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Abstract

Mortgage data is often skewed, has missing information, and is contaminated by
outliers. When mortgage companies or banks make prediction of note rates for new
applicants, robust regression models are usually selected to deal with outliers. In this
paper, we utilize deep neural network to predict the loan rate and compare its
performance with three classical robust regression models. Two real mortgage data
sets are used in this comparison. The results show that deep neural network has the
best performance and therefore is recommended.
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1 Introduction

The decision of mortgage loan rate is important for both applicants and mortgage
companies or banks. On the one hand, a high price in mortgage loan rate could push
applicants away to other companies. On the other hand, a low price could decrease
the profit of the mortgage company or bank. Therefore, appropriate pricing of
mortgage loan rate is critical for both lenders and borrowers. It not only provides
fair loan rates to the applicants but also helps control the default risk of borrowers
and thus protects the interest of mortgage companies.
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Statistical analysis is an important tool to price the note rate, which is the rate the
mortgage company or banks set for borrowers to calculate the principal and interest
payments monthly. While the classical multiple linear regression (MLR) is often
used to set up the loan rate based on the information of applicants, it has some well-
known drawbacks. First, MLR is optimal only when the residuals follow a normal
distribution. The prediction may be suboptimal or inaccurate when this assumption
is violated which is more often for financial data sets and large data sets. Second,
when the data contains highly correlated predictors, the multicollinearity among
parameters can cause the unstable prediction. Third, the note rate as the response
variable in the regression model is often right skewed with heavy tails which
violates the assumption of normality of residuals. When MLR is used, not only
outliers may inevitably be present, but the large values at the right tail may cause
overestimate of note rates for most common applicants. MLR is not robust and
therefore is not good at dealing with heavy tails and outliers. The prediction by
multiple linear regression may be incorrect.

In order to overcome the challenges mentioned above, robust regression models
are often alternatively considered to predict note rates for borrowers. Common
robust models include the Huber regression model (Huber, 1992), the Random
Sample Consensus (RANSAS) regression model (Fischler & Bolles, 1981), and the
Theil-Sen regression model (Dang et al., 2008), to name a few. These robust models
can provide more reliable prediction compared with the classical MLR, especially if
there are outliers in the data sets, and therefore are able to help mortgage companies
or banks make better decisions.

Deep learning (LeCun et al., 2015) as a branch of machine learning, has been
shown to be successful in many fields, such as image classification (Chan et al.,
2015; Perez & Wang, 2017), speech recognition (Deng et al., 2013; Noda et al.,
2015), language translation (Young et al., 2018; Deng & Liu, 2018), and etc. One of
the main advantages of deep learning is to use unsupervised or semi-supervised
algorithms to extract features efficiently (Bengio et al., 2013). A deep feedforward
neural network (Schmidhuber, 2015) consists of several layers in the model and the
nodes between layers are fully connected. When it is used for regression analysis, no
prior assumptions like normality of residuals are needed. This makes it a reasonable
choice for the prediction of note rate for mortgage data.

Despite the drawbacks mentioned above, MLR and their variants are still the
primary models used in mortgage business; see e.g. (Page, 1964; Courchane, 2007).
The 2008 financial crisis has triggered increasing application of risk based mortgage
pricing model (Edelberg, 2006; White, 2004; Magri & Pico, 2011; Magri, 2018).
While it takes a variety of risk factors into account and adjusts for the selection bias,
the prediction of mortgage rates for approved applicants is still based on linear
regression models. As the great success of modern machine learning and artificial
intelligence in data processing and predictive analytics is triggering significant
changes in human life, business models, and industries, especially in the fields of
automation, robotics, and online sales, to our best knowledge, their adoption in
mortgage rate prediction seems sparse. In recent literature some machine learning
approaches such as boosted regression tree, random forests, and convolutional
neural networks were used for mortgage default prediction (Fitzpatrick & Mues,
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2016; Kvamme et al., 2018). Although default prediction provides critical
information for the mortgage companies to make decisions, they do not directly
help determine the appropriate interest rates. In this paper, we apply three robust
regression models and the deep feedforward neural network in mortgage data
analysis to predict the note rates. Their performance is compared and the superiority
of deep learning approach is illustrated by two case studies .

The rest of this paper is organized as follows. In Section 2 three classical robust
models are reviewed. In Section 3 we describe the feedforward neural network. In
Section 4 we describe two data sets used for this study, and perform the data
analysis using the four approaches, and thoroughly compare the results. We close
with the conclusions in Section 5.

2 Robust Regression Models

Multivariate regression analysis investigates the relationship between dependent

variable y and a vector of d independent variables x = (x1,x2, . . .,x;). The aim is to
estimate a function f given a set of n paired observations
(i = (Xi1,%i2, - Xigq),¥i), i = 1,2,...,n, drawn according to the model

yi = f(xi,0) + &,

where 6 is a vector of model representation parameters and ¢; are the residuals. In
the mortgage rate prediction problem, the response variable is the loan rate. The
predictors may include but not limited to the attributes of the applicants such as
credit score and household income, the property value, the loan structure such as
loan term and prepayment penalty provision, and so on. They can vary from
companies to companies, from business lines to business lines, and between prime
and subprime markets.
When the linear model is considered, it becomes

yi=x0+¢

and @ is a vector of slope parameters. The classical multiple linear regression adopts
least squares loss and 8 € R? is solved by

The optimality of the classical MLR highly depends on the normality assumption of
the residuals. When this assumption is violated by heavy tails or outliers, MLR may
be unreliable and robust regression models stand out.

2.1 Huber Regression
Huber regression (Huber, 2004) uses the so-called Huber’s loss to replace the least

squares loss in the minimization problem to solve the parameters 6. It takes the form
of
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where ¢ is the Huber’s loss:

o= { o M=o 1)

2/tlo —o*, |t >0

and ¢ > 0 is a tunable parameter. Huber’s loss is the same as the traditional least
squares loss if the residuals are less than the threshold o. But when the residuals are
large, Huber’s loss increases linearly, resulting less penalty placed on the residuals.
This minimizes the impact of outliers and makes Huber regression more robust.
Figure 1 illustrate the difference between Huber’s loss and the least square loss.

Several other alternative losses can play a similar role and help produce robust
estimators, for instance, the Tukey’s biweight loss (Beaton & Tukey, 1974), the
Welsch’s loss (Dennis & Welsch, 1978), and the Cauchy loss (Geman & McClure,
1985), to name just a few.

2.2 Random Sample Consensus Regression

Random sample consensus (RANSAC) regression (Fischler & Bolles, 1981) is
another robust regression model. Its main idea is to split the data into two sets: the
inlier set and the outlier set. A good model should be fit only with observations from
the inlier set. It utilizes an iteration process to search for good models. In each
iteration, a subset S of m of randomly selected observations is used to fit the model.
On the one hand, m should be minimal to reduce the possibility of including outliers
and on the other hand, it should also be large enough to reliably estimate all

0
-4 -3 -2 -1 0 1 2 3 4

Fig. 1 Huber loss with ¢ = 1 (the bottom green curve) versus the least square square loss (the upper blue
curve). Figure source: https://en.wikipedia.org/wiki/Huber_loss
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unknown parameters. For instance, if a multiple linear regression model is fit,
m should be at least larger than the dimension of the data. Next, residuals are
calculated for all observations and a predefined tolerance level is used to split the
data into inlier set and outlier set. The inlier set consisting of observations with
residuals smaller than the tolerance level is called the consensus set. A new model is
then refit on the consensus set. This process is repeated multiple times until a
stopping criterion is met.

Depending on the accuracy needs, RANSAC can exit the iteration process and
output the final model in two different ways: one can exit once a large enough
consensus set is found, say, if the size of the consensus set is larger than a certain
proportion of whole data set (Fischler & Bolles, 1981), or one can also iterate the
model generating process multiple times, generate multiple models, and select the
one with the smallest error (Forsyth & Ponce, 2012).

If one believes the proportion of ourliers is no more than 7, the probability for
RANSAC algorithm to output a successful model after T iterations is

m\T
g=(1-(1=p").
This gives the choice of number of iterations as

B logg
log(1—(1-9)")

The error tolerance or the threshold on the consensus set size can be selected in a
numerical way or based on a prior assumption (Fischler & Bolles, 1981; Raguram
et al., 2012).

The algorithm is illustrated in Algorithm 1 below.

Algorithm 1 RANSAC regression algorithm.

Require:

The number of points in subset, m;
The error tolerance level, 7;
The maximum number of iterations, T’;
The minimal required proportion for acceptable consensus sets, p;
Ensure:
1: Randomly choose a subset S of m observations and fit a regression model based on S;
2. Calculate the residuals and define the consensus set S according to the error tolerance level 7;
3: Refit the classical regression model based on the consensus set S
4: Repeat Step 1 to Step 3 until S has more than pn observations or a maximum number T' of iterations
have been repeated;
5: return Y = f(z,6);

2.3 Theil-Sen Regression

Theil-Sen regression (Theil, 1992; Sen, 1968; Dang et al., 2008) is a bootstrapping
like approach. It estimates the model parameters many times based on randomly
selected subsets and utilizes the the median of the estimated parameters to produce
the final regression model. Due to its computational efficiency and outlier
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resistance, it has been used in a variety of scientific fields such as astronomy
(Akritas et al., 1995), climatology (Romani¢ et al., 2015), and bitcoin price
prediction (Phaladisailoed & Numnonda, 2018).

The implementation of Theil-Sen regression is illustrated in Algorithm 2. It
requires to specify the number of observations k in a subset, which should be at least
larger than the number of features. The other parameter is the the number of subsets
H, which controls the number of regression models.

Algorithm 2 Theil Sen regression algorithm.

Require:
The number of observations in each subset, k;
The number of subsets, H;
Ensure:
1: Randomly sample a subset of k observations from the original data set;
2: Fit a classical MLR model based on the subset from Step 1 to get § = f(X, 0);
3: Repeat Step 1 and Step 2 until H models are produced.
4: Collect u estimated parameters 07 - - - Oy;
5

. return 6 = median(fy - - - 6,,);

3 Deep Neural Network (DNN)

While the history of artificial neural network learning can be traced back to 1940s,
its blossom is attributed to its great success in the industry more recently. Due to the
fast development of computer hardware and increasing computing power, nowadays
neural network learning is able to handle large scale data and produces highly
accurate models. This makes it play increasing roles in numerous scientific and
business fields, especially in artificial intelligence. A typical artificial neural
network includes three parts: the input layer consists of the d features of the input
data, with each feature represented by a node. The output layers produce values that
are used for decision making. For regression analysis, it has one node and produces
one value that is used to predict the response for the given input data. For
classification problems, the output may contain several nodes which determine the
correct class labels. The layers between the input layer and out layer are called
hidden layers. A neural network can have one or multiple hidden layers. In
feedforward neural networks, the nodes between layers are fully connected. Each
layer is computed from its precedent layer by an affine linear mapping and an
activation function. Mathematically, let v;; denote the i-th node of the /-th layer and
k; be the number of nodes in the /-the layer. With notations for the input layer
denoted by vo; = x; and kg = d, for each /> 1 and 1 <i <k,

ki—1
Vi = ¢ E wrijvi-1j + by |,
Jj=1

where w;;; € R, b;; € R, and ¢ is an activation function. The most popular choices
for the activation function include the tanh, sigmoid, and the rectified linear acti-
vation function (ReLU). Figure 2 shows an example of FNN with two hidden layers.
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hidden layers

input layer

Fig. 2 A DNN with two hidden layers, figure source: [Nielsen, 2019, Chapter 1]

The universal approximation theorem for neural networks (Hornik, 1991) asserts
that all continuous functions can be approximated by shallow nets, that is, neural
networks with only one hidden layer. However, there are increasing empirical
evidences that neural networks with multiple layers, called deep neural networks
(DNNs), are more powerful (Schmidhuber, 2015; LeCun et al., 2015; Goodfellow
et al., 2016). This is also supported by some recent theoretical studies (Poggio et al.,
2017; Chui et al., 2019).

The training of a neural network relies on a cost function C(y, y) which measures
the error when the neural network outputs a value y while the true response value
(i.e. the note rate) is y. Typical choices for the cost function include the mean
squared error function for regression analysis and cross entropy for classification.
Gradient descent is usually used to implement the parameter estimation with the
gradient calculated by back propagation. Let @ denote the vector of all weights wy;;
and all offset b;; parameters. The update equation at the #-th step is

oC
0, =0,_, —17@,

where n > 0 is the learning rate (also called step size).

4 Case Study

Two data sets from the National Mortgage Data Repository (NMDR) are used for
this study. One data set has 2180 observations and the other has 2345 observations.
There are many features to describe each loan and due to similarity of features, only
some of them are chosen to build the robust regression and neural network models.
These independent variables are Fair Isaac credit score, document of loan, risk type
of loan, prepay penalty term, month of loan closed, combined loan to value ratio
(CLTV) and length of residents. Among these variables, Fair Isaac credit score,
combined loan to value ratio (CLTV) and length of residents are numeric. The
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document of loan, risk type of loan, prepay penalty term, and month of loan closed
are categorical. The document of loan has two types of forms (full document or not);
the risk type of loan has four types based on the application risk grade level (AA,
A+ and A-, B, C and C-); the prepay penalty term has three types based on the
terms (none, 1 to 3 years, 5 years); and the month of loan refers to the time from
loan application to close. Although it is is a numerical variable, it has only three
possible values (3 months, 5 months, 6 months) and it is more appropriate to treat it
as categorical variable. The variable noterate is the response variable. Table 1
summaries the variables.

Figure 3 shows the histograms of response variable noterate of the two data sets.
Both show very right skewed distributions.

In our analysis, all numeric variables are normalized so that all values fall in the
range of [0, 1]. This helps convert all variables into the common scale and avoid
dominance of variables with big scale. Binary dummy variables taking values O or 1
are used to deal with categorical variables of more than two categories. For instance,
the risk type of loan has four types. We use three binary variables to numerically
represent them: type AA is represented as (1, 0, 0), type A+ is represented as (0, 1,
0), type A- is represented as (0, 0, 1) and type B is represented as (0, 0, 0).

After preprocessing the data, K-fold cross-validation is used to evaluate the
performance of models. It randomly splits the data into K equal groups or folds.
Then K — 1 groups are used to fit the model and the prediction error on the
remaining group is used to evaluate the performance of the model. Two evaluation
metrics will be used. First, to minimize the impact of the heavy tails in skewed data,
we adopt the mean absolute error (MAE) as the primary evaluation metric to
compare robust regression approaches. The appropriateness of this metric is
obvious. A large absolute error means the predicted rate is either too high or too
low. If the predicted note rate is substantially higher than expected, the applicant
will be pushed away. If the predicted rate is too low, many risky applicants will be
attracted due to antiselection. Second, we also look at the mean residual and its 95%
confidence intervals. The underlying idea is as follows: prediction error is
unavoidable regardless of the models used. A low MAE itself is insufficient to
measure the risk of the mortgage business. To see this, note that a model
consistently underestimating the loan rates may hurt the business by reduced
profitability or possible insolvency even if it has a low MAE. Therefore, it is

Table 1 Independent and

dependent variables Name Type
Independent  Fair Isaac credit score Numerical
Document loan Categorical
Risk type of loan Categorical
Prepay penalty term Categorical
Month of loan closed Categorical

Combined loan to value ratio (CLTV)  Numerical
Length of residents Numerical

Dependent Noterate Numerical
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Fig. 3 Histogram of the response variable noterate

necessary for the overestimate and underestimate of loan rate to be balanced and
compensate each other. The mean of residuals close to 0 is a good indicator for this
consideration.

In our analysis, three robust regression models are performed with the scikit-
learn package (Pedregosa et al. 2011) in Python and all hyper-parameters are set
at default values. For DNN, three hidden layers are used with 10 nodes in the first
hidden layer, 8 nodes in the second hidden layer, and 6 nodes in the third hidden
layer. All layers use tanh activation function. Mean square error is used as the cost
function. Stochastic gradient descent algorithm with a batch size of 64 and epoch of
100 is used to train the weights.

We tried four different values of K (K =5, 10, 15,20) and repeated the K fold
cross validation evaluation process 5 times to remove the impact of randomness for

Table 2 MAE, mean residual, and 95% Confidence Interval for the first Data Set

K-fold CV Model Mean Residual 95% CI MAE
K=5 Huber —0.0348 (—0.0493, —0.0203) 0.6110
RANSAC —0.0973 (—0.1133, —0.0814) 0.6683
Theil-Sen —0.0920 (—0.1069, —0.0772) 0.6242
DNN 0.0164 (0.0022, 0.0306) 0.5926
K=10 Huber —0.0348 (—0.0492, —0.0203) 0.6105
RANSAC —0.1153 (—0.1314, —0.0991) 0.6727
Theil-Sen —0.0939 (—0.1088, —0.0791) 0.6242
DNN —0.0001 (—0.0141, 0.0141) 0.5863
K=15 Huber —0.0345 (—0.0490, —0.0201) 0.6105
RANSAC —0.1132 (—0.1293, —0.0971) 0.6664
Theil-Sen —0.0927 (—0.1075, —0.0778) 0.6243
DNN —0.0030 (—0.0171, 0.0111) 0.5870
K=20 Huber —0.0346 (—0.0491, —0.0202) 0.6105
RANSAC —0.1185 (—0.1347, —0.1023) 0.6737
Theil-Sen —0.0928 (—0.1076, —0.0779) 0.6242
DNN —0.0076 (—0.0218, 0.0065) 0.5873
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Table 3 MAE, mean residual and 95% Confidence Interval for the second Data Set

K-fold CV Model Mean Residual 95% CI MAE
K=5 Huber —0.0304 (—0.0445, —0.0164) 0.6107
RANSAC —0.1037 (—0.1195, —0.0879) 0.6860
Theil-Sen —0.0969 (—0.1114, —0.0825) 0.6272
DNN —0.0137 (—0.0274, 0.0001) 0.5932
K=10 Huber —0.0299 (—0.0439, —0.0159) 0.6107
RANSAC —0.1016 (—0.1173, —0.0859) 0.6807
Theil-Sen —0.0958 (—0.1102, —0.0814) 0.6268
DNN —0.0085 (—0.0222, 0.0052) 0.5927
K=15 Huber —0.0302 (—0.0442, —0.0162) 0.6104
RANSAC —0.0898 (—0.1054, —0.0742) 0.6749
Theil-Sen —0.0960 (—0.1104, —0.0816) 0.6267
DNN —0.0055 (—0.0192, 0.0081) 0.5865
K=20 Huber —0.0300 (—0.0440, —0.0160) 0.6104
RANSAC —0.0975 (—0.1130, —0.0820) 0.6719
Theil-Sen —0.0961 (—0.1105, —0.0817) 0.6265
DNN —0.0038 (—0.0174, 0.0099) 0.5893

-2
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Huber RANSAC Theil Sen FNN Huber RANSAC Theil Sen FNN

(a) k=5 (b) k=10

~

=}
t
i
i
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Huber RANSAC Theil Sen FNN Huber RANSAC Theil Sen FNN

(c) k=15 (d) k=20

Fig. 4 Box-plot of residuals for different K and models for 1st data
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Fig. 5 Box-plot of residuals for different K and models for 2nd data

stable comparison of the four different approaches. The MAE and mean residuals of
all four approaches on the two data sets are reported in Tables 2 and 3. The results
show that in all situations DNN has the smallest MAE and mean residuals closest to
0. We also performed randomization tests to compute the 95% confidence intervals
for mean residual. A randomization test is robust approach to perform statistical
hypothesis testing and compute confidence intervals when no prior assumption can
be reasonably made on the data distribution due to the skewness; see e.g. (Givens &
Hoeting, 2012). All tests are based on 5000 permutations. If the 95% confidence
interval contains 0, the truth mean residual is likely to be close 0 with 95%
probability. It supplements the evaluation by an empirically calculated mean
residual. From the 95% confidence intervals reported in Tables 2 and 3, it seems that
all three robust regression methods slightly underestimate the loan rate. In all but
one case (K = 5 for the first data set), the 95% confidence intervals for DNN include
0, indicating that DNN predicts the loan rate at the right level.

To visualize the distribution of residuals for better understanding the perfor-
mance of the four approaches, boxplots of residuals are shown in Figures 4 and 5 for
the two data sets respectively. They show that Huber regression model gives the
narrowest confidence interval, RANSAC model has the widest confidence interval,
and DNN has the mean residual closest to 0. Moreover, DNN gives better prediction
for the tails.

@ Springer



D. Wang et al.

5 Conclusions

In this paper, we considered the mortgage rate prediction problem. The classical
multiple linear regression is usually suboptimal due to violation of normality and
presence of outliers. Three robust regression methods and deep neural networks are
suggested and compared on two real data sets. Deep neural network is shown to
make better prediction. It not only gives the minimal mean absolute error, but also
has a mean residual closest to zero in most situations. Therefore, deep neural
network is recommended for practice use by mortgage companies or banks.
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