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Abstract
Mortgage data is often skewed, has missing information, and is contaminated by

outliers. When mortgage companies or banks make prediction of note rates for new

applicants, robust regression models are usually selected to deal with outliers. In this

paper, we utilize deep neural network to predict the loan rate and compare its

performance with three classical robust regression models. Two real mortgage data

sets are used in this comparison. The results show that deep neural network has the

best performance and therefore is recommended.

Keywords Mortgage rate prediction � Deep neural network � Huber

regression � Random sample consensus � Theil–Sen regression

1 Introduction

The decision of mortgage loan rate is important for both applicants and mortgage

companies or banks. On the one hand, a high price in mortgage loan rate could push

applicants away to other companies. On the other hand, a low price could decrease

the profit of the mortgage company or bank. Therefore, appropriate pricing of

mortgage loan rate is critical for both lenders and borrowers. It not only provides

fair loan rates to the applicants but also helps control the default risk of borrowers

and thus protects the interest of mortgage companies.
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Statistical analysis is an important tool to price the note rate, which is the rate the

mortgage company or banks set for borrowers to calculate the principal and interest

payments monthly. While the classical multiple linear regression (MLR) is often

used to set up the loan rate based on the information of applicants, it has some well-

known drawbacks. First, MLR is optimal only when the residuals follow a normal

distribution. The prediction may be suboptimal or inaccurate when this assumption

is violated which is more often for financial data sets and large data sets. Second,

when the data contains highly correlated predictors, the multicollinearity among

parameters can cause the unstable prediction. Third, the note rate as the response

variable in the regression model is often right skewed with heavy tails which

violates the assumption of normality of residuals. When MLR is used, not only

outliers may inevitably be present, but the large values at the right tail may cause

overestimate of note rates for most common applicants. MLR is not robust and

therefore is not good at dealing with heavy tails and outliers. The prediction by

multiple linear regression may be incorrect.

In order to overcome the challenges mentioned above, robust regression models

are often alternatively considered to predict note rates for borrowers. Common

robust models include the Huber regression model (Huber, 1992), the Random

Sample Consensus (RANSAS) regression model (Fischler & Bolles, 1981), and the

Theil–Sen regression model (Dang et al., 2008), to name a few. These robust models

can provide more reliable prediction compared with the classical MLR, especially if

there are outliers in the data sets, and therefore are able to help mortgage companies

or banks make better decisions.

Deep learning (LeCun et al., 2015) as a branch of machine learning, has been

shown to be successful in many fields, such as image classification (Chan et al.,

2015; Perez & Wang, 2017), speech recognition (Deng et al., 2013; Noda et al.,

2015), language translation (Young et al., 2018; Deng & Liu, 2018), and etc. One of

the main advantages of deep learning is to use unsupervised or semi-supervised

algorithms to extract features efficiently (Bengio et al., 2013). A deep feedforward

neural network (Schmidhuber, 2015) consists of several layers in the model and the

nodes between layers are fully connected. When it is used for regression analysis, no

prior assumptions like normality of residuals are needed. This makes it a reasonable

choice for the prediction of note rate for mortgage data.

Despite the drawbacks mentioned above, MLR and their variants are still the

primary models used in mortgage business; see e.g. (Page, 1964; Courchane, 2007).

The 2008 financial crisis has triggered increasing application of risk based mortgage

pricing model (Edelberg, 2006; White, 2004; Magri & Pico, 2011; Magri, 2018).

While it takes a variety of risk factors into account and adjusts for the selection bias,

the prediction of mortgage rates for approved applicants is still based on linear

regression models. As the great success of modern machine learning and artificial

intelligence in data processing and predictive analytics is triggering significant

changes in human life, business models, and industries, especially in the fields of

automation, robotics, and online sales, to our best knowledge, their adoption in

mortgage rate prediction seems sparse. In recent literature some machine learning

approaches such as boosted regression tree, random forests, and convolutional

neural networks were used for mortgage default prediction (Fitzpatrick & Mues,
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2016; Kvamme et al., 2018). Although default prediction provides critical

information for the mortgage companies to make decisions, they do not directly

help determine the appropriate interest rates. In this paper, we apply three robust

regression models and the deep feedforward neural network in mortgage data

analysis to predict the note rates. Their performance is compared and the superiority

of deep learning approach is illustrated by two case studies .

The rest of this paper is organized as follows. In Section 2 three classical robust

models are reviewed. In Section 3 we describe the feedforward neural network. In

Section 4 we describe two data sets used for this study, and perform the data

analysis using the four approaches, and thoroughly compare the results. We close

with the conclusions in Section 5.

2 Robust Regression Models

Multivariate regression analysis investigates the relationship between dependent

variable y and a vector of d independent variables x ¼ ðx1; x2; . . .; xdÞ. The aim is to

estimate a function f̂ given a set of n paired observations

ðxi ¼ ðxi;1; xi;2; . . .; xi;dÞ; yiÞ, i ¼ 1; 2; . . .; n; drawn according to the model

yi ¼ f ðxi; hÞ þ ei;

where h is a vector of model representation parameters and ei are the residuals. In

the mortgage rate prediction problem, the response variable is the loan rate. The

predictors may include but not limited to the attributes of the applicants such as

credit score and household income, the property value, the loan structure such as

loan term and prepayment penalty provision, and so on. They can vary from

companies to companies, from business lines to business lines, and between prime

and subprime markets.

When the linear model is considered, it becomes

yi ¼ x>i hþ ei

and h is a vector of slope parameters. The classical multiple linear regression adopts

least squares loss and h 2 Rd is solved by

min
h

Xn

i¼1

yi � xi
>h

� �2
:

The optimality of the classical MLR highly depends on the normality assumption of

the residuals. When this assumption is violated by heavy tails or outliers, MLR may

be unreliable and robust regression models stand out.

2.1 Huber Regression

Huber regression (Huber, 2004) uses the so-called Huber’s loss to replace the least

squares loss in the minimization problem to solve the parameters h. It takes the form

of
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min
h

Xn

i¼1

u yi � xi
Th

� �
;

where u is the Huber’s loss:

uðtÞ ¼ t2; jtj � r

2jtjr� r2; jtj[ r

�
ð1Þ

and r[ 0 is a tunable parameter. Huber’s loss is the same as the traditional least

squares loss if the residuals are less than the threshold r. But when the residuals are

large, Huber’s loss increases linearly, resulting less penalty placed on the residuals.

This minimizes the impact of outliers and makes Huber regression more robust.

Figure 1 illustrate the difference between Huber’s loss and the least square loss.

Several other alternative losses can play a similar role and help produce robust

estimators, for instance, the Tukey’s biweight loss (Beaton & Tukey, 1974), the

Welsch’s loss (Dennis & Welsch, 1978), and the Cauchy loss (Geman & McClure,

1985), to name just a few.

2.2 Random Sample Consensus Regression

Random sample consensus (RANSAC) regression (Fischler & Bolles, 1981) is

another robust regression model. Its main idea is to split the data into two sets: the

inlier set and the outlier set. A good model should be fit only with observations from

the inlier set. It utilizes an iteration process to search for good models. In each

iteration, a subset S of m of randomly selected observations is used to fit the model.

On the one hand, m should be minimal to reduce the possibility of including outliers

and on the other hand, it should also be large enough to reliably estimate all

Fig. 1 Huber loss with r ¼ 1 (the bottom green curve) versus the least square square loss (the upper blue
curve). Figure source: https://en.wikipedia.org/wiki/Huber_loss
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unknown parameters. For instance, if a multiple linear regression model is fit,

m should be at least larger than the dimension of the data. Next, residuals are

calculated for all observations and a predefined tolerance level is used to split the

data into inlier set and outlier set. The inlier set consisting of observations with

residuals smaller than the tolerance level is called the consensus set. A new model is

then refit on the consensus set. This process is repeated multiple times until a

stopping criterion is met.

Depending on the accuracy needs, RANSAC can exit the iteration process and

output the final model in two different ways: one can exit once a large enough

consensus set is found, say, if the size of the consensus set is larger than a certain

proportion of whole data set (Fischler & Bolles, 1981), or one can also iterate the

model generating process multiple times, generate multiple models, and select the

one with the smallest error (Forsyth & Ponce, 2012).

If one believes the proportion of ourliers is no more than c, the probability for

RANSAC algorithm to output a successful model after T iterations is

g ¼ 1 � ð1 � cÞmð ÞT :

This gives the choice of number of iterations as

T ¼ log g

logð1 � ð1 � cÞmÞ :

The error tolerance or the threshold on the consensus set size can be selected in a

numerical way or based on a prior assumption (Fischler & Bolles, 1981; Raguram

et al., 2012).

The algorithm is illustrated in Algorithm 1 below.

2.3 Theil–Sen Regression

Theil–Sen regression (Theil, 1992; Sen, 1968; Dang et al., 2008) is a bootstrapping

like approach. It estimates the model parameters many times based on randomly

selected subsets and utilizes the the median of the estimated parameters to produce

the final regression model. Due to its computational efficiency and outlier
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resistance, it has been used in a variety of scientific fields such as astronomy

(Akritas et al., 1995), climatology (Romanić et al., 2015), and bitcoin price

prediction (Phaladisailoed & Numnonda, 2018).

The implementation of Theil–Sen regression is illustrated in Algorithm 2. It

requires to specify the number of observations k in a subset, which should be at least

larger than the number of features. The other parameter is the the number of subsets

H, which controls the number of regression models.

3 Deep Neural Network (DNN)

While the history of artificial neural network learning can be traced back to 1940s,

its blossom is attributed to its great success in the industry more recently. Due to the

fast development of computer hardware and increasing computing power, nowadays

neural network learning is able to handle large scale data and produces highly

accurate models. This makes it play increasing roles in numerous scientific and

business fields, especially in artificial intelligence. A typical artificial neural

network includes three parts: the input layer consists of the d features of the input

data, with each feature represented by a node. The output layers produce values that

are used for decision making. For regression analysis, it has one node and produces

one value that is used to predict the response for the given input data. For

classification problems, the output may contain several nodes which determine the

correct class labels. The layers between the input layer and out layer are called

hidden layers. A neural network can have one or multiple hidden layers. In

feedforward neural networks, the nodes between layers are fully connected. Each

layer is computed from its precedent layer by an affine linear mapping and an

activation function. Mathematically, let vl;i denote the i-th node of the l-th layer and

kl be the number of nodes in the l-the layer. With notations for the input layer

denoted by v0;i ¼ xi and k0 ¼ d; for each l� 1 and 1� i� kl,

vk;i ¼ /
Xkl�1

j¼1

wl;i;jvl�1;j þ bl;i

 !
;

where wl;i;j 2 R; bl;i 2 R, and / is an activation function. The most popular choices

for the activation function include the tanh, sigmoid, and the rectified linear acti-

vation function (ReLU). Figure 2 shows an example of FNN with two hidden layers.
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The universal approximation theorem for neural networks (Hornik, 1991) asserts

that all continuous functions can be approximated by shallow nets, that is, neural

networks with only one hidden layer. However, there are increasing empirical

evidences that neural networks with multiple layers, called deep neural networks

(DNNs), are more powerful (Schmidhuber, 2015; LeCun et al., 2015; Goodfellow

et al., 2016). This is also supported by some recent theoretical studies (Poggio et al.,

2017; Chui et al., 2019).

The training of a neural network relies on a cost function Cðy; ŷÞ which measures

the error when the neural network outputs a value ŷ while the true response value

(i.e. the note rate) is y. Typical choices for the cost function include the mean

squared error function for regression analysis and cross entropy for classification.

Gradient descent is usually used to implement the parameter estimation with the

gradient calculated by back propagation. Let h denote the vector of all weights wl;i;j

and all offset bl;i parameters. The update equation at the t-th step is

ht ¼ ht�1 � g
oC

oh
;

where g[ 0 is the learning rate (also called step size).

4 Case Study

Two data sets from the National Mortgage Data Repository (NMDR) are used for

this study. One data set has 2180 observations and the other has 2345 observations.

There are many features to describe each loan and due to similarity of features, only

some of them are chosen to build the robust regression and neural network models.

These independent variables are Fair Isaac credit score, document of loan, risk type
of loan, prepay penalty term, month of loan closed, combined loan to value ratio
(CLTV) and length of residents. Among these variables, Fair Isaac credit score,

combined loan to value ratio (CLTV) and length of residents are numeric. The

Fig. 2 A DNN with two hidden layers, figure source: [Nielsen, 2019, Chapter 1]
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document of loan, risk type of loan, prepay penalty term, and month of loan closed
are categorical. The document of loan has two types of forms (full document or not);

the risk type of loan has four types based on the application risk grade level (AA,

A? and A-, B, C and C-); the prepay penalty term has three types based on the

terms (none, 1 to 3 years, 5 years); and the month of loan refers to the time from

loan application to close. Although it is is a numerical variable, it has only three

possible values (3 months, 5 months, 6 months) and it is more appropriate to treat it

as categorical variable. The variable noterate is the response variable. Table 1

summaries the variables.

Figure 3 shows the histograms of response variable noterate of the two data sets.

Both show very right skewed distributions.

In our analysis, all numeric variables are normalized so that all values fall in the

range of [0, 1]. This helps convert all variables into the common scale and avoid

dominance of variables with big scale. Binary dummy variables taking values 0 or 1

are used to deal with categorical variables of more than two categories. For instance,

the risk type of loan has four types. We use three binary variables to numerically

represent them: type AA is represented as (1, 0, 0), type A? is represented as (0, 1,

0), type A- is represented as (0, 0, 1) and type B is represented as (0, 0, 0).

After preprocessing the data, K-fold cross-validation is used to evaluate the

performance of models. It randomly splits the data into K equal groups or folds.

Then K � 1 groups are used to fit the model and the prediction error on the

remaining group is used to evaluate the performance of the model. Two evaluation

metrics will be used. First, to minimize the impact of the heavy tails in skewed data,

we adopt the mean absolute error (MAE) as the primary evaluation metric to

compare robust regression approaches. The appropriateness of this metric is

obvious. A large absolute error means the predicted rate is either too high or too

low. If the predicted note rate is substantially higher than expected, the applicant

will be pushed away. If the predicted rate is too low, many risky applicants will be

attracted due to antiselection. Second, we also look at the mean residual and its 95%

confidence intervals. The underlying idea is as follows: prediction error is

unavoidable regardless of the models used. A low MAE itself is insufficient to

measure the risk of the mortgage business. To see this, note that a model

consistently underestimating the loan rates may hurt the business by reduced

profitability or possible insolvency even if it has a low MAE. Therefore, it is

Table 1 Independent and

dependent variables
Name Type

Independent Fair Isaac credit score Numerical

Document loan Categorical

Risk type of loan Categorical

Prepay penalty term Categorical

Month of loan closed Categorical

Combined loan to value ratio (CLTV) Numerical

Length of residents Numerical

Dependent Noterate Numerical
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necessary for the overestimate and underestimate of loan rate to be balanced and

compensate each other. The mean of residuals close to 0 is a good indicator for this

consideration.

In our analysis, three robust regression models are performed with the scikit-
learn package (Pedregosa et al. 2011) in Python and all hyper-parameters are set

at default values. For DNN, three hidden layers are used with 10 nodes in the first

hidden layer, 8 nodes in the second hidden layer, and 6 nodes in the third hidden

layer. All layers use tanh activation function. Mean square error is used as the cost

function. Stochastic gradient descent algorithm with a batch size of 64 and epoch of

100 is used to train the weights.

We tried four different values of K (K ¼ 5; 10; 15; 20) and repeated the K fold

cross validation evaluation process 5 times to remove the impact of randomness for

Fig. 3 Histogram of the response variable noterate

Table 2 MAE, mean residual, and 95% Confidence Interval for the first Data Set

K-fold CV Model Mean Residual 95% CI MAE

K=5 Huber �0.0348 (�0.0493, �0.0203) 0.6110

RANSAC �0.0973 (�0.1133, �0.0814) 0.6683

Theil–Sen �0.0920 (�0.1069, �0.0772) 0.6242

DNN 0.0164 (0.0022, 0.0306) 0.5926

K=10 Huber �0.0348 (�0.0492, �0.0203) 0.6105

RANSAC �0.1153 (�0.1314, �0.0991) 0.6727

Theil–Sen �0.0939 (�0.1088, �0.0791) 0.6242

DNN �0.0001 (�0.0141, 0.0141) 0.5863

K=15 Huber �0.0345 (�0.0490, �0.0201) 0.6105

RANSAC �0.1132 (�0.1293, �0.0971) 0.6664

Theil–Sen �0.0927 (�0.1075, �0.0778) 0.6243

DNN �0.0030 (�0.0171, 0.0111) 0.5870

K=20 Huber �0.0346 (�0.0491, �0.0202) 0.6105

RANSAC �0.1185 (�0.1347, �0.1023) 0.6737

Theil–Sen �0.0928 (�0.1076, �0.0779) 0.6242

DNN �0.0076 (�0.0218, 0.0065) 0.5873
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Table 3 MAE, mean residual and 95% Confidence Interval for the second Data Set

K-fold CV Model Mean Residual 95% CI MAE

K=5 Huber �0.0304 (�0.0445, �0.0164) 0.6107

RANSAC �0.1037 (�0.1195, �0.0879) 0.6860

Theil–Sen �0.0969 (�0.1114, �0.0825) 0.6272

DNN �0.0137 (�0.0274, 0.0001) 0.5932

K=10 Huber �0.0299 (�0.0439, �0.0159) 0.6107

RANSAC �0.1016 (�0.1173, �0.0859) 0.6807

Theil–Sen �0.0958 (�0.1102, �0.0814) 0.6268

DNN �0.0085 (�0.0222, 0.0052) 0.5927

K=15 Huber �0.0302 (�0.0442, �0.0162) 0.6104

RANSAC �0.0898 (�0.1054, �0.0742) 0.6749

Theil–Sen �0.0960 (�0.1104, �0.0816) 0.6267

DNN �0.0055 (�0.0192, 0.0081) 0.5865

K=20 Huber �0.0300 (�0.0440, �0.0160) 0.6104

RANSAC �0.0975 (�0.1130, �0.0820) 0.6719

Theil–Sen �0.0961 (�0.1105, �0.0817) 0.6265

DNN �0.0038 (�0.0174, 0.0099) 0.5893

Fig. 4 Box-plot of residuals for different K and models for 1st data
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stable comparison of the four different approaches. The MAE and mean residuals of

all four approaches on the two data sets are reported in Tables 2 and 3. The results

show that in all situations DNN has the smallest MAE and mean residuals closest to

0. We also performed randomization tests to compute the 95% confidence intervals

for mean residual. A randomization test is robust approach to perform statistical

hypothesis testing and compute confidence intervals when no prior assumption can

be reasonably made on the data distribution due to the skewness; see e.g. (Givens &

Hoeting, 2012). All tests are based on 5000 permutations. If the 95% confidence

interval contains 0, the truth mean residual is likely to be close 0 with 95%

probability. It supplements the evaluation by an empirically calculated mean

residual. From the 95% confidence intervals reported in Tables 2 and 3, it seems that

all three robust regression methods slightly underestimate the loan rate. In all but

one case (K ¼ 5 for the first data set), the 95% confidence intervals for DNN include

0, indicating that DNN predicts the loan rate at the right level.

To visualize the distribution of residuals for better understanding the perfor-

mance of the four approaches, boxplots of residuals are shown in Figures 4 and 5 for

the two data sets respectively. They show that Huber regression model gives the

narrowest confidence interval, RANSAC model has the widest confidence interval,

and DNN has the mean residual closest to 0. Moreover, DNN gives better prediction

for the tails.

Fig. 5 Box-plot of residuals for different K and models for 2nd data
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5 Conclusions

In this paper, we considered the mortgage rate prediction problem. The classical

multiple linear regression is usually suboptimal due to violation of normality and

presence of outliers. Three robust regression methods and deep neural networks are

suggested and compared on two real data sets. Deep neural network is shown to

make better prediction. It not only gives the minimal mean absolute error, but also

has a mean residual closest to zero in most situations. Therefore, deep neural

network is recommended for practice use by mortgage companies or banks.
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Romanić, D., Ćurić, M., Jovičić, I., & Lompar, M. (2015). Long-term trends of the ‘koshava’wind during

the period 1949–2010. International Journal of Climatology, 35(2), 288–302.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85–117.

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of the American
Statistical Association, 63(324), 1379–1389.

Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s
Contributions to Economics and Econometrics (pp. 345–381). Springer.

White, A. M. (2004). Risk-based mortgage pricing: Present and future research. Housing Policy Debate,
15(3), 503–531.

123

Prediction of Loan Rate for Mortgage Data: Deep Learning Versus…

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com
http://arxiv.org/abs/1712.04621


Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent trends in deep learning based natural

language processing. IEEE Computational Intelligence Magazine, 13(3), 55–75.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

D. Wang et al.


	Prediction of Loan Rate for Mortgage Data: Deep Learning Versus Robust Regression
	Abstract
	Introduction
	Robust Regression Models
	Huber Regression
	Random Sample Consensus Regression
	Theil--Sen Regression

	Deep Neural Network (DNN)
	Case Study
	Conclusions
	Author Contributions
	Code Availability
	References




