In a parametric setup, it has been extensively studied. However, in the statistical learning
ontext where a function is typically learned in a nonparametric way, there is still a lack of theoretical
nderstanding of how Huber regression estimators learn the conditional mean function and why it works
n the absence of light-tailed noise assumptions. To address these fundamental questions, this paper
onducts an assessment of Huber regression from a statistical learning viewpoint. First, we show that
he usual risk consistency property of Huber regression estimators, which is usually pursued in machine
earning, cannot guarantee their learnability in mean regression. Second, we argue that Huber regression
hould be implemented in an adaptive way to perform mean regression, implying that one needs to tune
he scale parameter in accordance with the sample size and the moment condition of the noise. Third,
ith an adaptive choice of the scale parameter, we demonstrate that Huber regression estimators can
e asymptotic mean regression calibrated under (1 + ϵ)-moment conditions (ϵ > 0) on the conditional
istribution. Last but not least, under the same moment conditions, we establish almost sure convergence
ates for Huber regression estimators. Note that the (1+ ϵ)-moment conditions accommodate the special
ase where the response variable possesses infinite variance and so the established convergence rates
ustify the robustness feature of Huber regression estimators. In the above senses, the present study
rovides a systematic statistical learning assessment of Huber regression estimators and justifies their
erits in terms of robustness from a theoretical viewpoint.
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. Introduction and motivation

In this paper, we are concerned with the robust regression problem where one aims at
eeking a functional relation between input and output when the response variable may be
eavy-tailed [11,15,18,22]. In such scenarios, the traditionally frequently used least squares
egression paradigms may not work well due to the amplification of the least squares loss to
arge residuals. As an alternative, the Huber loss was proposed in the seminal work [13] in the
ontext of robust estimation of location parameters. The Huber loss and the theoretical findings
n location parameter estimation then applied and carried over to robust regression problems.
he regression paradigm that is associated with the Huber loss is termed as Huber regression
nd the resulting estimator is termed as the Huber regression estimator. The introduction of
uber regression led to the development of various subsequent M-estimators and fostered the
evelopment of robust statistics into a discipline.

Denoting X as the input variable that takes values in a compact metric space X ⊂ Rd and
Y the response variable taking values in Y ⊂ R, given i.i.d observations z = {(xi , yi )}n

i=1, in
he context of parametric regression, the Huber regression estimator fz,σ (X ) = X⊤β̂ is learned
rom the following empirical risk minimization (ERM) scheme

fz,σ := arg min
f ∈H

1
n

n∑
i=1

ℓσ (yi − f (xi )), (1)

here H is the function space from X to R consisting of linear functions of the form
f (x) = x⊤β and ℓσ is the well-known Huber loss defined by

ℓσ (t) =

{
t2, if |t | ≤ σ,

2σ |t | − σ 2, otherwise.
(2)

ssuming that the conditional mean function f ⋆(X ) = E(Y |X ) can be parametrically
epresented as f ⋆(X ) = X⊤β⋆ and the noise Y − f ⋆(X ) is zero mean when conditioned on

X , asymptotic properties of β̂ and its convergence to β⋆ have been extensively studied in the
iterature of parametric statistics. An incomplete list of related literature includes [11,12,14–
6,18,20,22,28] and many references therein. Note that in the aforementioned studies, the scale
arameter σ in the Huber loss is set to be fixed and chosen according to the 95% asymptotic
fficiency rule. In a high-dimensional setting, Huber regression with a fixed scale parameter,
owever, may not be able to learn β⋆ when the noise is asymmetric, as argued recently in [9,25].
here the authors proposed to choose the scale parameter by relating it to the dimension of the

nput space, the moment condition of the noise distribution, and the sample size so that one
ay debias the resulting regression estimator and the scale parameter can play a trade-off role

etween bias and robustness.
In a nonparametric statistical learning context where functions in H, in general, do not admit

arametric representations, theoretical investigations of Huber regression estimators are still
parse though they have been applied extensively into various applications where robustness is
concern. To proceed with our discussion, denote H as a compact subset of the space C(X )

f continuous functions on X , ρ the underlying unknown distribution over X ×Y , and Rσ ( f )
he generalization error of f : X → R defined by

Rσ ( f ) = Eℓσ (Y − f (X )),

here the expectation is taken jointly with respect to X and Y . Recall that the objective is to
earn the conditional mean function f ⋆(X ) = E(Y |X ) robustly. Existing studies in the literature
2
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f statistical learning theory remind that Huber regression estimators are Rσ -risk consistent,
.e., Rσ ( fz,σ ) → min f ∈H Rσ ( f ) as n → ∞. To see this, one simply notes that the Huber loss is
ipschitz continuous on R and so the usual learning theory arguments may apply [2,6,7,10,21].
owever, such a risk consistency property neither says anything about the role that the scale
arameter σ plays nor implies the convergence of the regression estimator fz,σ to the mean
egression function f ⋆.

In the present study, we aim to conduct a statistical learning assessment of the Huber
egression estimator fz,σ . More specifically, we pursue answers to the following fundamental
uestions:

• Question 1: Whether Rσ -risk consistency implies the convergence of fz,σ to f ⋆?
• Question 2: What is the role that σ plays when learning f ⋆ through ERM (1)?
• Question 3: How to develop exponential-type fast convergence rates of fz,σ to f ⋆?
• Question 4: How to justify the learnability of fz,σ in the absence of light-tail noise?

Answers to these questions represent our main contributions. In particular, if Rσ -risk
onsistency implies the convergence of fz,σ to f ⋆, we say that Huber regression (1) is
ean regression calibrated. We show that Huber regression is generally not mean regression

alibrated for any fixed scale parameter σ . Instead, it should be implemented in an adaptive
ay in order to perform mean regression, where the adaptiveness refers to the dependence
f the scale parameter on the sample size and the moment condition. We also show that
he scale parameter needs to diverge in accordance with the sample size to ensure that the
uber regression estimator fz,σ learns the mean regression function f ⋆, which we term as

he asymptotic mean regression calibration property. Furthermore, such an asymptotic mean
egression calibration property can be established under (1 + ϵ)-moment conditions (ϵ >

) on the conditional distribution. This is a rather weak condition as it admits the case
here the conditional distribution possesses infinite variance. To develop fast exponential-type

onvergence rates, we establish a relaxed Bernstein condition. The idea is to bound the second
oment of associated random variables by using their first moment and an additional bias term

hat diminishes towards 0 when the sample size tends to infinity. These preparations allow us
o establish fast exponential-type convergence rates for fz,σ . Interestingly, but not surprisingly,
t is shown that σ plays a trade-off role between bias and learnability, and the convergence
ates of fz,σ depend on the order of the imposed moment conditions.

The rest of this paper is organized as follows. In Section 2, we argue that risk consistency is
nsufficient in guaranteeing learnability and so does not necessarily imply the convergence of
uber regression estimators to the mean regression function. In Section 3, we demonstrate that
uber regression is asymptotically mean regression calibrated if the scale parameter is chosen

n a diverging manner in accordance to the sample size and the moment condition. Some efforts
re then made in Section 4 to develop fast exponential-type convergence rates by relaxing the

standard Bernstein condition in learning theory. In Section 5, we establish fast convergence
rates for Huber regression estimators under weak moment conditions. Proofs of Theorems are
collected in Section 6. The paper is concluded in Section 7.

otation and Convention. Throughout this paper, we assume that f ⋆ is bounded and H ⊂

(X ) is uniformly bounded and denote M = max{∥ f ⋆
∥∞, sup f ∈H ∥ f ∥∞}. Denoting ρX as the

marginal distribution of ρ on X , then ∥ ·∥2,ρ defines the L2-norm induced by ρX . The notation
≲ b denotes the fact that there exists a positive constant c such that a ≤ cb. For any t ∈ R,

let t = max(0, t).
+

3
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. Risk consistency is insufficient in guaranteeing learnability

In this section, we shall make efforts to answer Question 1 listed in the introduction by
rguing that risk consistency is insufficient in guaranteeing learnability of the Huber regression
stimator, where by risk consistency we refer to the convergence of Rσ ( fz,σ ) to min f ∈H Rσ ( f )
hile learnability refers to the convergence of fz,σ to f ⋆.
Following existing studies on empirical risk minimization schemes induced by convex loss

unctions, it is easy to deduce that fz,σ is Rσ -risk consistent for any fixed σ value. Moreover,
nder certain mild assumptions, probabilistic convergence rates may also be established. To see
his, note that the deduction of the risk consistency property of Huber regression estimators as
ell as their convergence rates involves the following set of random variables

GH =

{
ξ f | ξ f := ℓσ (Y − f (X )) − ℓσ (Y − fH,σ (X )), f ∈ H

}
,

here fH,σ = arg min f ∈H Rσ ( f ) is the population version of fz,σ . Notice that the Huber loss
σ in (2) is Lipschitz continuous on R with Lipschitz constant 2σ . Therefore, the random
ariables in GH and their variances can be uniformly upper bounded by constants involving
. Applying learning theory arguments and concentration inequalities to GH, under mild
ssumptions, convergence rates can be derived. However, due to the dependence of fz,σ
n the scale parameter σ , it may possess much flexibility and can be quite different with
ifferent choices of the σ values. Consequently, the Rσ -risk consistency property as well as the
onvergence rates of Rσ ( fz,σ ) − min f ∈H Rσ ( f ) may not be informative and may not indicate
he learnability of fz,σ in learning f ⋆ even if H is perfectly chosen such that f ⋆

∈ H.
To illustrate this phenomenon numerically, consider a toy example with the model

Y = 2 sin(π X ) + (1 + 2X )ε,

here X follows a uniform distribution on [0, 1] and ε ∼ 0.5N (0, 2.52) + 0.5N (0, 0.52). It
s apparent that the noise distribution admits zero mean and is skewed. Simple calculation
hows that for this regression model, the conditional mean function f ⋆(X ) = 2 sin(π X ).
n this experiment, we visualize the function fz,σ and compare it with f ⋆. We choose the
ypothesis space H as a ball of the reproducing kernel Hilbert space associated with the
aussian kernel K (xi , x j ) = exp{−∥xi −x j∥

2/h2
}. Both the kernel bandwidth h and the radius

f the ball are tuned via cross-validation under the least absolute deviation error criterion while
he scale parameter σ in the Huber loss is set to be fixed with σ = 0.01. A set of independent
bservations are sampled from the above regression model and are used as the training data.
hen fz,σ is plotted in Fig. 1. The conditional mean function is also plotted for comparison. As
iscussed earlier, due to the Lipschitz continuity of the Huber loss, with the choice of σ = 0.01,
he risk consistency can be guaranteed. However, from the plots in Fig. 1, clearly, fz,σ does
ot approach the conditional mean function.

The fact that Rσ -risk consistency of Huber regression estimators cannot guarantee their
bility to learn the conditional mean function can be further justified through the following
xample. Let M be the space of measurable functions from X to R and define

fσ := arg min
f ∈M

Rσ ( f ). (3)

ntuitively, fσ can be regarded as the best Huber regression estimator learned in an ideal case
here infinite observations are available and the hypothesis space is perfectly selected.
4
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Fig. 1. The bottom black curve gives the conditional mean function. The top blue curve represents the learned
Huber regression estimator with σ = 0.01.

Example 1. Consider the Huber regression problem where one aims to learn the conditional
mean function f ⋆ from the following homoscedastic regression model

Y = f ⋆(X ) + ε,

here ε is the zero-mean noise variable with density

pε(t) =

⎧⎨⎩
1
2 e−(t+ 1

4 ), if t ≥ −
1
4 ,

e2(t+ 1
4 ), if t < −

1
4 .

Then there exists a constant c with c ̸= 0 such that fσ (x) = f ⋆(x) + c for all x ∈ X . As a
esult, if fσ ∈ H and Rσ ( fz,σ ) converges to min f ∈H Rσ ( f ) as n → ∞ with large probability,
hen fz,σ does not converge to f ⋆ with large probability.

roof. Recalling the definition of fσ in (3), for any x ∈ X , we can re-express it as follows

fσ (x) = arg min
ν∈R

∫
R

ℓσ (t − ν)pY |X=x (t)dt

= arg min
ν∈R

∫
R

ℓσ (t − ν)pε(t − f ⋆(x))dt

= arg min
ν∈R

∫
R

ℓσ (u − (ν − f ⋆(x)))pε(u)du.

herefore, for any x ∈ X , we have

fσ (x) − f ⋆(x) = arg min
∫

ℓσ (u − ν)pε(u)du.

ν∈R R

5
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he assumption that the noise ε is independent of x tells us that

arg min
ν∈R

∫
R

ℓσ (u − ν)pε(u)du (4)

s a unique constant for all x ∈ X . To prove the first part of the assertion, we only need to
how that 0 is not a solution to the above minimization problem.

From the definition of the Huber loss (2), we know that∫
R

ℓσ (u − ν)pε(u)du =

∫
R

ℓσ (u − ν)pε(u)du +

∫
R

(u − ν)2 pε(u)du −

∫
R

(u − ν)2 pε(u)du

=

∫
R

(u − ν)2 pε(u)du +

∫
|u−ν|≥σ

(2σ |u − v| − σ 2)pε(u)du

−

∫
|u−ν|≥σ

(u − v)2 pε(u)du

=

∫
R

(u − ν)2 pε(u)du −

∫
|u−ν|≥σ

(|u − ν| − σ )2 pε(u)du

=

∫
R

(u − ν)2 pε(u)du −

∫
u−ν≥σ

(u − ν − σ )2 pε(u)du

−

∫
u−ν≤−σ

(u − ν + σ )2 pε(u)du.

herefore, we have

d(
∫
R ℓσ (u − ν)pε(u)du)

dν
= −2

∫
R

(u − ν)pε(u)du + 2
∫

+∞

ν+σ

(u − ν − σ )pε(u)du

+ 2
∫ ν−σ

−∞

(u − ν + σ )pε(u)du.

he zero-mean noise assumption tells us that

d(
∫
R ℓσ (u − ν)pε(u)du)

dν

⏐⏐⏐
ν=0

= 2
∫

+∞

σ

(u − σ )pε(u)du + 2
∫

−σ

−∞

(u + σ )pε(u)du.

If σ ≥
1
4 , then we have

2
∫

+∞

σ

(u − σ )pε(u)du + 2
∫

−σ

−∞

(u + σ )pε(u)du

=

∫
+∞

σ

(u − σ )e−(u+
1
4 )du + 2

∫
−σ

−∞

(u + σ )e2(u+
1
4 )du

= e−σ−
1
4 −

1
2

e
1
2 −2σ > 0,

here we used the fact that g(a) = a−
e
2 a2 is positive for a ∈ (0, 2

e ) and 0 < e−
1
4 −σ

≤ e−
1
2 < 2

e .
If 0 < σ < 1

4 , then we have

2
∫

+∞

σ

(u − σ )pε(u)du + 2
∫

−σ

−∞

(u + σ )pε(u)du

=

∫
+∞

σ

(u − σ )e−(u+
1
4 )du +

∫
−σ

−
1
4

(u + σ )e−(u+
1
4 )du + 2

∫
−

1
4

−∞

(u + σ )e2(u+
1
4 )du

1 1

= 2σ + e−σ− 4 − eσ− 4 > 0,

6
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here we used the fact that the function g(σ ) = 2σ + e−σ−
1
4 − eσ−

1
4 has g(0) = 0 and is

trictly increasing.
Therefore, d(

∫
R ℓσ (u−ν)pε(u)du)

dν

⏐⏐⏐
ν=0

is non-zero for fixed σ > 0, which implies that 0 is not a
solution to the minimization problem (4). This proves the first claim in Example 1.

To prove the divergence of fz,σ to f ⋆ for any fixed σ , first note that, by the convexity of
the Huber loss, fσ is the unique minimizer of Rσ ( f ). Since fσ = f ⋆

+ c ̸= f ⋆, we have
σ ( fσ ) ̸= Rσ ( f ⋆). If fσ ∈ H and Rσ ( fz,σ ) converges to min f ∈H Rσ ( f ) = Rσ ( fσ ) with large

robability, then there exists some large enough N such that for any n > N ,

|Rσ ( fz,σ ) − Rσ ( fσ )| ≤
1
2

⏐⏐Rσ ( fσ ) − Rσ ( f ⋆)
⏐⏐

olds with large probability. By the Lipschitz property of the Huber loss, we have

∥ fz,σ − f ⋆
∥2,ρ ≥

1
2σ

⏐⏐Rσ ( fz,σ ) − Rσ ( f ⋆)
⏐⏐

≥
1

2σ

(⏐⏐Rσ ( fσ ) − Rσ ( f ⋆)
⏐⏐− ⏐⏐Rσ ( fz,σ ) − Rσ ( fσ )

⏐⏐)
≥

1
4σ

⏐⏐Rσ ( fσ ) − Rσ ( f ⋆)
⏐⏐ .

his proves that fz,σ does not converge to f ⋆ for any fixed σ . □

Example 1 tells us that in some scenarios, fz,σ may not converge to the conditional mean
function which one aims to learn even if infinite samples are given and the hypothesis space
is perfectly chosen. This is due to the inherent bias brought by the integrated scale parameter
in the Huber loss when pursuing robustness. Continuing our discussion at the beginning of
this section, the general answer to Question 1 is that, Rσ -risk consistency cannot guarantee its
earnability as the gain in robustness may entail a bias. That is, in general, the Huber regression
cheme (1) may not be mean regression calibrated. To address this problem and to learn the

conditional mean function f ⋆ through Huber regression, one needs to tune the scale parameter
σ to reduce the bias and learn in an adaptive way, as argued in the next section.

3. Huber regression is asymptotically mean regression calibrated

In this section, we shall show that, in a distribution-free setup, with properly selected scale
parameter σ , Huber regression can be asymptotically mean regression calibrated, meaning that
risk consistency implies the convergence of fz,σ to the conditional mean function f ⋆ when

→ ∞.

.1. Mean regression calibration property

Recall that in the context of regression learning, one of the central concerns is the
onvergence of the learned empirical target function to the unknown truth function of interest,
hat is, the conditional mean function f ⋆ in this study. While the distance between the
mpirical target function and f ⋆ is not directly accessible, one settles for bounding the excess
eneralization error. The underlying philosophy is that the generalization error of a learning
achine can be approximated by using its empirical counterpart and the excess generalization

rror can be bounded via learning theory arguments. As mentioned in the introduction, the
egression estimator is called mean regression calibrated if the convergence of the excess
7
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eneralization error towards 0 implies the convergence of the empirical target function to the
onditional mean function [23].

Translating into the context of Huber regression, one is concerned with whether the
onvergence of the excess generalization error Rσ ( fz,σ ) − Rσ ( fσ ) towards 0 implies the
onvergence of fz,σ to f ⋆. However, the numerical experiment and the counterexample in the
receding section suggest a negative answer and demonstrate that the desired mean regression
alibration property may, in general, not be true. This conflicts with our intuition and common
nderstanding that the Huber loss can serve as a robust alternate of the least squares loss
hen the scale parameter is chosen sufficiently large. To bypass this problem, in what follows,
oticing our interest in learning the conditional mean function f ⋆, we turn to investigate the
elation between the convergence of Rσ ( fz,σ ) to Rσ ( f ⋆) and the convergence of fz,σ to f ⋆.

ore specifically, we shall show that under mild conditions, the convergence of Rσ ( fz,σ ) to
σ ( f ⋆) does imply the convergence of fz,σ to f ⋆ when σ → ∞ and n → ∞. This justifies

he mean regression calibration property in an asymptotic sense.

.2. A comparison theorem

We now look into the asymptotic mean calibration property by establishing a comparison
heorem. For regression estimators that are produced by empirical risk minimization schemes
ith convex loss functions, some efforts on investigating their mean regression calibration
roperties have been made in the literature; see e.g., [23]. For Huber regression estimators,
t was concluded that they are mean regression calibrated if the response variable is upper
ounded or the conditional noise variable ε|X admits a symmetric probability density function.
ecall that one of the most prominent merits of Huber regression estimators lies in that they can
erform mean regression in the absence of light-noise assumptions. In this sense, boundedness
r symmetry constraints on the noise variable should be considered as stringent ones. In this
tudy, we are seeking to assess the Huber regression estimator fz,σ and investigate its mean
egression calibration properties without resorting to light-tail distributional assumptions on the
onditional distribution or on the noise. To this end, we introduce the following weak moment
ondition.

ssumption 1. There exists a constant ϵ > 0 such that E|Y |
1+ϵ < +∞.

The moment condition in Assumption 1 is rather weak in the sense that it admits the case
here the response variable Y possesses infinite variance. The same comment condition also

pplies to the distributions of the conditional random variable Y |X and the conditional noise
ariable ε|X under the additive data generating model, implying that heavy-tailed noise is
llowed.

As discussed earlier, without further distributional assumptions on the noise variable, fz,σ is,
n general, biased and its population version fσ may be different from f ⋆ almost everywhere
n X . However, such a bias can be upper bounded and may decrease with the increase of the σ

alues. Results in this regard are stated in the following theorem under the above (1+ϵ)-moment
ondition.

heorem 1. Let σ > max{2M, 1}. Under Assumption 1, there exists a constant cϵ > 0
ndependent of σ such that for any measurable function f : X → R with ∥ f ∥∞ ≤ M, we
ave ⏐⏐⏐ [Rσ ( f ) − Rσ ( f ⋆)

]
− ∥ f − f ⋆

∥
2
2,ρ

⏐⏐⏐ ≤
cϵ

σ ϵ
. (5)
8
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Theorem 1 states that for any bounded measurable function f , under the (1 + ϵ)-moment
conditions, the gap between Rσ ( f ) − Rσ ( f ⋆) and ∥ f − f ⋆

∥
2
2,ρ is up to O(σ−ϵ). With a

sufficiently large σ value or sufficiently light-tailed noise, this gap could be sufficiently small.
This is called the asymptotic regression calibration property. It characterizes the relationship
between the loss function ℓσ and the L2-distance and is independent of the sample. When
applying the property specifically to fz,σ , the sample z is involved and one may choose
σ = σ (n) so that σ → ∞ as n → ∞. As a special case, let us consider the presence
of Gaussian or sub-Gaussian noise where the moment condition holds for arbitrarily large ϵ

values. In this scenario, the gap between the above two quantities can be arbitrarily small. These
findings remind us that in order to debias the Huber regression estimator, one may relate the
σ value to the sample size n. In other words, from an asymptotic viewpoint, with diverging σ

values, according to Theorem 1, Huber regression is asymptotically mean regression calibrated.
Following this spirit, we shall proceed with the assessment based on diverging σ values by
deriving their convergence rates to the conditional mean function f ⋆.

4. Relaxing the Bernstein condition for assessing Huber regression

From our previous discussions, in order to derive convergence rates for fz,σ , one needs to
bound the excess generalization error Rσ ( fz,σ ) −Rσ ( f ⋆) which essentially requires us to deal
with the following set of random variables

FH :=

{
ξ | ξ (X, Y ) = ℓσ (Y − f (X )) − ℓσ (Y − f ⋆(X )), f ∈ H

}
.

The existing studies in learning theory remind us that it is crucial to establish the so-called
Bernstein condition, i.e., bounding the second moment of ξ ∈ FH by using its first moment.
We will show that while the standard Bernstein condition does not hold, one can relax it to
develop fast convergence rates for Rσ ( fz,σ )−Rσ ( f ⋆). Let us start with recapping the Bernstein
condition in learning theory.

4.1. Bernstein conditions in learning theory

Originally introduced in [2] in the context of empirical risk minimization, the standard
Bernstein condition can be restated as follows: a set F of random variables is said to satisfy
the (β, B)-Bernstein condition with 0 < β ≤ 1 and B > 0 if for any f ∈ F , it holds
that E f 2

≤ B(E f )β . In other words, the second moment of the random variable (and so the
variance) can be upper bounded by its first moment. Later, the standard Bernstein condition was
generalized and extended into various other Bernstein-like conditions for analyzing learning
algorithms in different contexts; see e.g., [5,24,26]. It turns out that the Bernstein condition and
its variants play an important role in establishing fast convergence rates for learning algorithms
of interest because they provide tight upper bounds for the variance of the random variables
induced by the resulting estimators.

In the context of Huber regression, a Bernstein-like condition is also desired in order
to establish fast convergence rates for the excess generalization error Rσ ( fz,σ ) − Rσ ( f ⋆).
However, as shown in the preceding section, without further distributional restrictions to the
noise variable, f ⋆ may not be the optimal hypothesis that minimizes Rσ ( f ) over the measurable
unction space M. Consequently, Rσ ( f ) −Rσ ( f ⋆) is not necessarily positive. As a result, the
sual Bernstein condition, namely, Eξ 2

≤ B(Eξ )β for ξ ∈ FH with constants B > 0 and
< β ≤ 1, may not hold. This brings barriers to the development of fast convergence rates
9
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or Rσ ( f ) − Rσ ( f ⋆). To circumvent this problem, in our study, we shall establish a relaxed
ernstein condition, which takes the form

Eξ 2
≤ B(Eξ )β + g(σ ),

ith B > 0, 0 < β ≤ 1, and g a nonnegative function of σ . A motivating observation for
stablishing such a relaxed Bernstein condition is that the gap between E(ξ ) and ∥ f − f ⋆

∥
2
2,ρ

an be upper bounded by O(σ−ϵ) for any f ∈ H, as stated in Theorem 1.

4.2. A relaxed Bernstein condition

To establish our relaxed Bernstein condition, we prove the following variance bound for
ξ ∈ FH.

Theorem 2. Let Assumption 1 hold and σ > max{2M, 1}. For any measurable function
f : X → R with ∥ f ∥∞ ≤ M, the random variable ξ = ℓσ (Y − f (X )) − ℓσ (Y − f ⋆(X ))
atisfies

Eξ 2
≤ c1∥ f − f ⋆

∥

2(ϵ−1)+
ϵ+1

2,ρ + c2σ
1−ϵ,

where c1 and c2 are positive constants independent of σ or f .

Recall the results in Theorem 1 that states ∥ f − f ⋆
∥

2
2,ρ ≤ Eξ + cϵσ

−ϵ . This in connection
ith Theorem 2 immediately yields the following relaxed Bernstein condition:

Eξ 2
≤ c1(Eξ )

(ϵ−1)+
ϵ+1 + c1(cϵσ

−ϵ)
(ϵ−1)+

ϵ+1 + c2σ
1−ϵ .

his relaxed Bernstein condition will be crucial in establishing error bounds and fast exponen-
ial-type convergence rates for the Huber regression estimator fz,σ .

. Assessing Huber regression under weak moment conditions

In this section, we present fast exponential-type convergence rates for the Huber regression
stimator under the (1 + ϵ)-moment condition in Assumption 1. Specifically, we are interested
n bounding the L2

ρX
-distance between fz,σ and f ⋆.

To state the result, we introduce the following capacity assumption. For any η > 0, let
(H, η) denote the covering number of H by the balls of radius η in C(X ), that is,

N (H, η) = min

⎧⎨⎩k ∈ N : there exist f j ∈ H, j = 1, . . . , k such that H ⊂

k⋃
j=1

B( f j , η)

⎫⎬⎭
here B( f j , η) = { f ∈ C(X ) : ∥ f − f j∥∞ < η}. Our capacity condition is stated as follows.

ssumption 2. There exist positive constants q and c such that logN (H, η) ≤ cη−q , ∀ η > 0.

Generalization error bounds in terms of the covering number argument under Assumption 2
s typical in statistical learning theory; see e.g., [1,7,23] and references therein.
10
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To state our results on the convergence rates, we introduce a new function fH, which is
efined as

fH = arg min
f ∈H

∥ f − f ⋆
∥

2
2,ρ .

he function fH is the optimal function in H that one may expect in approximating the truth
unction f ⋆. The distance ∥ fH − f ⋆

∥
2
2,ρ can be regarded as the approximation error when

orking with the hypothesis space H and so corresponds to the bias caused by the choice of
he hypothesis space H.

heorem 3. Suppose that Assumptions 1 and 2 hold and let σ > max{2M, 1}. Let fz,σ be
produced by (1). For any 0 < δ < 1, with probability at least 1 − δ, it holds that

∥ fz,σ − f ⋆
∥

2
2,ρ ≲ ∥ fH − f ⋆

∥
2
2,ρ + log(2/δ)Ψ (n, ϵ, σ ),

where

Ψ (n, ϵ, σ ) :=

⎧⎪⎨⎪⎩
1
σ ϵ +

σ

n1/(q+1) , if 0 < ϵ ≤ 1,

1
σ ϵ +

(
σ

q+
2ϵ

1+ϵ

n

)1/(q+1)

, if ϵ > 1.

The proof of Theorem 3 is based on a ratio probability inequality and standard learning
heory argument [1,7,8,23,27], where the results established in Theorems 1 and 2 play crucial
oles.

The error bound in Theorem 3 involves three components: the approximation error due to
he imperfect choice of the hypothesis space H, the inherent bias caused by the integrated
arameter σ , and the sample error. In practice, the hypothesis space could be chosen by
tructural risk minimization so that the approximation error decreases to a tolerably small
evel [10,27]. The value of σ affects both the inherent bias and the sample error. The best
hoice depends on the sample size, the moment condition, and the capacity of the hypothesis
pace. To see this, consider a special case when f ⋆

∈ H so that the approximation error
fH− f ⋆

∥
2
2,ρ disappears. With properly chosen σ values, we immediately obtain the following

onvergence rates.

orollary 4. Under the assumptions of Theorem 3, let f ⋆
∈ H and σ be chosen as σ = nΦ(ϵ,q)

ith

Φ(ϵ, q) =

⎧⎪⎪⎨⎪⎪⎩
1

(1 + ϵ)(1 + q)
, if 0 < ϵ ≤ 1,

1 + ϵ

q(1 + ϵ)2 + ϵ(ϵ + 3)
, if ϵ > 1.

or any 0 < δ < 1, with probability at least 1 − δ, we have

∥ fz,σ − f ⋆
∥

2
2,ρ ≲ log(2/δ)n−ϵΦ(ϵ,q).

According to Corollary 4, with properly chosen diverging σ values, we obtain exponential-
ype convergence rates for fz,σ . In particular, if the noise variable is bounded or sub-Gaussian

and hence the moment condition in Assumption 1 holds for any ϵ > 0, one can select an
arbitrarily large ϵ to obtain convergence rates of order arbitrarily close to O(n−

1
1+q ). As a

omparison, recall that for least square estimators convergence rates of order O(n−
1

1+q/2 ) can
11
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sually be established; see e.g., [1,3,23] and references therein. Moreover, note that with weaker
oment conditions, i.e., smaller ϵ values, one gets slower convergence rates for fz,σ , indicating

ncreased sacrifice for robustness. This coincides with our intuitive understanding of robust
egression estimators. On the other hand, if f ⋆ is smooth enough and one selects a smooth

hypothesis space (such as the reproducing kernel Hilbert spaces induced by radial basis kernels
or neural networks with smooth activate functions), then q → 0 and the difference between

uber regression and least square method could be minimal, indicating less sacrifice necessary
or learning smooth functions. Finally, we stress that we obtain exponential convergence rates
ven for the case when 0 < ϵ < 1 where the distribution of the conditional variable Y |X
oes not possess finite variance and a least square based estimator cannot even be defined.
his further explains the robustness of Huber regression estimators. We also remark that the
arameter choice suggested by Theorem 3 and Corollary 4 requires the knowledge of the
onstant in Assumption 1, which is usually not available. In practice, σ may be chosen through
ross validation or the balance principle [4,17,19].

. Proofs of theorems

.1. Proof of Theorem 1

Let f : X → R with ∥ f ∥∞ ≤ M be a measurable function. For any σ > max{2M, 1}, we
enote the two events IY and IIY as follows

IY :=

{
y : |y| ≥

σ

2

}
, and IIY :=

{
y : |y| <

σ

2

}
.

oticing that∫
X

∫
Y

[(y − f (x))2
− (y − f ⋆(x))2]dρ(y|x)dρX (x) = ∥ f − f ⋆

∥
2
2,ρ,

e have⏐⏐⏐ [Rσ ( f ) − Rσ ( f ⋆)
]
− ∥ f − f ⋆

∥
2
2,ρ

⏐⏐⏐
=

⏐⏐⏐ ∫
X

∫
Y

[
ℓσ (y − f (x)) − ℓσ (y − f ⋆(x))

]
−[(y− f (x))2

−(y− f ⋆(x))2]dρ(y|x)dρX (x)
⏐⏐⏐

≤

⏐⏐⏐ ∫
X

∫
IY
⋃

IIY

[
ℓσ (y − f (x)) − ℓσ (y − f ⋆(x))

]
dρ(y|x)dρX (x)

⏐⏐⏐
+

⏐⏐⏐ ∫
X

∫
IY
⋃

IIY

[(y − f (x))2
− (y − f ⋆(x))2]dρ(y|x)dρX (x)

⏐⏐⏐.
or any (x, y) ∈ X × IIY, since σ > max{2M, 1}, we see that

|y − f (x)| ≤ |y| + ∥ f ∥∞ < σ,

nd

|y − f ⋆(x)| ≤ |y| + ∥ f ⋆
∥∞ < σ.

onsequently, for any (x, y) ∈ X × IIY, we have[
⋆

] 2 ⋆ 2
ℓσ (y − f (x)) − ℓσ (y − f (x)) − [(y − f (x)) − (y − f (x)) ] = 0,

12
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nd hence⏐⏐⏐ [Rσ ( f ) − Rσ ( f ⋆)
]
− ∥ f − f ⋆

∥
2
2,ρ

⏐⏐⏐
≤

⏐⏐⏐ ∫
X

∫
IY

[
ℓσ (y − f (x)) − ℓσ (y − f ⋆(x))

]
dρ(y|x)dρX (x)

⏐⏐⏐
+

⏐⏐⏐ ∫
X

∫
IY

[(y − f (x))2
− (y − f ⋆(x))2]dρ(y|x)dρX (x)

⏐⏐⏐. (6)

ecall that the Huber loss (2) is Lipschitz continuous with Lipschitz constant 2σ . The first
erm of the right-hand side of Eq. (6) can be upper bounded as follows⏐⏐⏐ ∫

X

∫
IY

[
ℓσ (y − f (x)) − ℓσ (y − f ⋆(x))

]
dρ(y|x)dρX (x)

⏐⏐⏐
≤ 2σ

⏐⏐⏐ ∫
X

∫
IY

| f (x) − f ⋆(x)|dρ(y|x)dρX (x)
⏐⏐⏐

≤ 2σ∥ f − f ⋆
∥∞ Pr(IY).

The quantity Pr(IY) can be bounded by applying Markov’s inequality which yields

Pr(IY) ≤
21+ϵE

(
|Y |

1+ϵ
)

σ 1+ϵ
. (7)

herefore, we have∫
X

∫
IY

[
ℓσ (y − f (x)) − ℓσ (y − f ⋆(x))

]
dρ(y|x)dρX (x) ≤

22+ϵ
∥ f − f ⋆

∥∞E
(
|Y |

1+ϵ
)

σ ϵ
.

(8)

he second term in the right-hand side of Eq. (6) can be upper bounded as follows:⏐⏐⏐ ∫
X

∫
IY

[(y − f (x))2
− (y − f ⋆(x))2]dρ(y|x)dρX (x)

⏐⏐⏐
≤ ∥ f − f ⋆

∥∞

∫
X

∫
IY

|2y − f (x) − f ⋆(x)|dρ(y|x)dρX (x)

≤ ∥ f − f ⋆
∥∞

∫
X

∫
IY

(2|y| + ∥ f ⋆
∥∞ + ∥ f ∥∞)dρ(y|x)dρX (x)

≤ ∥ f − f ⋆
∥∞

(
2
∫

IY

|y|dρ(y) + (∥ f ⋆
∥∞ + ∥ f ∥∞) Pr(IY)

)
.

y applying Hölder inequality and recalling the estimate in (7), we have∫
|y|dρ(y) ≤

(
Pr(IY)

) ϵ
1+ϵ
(
E(|Y |

1+ϵ)
) 1

1+ϵ ≤
2ϵE

(
|Y |

1+ϵ
)

σ ϵ
.

IY

13
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s a result, we conclude that⏐⏐⏐ ∫
X

∫
IY

[(y − f (x))2
− (y − f ⋆(x))2]dρ(y|x)dρX (x)

⏐⏐⏐
≤

21+ϵ
∥ f − f ⋆

∥∞E
(
|Y |

1+ϵ
)

σ ϵ
+

21+ϵ(∥ f ∥∞ + ∥ f ⋆
∥∞)2E

(
|Y |

1+ϵ
)

σ 1+ϵ
. (9)

rom (8) and (9),
⏐⏐ [Rσ ( f ) − Rσ ( f ⋆)] − ∥ f − f ⋆

∥
2
2,ρ

⏐⏐ can be upper bounded by

(22+ϵ
+ 21+ϵ)∥ f − f ⋆

∥∞E
(
|Y |

1+ϵ
)

σ ϵ
+

21+ϵ(∥ f ∥∞ + ∥ f ⋆
∥∞)2E

(
|Y |

1+ϵ
)

σ 1+ϵ
.

herefore, the desired estimate (5) holds with cϵ = 24+ϵ ME
(
|Y |

1+ϵ
)
. This completes the proof

of Theorem 1.

6.2. Proof of Theorem 2

Let f : X → R with ∥ f ∥∞ ≤ M be a measurable function. For any σ > max{2M, 1}, we
again consider the following two events

IY :=

{
y : |y| ≥

σ

2

}
, and IIY :=

{
y : |y| <

σ

2

}
.

ased on the above notation, it is obvious to see the following decomposition

Eξ 2
=

∫
X×Y

(ℓσ (y − f (x)) − ℓσ (y − f ⋆(x)))2dρ(x, y)

=

∫
X×IY

(ℓσ (y − f (x)) − ℓσ (y − f ⋆(x)))2dρ(x, y)

+

∫
X×IIY

(ℓσ (y − f (x)) − ℓσ (y − f ⋆(x)))2dρ(x, y)

:=Q1 + Q2.

he first term Q1 can be easily bounded by applying the Lipschitz continuity property of the
uber loss (2) and Markov’s inequality:

Q1 ≤ 4σ 2
∫
X×IY

(
f (x) − f ⋆(x)

)2dρ(x, y) ≤ 16M2σ 2 Pr(IY ) ≤ 25+ϵ M2E|Y |
1+ϵσ 1−ϵ .

o bound the second term Q2, noticing that for any (x, y) ∈ X × IIY, since σ > max{2M, 1},
e have

|y − f (x)| ≤ |y| + ∥ f ∥∞ < σ,

nd

|y − f ⋆(x)| ≤ |y| + ∥ f ⋆
∥∞ < σ.

y the definition of the Huber loss ℓσ , for any (x, y) ∈ X × IIY, we have

ℓσ (y − f (x)) − ℓσ (y − f ⋆(x)) = (y − f (x))2
− (y − f ⋆(x))2.

herefore,

Q2 =

∫ (
(y − f (x))2

− (y − f ⋆(x))2)2dρ(x, y)

X×IIY

14
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=
X IIY

( f (x) − f ⋆(x))2(2y − f (x) − f ⋆(x))2dρ(y|x)dρX (x).

If ϵ > 1, applying Hölder’s inequality, we obtain

Q2 ≤

∫
X

∫
Y

( f (x) − f ⋆(x))2(2y − f (x) − f ⋆(x))2dρ(y|x)dρX (x)

≤ ∥ f − f ⋆
∥

4
1+ϵ
∞ E

(
| f (x) − f ⋆(x)|

2ϵ−2
1+ϵ (2|y| + 2M)2

)
≤ 64(M + 1)2(E|Y |

1+ϵ
+ M2

+ 1)∥ f − f ⋆
∥

2ϵ−2
1+ϵ

2,ρ .

f 0 < ϵ ≤ 1, we have the following estimate

Q2 ≤ 48M2
∫
X

∫
IIY

(|y|
1+ϵ

|y|
1−ϵ

+ M2)dρ(y|x)dρX (x)

≤ 48M2(E|Y |
1+ϵ

+ M1+ϵ)σ 1−ϵ .

Combining the above estimates for Q1 and Q2, we come to the conclusion that

Eξ 2
≤ c1∥ f − f ⋆

∥

2(ϵ−1)+
ϵ+1

2,ρ + c2σ
1−ϵ,

with c1 = 64(M + 1)2(E|Y |
1+ϵ

+ M2
+ 1) and c2 = 48M2(E|Y |

1+ϵ
+ M1+ϵ) + 16M2E|Y |

1+ϵ .
his completes the proof of Theorem 2.

.3. Proof of Theorem 3

We first prove a ratio inequality in Section 6.3.1 which plays an important role in the proof
f Theorem 3. The detailed proof of Theorem 3 will then be given in Section 6.3.2. To proceed,
or any measurable function f : X → R, we denote

Rσ
z ( f ) =

1
n

n∑
i=1

ℓσ (yi − f (xi )),

nd recall the notation

fH,σ = arg min
f ∈H

Rσ ( f ).

.3.1. A ratio inequality

roposition 5. Let σ > max{2M, 1}. Under Assumptions 1 and 2, for any γ > cϵ

σ ϵ , we have

Pr

{
sup
f ∈H

⏐⏐[Rσ ( f ) − Rσ ( f ⋆)] − [Rσ
z ( f ) − Rσ

z ( f ⋆)]
⏐⏐

√
Rσ ( f ) − Rσ ( f ⋆) + 2γ

> 4
√

γ

}
≤ N

(
H,

γ

2σ

)
e−Θ(n,γ,σ ),

here

Θ(n, γ, σ ) =

⎧⎪⎨⎪⎩
nγ

c′
1σ

, if 0 < ϵ ≤ 1,

nγ

c′
2σ

2ϵ
ϵ+1

, if ϵ > 1,

ith c′

1 and c′

2 being two positive constants independent of n, γ , or σ that will be explicitly
pecified in the proof.
15
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To prove Proposition 5, we need the following Bernstein concentration inequality that is
requently employed in the literature of learning theory.

emma 6. Let ξ be a random variable on a probability space Z with variance σ 2
⋆ satisfying

ξ − Eξ | ≤ Mξ almost surely for some constant Mξ and for all z ∈ Z . Then for all λ > 0,

Pr

{
1
n

n∑
i=1

ξ (zi ) − Eξ ≥ λ

}
≤ exp

{
−

nλ2

2(σ 2
⋆ +

1
3 Mξλ)

}
.

Proof of Proposition 5. Recall that FH denotes the following set of random variables

FH =

{
ξ | ξ (X, Y ) = ℓσ (Y − f (X )) − ℓσ (Y − f ⋆(X )), f ∈ H

}
.

or each ξ ∈ FH, by the fact that the Huber loss (2) is Lipschitz continuous with Lipschitz
onstant 2σ , we have

∥ξ∥∞ ≤ 2σ∥ f − f ⋆
∥∞ ≤ 4Mσ and ∥ξ − Eξ∥∞ ≤ 4σ∥ f − f ⋆

∥∞ ≤ 8Mσ.

ccording to Theorem 2, we know that

Eξ 2
≤ c1∥ f − f ⋆

∥

2(ϵ−1)+
ϵ+1

2,ρ + c2σ
1−ϵ .

By Assumption 2, we know that there exist a finite positive integer J = N (H,
γ

2σ
) and

f j }
J
j=1 ⊂ H such that B( f j , η), j = 1, . . . , J form a γ

2σ
-cover of H. We next show that for

ach j = 1, . . . , J , it holds that

Pr

{⏐⏐[Rσ ( f j ) − Rσ ( f ⋆)] − [Rσ
z ( f j ) − Rσ

z ( f ⋆)]
⏐⏐√

Rσ ( f j ) − Rσ ( f ⋆) + 2γ
>

√
γ

}
≤ e−Θ(n,γ,σ ) (10)

or γ > cϵ

σ ϵ . To see this, we apply the Bernstein inequality in Lemma 6 to the following random
variables

ξ j (X, Y ) = ℓσ (Y − f j (X )) − ℓσ (Y − f ⋆(X )), j = 1, . . . , J,

nd obtain

Pr
{⏐⏐[Rσ ( f j ) − Rσ ( f ⋆)] − [Rσ

z ( f j ) − Rσ
z ( f ⋆)]

⏐⏐ >
√

γ
√
Rσ ( f j ) − Rσ ( f ⋆) + 2γ

}
≤ Pr

{⏐⏐[Rσ ( f j ) − Rσ ( f ⋆)] − [Rσ
z ( f j ) − Rσ

z ( f ⋆)]
⏐⏐ > µ j

√
γ
}

≤ exp

⎧⎪⎪⎨⎪⎪⎩−
nγµ2

j

(8M/3 + c1 + c2)
(

√
γµ jσ + σ 1−ϵ + ∥ f j − f ⋆∥

2(ϵ−1)+
ϵ+1

2,ρ

)
⎫⎪⎪⎬⎪⎪⎭ , (11)

here µ2
j := Rσ ( f j )−Rσ ( f ⋆)+2γ . Since γ > cϵ

σ ϵ , by Theorem 1, we have for j = 1, . . . , J ,

µ2
j = Rσ ( f j ) − Rσ ( f ⋆) + 2γ > Rσ ( f j ) − Rσ ( f ⋆) + cϵσ

−ϵ
+ γ

≥ ∥ f j − f ⋆
∥

2
2,ρ + γ ≥ γ. (12)
16
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e proceed with the proof by considering the two cases when 0 < ϵ ≤ 1 and when ϵ > 1. If
< ϵ ≤ 1, by the assumption σ > 1 and (12), we have

nγµ2
j

(8M/3 + c1 + c2)
(

√
γµ jσ + σ 1−ϵ + ∥ f j − f ⋆∥

2(ϵ−1)+
ϵ+1

2,ρ

)
>

nγµ2
j

2(8M/3 + c1 + c2)
(√

γµ jσ + σ 1−ϵ
) >

nγ

c′

1σ
,

here c′

1 = 2(1 + c−1
ϵ )(8M/3 + c1 + c2). If ϵ > 1, note that (12) implies µ2

j > ∥ f j − f ⋆
∥

2
2,ρ

and µ2
j > γ > cϵσ

−ϵ . We have

nγµ2
j

(8M/3 + c1 + c2)
(

√
γµ jσ + σ 1−ϵ + ∥ f j − f ⋆∥

2(ϵ−1)+
ϵ+1

2,ρ

)
=

nγµ2
j

(8M/3 + c1 + c2)
(

√
γµ jσ + σ 1−ϵ + ∥ f j − f ⋆∥

2(ϵ−1)
ϵ+1

2,ρ

)
>

nγµ2
j

(8M/3 + c1 + c2)
(

√
γµ jσ + σ 1−ϵ + µ

2(ϵ−1)
ϵ+1

j

) >
nγ

c′

2σ
2ϵ

ϵ+1
,

here c′

2 = (8M/3 + c1 + c2)
(

1 + c−1
ϵ + c

−
2

ϵ+1
ϵ

)
. Combining the above estimates for two

ases and recalling (11), we thus have proved the result in (10).
Denote the two events A and B, respectively, as

A =

{
sup
f ∈H

⏐⏐[Rσ ( f ) − Rσ ( f ⋆)] − [Rσ
z ( f ) − Rσ

z ( f ⋆)]
⏐⏐

√
Rσ ( f ) − Rσ ( f ⋆) + 2γ

≤ 4
√

γ

}
and

B =

J⋂
j=1

{⏐⏐[Rσ ( f j ) − Rσ ( f ⋆)] − [Rσ
z ( f j ) − Rσ

z ( f ⋆)]
⏐⏐√

Rσ ( f j ) − Rσ ( f ⋆) + 2γ
≤

√
γ

}
.

e next prove B ⊂ A. To this end, we assume that the event B occurs, that is, for all
j = 1, . . . , J ,⏐⏐[Rσ ( f j ) − Rσ ( f ⋆)] − [Rσ

z ( f j ) − Rσ
z ( f ⋆)]

⏐⏐ ≤

√
γ
(
Rσ ( f j ) − Rσ ( f ⋆) + 2γ

)
. (13)

ecall B( f j , η), j = 1, . . . , J , is a γ

2σ
-cover of H. For every f ∈ H, there exists f j ∈ H such

hat ∥ f − f j∥∞ ≤
γ

2σ
. Since γ > cϵσ

−ϵ , we have

Rσ ( f ) − Rσ ( f ⋆) + 2γ ≥ ∥ f − f ⋆
∥

2
2,ρ − cϵσ

−ϵ
+ 2γ ≥ γ. (14)

herefore, by the Lipschitz continuity of the Huber loss, for each j = 1, . . . , J , we have

|Rσ ( f ) − Rσ ( f j )| ≤ 2σ∥ f − f j∥∞ ≤ γ ≤
√

γ (Rσ ( f ) − Rσ ( f ⋆) + 2γ ), (15)

nd

|Rσ ( f ) − Rσ ( f )| ≤ 2σ∥ f − f ∥ ≤ γ ≤
√

γ Rσ ( f ) − Rσ ( f ⋆) + 2γ . (16)
z z j j ∞ ( )

17
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B

C

S
t

w

N

h

W

y (15) and (14), we also have

Rσ ( f j ) − Rσ ( f ⋆) + 2γ =

(
Rσ ( f j ) − Rσ ( f )

)
+ Rσ ( f ) − Rσ ( f ⋆) + 2γ

≤
√

γ (Rσ ( f ) − Rσ ( f ⋆) + 2γ ) + Rσ ( f ) − Rσ ( f ⋆) + 2γ

≤ 2(Rσ ( f ) − Rσ ( f ⋆) + 2γ ). (17)

ombining the estimates (15), (16), (17) with the assumption (13), we obtain⏐⏐[Rσ ( f ) − Rσ ( f ⋆)] − [Rσ
z ( f ) − Rσ

z ( f ⋆)]
⏐⏐

≤ |Rσ ( f ) − Rσ ( f j )| +
⏐⏐Rσ ( f j ) − Rσ ( f ⋆) − [Rσ

z ( f j ) − Rσ
z ( f ⋆)]

⏐⏐+ |Rσ
z ( f j ) − Rσ

z ( f )|

≤ 2
√

γ (Rσ ( f ) − Rσ ( f ⋆) + 2γ ) +

√
γ
(
Rσ ( f j ) − Rσ ( f ⋆) + 2γ

)
≤ 4

√
γ (Rσ ( f ) − Rσ ( f ⋆) + 2γ ). (18)

ince (18) holds for every f ∈ H, we have proved B ⊂ A or equivalently Ac
⊂ Bc. This

ogether with (10) leads to

Pr

{
sup
f ∈H

⏐⏐[Rσ ( f ) − Rσ ( f ⋆)] − [Rσ
z ( f ) − Rσ

z ( f ⋆)]
⏐⏐

√
Rσ ( f ) − Rσ ( f ⋆) + 2γ

> 4
√

γ

}
= Pr(Ac) ≤ Pr(Bc)

≤

J∑
j=1

Pr

{⏐⏐[Rσ ( f j ) − Rσ ( f ⋆)] − [Rσ
z ( f j ) − Rσ

z ( f ⋆)]
⏐⏐√

Rσ ( f j ) − Rσ ( f ⋆) + 2γ
>

√
γ

}
≤ N

(
H, γ σ−1/2

)
e−Θ(n,γ,σ ).

This completes the proof of Proposition 5. □

6.3.2. Proof of Theorem 3
We first prove that for any 0 < δ < 1, with probability at least 1 − δ/2, we have

[Rσ ( fz,σ ) − Rσ ( f ⋆)] − [Rσ
z ( fz,σ ) − Rσ

z ( f ⋆)] −
1
2

[Rσ ( fz,σ ) − Rσ ( f ⋆)] ≤ 9γ0,

here γ0 is given by

γ0 :=

⎧⎪⎪⎨⎪⎪⎩
O
(

1
σ ϵ + log

( 2
δ

)
σ

n1/(q+1)

)
, if 0 < ϵ ≤ 1,

O
(

1
σ ϵ + log

( 2
δ

) (
σ

q+
2ϵ

1+ϵ

n

)1/(q+1)
)

, if ϵ > 1.
(19)

ote that Proposition 5 implies that, for any γ > cϵσ
−ϵ ,

sup
f ∈H

⏐⏐[Rσ ( f ) − Rσ ( f ⋆)] − [Rσ
z ( f ) − Rσ

z ( f ⋆)]
⏐⏐

√
Rσ ( f ) − Rσ ( f ⋆) + 2γ

< 4
√

γ (20)

olds with probability at least

1 − N
(
H,

γ

2σ

)
e−Θ(n,γ,σ ).

e know from Assumption 2 that

N
(
H,

γ )
≲ exp

{
2qcσ q/γ q} .
2σ
18
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C
F

o

T

C

w

B
i

T

0

w

onsequently, the event (20) holds with probability at least 1 − exp{2qcσ qγ −q
− Θ(n, γ, σ )}.

or any 0 < δ < 1, let

exp{2qcσ qγ −q
− Θ(n, γ, σ )} = δ/2,

r equivalently

2qcσ qγ −q
− Θ(n, γ, σ ) = log(δ/2).

he equation has a unique positive solution γ ∗ satisfying

γ ⋆ ≲

⎧⎪⎪⎨⎪⎪⎩
log

( 2
δ

) (
σ

n1/(q+1)

)
, if ϵ ≤ 1,

log
( 2

δ

) (
σ

q+
2ϵ

1+ϵ

n

)1/(q+1)

, if ϵ > 1.

hoose γ0 = cϵσ
−ϵ

+ γ ⋆. Then γ0 satisfies the condition (19) and for any 0 < δ < 1, with
probability at least 1 − δ/2, it holds that

sup
f ∈H

⏐⏐[Rσ ( f ) − Rσ ( f ⋆)] − [Rσ
z ( f ) − Rσ

z ( f ⋆)]
⏐⏐

√
Rσ ( f ) − Rσ ( f ⋆) + 2γ0

≤ 4
√

γ0,

hich immediately yields

[Rσ ( fz,σ ) − Rσ ( f ⋆)] − [Rσ
z ( fz,σ ) − Rσ

z ( f ⋆)] ≤ 4
√

γ0
√
Rσ ( fz,σ ) − Rσ ( f ⋆) + 2γ0

≤
1
2

(
Rσ ( fz,σ ) − Rσ ( f ⋆)

)
+ 9γ0. (21)

y a similar procedure we can prove that for any 0 < δ < 1, with probability at least 1 − δ/2,
t holds that

[Rσ
z ( fH,σ ) − Rσ

z ( f ⋆)] − [Rσ ( fH,σ ) − Rσ ( f ⋆)] ≤
1
2

(
Rσ ( fH,σ ) − Rσ ( f ⋆)

)
+ 9γ0.

his in connection with the fact that Rσ ( fH,σ ) ≤ Rσ ( fH) and Theorem 1 implies that for any
0 < δ < 1, with probability at least 1 − δ/2, we have

[Rσ
z ( fH,σ ) − Rσ

z ( f ⋆)] − [Rσ ( fH,σ ) − Rσ ( f ⋆)] ≤
1
2
∥ fH − f ⋆

∥
2
2,ρ + 10γ0. (22)

Combining the two estimates in (21) and (22), we come to the conclusion that for any
< δ < 1, with probability at least 1 − δ, it holds that

[Rσ ( fz,σ ) − Rσ ( fH,σ )] − [Rσ
z ( fz,σ ) − Rσ

z ( fH,σ )]

≤
1
2

[
Rσ ( fz,σ ) − Rσ ( f ⋆)

]
+

1
2
∥ fH − f ⋆

∥
2
2,ρ + 19γ0. (23)

On the other hand, from the definitions of fH,σ , fH, and fz,σ , we have

Rσ ( fz,σ ) − Rσ ( f ⋆)

= [Rσ ( fz,σ ) − Rσ ( fH,σ )] + [Rσ ( fH,σ ) − Rσ ( f ⋆)]

≤ [Rσ ( fz,σ ) − Rσ ( fH,σ )] − [Rσ
z ( fz,σ ) − Rσ

z ( fH,σ )] + Rσ ( fH) − Rσ ( f ⋆)

≤ [Rσ ( fz,σ ) − Rσ ( fH,σ )] − [Rσ
z ( fz,σ ) − Rσ

z ( fH,σ )] + ∥ fH − f ⋆
∥

2
2,ρ + cϵσ

−ϵ,

here the first inequality is due to the following two facts
σ σ σ σ
Rz ( fz,σ ) ≤ Rz ( fH,σ ) and R ( fH,σ ) ≤ R ( fH).

19
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B

w

h

y (23), we know that for any 0 < δ < 1, with probability at least 1 − δ, it holds that

Rσ ( fz,σ ) − Rσ ( f ⋆) ≤
1
2

(
Rσ ( fz,σ ) − Rσ ( f ⋆)

)
+

3
2
∥ fH − f ∗

∥
2
2,ρ + 20γ0,

hich implies that

Rσ ( fz,σ ) − Rσ ( f ⋆) ≤ 3∥ fH − f ∗
∥

2
2,ρ + 40γ0

olds with probability at least 1−δ. By Theorem 1 again, we conclude that for any 0 < δ < 1,
with probability at least 1 − δ, it holds that

∥ fz,σ − f ⋆
∥

2
2,ρ ≲ ∥ fH − f ⋆

∥
2
2,ρ + γ0.

Recalling the definition of Ψ and noticing that γ0 ≲ log(2/δ)Ψ , we complete the proof of
Theorem 3.

7. Concluding remarks

In this paper, we studied the Huber regression problem by investigating the empirical risk
minimization scheme induced by the Huber loss. In a statistical learning setup, our study
answered the four fundamental questions raised in the introduction: the Rσ -risk consistency is
insufficient in ensuring their convergence to the mean regression function; the scale parameter
σ plays a trade-off role in bias and learnability; fast exponential-type convergence rates can
be established under (1 + ϵ)-moment conditions (ϵ > 0) by relaxing the standard Bernstein
condition and allowing some additional small bias term; the merit of Huber regression in terms
of the robustness can be reflected by its learnability under the (1 + ϵ)-moment conditions
which are considered to be weak conditions in that heavy-tailed noise can be accommodated
in regression problems. Moreover, it was shown that with higher moment conditions being
imposed, one can obtain faster convergence rates. In the above senses, we conducted a complete
and systematic statistical learning assessment of Huber regression estimators.

We remark that in the present study a general hypothesis space H is considered. In practice,
the implementation of learning with Huber regression requires to specify a particular hypothesis
space. It can be a reproducing kernel Hilbert space, a neural network, or other families
of functions. Functions in such a hypothesis space are generally not uniformly bounded.
Regularization could be used to restrict the searching region of the Huber regression scheme
and consequently controls the capacity of the working hypothesis space. The techniques
developed in this study may still be applicable to assessing the regularized Huber regression
schemes. Additionally, the development of these techniques for assessing Huber regression
estimators may also shed light on the analysis of other robust regression schemes.
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