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Abstract. Based on hyperbolic geometric considerations, Roger and Yang introduced an

extension of the Kauffman bracket skein algebra that includes arcs. In particular, their

skein algebra is a deformation quantization of a certain commutative curve algebra, and

there is a Poisson algebra homomorphism between the curve algebra and the algebra of

smooth functions on decorated Teichmüller space. In this paper, we consider surfaces with

punctures which are not the 3-holed sphere and which have an ideal triangulation without

self-folded edges or triangles. For those surfaces, we prove that Roger and Yang’s Poisson

algebra homomorphism is injective, and the skein algebra has no zero divisors. A section

about generalized corner coordinates for normal arcs may be of independent interest.
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1. Introduction

Let † be a closed surface with finitely many punctures. Defined by Penner [19],

the decorated Teichmüller space T
d .†/ consists of complete, finite area hyper-

bolic metrics on † that come with a choice of horoball around each puncture.

This paper describes progress in a program initiated by Roger and Yang in [23] to

establish a certain skein algebra �h.†/ as a quantization of T
d .†/.

One of Roger and Yang’s objective was to extend the rich body of work

showing that the Kauffman bracket skein algebra is a quantization of the usual

Teichmüller space, via the SL2-character variety [4, 5, 6, 7, 12, 21, 24]. In

particular, they introduced an extension �h.†/ of the Kauffman bracket skein

algebra to the case of punctured surfaces that uses arcs. Observe that, in contrast

to the usual Teichmüller space, in T
d .†/ one can assign a length to arcs that go

from puncture to puncture, by truncating at the horoballs. This way of assigning

lengths leads to the so-called lambda-length functions which parameterize T
d .†/

(see [19]). Roger and Yang’s skein algebra �h.†/ is generated by both framed arcs

and loops, and an indeterminate variable for each of the punctures that accounts

for the size of the horoballs decorations. Besides the two usual Kauffman bracket

skein relations, �h.†/ has two more which, by design, match the relations between

lambda-length functions of arcs. For the definition of �h.†/, see Section 10.

Roger and Yang also define a commutative curve algebra C.†/ generated by

loops and arcs in † (see Section 2 for the relations), and they show that it has a
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Poisson bracket that generalizes the Goldman bracket formula for the Kauffman

bracket skein algebra. Furthermore, there is a Poisson algebra homomorphism

ˆWC.†/ �! C 1.T d .†//; (1.1)

where C 1.T d .†// is the algebra of C-valued smooth functions on T
d .†/. The

Poisson structure on C 1.T d .†// is an extension of the Weil-Petersson Poisson

structure [20] whose action on lambda-length functions was explicitly computed

by [16].

Roger and Yang show that the skein algebra, �h.†/ is a deformation quanti-

zation of C.†/ ([23, Theorem 1.1]). It then follows that �h.†/ seems a likely

candidate for quantization of T
d .†/. However, there remain several technical

hurdles to the program Roger and Yang sketched out.

1.1. Main results. The main purpose of this paper is to present progress toward

the biggest obstacle, which Roger and Yang conjectured, as below.

Conjecture 1.1 ([23, Conjecture 3.17]). The Poisson algebra homomorphism ˆ

in (1.1) is injective.

In this paper, we provide an overall strategy for proving the conjecture, and

carry it out in full for locally planar surfaces, which are surfaces that have an ideal

triangulation without self-folded edges or triangles (and is not the three-puncture

sphere). Note that for any surface, if we drill enough extra points, then it becomes

locally planar. The following two theorems are the main results of this paper.

Theorem A (Theorem 3.1). If † has an ideal triangulation such that no edge of
the triangulation is a zero divisor in C.†/, then ˆ in (1.1) is injective.

Theorem B (Theorem 5.1). If † is locally planar, then no edge of a locally planar
triangulation is a zero divisor in C.†/. In particular, ˆ in (1.1) is injective.

An interesting algebraic consequence of the injectivity of ˆ is the following,

which is proved in Section 10.3.

Theorem C (Theorem 10.5). If Conjecture 1.1 is true, then C.†/ and its quanti-
zation �h.†/ are domains. In particular, if † is locally planar, C.†/ and �h.†/

are domains.

A similar statement for the Kauffman bracket skein algebra SA.†/ appeared

in [21, 22], and was a necessary step in showing that when A D ˙1, S˙1.†/ is

isomorphic with the coordinate ring of the SL2-character variety [4, 7].
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In addition, we developed a generalization of the theory of normal curves on a

surface (as in [15]) to describe normal arcs. Whereas the corner coordinates of a

normal loop is an integer, the generalized corner coordinate of a normal arc ending

at a puncture is the negative fraction �1
2
. The generalized corner coordinates

satisfy the usual matching equation at edges. See Section 6, which may be of

independent interest in combinatorial topology.

1.2. Summary of the proof. We give here a brief summary of the main points

of the proofs of Theorems A and B.

The key insight for Theorem A is to consider the localization S�1
C.†/ by

the multiplicative set S that is generated by edges of an ideal triangulation. If

�i denotes the lambda-length function of the i-th edge of the triangulation, we

show that ˆWC.†/ ! C 1.T d .†// factors through CŒ�˙
i � and its localized map

‰WS�1
C.†/ ! CŒ�˙

i � is an isomorphism. Furthermore, we show that if none

of the edges are zero divisors, then the localization map LWC.†/! S�1
C.†/ is

injective. This implies the injectivity of ˆ. See Section 3.

The proof of Theorem B is significantly more complicated, and we only

mention some interesting points here. The proof is outlined in Section 5 and

takes up Sections 6–9. The goal is to show that given any edge e in a locally

planar triangulation, ˇ ¤ 0 implies eˇ ¤ 0 for every ˇ 2 C.†/. When ˇ D ˛i ,

representing a single reduced multicurve class (no self-crossings or turn-backs

inside a triangle, and no component is a trivial loop or loop around a puncture),

that e˛i ¤ 0 is fairly obvious, since e˛i is a linear combination of distinct, linearly

independent resolutions. However, it is not so obvious when ˇ D
P

j 2I fj j̨ is

a CŒv˙
i �-linear combination of reduced multicurves ˛i . In particular, we must

understand the various ways that resolutions of e˛i and e j̨ could cancel out in

eˇ, in order to rule out the scenario where all the resolutions cancel each other

out in eˇ.

Our solution is to define an order on the reduced multicurves and to consider

resolutions that produce “leading terms” according to that order. In particular, we

consider the two resolutions of e˛i without turnbacks, the so-called positive and

negative resolutions, Pe.˛i / and Ne.˛i /, respectively. Our strategy is to explicitly

find an ˛i component of ˇ so that the positive resolution Pe.˛i / becomes the

leading term of eˇ. Although this strategy is very much inspired by similar results

and techniques developed for the Kauffman bracket skein algebra, e.g. recently in

[22, 10], multiplying by arcs leads to complications not present when only looking

at loops. For example, in the Roger–Yang skein algebra, there are numerous cases

where ˛i ¤ j̨ but Pe.˛i / D Ne. j̨ /, even when ˛i and j̨ have the same order.
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We found that most natural and reasonably simple choices of order produced such

examples, so cancellations in eˇ were consistently an issue. See Remark 1.2

below.

To understand when cancellations happen, we needed a very precise descrip-

tion of the positive and negative resolutions, which we found tractable in the lo-

cally planar case. In the larger non-locally planar examples that we examined, the

positive and negative resolutions can simplify in very unexpected ways, and find-

ing explicit formulas for them seemed to require ad hoc methods. We nonetheless

believe that our method should still work; namely, that it is possible to show that

no edge of a triangulation zero divisor, even when the triangulation is not locally

planar.

We close this section with a few remarks.

Remark 1.2. In the algebraic viewpoint, a natural way to attack Theorem B is as

follows. First, introduce a total order � on the generating set of multicurves of

C.†/. Next, establish a particular resolution R which is a �-preserving map, i.e.,

so that ˛ � ˇ implies R˛ � Rˇ, and R˛ is the leading term in e˛. Finally, prove

that for any ˇ D
P

j 2I fj j̨ , if ˛0 is the leading term, then R˛0 is the nonzero

leading term of eˇ, thus eˇ ¤ 0. For example, such an algebraic scheme was

successfully implemented for the Kauffman skein algebra, [22, 10].

In our context, there are a number of natural candidates for R. However, as

we mentioned briefly above, we were unable to find a total order � satisfying the

algebraic scheme just described. Various, different issues arose, mainly because

of the existence of arc classes. Thus we decided to use a partial order, and relied

on some extra tie-breaking conditions when necessary.

Remark 1.3. It is known that Conjecture 1.1 is true for the non-locally planar

cases of the three-puncture sphere and one-punctured torus. One can directly

compute, or use the presentations of the Roger–Yang skein algebra from [3], to

show that no edge is a zero divisor.

Remark 1.4. A natural way to extend Theorem B to arbitrary † is to drill new

punctures and get another pointed surface †0 which is locally planar, and then

compare C.†/ and C.†0/. However, the lack of functorial morphisms makes

comparing C.†/ and C.†0/ difficult.

Remark 1.5. The proof of the three main theorems are completely independent

from the choice of base ring. So one may use arbitrary commutative ring A instead

of C, with a replacement of C 1.T d .†// by the ring of A-valued functions on

T
d .†/.
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1.3. An extended remark about the Muller skein algebra. At about the same

time as Roger and Yang used hyperbolic geometry to motivate the algebras C.†/

and �h.†/ for punctured surfaces, Muller [18] used the theory of cluster algebras

to define a different set of algebras for surfaces with marked points on its boundary.

Both theories relate to the decorated Teichmüller space T d .†/, and so they are

expected to be parallel in many ways. However, explicit connections between the

two points of view are still lacking.

To start, the algebra generated by lambda-length functions of edges of an ideal

triangulation forms a cluster algebra A1.†/, so that T
d .†/ has a cluster manifold

structure ([11], see also [9]). This result applies for any surface with markings.

This includes the case of a surface with punctures (the † studied in this paper), and

a surface with non-empty boundary and marked points on the boundary (which,

to contrast, we denote by y†).

In the latter case, Muller in [18] defined three related algebras related to

T
d .y†/. Based on the work of [1], he defined a quantum cluster algebra Aq.y†/

and an upper quantum cluster algebra Uq.y†/ associated to y†. When q D 1,

the quantum cluster algebra corresponds to A1.y†/ in the previous paragraph. In

addition, Muller also defined a skein algebra Skq.y†/ that is generated by framed

loops and arcs which end at the marked points on the boundary components.

Muller showed that there are natural inclusions

Aq.y†/ � T �1 Skq.y†/ � Uq.y†/ (1.2)

where T �1 Skq.y†/ is the non-commutative localization of Skq.y†/ by T , the set

containing the boundary parallel curves. When there are two or more marked

points on each boundary component, the inclusions are equalities, so that the

skein algebra is identical to the two quantum cluster algebras. Up to localization,

T �1 Sk1.y†/ becomes isomorphic to the algebraic coordinate ring O.T d .y†//.

Returning to the case of punctured surfaces that we study in this paper, at least

for the classical case (q D 1 or h D 0), we expect that Roger and Yang’s skein

algebra �h.†/ fits into a similar framework. The cluster algebra A1.†/ coming

from T
d .†/ is generated by arc classes and ‘decorated’ arc classes ([9]). We

expect that the decoration can be understood by using vertex classes, and there is

an injective homomorphism

A1.†/ �! C.†/ D S0.†/ (1.3)

regardless of the local planarity of † ([17]). Furthermore, the proof of Lemma 3.2

tells us that every curve class ˛ is a Laurent polynomial with respect to ¹eiº in a

fixed (arbitrary) triangulation. Similarly, by applying the second skein relation in
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Definition 2.4, we may conclude that each vie1e2 is a linear combination of arc

classes, so vi is also a Laurent polynomial with respect to ¹eiº. This observation

suggests a connection between C.†/ and U1.†/. In the specific case where † is

a one-punctured torus, C.†/ is a localization of U1.†/ (see [17]), but in general,

a precise relation between them is still not yet known.

The analogy between the Roger–Yang and Muller algebras may extend also

to the more algebraic geometric approach of Fock and Goncharov. In [8], they

described how to understandA1.y†/ as a coordinate ring of a certain moduli space

of decorated SL2 local systems. It would be really interesting to have an analogous

statement for †, i.e., find a moduli space B.†/ whose coordinate ring (or Cox ring)

O.B.†// is isomorphic to C.†/.

1.4. Structure of the paper. Section 2 reviews the main points of [23]. In

particular, we define the curve algebra C.†/, the decorated Teichmüller space

T
d .†/, and the map ˆ. Theorem A is proven in Section 3. Section 4 is a very

short section introducing locally planar surfaces. The proof of Theorem B is

outlined in Section 5, and the details appear in Sections 6–9. Note that in Section 6

we generalize the theory of normal curves on surfaces for normal arcs, and this

may be of independent interest. In Section 10 we define Roger–Yang’s skein

algebra �h.†/, and we prove Theorem C.

Acknowledgements. The authors thank Tian Yang and Francis Bonahon for

helpful discussions, and the referees for many valuable suggestions.

2. Background: Roger and Yang’s curve algebra

and decorated Teichmüller space

2.1. Triangulation. We begin with some notation for a surface with triangula-

tion.

Let x† be a compact Riemann surface without boundary and V D ¹viº be a

finite set of points in x†. Then † WD x† n V is a punctured surface and V is the set

of its punctures.

For a triangulation T D .V; E; T / of a compact Riemann surface x†, let V be the

set of vertices, E be the set of edges, and T be the set of triangles. A triangulation

for a punctured surface † D x† n V is a triangulation of x† whose vertex set is V .

A corner of T is a pair .v; �/ where � 2 T is a triangle and v 2 V is a vertex

of �. Let C be the set of all corners of T.
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2.2. Curve classes on a punctured surface. Let † D x† n V be a punctured

surface. A loop in † is an immersion of a circle into x† that is disjoint from V .

An arc in † is a map of a closed finite interval into x† such that the interior of the

interval is immersed into x† n V , and the endpoints of the interval are mapped to

(one or two points in) V . A multicurve in † is a union of finitely many loops and

arcs in †. Note that more than one component of a multicurve may have endpoints

at the same puncture. If ˛ and ˇ are two multicurves, then we denote their union,

which is again a multicurve, by ˛ � ˇ or ˛ˇ.

We will consider multicurves up to regular homotopy, as defined in detail in

[23, 25]. In practice, this means that we allow Reidemeister II and III moves,

but not Reidemeister I moves, on diagrams. We assume that multicurves are in

general position and although many arcs can end at a vertex, only double points

occur in the interior. For simplicity, we say that a double point in the interior form

an interior crossing, and endpoints at the same vertex form an endpoint crossing.

Let T be a fixed triangulation of †. We may further assume that our curve class

˛ is general with respect to this triangulation. By this we mean that for any edge

e 2 E, if ˛ intersects the relative interior of e then the intersection is transversal

and if ˛ ends at a vertex v, then any component of ˛ does not tangent to any edge

e 2 E at v, except the case that e is a component of ˛.

A trivial loop in † is a loop bounding a disk in x† that contains no punctures,

and a puncture loop in † is a loop bounding a disk in x† that contains exactly one

puncture.

Definition 2.1. Let † be a surface with a triangulation T. We say that a multicurve

˛ on † is normal if it is an embedding (thus no crossings at all), and there are no

turn-backs inside any triangle. A multicurve is reduced if it is a normal multicurve

such that no component is a trivial loop or a puncture loop.

By convention, the empty set ; is a reduced multicurve. Note that, since a

normal multicurve has no crossings, there is at most one arc component ending

at a vertex, and therefore a normal multicurve is the union of disjoint simple arcs

and loops.

If all of the components of a normal multicurve are loops, we may also call it

a normal multiloop. Let NMC be the set of isotopy classes of normal multicurves

and NML be the set of isotopy classes of normal multiloops. Let RMC be the set

of isotopy classes of reduced multicurves on †. Let RML be the subset of isotopy

classes of reduced multiloops.

Remark 2.2. (1) The definition of a normal multiloop above is the same as that

of normal curve in [15, Section 3.2].
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(2) Note that, as sets, the isotopy classes NMC, NML, RMC, and RML are inde-

pendent from a choice of triangulation. This is because we can always perform an

isotopy on a multicurve without crossings so that it is has no turn-backs and is in

general position with respect to any triangulation.

2.3. Decorated Teichmüller space. Suppose for the moment that �.†/ < 0 so

that the surface † with punctures V admits a hyperbolic metric. In [19], Penner

introduced the decorated Teichmüller space T
d .†/ to be the space of pairs .m; r/

where m is a complete hyperbolic metric on † with finite area, regarded up to

an isometry that is isotopic to the identity map, and r WV ! R is a function

which assigns a length r.v/ horocycle to each puncture v 2 V . The decoration

of horocycles r allows us to measure the length of arcs in †. In particular, given

some .m; r/ 2 T
d .†/ and an arc ˛, the length `.˛/ is, up to sign, the length in the

metric m of the part of the geodesic representative of ˛ between the horocycles

described by r . When ˛ is a reduced loop (meaning it is not a trivial or puncture

loop), its length `.˛/ is the usual one determined by m.

Define the lambda-length to be �.˛/ D e`.˛/=2 when ˛ is an arc class, and

�.˛/ D 2 cosh `.˛/
2

when ˛ is a loop. The decorated Teichmüller space is param-

eterized by the lambda-length functions; more specifically we have the following

theorem due to Penner.

Theorem 2.3 ([19, Theorem 3.1]). Let ¹e1; � � � ; enº be the set of edges of a
triangulation T of †. Then there is a homeomorphism

�W T d .†/ �! Rn
>0

which maps each edge ei to its lambda-length �i D �.ei /.

Note that T
d .†/ is a Zariski-dense semi-algebraic set in the complex n-

dimensional torus SpecCŒ�˙
i �1�i�n Š .C�/n. More precisely, T

d .†/ is the set of

positive real points .C�/n.R>0/ in .C�/n. There are no algebraic relations between

the �i ’s.

2.4. The curve algebra C .†/ of loops and arcs in a punctured surface. To

define the curve algebra C.†/, we associate an indeterminate vi for each puncture

in V , and further assume that the formal inverse v�1
i exists. (Note, by a slight

abuse of notation, we use vi for both a puncture and its associated indeterminate

variable.) Let CŒv˙1
i � denote that C-algebra generated by ¹v˙1

i º.
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Definition 2.4. The (classical) curve algebra C.†/ is the CŒv˙1
i �-algebra freely

generated by the multicurves in † modded out by the following relations:

�

 

C

!

;1)

vi �

 

C

!

;2)

C 2;3)

� 2;4)

where the diagrams in the relations are assumed to be identical outside of the

small balls depicted, and the i-th vertex vi is depicted in the second relation.

Multiplication of elements in C.†/ is the one induced by taking the union of

multicurves in †, and the unit is the empty curve ;.

Figure 2.1 shows how the skein relations are applied when more than two

strands cross at a vertex.

vi D C D C C

Figure 2.1. Skein relations are applied to a crossing at the i-th vertex, and then to a crossing

in the interior.

Remark 2.5 (on vector notation). We will make the following notational conven-

tion, to use in the following proposition and throughout the rest of the paper. When

we need to describe a tuple of objects, we use a boldface letter. For instance, for

a finite subset ¹v1; v2; � � � ; vnº of a commutative algebra R and an integral vector

m D .m1; m2; � � � ; mn/, vm D
Qn

iD1 v
mi

i .

Proposition 2.6 ([23, Remark 2.5, Proposition 2.10]). Let W be the C-vector
space generated by RMC. Then C.†/ Š W ˝CŒv˙

i �. In other words, any ˇ 2 C.†/

can be written uniquely as a finite sum
X

m2ZV

ˇmvm;

where ˇm is a C-linear combination of elements in RMC and vm is a monomial in
CŒv˙

i �. And ˇ 2 C.†/ can also be written uniquely as a finite sum
X

j 2I

fj .v˙
i / j̨

where j̨ 2 RMC and fj .v˙
i / 2 CŒv˙

i �.
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Although C.†/ is in itself interesting from the algebraic point of view, it

is its relationship with hyperbolic geometry that is most intriguing. Indeed, its

definition grew out of a study of the decorated Teichmüller space of the punctured

surface †, and we will describe this relationship in the next section.

2.5. The Poisson algebra structures of T
d.†/ and C .†/. Let C 1.T d .†//

be the space of C-valued smooth functions on the decorated Teichmüller space.

The algebra C 1.T d .†// admits a Poisson structure which is an extension of the

Weil-Petersson Poisson structure on the usual Teichmüller space [20]. To describe

the Poisson bracket, one can use the lambda-length functions �i (or equivalently,

the length functions `.˛/) that we introduced in Section 2.3 .

The Poisson bracket for the lambda-length functions was explicitly computed

in [16]. Although we will not need it in this paper, we include formulas of it here

for the sake of completeness. Fix a triangulation T on †. For notational simplicity,

assume that two ends of any edge are different vertices. For an edge ˛, let `.˛/

be the normalized length of ˛. For two edges ˛; ˇ 2 E which meet at v, let �v be

the generalized angle (equal to the length of the part of the horocycle) from ˛ to

ˇ in the positive direction, and � 0
v be the generalized angle from ˇ to ˛. Then the

following bi-vector field

…WP D
1

4

X

v2V

X

˛;ˇ2E

˛\ˇDv

� 0
v � �v

r.v/

@

@`.˛/
^

@

@`.ˇ/

defines the Poisson bracket on C 1.T d .†//.

On the other hand, Roger and Yang in [23] show that the curve algebra C.†/

admits a Poisson structure using a bracket ¹ ; º that generalizes Goldman’s con-

struction for loops on a closed surface. The generalized Goldman bracket on C.†/

is a bilinear map ¹ ; ºWC.†/� C.†/! C.†/ satisfying:

(1) for any v 2 V and ˇ 2 C.†/, ¹v; ˇº D 0;

(2) for ˛; ˇ 2 RMC,

¹˛; ˇº WD
1

2

X

p2˛\ˇ\†

..˛ˇ/C
p � .˛ˇ/�

p /C
1

4

X

v2˛\ˇ\V

1

v
..˛ˇ/C

v � .˛ˇ/�
v /;

where .˛ˇ/˙
x denotes two resolutions (called positive/negative resolutions

(Definition 7.1)) of ˛ˇ at the point x.

Roger and Yang were able to show that the lambda-length functions satisfy the

skein relations of the curve algebra C.†/, and moreover, there is a map ˆ which

respects the Poisson brackets of C.†/ and C 1.T d .†//.
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Theorem 2.7 ([23, Theorem 3.4]). For any vertex v, set ˆ.v/ D r.v/, the length
of the horocycle around v, and for any non-self intersecting arc or reduced loop ˛,
set ˆ.˛/ D �.˛/, the lambda-length function of ˛.

Then there exists a well-defined map ˆWC.†/! C 1.T d .†// which extends
uniquely the map ˆ before. Furthermore, ˆ is a Poisson algebra homomorphism
with respect to the generalized Goldman bracket on C.†/ and the Weil-Petersson
Poisson bracket on C 1.T d .†//.

3. Proof of Theorem A

The following appeared as Theorem A in the introduction.

Theorem 3.1. If † has an ideal triangulation such that no edge of the triangula-
tion is a zero divisor in C.†/, then ˆ in (1.1) is injective.

Several lemmas will build up to the proof. Let T D .V; E; T / be a (not

necessarily locally planar) triangulation on † with edges ¹eiº1�i�n. For any vector

m D .mi /1�i�n 2 .Z�0/n, we define em to be the monomial e
m1

1 e
m2

2 � � � e
mn

n .

Let S D ¹em j m 2 .Z�0/nº be the set of all monomials with variables in ¹eiº.

Then S is a multiplicative subset of C.†/. Thus, we may consider the localization

S�1
C.†/, consisting of formal fractions ˇ

em where ˇ 2 C.†/ and em 2 S . Let L

denote the associated localization map LWC.†/! S�1
C.†/.

Lemma 3.2. The localization S�1
C.†/ is generated by the set ¹e˙

i º of edges and
their formal inverses.

Proof. Let R be the subring of S�1
C.†/ generated by ¹e˙

i º.

First consider the case where ˛ is a multicurve. Lemma 3.18 of [23] says that

if m is the vector whose i-th coordinate is the intersection number of ˛ and the

edge ei , then the product em˛ 2 C.†/ can be expressed as a polynomial with

variables in ¹eiº. It follows that ˛, when regarded as an element of S�1
C.†/, can

be expressed as a polynomial with respect to ¹e˙
i º. Therefore ˛ is in R.

Next consider the case of a vertex v. Let e1; e2 be two (not necessarily distinct)

edges ending at v. Then by using the second relation in Definition 2.4, we obtain

ve1e2 as a linear combination of multicurves. By the previous case, we have

ve1e2 2 R. Since edges e1; e2 2 S are invertible, then v 2 R as well. �

Returning to the proof of Theorem 3.1, recall that ˆWC.†/ ! C 1.T d .†//

denotes the Poisson algebra homomorphism from [23], which we introduced in

Section 2.5. For every edge ei , let us denote ˆ.ei / D �.ei / by �i .
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Lemma 3.3. ˆ factors through CŒ�˙
i � � C 1.T d .†//.

Proof. By Lemma 3.2, for any linear combination of generalized curves and

vertex classes ˇ 2 C.†/, there is some em 2 S such that emˇ is a polynomial

with respect to ¹eiº. Therefore ˆ.emˇ/ 2 CŒ�˙
i �. But ˆ.emˇ/ D ˆ.em/ˆ.ˇ/.

Notice that ˆ maps every edge ei to a unit in CŒ�˙
i �. So ˆ.em/ 2 CŒ�˙

i � is a unit.

Thus ˆ.ˇ/ 2 CŒ�˙
i �, as desired. �

By the Universal Property of Localization, there is a unique homomorphism

‰WS�1
C.†/! CŒ�˙

i � so that the following diagram commutes:

C.†/ C 1.T d .†//

S�1
C.†/ CŒ�˙

i �

 

!

 ! L

 

!
ˆ

 

!
‰

 
-

!id (3.1)

Lemma 3.4. The localized map ‰ is an isomorphism.

Proof. Consider the map „WCŒ�˙
i �! S�1

C.†/ which sends �i to ei . Then „ is

an algebra homomorphism such that ‰ı„ D id
CŒ�˙

i
�
, implying that „ is injective.

By Lemma 3.2, any generator of S�1
C.†/ can be written as a Laurent polynomial

with respect to ¹eiº. Thus „ is surjective. Hence „ and ‰ are bijective. �

The proof now falls easily from the previous lemmas.

Proof of Theorem 3.1. If no ei is a zero divisor, then S will not contain any zero

divisors. It follows that the localization map LWC.†/ ! S�1
C.†/ is injective.

Indeed, suppose that L.˛/ D L.ˇ/. By the definition of localization, there is

em 2 S such that em.˛�ˇ/ D 0. But because em is not a zero-divisor, ˛ D ˇ. By

Lemma 3.4, ˆ is injective because it is a composition of injective morphisms. �

4. Locally planar surfaces

Definition 4.1. A locally planar triangulation of † is a triangulation T D

.V; E; T / of x†, where † D x† n V such that

(1) there is no 1-cycle or 2-cycle in the 1-skeleton of T;

(2) † is not the three-punctured sphere.

In that case, we also say that a surface † is locally planar.
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In other words, a locally planar triangulation (except for the three-punctured

sphere) is one where no edge is self-folded, with both endpoints at the same vertex,

and where no pair of edges have the same pair of endpoints. Obvious examples of

non-locally planar surfaces are the one- and two- punctured surfaces. On the other

hand, the four-punctured sphere, which has a tetrahedral triangulation, is locally

planar. It is evident that any triangulation can be refined to a locally planar one

by introducing more vertices. Indeed, by [13, Theorem 1.1] and a standard Euler

characteristic computation, one can show that † is locally planar if and only if

jV j �

8

<

:

l

7C
p

1C48g

2

m

; g ¤ 2

10; g D 2;

where g is the genus of x†.

Locally planar triangulations T satisfy the following properties.

(1) There is no self-folded triangle in T .

(2) For any v 2 V , the star Star.v/ WD
S

v2�2T � has at least three triangles.

(3) For any edge e, the relative interior of the star Star.e/ WD
S

e\�¤; � (see

Figure 7.3) is contractible. No two triangles can be identified because other-

wise there must be a two-cycle connecting v and w. Also any internal edge

cannot be identified with a boundary edge. Thus the map int Star.e/! x† is

a continuous embedding.

However, note that it is possible that two boundary edges of @ Star.e/ are identified

in a locally planar triangulation.

5. Outline of the proof of Theorem B

For the convenience of the reader, we here give an outline and purpose of each of

Sections 6–9 in proving the next main result of this paper.

Theorem 5.1. If † is locally planar, then no edge of a locally planar triangulation
is a zero divisor in C.†/. In particular, ˆ in (1.1) is injective.

Before proving Theorem 5.1, in Section 6 we introduce an extension of the

theory of normal curves on surfaces, as in Chapter 3 of [15]. In the usual theory,

normal loops on a surface correspond to integer-valued corner coordinates that

satisfy a matching condition at each edge. In the extended theory, normal multi-

curves (recall Definition 2.1) now correspond to integer- and half-integer-valued
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generalized corner coordinates that also satisfy the same matching conditions at

each edge, and some other obvious conditions.

Let e be an edge of a locally planar triangulation of †, and 
 2 C.†/. We

here outline a proof that e
 ¤ 0. We refer the reader to the appropriate sections,

as mentioned below, for formal definitions and detailed proofs.

(1) Since the set of reduced multicurves RMC generates C.†/, in Section 7 we

focus first on the resolutions of e [ ˛ where ˛ 2 RMC. We pick out the two,

the positive resolution Pe.˛/ and the negative resolution Ne.˛/, where all the

intersections are resolved in the same direction. We give explicit formulas for

their generalized corner coordinates.

(2) In Section 8 we define an ordering on RMC, which we call edge degree dege.

Given a finite set of reduced multicurves, we may now determine which are

leading terms with respect to dege, i.e. which have the highest degree. We

apply this to the case when ˛ 2 RMC, and e˛ is a finite linear combination

of resolutions. Lemma 8.3 shows that, with respect to dege, the resolutions

Pe.˛/ and Ne.˛/ are the only possible leading terms of e˛.

(3) Next, we consider C-linear combinations of reduced multicurves, say some

non-zero ˇ D
P

k2I ck˛k and ck 2 C. Then eˇ D
P

k2I ck.e˛k/ is a CŒv˙
i �-

linear combination of resolutions of all the e˛k . We wish to understand when

resolutions of the e˛k could cancel each other out in eˇ.

(a) Proposition 8.6 shows that for ˛ 2 RMC, the maps ˛ 7! Pe.˛/ and

˛ 7! Ne.˛/ are injective. In other words, Pe.˛i / ¤ Pe. j̨ / and

Ne.˛i / ¤ Ne. j̨ / for ˛i ¤ j̨ 2 RMC. So a positive resolution cannot

cancel out with another positive resolution in eˇ, and similarly for the

negative resolutions.

(b) In Section 9, we encounter examples where Pe.˛i / D Ne. j̨ / for

˛i ¤ j̨ 2 RMC, as illustrated in Figures 9.1 and 9.2. Thus there

can be situations where cancellations between resolutions of different

components occur in eˇ.

(4) Proposition 9.3 proves eˇ ¤ 0 for ˇ D
P

k2I ck˛k and ck 2 C. The proof

gives instructions on how to identify j̨ so that Pe. j̨ / ¤ Ne.˛k/ for all

j ¤ k 2 I . So Pe. j̨ / is a resolution that does not cancel with any other

resolutions in eˇ, and hence it is a non-zero leading term of eˇ.

(5) Proposition 9.6 finishes with the most general case, for 
 D
P

k2I fk.v˙
i /˛k

with fk.v˙
i / 2 CŒv˙

i �. The result follows from Proposition 9.3 and a short

algebraic argument based on Proposition 2.6.
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We remark that, with the exception of Proposition 9.6, all the statements men-

tioned in the outline above require the local planarity assumption. In particular,

our analysis relies on having exact formulas for the generalized corner coordinates

of the positive and negative resolutions.

6. Generalized corner coordinates

Let † D x† n V be a punctured surface with a triangulation T D .V; E; T /. The

set of corners C consists of pairs .v; �/ where � 2 T and v 2 V is a vertex

of �. Recall Definition 2.1 of a normal and reduced multicurves. In this section,

we describe how to uniquely describe them using a tuple of numbers that encodes

essential geometric information.

6.1. Edge and corner coordinates. The well-known theory of normal curves

on surfaces applies when our normal multicurve ˛ has no arc components (see for

example [15, Section 3.2]). In that case, there are two equivalent ways to describe

a normal multiloop as a tuple of integers. One way is to record the intersection

numbers of ˛ with the edges. For any normal multiloop ˛ and edge e, let ˛.e/

be the minimal number of transversal intersections of ˛ with e. Then the edge
coordinates of ˛ are �E .˛/ D .˛.e//e2E .

Another way to coordinatize is to use the corners. For any normal multiloop

˛ and corner c D .v; �/, let ˛.c/ be the number of components of ˛ \ � that

connect one edge adjacent to v to the other edge adjacent to v. Then the corner
coordinates are �C .˛/ D .˛.c//c2C .

Clearly, the two coordinates maps �E .˛/ and �C .˛/ are related. Let c0; c1; c2

be the three corners of a triangle �, and let ei be the edge opposite to ci . Then for

i taken modulo 3,

˛.ei / D ˛.ciC1/C ˛.ciC2/; (6.1)

˛.ci / D
1

2
.˛.eiC1/C ˛.eiC2/ � ˛.ei//: (6.2)

From now on, we will use corner coordinates exclusively, as they are more suitable

for arcs.

To characterize the tuples of ZC which are corner coordinates of some multi-

loop, we have the following definition. For any corner c 2 C , we denote the c-th

coordinate of some w 2 ZC by w.c/.
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Definition 6.1. Let e be the common edge of two triangles �1 and �2. Let c1 and

d1 be the corners of �1 adjacent to e, and c2 and d2 be the corners of �2 adjacent

to e. Then a tuple w 2 ZC satisfies the matching condition at e if

w.c1/Cw.d1/ D w.c2/Cw.d2/:

A vector w 2 ZC is the corner coordinates of some ˛ 2 NML if and only if

w has all non-negative coordinates and satisfies the matching condition at every

edge.

6.2. Generalized corner coordinates. We now extend the corner coordinate

map �C to normal multicurves, which include both arcs and loops. Any normal

multicurve ˛ can intersect a triangle � 2 T in one of three ways, as illustrated in

Figure 6.1.

(a) type I (b) type II (c) type III

222 1=2 21=211=2
1=2

3 1=2
1=2

Figure 6.1. A normal multicurve ˛ can intersect a triangle in one of three ways. The corner

coordinates of ˛ are integers and half-integers.

We say ˛ in � is

� type I, if there is no component of ˛\� is an arc connecting to a vertex of �;

� type II, if some component of ˛ \� is an arc from an edge to a vertex of �;

� type III, if some component of ˛ \� is an edge of �.

Notice that in the case of type III, ˛ contains an edge of the triangulation as

a component. We will also use the notation type˛.c/ 2 ¹I; II; IIIº to describe

the type of the triangle that contains the corner c for ˛. In addition, we use
1
2
Z D ¹k 2 Q j 2k 2 Zº for the set of integers and half-integers. To be more

precise, integers are elements of Z, and half-integers are elements of 1
2
Z� Z.

Definition 6.2. For each ˛ 2 NMC and corner c D .v; �/ 2 C , the generalized
corner coordinate ˛.c/ is computed as follows. Let a be the number of compo-

nents of ˛ \� that connect the edges adjacent to v.
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� If type˛.c/ D I, ˛.c/ D a.

� If type˛.c/ D II, ˛.c/ D �1
2

if there is an arc connecting v and the opposite

edge, and otherwise ˛.c/ D aC 1
2
.

� If type˛.c/ D III, ˛.c/ D �1
2

if v is one end of e, and otherwise ˛.c/ D

aC 1
2
.

The generalized corner coordinate map is �WNMC !
�

1
2
Z
�C

such that �.˛/ D

.˛.c//c2C .

See Figure 6.1 for some examples. It is evident that � is well-defined and gen-

eralizes the corner coordinate map �C for normal multiloops. For example, all

of the generalized corner coordinates satisfy the matching condition of Defini-

tion 6.1. Furthermore, two distinct normal multicurves must be assigned distinct

generalized corner coordinates, so that the map � is injective. We leave the proof

of the following lemma as an exercise.

Lemma 6.3. For any ˛ 2 NMC, its generalized corner coordinates �.˛/ D

.˛.c//c2C satisfy the following:

(1) for every triangle �, its corners c0; c1; c2 satisfy one of three mutually exclu-
sive possibilities:

� all three ˛.c0/; ˛.c1/; ˛.c2/ are non-negative integers (� is type I), or

� all three ˛.c0/; ˛.c1/; ˛.c2/ are half-integers larger than or equal
to �1

2
, and exactly one is equal to �1

2
(� is type II), or

� all three ˛.c0/; ˛.c1/; ˛.c2/ are half-integers larger than or equal
to �1

2
, and exactly two are equal to �1

2
(� is type III);

(2) at every vertex v, there are at most two corners .v; �1/ and .v; �2/ 2 C with
corner coordinates �1

2
(if there are two of them, then they must be adjacent

and both �1 and �2 are of type III);

(3) �.˛/ satisfies the matching condition at every edge e 2 E.

Conversely, if w 2
�

1
2
Z
�C

satisfies (1)–(3) above, then there exists ˛ 2 NMC such
that �.˛/ D w.

Because of the second condition in the lemma above, we will often say that a

triangle of type I is integral, whereas triangles of type II and III are fractional or

half-integral.
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Remark 6.4. The inquisitive reader may ask whether it is possible to generalize

edge coordinates instead of corner coordinates. For type I and II triangles, the

corner numbers are easily deduced from edge numbers, and vice versa, by For-

mulas (6.1) and (6.2). But for type III, it is unclear, at least to the authors, how to

generalize the edge coordinates.

For the remainder of this article, we will focus on the reduced multicurves

RMC, since they generate the curve algebra C.†/.

Observation 6.5. For any ˛ 2 RMC, its generalized corner coordinates �.˛/ D

.˛.c//c2C 2
�

1
2
Z
�C

satisfy the three conditions (1)–(3) of Lemma 6.3 and

(4) at every vertex v, there must be at least one corner c D .v; �/ such that

˛.c/ D 0 or �1
2
.

Conversely, if w 2
�

1
2
Z
�C

is a vector satisfying (1)–(3) of Lemma 6.3 and (4)

above, then there exists a unique ˛ 2 RMC such that �.˛/ D w.

7. The positive and negative resolutions

Let ˛ 2 RMC, and let e 2 E. If j˛ \ ej D n, then their product e˛ 2 C.†/ can be

decomposed into a CŒv˙
i �-linear combination of 2n crossingless multicurves. Of

those, there are two special ones.

7.1. Definition of P˛ and N˛. We say that a positive resolution of an interior
crossing of e and ˛ is one that goes counterclockwise from e to ˛ as in Figure 7.1a.

A positive resolution of an endpoint crossing of e and ˛ is one that goes clockwise

from e to ˛ as in Figure 7.1b, and when in the exceptional case where e and ˛

coincide (e.g. when e is a component of ˛), is the one in Figure 7.1c. Let Pe˛

be the reduced multicurve isotopic to the one obtained by a positive resolution at

every crossing of e and ˛ and called the positive resolution of e [ ˛ (or of e˛).

For notational simplicity, we write P ˛ instead of Pe˛.

˛

e

P
!

(a) interior crossing

˛

e

P
!

(b) endpoint crossing

˛

e

P
!

(c) P ˛ when e � ˛

Figure 7.1. P ˛ is depicted in blue on the right side of the arrow.
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We may similarly define the negative resolution Ne˛ D N˛ by taking the

opposite resolution for every intersection. For an interior crossing of e and ˛, we

go clockwise from e to ˛. For an endpoint crossing, we move counterclockwise

from e to ˛. And in the exceptional case where e is a component of ˛, so that

˛ D e t .˛ n e/, then N˛ D �2.˛ n e/.

˛

e

N
!

(a) interior crossing

˛

e

N
!

(b) endpoint crossing

˛

e

N
!

(c) N˛ when e � ˛

Figure 7.2. N˛ is depicted in blue on the right side of the arrow.

When e and ˛ do not intersect, there are no crossings to resolve; in that case

P ˛ D N˛ D ˛ t e.

By identifying ˛ 2 RMC with its generalized corner coordinates �.˛/ 2
�

1
2
Z
�C

, we may regard P and N as functions
�

1
2
Z
�C
!

�

1
2
Z
�C

. The goal of

the next few sections is to write down formulas for these two resolution maps

when † is locally planar.

7.2. Definition of RMCj . The formulas for the positive and negative resolution

maps will usually require us to subdivide RMC. For j D 0; 1; 2, define RMCj to

be the set of reduced multicurves which share j endpoints with e. Let C.†/j be

the submodule of C.†/ generated by RMCj . Since the basis elements are disjoint,

C.†/ D C.†/0 ˚ C.†/1 ˚ C.†/2.

When the edge e has two distinct vertices v0 and v1, on occasion we will further

refine RMC1 and C.†/1 into two smaller sets, according to where ˛ and e intersect.

For i D 0; 1 let RMC1
vi

be the set of reduced multicurves in RMC with an endpoint

at vi , and let C.†/1
vi

be the submodule of C.†/ generated by RMC
1
vi

. Clearly,

C.†/1 D C.†/1
vi
˚ C.†/1

v1�i
.

The next two lemmas are immediate from the definition of the curve algebra.

Lemma 7.1. e � C.†/j � C.†/2�j . Moreover, e � C.†/1
vi
� C.†/1

v1�i
.

Lemma 7.2. P; N W RMCj ! RMC
2�j . Moreover, P; N W RMC1

vi
! RMC

1
v1�i

.

7.3. Notation for the corners of Star.e/. We assume from now on that † admits

a locally planar triangulation T.

Our first objective will be to describe the corner coordinates of P ˛ and N˛

when †. To do so, we need notation for the vertices and edges in a star neighbor-

hood of the edge e.
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Let the two vertices of e be denoted by v and w. We will think of e as vertical,

so that v is at the top and w is at the bottom. There is also an endpoint opposite

e to the left, and an endpoint opposite e to the right, and these two and v and w

are distinct from local planarity. Let �L be the triangle on the left of e, and �R

be the triangle on the right.

Label the corners in Star.e/ as in Figure 7.3. In particular, let a0 be the corner

at v which is adjacent to and on the left of e. Let a0; a1; : : : ; as be the successive

corners going counterclockwise around v, so that as is the corner at v which

is adjacent to and on the right of e. For each i D 0; : : : ; s, let aL
i (resp. aR

i )

correspond to the corner opposite to and on the left side (resp. right side) of the

triangle containing the corner ai . We say that ai , aL
i , aR

i for i D 0; : : : ; s are the

top corners, near v. Similarly, let b0; : : : bt be the corners going counterclockwise

around w, starting at e, let bL
j and bR

j be the corners opposite bj for j D 0; : : : ; t ,

and we say that these near w are the bottom corners.

a0

a1

a2ai

as

a
L
1

a
R
1

a
L
2

a
R
2

a
L
i

a
R
i

e

b0

b1

bj

bt

b
L
1

b
R
1

b
L
j

b
R
j

Figure 7.3. Notation for vertices and edges in Star.e/
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Note that by local planarity assumption, s; t � 2 and all of the corners near

v and the corners near w are distinct and the notation is well-defined, except for

the six corners at the two triangles on either side of e. The only identifications are

bt D aR
0 , a0 D bL

t , aL
0 D bR

t , and as D bR
0 , b0 D aL

s , aR
s D bL

0 .

7.4. Corner coordinates of P˛ and N˛ when † is locally planar. By the local

planarity assumption, any change in the corner coordinates between ˛ and P ˛ or

N˛ can occur only on Star.e/. The changes are tractable, and in this section we

describe the algorithms to compute them. Because there are no turnbacks in P ˛

or N˛, the only place where an isotopy is needed to reduce them is near the vertices

of e. For example, if ˛ does not intersect e at the vertex v, then P ˛ and N˛ will

end at v and could wind around it. See Figure 7.4, which we will discuss in more

detail shortly.

As we shall see, the formulas obtained for P ˛ and N˛ are relatively simple.

Each formula is composed of two independent parts, one for each of vertices. Each

of those two parts depends only on whether ˛ ends at v, whether ˛ ends at w,

and on the placement of the first corner around the vertex such that the corner

coordinate is 0 or �1
2
.

7.4.1. Formulas when ˛ 2 RMC
0. Figure 7.4 shows two sample computations

for P ˛ near the top vertex v.

D

P
!

D

P
!

e

e

e

e

e

e

21=2
21=211=2

1=2
1=2

1=2

1=2

11=2

1=2

1=2
0

0

0

0

0

1

0

0

1

1=2

1

1

0

1

1

1=2

1

1

Figure 7.4. Computations of P ˛ for ˛ 2 RMC0.

Notice that P ˛ can be unwound around v, depending exactly on how far

the innermost strand of ˛ winds around v to begin with. Because there are no

turnbacks in P ˛, no other simplifications are possible, except at the bottom vertex

where similar unwinding can occur. If the reader so wishes, they may rotate
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each of the pictures in Figure 7.4 by 180ı to see examples of calculations near

the bottom vertex. Any unwinding around the top vertex does not interfere with

unwinding around the bottom vertex.

Algorithm 7.3 (Coordinates for P ˛ when ˛ 2 RMC0). Let am be the first corner

of v (going counterclockwise, starting at e) where ˛ has corner number zero.

Define the top change P t
0 linearly as follows: P t

0˛.ai/ D ˛.ai/ � 1 if i < m,

P t
0˛.am/ D ˛.am/� 1

2
, P t

0˛.aR
m/ D ˛.aR

m/� 1
2
, and P t

0˛.aL
m/ D ˛.aL

m/C 1
2
. The

other corners are same.

Let bn be the first corner of w (going counterclockwise, starting at e) where

ˇ has corner number zero. Define the bottom change P b
0 linearly as follows:

P b
0 ˛.bi / D ˛.bi /� 1 if i < n, P b

0 ˛.bn/ D ˛.bn/� 1
2
, P b

0 ˛.bR
n / D ˛.bR

n /� 1
2
, and

P b
0 ˛.bL

n / D ˛.bL
n /C 1

2
. The other corners are same.

When † is locally planar and ˛ 2 RMC0, P ˛ D P t
0P b

0 ˛ D P b
0 P t

0˛.

For example, if m ¤ 0; s and n D 0, then because as D bR
0 , P ˛.as/ D

P t
1 .P b

0 ˛.as// D P t
1

�

˛.as/ � 1
2

�

D ˛.as/ � 1
2
. However, in this case and in all

others we subsequently describe, the corners a0, as, b0, and bt are the only ones

that could possibly be affected by both the top change and the bottom change.

We leave verification of the algorithm as an exercise for the interested reader.

Notice that for ˛ 2 RMC0, the case m D s and n D 0 is impossible. Furthermore,

the top change and bottom change do not affect each other, whence it follows that

P t
0P b

0 D P b
0 P t

0 .

By reflecting the figure horizontally, we get the computation for N . Thus, in

contrast, the formulas for N˛ go clockwise.

Algorithm 7.4 (Coordinates for N˛ when ˛ 2 RMC0). Let am be the first corner

of v (going clockwise, starting at e) where ˛ has corner number zero. Define a

top change N t
0 linearly as follows: N t

0˛.ai / D ˛.ai / � 1 if i > m, N t
0˛.am/ D

˛.am/� 1
2
, N t

0˛.aR
m/ D ˛.aR

m/C 1
2
, and N t

0˛.aL
m/ D ˛.aL

m/� 1
2
. The other corners

are same.

Let bn be the first corner of w (going clockwise, starting at e) where ˛ has

corner number zero. Define a bottom change N b
0 linearly as follows: N b

0 ˛.bi / D

˛.bi / � 1 if i > n, N b
0 ˛.bn/ D ˛.bn/ � 1

2
, N b

0 ˛.bR
n / D ˛.bR

n / C 1
2
, and

N b
0 ˛.bL

n / D ˛.bL
n / � 1

2
. The other corners are same.

When † is locally planar and ˛ 2 RMC0, N˛ D N t
0N b

0 ˛ D N b
0 N t

0˛.

7.4.2. Formulas when ˛ 2 RMC
2. In this case, ˛ intersects e at both endpoints.

In Figure 7.5, we’ve illustrated how to compute P ˛ where ˛ approaches the top
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vertex in a type II triangle, and another where ˛ approaches in a type III triangle.

In both examples, the a2 is the first corner of v where ˛ has corner number �1
2
.

 

 

D

P
!

D

P
!

e

e

e

e

e

e

1

 

1

0

0

0

0

0

0

21=2

1=2

1=2

1=2
1=2

1=21=2

21=211=2

2

2

1

1

1

0

1

1

0

1

11=2

1=2

0
1=2

Figure 7.5. Computing P ˛ for ˛ 2 RMC2

Moreover, we see that the affected corners are a2, aR
2 , aL

2 , and a3; : : : ; as, and that

the changes are by the same amount for both. This generalizes to the following

algorithm.

Algorithm 7.5 (Coordinates for P ˛ when ˛ 2 RMC2). Let am be the first corner

of v (going counterclockwise, starting at e) where ˛ has corner number �1
2
.

Define a top change P t
1 linearly as follows: P t

1˛.ai / D ˛.ai / C 1 if i > m,

P t
1˛.am/ D ˛.am/C 1

2
, P t

1˛.aR
m/ D ˛.aR

m/� 1
2
, and P t

1˛.aL
m/ D ˛.aL

m/C 1
2
. The

other corners are same.

Let bn be the first corner of w (going counterclockwise , starting at e) where ˛

has corner number�1
2
. Define a bottom change P b

1 linearly as follows: P b
1 ˛.bi / D

˛.bi / C 1 if i > n, P b
1 ˛.bn/ D ˛.bn/ C 1

2
, P b

1 ˛.bR
n / D ˛.bR

n / � 1
2
, and

P b
1 ˛.bL

n / D ˛.bL
n /C 1

2
. The other corners are same.

When † is locally planar, P ˛ D P t
1P b

1 ˛ D P b
1 P t

1˛.

As before, by reflecting the picture horizontally, we obtain the algorithm for N .

Algorithm 7.6 (Coordinates for N˛ when ˛ 2 RMC2). Let am be the first corner

of v (going clockwise, starting at e) where ˛ has corner number �1
2
. Define a

top change N t
1 linearly as follows: N t

1˛.ai / D ˛.ai / C 1 if i < m, N t
1˛.am/ D

˛.am/C 1
2
, N t

1˛.aR
m/ D ˛.aR

m/C 1
2
, and N t

1˛.aL
m/ D ˛.aL

m/� 1
2
. The other corners

are same.
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Let bn be the first corner of v (going clockwise, starting at e) where ˛ has

corner number �1
2
. Define a bottom change N b

1 linearly as follows: N b
1 ˛.bi / D

˛.bi / C 1 if i < n, N b
1 ˛.bn/ D ˛.bn/ C 1

2
, N b

1 ˛.bR
n / D ˛.bR

n / C 1
2
, and

N b
1 ˛.bL

n / D ˛.bL
n / � 1

2
. The other corners are same.

Then N˛ D N t
1N b

1 ˛ D N b
1 N t

1˛.

7.4.3. Formulas when ˛ 2 RMC
1. The top change and bottom change are as

described previously.

Algorithm 7.7 (Coordinates for P ˛ when ˛ 2 RMC1). We set

(1) P ˛ D P b
1 P t

0˛ D P t
0P b

1 ˛ if ˛ 2 RMC1
w ;

(2) P ˛ D P b
0 P t

1˛ D P t
1P b

0 ˛ if ˛ 2 RMC1
v .

Algorithm 7.8 (Coordinates for N˛ when ˛ 2 RMC1). We set

(1) N˛ D N b
1 N t

0˛ D N t
0N b

1 ˛ if ˛ 2 RMC1
w ;

(2) N˛ D N b
0 N t

1˛ D N t
1N b

0 ˛ if ˛ 2 RMC1
v .

We leave the verification to the interested readers.

8. Injectivity of the two resolutions on RMC

As in the previous section, assume that † is locally planar, and fix an edge e. The

goal of this section is to show that for ˛ 2 RMC, the resolution maps ˛ 7! Pe˛ and

˛ 7! Ne˛ are injective. We first introduce an important notion, the edge degree,

that will be crucial to the proof of injectivity. We use the notation established in

Sections 6 and 7; see especially Figure 7.3.

8.1. Edge degree and leading terms

Definition 8.1. For any ˛ 2 RMC, the edge degree of ˛ with respect to e is defined

to be

dege.˛/ WD
1

2
.˛.a0/C ˛.as/C ˛.b0/C ˛.bt // :

If there is no chance of confusion, we will drop the subscript e. Note that

deg.˛/ 2 Z, and by the matching condition at the edge e,

deg.˛/ D ˛.a0/C ˛.bt / D ˛.as/C ˛.b0/: (8.1)
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Definition 8.2. For any element ˇ 2 C.†/, write it as a ˇ D
P

i2I ci ˛i , where

ci 2 CŒv˙
i � and ˛i is a reduced multicurve. A leading term with respect to dege

of ˇ is a component j̨ with maximal edge degree, i.e., such that dege. j̨ / D

max¹dege.˛i / j i 2 I º.

We will use deg.˛/ to compare the different resolutions of e˛. In particular, by

the following lemma, it allows us to pick out the positive and negative resolutions.

Lemma 8.3. Let ˛ 2 RMC. When computing e˛ 2 C.†/, there are at most two
leading terms with respect to dege, and they are P ˛ and N˛.

Proof. Recall that e˛ can be written as a CŒv˙
i �-linear combination of 2n crossing-

less curves. Each crossingless curve comes from a choice of a positive or negative

resolution at each of the n intersections between e and ˛. The distinguished res-

olutions P ˛ and N˛ are the only two without any turn-backs (which occur when

adjacent intersections are resolved in opposite ways). For all the others, the exis-

tence of a turnback implies that their degree is strictly smaller. �

By the formulas for P ˛ and N˛ in Section 7.4, we have the following lemma.

Lemma 8.4. Let ˛ 2 RMCj . Then deg.P ˛/ D deg.N˛/ D deg.˛/C j � 1.

8.2. Visualizing the P and N maps for degree d curves. For any ˛ 2 RMC, let

�.˛/ WD .˛.as/; ˛.bt //:

Then the algorithms from Section 7.4 imply the following lemma. There is a

similar one for the negative resolution, which we omit for brevity.

Lemma 8.5. (1) For ˛ 2 RMC0, with

m D min¹i j ˛.ai / D 0º and n D min¹i j ˛.bi / D 0º;

we have

�.P ˛/ D �.˛/C

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.0; 0/ if m ¤ 0; s and n ¤ 0; t;
�

� 1
2
; 0
�

if m ¤ 0; s and n D 0

or if m D s; n ¤ 0; t;
�

0;�1
2

�

if m ¤ 0; s and n D t

or if m D 0 and n ¤ 0; t;
�

� 1
2
;�1

2

�

if m D n D 0 or if m D s; n D t:
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(2) For ˛ 2 RMC1 with an endpoint at the bottom vertex w,

m D min¹i j ˛.ai / D 0º and n D min
®

i
ˇ

ˇ ˛.bi / D �
1
2

¯

;

we have

�.P ˛/ D �.˛/C

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

.0; 1/ if m ¤ 0; s and n ¤ 0; t;
�

� 1
2
; 1
�

if m ¤ 0; s and n D 0 or if m D s and n ¤ 0; t
�

0; 1
2

�

if m ¤ 0; s and n D t or if m D 0 and n ¤ 0; t;
�

� 1
2
; 1

2

�

if m D n D 0 or if m D s; n D t:

(3) For ˛ 2 RMC2,

m D min
®

i
ˇ

ˇ ˛.ai / D �
1
2

¯

and n D min
®

i
ˇ

ˇ ˛.bi / D �
1
2

¯

;

we have

�.P ˛/ D �.˛/C

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

.1; 1/ if m ¤ 0; s and n ¤ 0; t;
�

1
2
; 1
�

if m ¤ 0; s and n D 0 or if m D s and n ¤ 0; t;
�

1; 1
2

�

if m ¤ 0; s and n D t or if m D 0 and n ¤ 0; t;
�

1
2
; 1

2

�

if m D n D 0 or if m D s and n D t:

Fix d 2 N. For reduced multicurves of degree d , we visualize the change of

coordinates from Lemma 8.5 as in Figures 8.1–8.3. The arrows in the left figure

point from �.˛/ to �.P ˛/, while the arrows in the right figure point from �.˛/ to

�.N˛/.

1 2
d

1

2

d

as

bt

(a) Arrows go from �.˛/ to �.P ˛/

1 2
d

1

2

d

as

bt

(b) Arrows go from �.˛/ to �.N˛/

Figure 8.2. Change of local coordinates for ˛ 2 RMC
1 with an endpoint at the bottom

vertex w.
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1 2
d

1

2

d

as

bt

(a) Arrows go from �.˛/ to �.P ˛/

1 2
d

1

2

d

as

bt

(b) Arrows go from �.˛/ to �.N˛/

Figure 8.1. Change of local coordinates for ˛ 2 RMC0.

1 2
d

1

2

d

a

bt

(a) Arrows go from �.˛/ to �.P ˛/

1 2
d

1

2

d

as

bt

(b) Arrows go from �.˛/ to �.N˛/

Figure 8.3. Change of local coordinates for RMC2.

First, observe that each diagram is supported inside the square
��

� 1
2
; dC 1

2

�

\
1
2
Z
�2

. This is because ˛.as/ D d �˛.b0/ and ˛.b0/ � �1
2

implies ˛.as/ � dC 1
2
,

and similarly for ˛.bt /.
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Moreover, some points inside the square
��

�1
2
; dC1

2

�

\1
2
Z
�2

do not correspond

to a reduced multicurve. In the RMC0 case depicted in Figure 8.1, ˛ cannot have

negative corner coordinates. So there are no arrows based along the ˛.as/ D �
1
2

and ˛.bt / D �
1
2

lines. In the RMC1 case depicted in Figure 8.2, we assume that

˛ has an endpoint at the bottom vertex w, and thus there cannot be arrows based

along the ˛.as/ D �1
2

line.

Lastly, notice that when one of the two coordinates is at most zero or at least d

(that is, along the edges of the square in Figures 8.1–8.3), there can be multiple

arrows based at �.˛/. In particular, the change of corner coordinates at those

extremal points does not depend only on �.˛/, but also on the actual curve class ˛.

Figure 8.4 illustrates examples where �.˛/ D �.˛0/, but �.P ˛/ ¤ �.P ˛0/.

D

P
!

D

P
!

e e e

e e e

1 0

0 1

1 0

0 1

0 0

0 0

0

0
1=2

1=2

Figure 8.4. edge degree can depend on the curve class. Pictured are examples such that

�.˛/ D �.˛0/ but �.P ˛/ ¤ �.P ˛0/

8.3. Positive and negative resolutions are injective. We are now ready to prove

the main result of this section.

Proposition 8.6. When † is locally planar, the positive resolution map P W RMCj!

RMC
2�j and the negative resolution map N W RMCj ! RMC

2�j are injective for
j D 0; 1; 2.

Proof. We prove the case of P only, as the proof for N is identical. The proofs

for j D 0; 1; 2 are slightly different.

Let ˛; ˛0 such that P ˛ D P ˛0. It follows from the Algorithms in Section 7.4

that the positive resolution map P affects only Star.e/. Indeed, P ˛ is completely

determined by the coordinates of ˛ at the corners around v and w,which are

a0; : : : ; as and b0; : : : ; bt respectively. So ˛ and ˛0 must agree at all corners, if

they agree at a0; a1; � � � ; as; b0; b1; � � � ; bt .
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Case j D 0, with PWRMC
0

! RMC
2. Let ˛; ˛0 2 RMC0. We start with the four

corners a0, as , b0, and bt nearest e. If deg.˛/ ¤ deg.˛0/, then Lemma 8.4 implies

deg.P ˛/ ¤ deg.P ˛0/, so that P ˛ ¤ P ˛0. Thus let d D deg.˛/ D deg.˛0/.

Suppose that ˛.as/ ¤ ˛0.as/, and without loss of generality say ˛.as/ >

˛0.as/. For the corner as in the RMC0 case, P decreases the corner coordinate

at as by 0 or 1
2

(Figure 8.1). From P ˛ D P ˛0, it follows that P decreases ˛ at as

by 1
2
, but leaves ˛0 at as unchanged.

Because P decreases ˛ at as by 1
2
, one of two scenarios are possible. Either

the decrease is caused by the top change when m D s, or it is caused by the bottom

change when n D 0. In both scenarios, ˛ is zero at one of as or b0. So ˛ is integral,

and P ˛ is half-integral, in the triangle containing those two corners. On the other

hand, because P ˛ D P ˛0 and P leaves the corner number of ˛0 at as unchanged,

˛0 must be half-integral in the triangle containing as and b0. Type III is ruled out,

since ˛0 2 RMC0 means ˛0 cannot have an endpoint at either v or w. Thus ˛0 is

type II, with endpoint at the remaining vertex (not v or w). After applying positive

resolutions, we see that P ˛ must be type II, and P ˛0 type III in that triangle. Again

this contradicts P ˛ D P ˛0. We thus deduce that ˛.as/ D ˛0.as/.

We take a moment to remark that the first part of our case analysis above can be

seen visually using Figure 8.1a. Each arrow in the figure depicts how the positive

resolution map P affects the corner coordinates at as and bt . Since P decreases

˛ at as by 1
2
, the x-coordinates of the arrows in Figure 8.1a are either the same or

go down by 1
2
. Furthermore, identifying ˛ and ˛0 satisfying ˛.as/ > ˛0.as/ and

P ˛.as/ D P ˛0.as/ corresponds to finding pairs of arrows which start at different

x-coordinates and land at the same spot. Such pairs of arrows occur only on the far

right of the figure, where ˛.as/ D d , ˛.b0/ D 0, and ˛0.as/ D d � 1
2
, ˛0.b0/ D 1

2
.

The proof can be finished as before, by analyzing triangle type.

A nearly identical argument proves that ˛.bt / D ˛0.bt /. And because

deg.˛/ D deg.˛0/, the identity in Equation 8.1 implies that ˛ and ˛0 agree on

all four corners.

We now consider the remaining corners, beginning with the ones around v.

Suppose that ˛ and ˛0 disagree at some corner around v which is not a0 or

as . Let k be the smallest index such that ˛.ak/ ¤ ˛0.ak/, and without loss of

generality, say ˛.ak/ > ˛0.ak/. Let m and m0 be as in Algorithm 7.3; namely, let

m WD min¹i j ˛.ai / D 0º and m0 WD min¹i j ˛0.ai / D 0º. Taking the positive

resolution P can cause the corner coordinate at ak to decrease by 0; 1
2

or 1, and

so there are three cases to consider.

In the first case, P decreases ˛ at ak by 1, and P decreases ˛0 at ak by 1
2
.

This implies (respectively) that m > k, and that k D m0 with ˛0.ak/ D 0 and
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P ˛0.ak/ D �1
2
. Since P ˛ D P ˛0, it follows that ˛.ak/ D 1

2
. Notice that ˛0 is

integral in the triangle containing ak , and hence is type I. On the other hand, ˛ is

half-integral in the triangle containing ak. Type III is ruled out, since ˛.ak/ D 1
2

would force the previous angle to have ˛.ak�1/ D 0, contradicting that m > k.

So ˛ must be type II, with one end at the corner to the left of ak; otherwise, it

would again force ˛.ak�1/ D 0. After applying positive resolutions, we see that

P ˛ must be type III, whereas P ˛0 is type II. This contradicts P ˛ D P ˛0.

In the second case, P decreases ˛ at ak by 1, and P leaves the corner number

of ˛0 at ak unchanged. This occurs only if m0 < k < m. Since k was the smallest

index where ˛ and ˛0 disagreed, we have that ˛.am0/ D ˛0.am0/ D 0. But this

contradicts that am was the first corner where ˛ is zero.

In the third case, P decreases ˛ at ak by 1
2
, and P leaves the corner number

of ˛0 at ak unchanged. The first can occur only if k D m with ˛.ak/ D 0 and

P ˛.ak/ D �1
2
. From P ˛ D P ˛0, it follows that ˛0.ak/ D �1

2
. But ˛0 cannot have

negative corner coordinate, since it is in RMC0 and cannot have an endpoint at v.

By repeating the argument above for the corners around w, we see that ˛ and

˛0 must agree at the corners around w. We thus conclude that ˛ D ˛0.

Case j D 1, with PWRMC
1

! RMC
1. Let ˛; ˛0 2 RMC1 such that P ˛ D P ˛0.

Since P W RMC1
vi
! RMC

1
vi�1

, both ˛; ˛0 must have an endpoint at the same vertex.

Without loss of generality, assume that common vertex to be w. As in the previous

case, we have d D deg.˛/ D deg.˛0/. By Lemma 8.4, d D deg.P ˛/ D deg.P ˛0/
as well.

Suppose that ˛.as/ > ˛0.as/. Since P ˛ D P ˛0, and P can decrease the corner

coordinate at as only by 0 or 1
2
, it follows that P decreases ˛ at as by 1

2
, but leaves

˛0 at as unchanged. We look in Figure 8.2 for pairs of arrows that start at different

x-coordinates, but land at the same spot. These are found only on the far right,

when ˛.as/ D d C 1
2
, ˛.b0/ D �1

2
and ˛0.as/ D d , ˛0.b0/ D 0. Figure 8.4

illustrates such a scenario for d D 0. Notice that because ˛0 has an endpoint at w

and ˛0.b0/ D 0, ˛0.bj / D �1
2

for some 0 < j � t . After taking P , P ˛0.bj / D 0.

On the other hand, ˛.b0/ D �1
2

implies that P ˛.bi/ > 0 for all 0 < i � t . Thus,

˛.as/ > ˛0.as/ implies P ˛ ¤ P ˛0.

Next suppose ˛.bt / > ˛0.bt /. P can increase the corner coordinate at bt by
1
2

or 1. As before, we can look in Figure 8.2, to find that necessarily ˛.bt / D d

and ˛0.bt / D d � 1
2
. Suppose d > 0. Since d is always an integer, type˛.bt / D I

and type˛0.bt / D II. If d D 0, type˛0.bt / can be either II or III. But in any case,

after the positive resolution, typeP ˛.bt / D II and typeP ˛0.bt / D III, implying

P ˛ ¤ P ˛0.
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We may now assume that ˛ and ˛0 agree at a0; as; b0; bt . The proof that

˛.ai / D ˛0.ai / for 1 � i � s � 1 is the same as in the case of P W RMC0 ! RMC
2

above. For the remaining corners, let n D min¹i j ˛.bi / D �
1
2
º. Then

by Algorithm 7.7, P ˛.bn/ D 0, and all P ˛.bi / > 0 for i > n. Thus also

n D max¹i j P ˛.bi / D 0º. For ˛0, we similarly have n0 D min¹i j ˛0.bi / D

�1
2
º D max¹i j P ˛0.bi / D 0º. Then P ˛ D P ˛0 implies n D n0. It follows from

Algorithm 7.7 for RMC1
w that ˛.bj / D ˛0.bj / for 1 � j � t � 1. Since all their

corner numbers are the same, we may conclude that ˛ D ˛0.

Case j D 2, with PWRMC
2

! RMC
0. Suppose that ˛; ˛0 2 RMC

2 with

P ˛ D P ˛0. As before, deg.˛/ D deg.˛0/ D d , and arguments like in the RMC1

case shows that ˛ and ˛0 must agree along the corners a0; as; b0, and bt .

If ˛ and ˛0 disagree at some corner around v which is not a0 or as, then let

k be the smallest index such that ˛.ak/ ¤ ˛0.ak/. Without loss of generality,

say ˛.ak/ < ˛0.ak/. Let m and m0 be as in Algorithm 7.5. Taking the positive

resolution P can cause the corner coordinate at ak to increase by 0; 1
2

or 1. If P

increases ˛ at ak by 1 and ˛0 at ak by 0 or 1
2
, then m < k and k � m0. Since

ak is the first corner where ˛ and ˛0 disagree, ˛.am/ D ˛0.am/ D �1
2
. But

this contradicts the minimality of m0. If P increases ˛ at ak by 1
2

but leaves ˛0

at ak unchanged, then k D m and k < m0. Focusing on the corner am0 , from

m0 > m it follows that ˛ increases by 1, whereas ˛0 increases from �1
2

to 0.

However, 0 D P ˛.am0/ D ˛.am0/C 1 is impossible. So all the corner coordinates

agree, and ˛ D ˛0. The case where ˛ and ˛0 disagree at some corner around w is

identical. �

9. Edges are not zero-divisors

The goal of this section is to prove Theorem 5.1, by showing eˇ ¤ 0 for all

ˇ 2 C.†/. In Section 9.1, we first prove that eˇ ¤ 0 is when ˇ is a nontrivial linear

combination of reduced multicurves with coefficients in C. In Section 9.2 we

shows the result of Section 9.1 implies the general case where the coefficients of

ˇ are in CŒv˙1
i �. Section 9.1 requires that † be locally planar, whereas Section 9.2

does not. Both proofs are reductive, and make use of Lemma 9.1 as its first step.

It will allow us to split our analysis according to membership in RMCj .

Recall that ˛ 2 RMC1
v if v meets an end of ˛ (see Section 7.2 for the formal

definition).
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Lemma 9.1. Let e be an edge in a triangulation of †. Let 
 2 C.†/ , and write
it as 
 D 
0 C 
1 C 
2, where 
j is a CŒv˙

i �-linear combination of reduced
multicurves in RMCj . Then e
 D 0 if and only if e
j D 0 for j D 0; 1; 2.

Suppose that the edge e has distinct endpoints v and w, we may further write

1 D 
1

v C 
1
w where 
1

v is a CŒv˙
i �-linear combination of reduced multicurves in

RMC
1
v and 
1

w is that of reduced multicurves in RMC1
w . Then e
1 D 0 if and only if

and e
1
v D e
1

w D 0.

Proof. By Proposition 2.6, RMC is the set of generators in the free CŒv˙
i �-module

C.†/, and by Lemma 7.1 e
j is a CŒv˙
i �-linear combination of elements in

RMC
2�j . Thus 0 D e
 D e
2 C e
1 C e
0 implies e
j D 0 for each j . The

converse is clear. The proof for 
1 D 
1
v C 
1

w is similar. �

The next simple computational lemma will be used in the proof of Proposi-

tion 9.3.

Lemma 9.2. Let ˛ 2 RMC and dege.˛/ D d .
If one of the conditions below holds:

(1) ˛ 2 RMC0, d > 0, and �.˛/ D .d; d/;

(2) ˛ 2 RMC1
w and �.˛/ D

�

d C 1
2
; d
�

;

(3) ˛ 2 RMC2 and �.˛/ D
�

d C 1
2
; d C 1

2

�

,

then P ˛.bt�1/ > N˛.bt�1/.
If one of the conditions below holds:

(1) ˛ 2 RMC0, d > 0, and �.˛/ D .0; 0/;

(2) ˛ 2 RMC1
w and �.˛/ D

�

0;�1
2

�

;

(3) ˛ 2 RMC2 and �.˛/ D
�

� 1
2
;�1

2

�

,

then P ˛.b1/ < N˛.b1/.

Proof. The proof is immediate if one apply Algorithms in Section 7.4. Here we

give the proof of the very first statement to describe how the proof goes.

Suppose that ˛ 2 RMC
0, d > 0, and �.˛/ D .d; d/. Then dege.˛/ D d

and ˛.bt / D d , so we have ˛.b0/ D 0. Thus n D min¹i j ˛.bi / D 0º D 0.

Therefore P ˛.bt�1/ D ˛.bt�1/ by Algorithm 7.3. On the other hand, because

˛.bt / D d > 0, max¹i j ˛.bi / D 0º � t � 1. Thus N˛.bt�1/ < ˛.bt�1/ and we

obtain the result.

The second half of the statement is obtained by symmetry. �
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9.1. First step: complex coefficients

Proposition 9.3. Suppose that e is an edge of a locally planar triangulation of
†. For any ˇ that is a nonzero C-linear combination of reduced multicurves, the
product eˇ ¤ 0 in C.†/.

Proof. To begin, we split the components of ˇ according to their membership in

RMC
j . Applying Lemma 9.1, we may thus fix j and assume that ˇ D

P

i2I ci˛i ,

where ci 2 C and ˛i 2 RMC
j . From here on out, the general strategy is to consider

the leading terms of ˇ and eˇ. We show that some leading term of eˇ is nonzero,

and thus eˇ ¤ 0.

Let d D max¹dege.˛i / j i 2 I º and J D ¹i j dege.˛i / D dº. Then SD¹˛iºi2J

consists of the leading terms in ˇ, and PS D ¹P ˛iºi2J and NS D ¹P ˛iºi2J con-

sist of the positive and negative resolutions of the leading terms. By Lemmas 8.3

and 8.4, P ˛i and N˛i are the only possible leading terms in e˛i , and their degree

is d C j � 1. So the set of leading terms of eˇ is a subset of PS [NS .

However, as we will see, the leading terms of eˇ can be a proper subset of

PS [ NS , meaning there can be cancellations among the possible leading terms

when computing eˇ. Because the resolution maps are injective by Proposition 8.6,

cancellations cannot occur amongst the positive resolutions, and the same is true

of the negative resolutions. But P ˛i D N˛k for i; k 2 J may occur. See

Figures 9.1 and 9.2 for examples. Our goal is to show that some member of

PS [NS survives to be a leading term of eˇ.

Based on our discussion above, from now on we thus replace I with J and

show eˇ ¤ 0 when ˇ is dege-homogeneous. Proof of the following lemma then

finishes the proof of Proposition 9.3.

Lemma 9.4. Fix j D 0; 1; 2, and let ˇ D
P

i2J ci˛i with ci 2 C and all the
˛i 2 RMC

j having edge degree d . Then leading terms of eˇ have degree dCj �1,
and each is a positive or negative resolution of a leading term of ˇ.

Proof. To distinguish between the possible leading terms, we analyze their pro-

jection onto two coordinates, with �.˛/ D .˛.as/; ˛.bt // for any reduced mul-

ticurve ˛. See Section 8.2. Let us denote �.S/ D ¹�.˛i/ºi2J , and similarly

�.PS/ D ¹�.P ˛i/ºi2J and �.NS/ D ¹�.N˛i/ºi2J . We order the projected co-

ordinates using lexicographical ordering �; that is, .x; y/ � .x0; y0/ if x > x0 or

x D x0 and y > y0. There is a maximal �max in �.S/. We begin with the cases

j D 1; 2, as they are simpler.
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Figure 9.1. Examples of ˛i ; ˛k 2 RMC
1 such that �.P ˛i/ D �.N˛k/. Notice that

N˛i .bt�1/ < P ˛k.bt�1/.
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Figure 9.2. Examples of ˛i ; ˛k 2 RMC
0

i i such that �.P ˛i / D �.N˛k/. Notice that

N˛i .bt�1/ < P ˛k.bt�1/.
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For the case j D 1, compare the action of the P and N maps, as depicted

in Figure 8.2. Observe that �.P ˛/ � �.N˛/ for all ˛ 2 RMC
1 except those

with �.˛/ D
�

d C 1
2
; d
�

. If �max ¤
�

d C 1
2
; d
�

, pick any ˛max 2 ¹˛iºi2J

with �.˛max/ D �max. Since �max 2 �.PS/ n �.NS/, P ˛max ¤ N˛i for every

i 2 J . Moreover, because of the injectivity of the positive resolution map, P ˛max

is distinct from every other P ˛i in PS as well. Thus P ˛max will be a leading term

of eˇ.

However, if �max D
�

d C 1
2
; d
�

, there may exist i; k 2 J such that �.˛i/ D

�.˛k/ D �max and �.P ˛i/ D �.N˛k/. See Figure 9.1 for an illustrated example.

In this case, the projected coordinates are not enough to determine how to locate

a suitable ˛max.

In this case, pick ˛k 2 ¹˛i j �.˛i / D �maxº with the maximum P ˛k.bt�1/.

We claim that P ˛k will survive after the cancellation with other terms. Suppose

not. Then P ˛k D N˛` for some ˛` 2 ¹˛i j �.˛i / D �maxº. Then by Lemma 9.2,

P ˛k.bt�1/ D N˛`.bt�1/ < P ˛`.bt�1/. It violates the maximality of P ˛k.bt�1/.

Therefore such ` does not exist and P ˛k is a nonzero leading term of eˇ.

The case j D 2 is very similar. From Figure 8.3, we see that �.P ˛/ � �.N˛/

for all ˛ 2 RMC
2, except those with �.˛/ D

�

d C 1
2
; d C 1

2

�

or
�

� 1
2
;�1

2

�

. If

�max ¤
�

d C 1
2
; d C 1

2

�

;
�

� 1
2
;�1

2

�

, pick any ˛max with �.˛max/ D �max. If

�max D
�

d C 1
2
; d C 1

2

�

or �max D
�

� 1
2
;�1

2

�

, cancellations are possible.

Suppose that �max D
�

d C 1
2
; d C 1

2

�

. Pick ˛k 2 ¹˛i j �.˛i / D �maxº with the

maximum P ˛k.bt�1/. If P ˛k D N˛` for some other ˛` 2 ¹˛i j �.˛i / D �maxº,

then P ˛k.bt�1/ D N˛`.bt�1/ < P ˛`.bt�1/ by Lemma 9.2. Thus such ˛` does

not exist and P ˛k is a leading term in eˇ. When �max D
�

� 1
2
;�1

2

�

, then one can

show in a similar way by using N and b1 instead of P and bt�1 by symmetry.

The case j D 0 also proceeds along the same lines, but we are first required

to subdivide RMC0 based on whether the triangles on either side of e are integral

of type I, or fractional of type II. (Type III is not possible here.) Let RMC0
i i be

the set of ˛ 2 RMC0 with type˛.as/ D I and type˛.bt / D I, and let RMC0
i f be the

set where type˛.as/ D I and type˛.bt / D II. Similarly define RMC0
f i and RMC0

f f .

Clearly, RMC0 D RMC
0
i i t RMC

0
i f t RMC

0
f i t RMC

0
f f . It turns out that P and N are

�-preserving on these sets.

Lemma 9.5. Let ˇ D
P

i2I ci ˛i , with ci 2 C and ˛i 2 RMC
0. Let

Ti i WD ¹P ˛i ; N˛i j ˛i 2 RMC
0
i iº

and define Ti f , Tf i, Tf f in a similar way. Then Ti i, Ti f , Tf i, and Tf f are mutually
disjoint.
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Proof. We show that Ti i and Tf i are disjoint. The other cases are similar.

When integral on the left, we have type˛.as/D I, and we show that P ˛.aR
s /�0.

There are two cases, either typeP ˛.as/ is I or II. The type I case is clear. If

typeP ˛.as/ is type II, one of P ˛.as/ and P ˛.b0/ is �1
2
, and so P ˛.aR

s / > 0.

Similarly, N˛.aR
s / � 0.

On the other hand, when fractional on the left, we have type˛.as/ D II, and

then typeP ˛.as/ and typeN˛.as/ are II or III. Furthermore,

P ˛.aR
s / D N˛.aR

s / D �
1

2
: 4

In our setting, Lemma 9.5 implies that cancellations are possible only when

the types of the triangles on either side of e agree. Let us further assume that

ˇ D
P

i2J ci ˛i is a linear combination of ˛i that are in one of RMC0
i i, RMC

0
i f ,

RMC
0
f i, or RMC0

f f .

Lexicographically order the projected coordinates �.˛i/ for i 2 J , and let �max

be the maximal coordinates with respect to �. From Figure 8.1, one can check

that if we restrict the domain to one of RMC0
i i, RMC

0
i f , RMC

0
f i, and RMC0

f f , then P

and N are �-preserving maps. We remark that this is not true for RMC0 without

the subdivision.

One can verify that �.P ˛/ � �.N˛/ except possibly when �.˛/ D .0; 0/ or

�.˛/ D .d; d/. If �max ¤ .0; 0/; .d; d/, pick any ˛max such that �.˛max/ D �max.

If �max D .d; d/, pick ˛max so that P ˛max.bt�1/ is the maximum. Arguing like in

the j D 1; 2 cases, we see that P ˛max will survive in eˇ. The case of �.˛/ D .0; 0/

is obtained in a similar way. 4

We conclude our proof of Proposition 9.3. If ˇ has a leading term of degree d ,

Lemma 9.4 shows that eˇ has a nonzero leading term with the expected degree

d C j � 1. Hence eˇ ¤ 0. �

9.2. Second step: general coefficients. Unlike Proposition 9.3, Proposition 9.6

below is valid for arbitrary surfaces, and does not require † to be locally planar.

Proposition 9.6. Let e be an edge of a triangulation of †, and suppose that eˇ ¤ 0

for any ˇ that is a non-zero C-linear combination of reduced multicurves. Then e

is not a zero divisor in C.†/.

Proof of Proposition 9.6. Let 
 2 C.†/ be nonzero and e
 D 0. First consider

the case where the edge e has two distinct vertices, v and w. We may assume that

in the vector of vertices v D .v1; v2; � � � ; vn/, v D v1 and w D v2.
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By Lemma 9.1, we may fix j D 0; 1; 2 and assume that 
 D
P

k2I fk.v˙
i /˛k,

where fk.v˙
i / 2 CŒv˙

i � and ˛k 2 RMC
j . In the case that j D 1, we may further

assume that ˛k belongs to RMC1
v or RMC1

w , and without loss of generality, let us

assume RMC1
v .

Because of Proposition 2.6, we now rewrite 
 as a linear combination of vertex

classes as


 D
X

m2ZV


mvm;

and all 
m are C-linear combinations of elements of one of RMC0, RMC1
v , or RMC2.

In the first case, all 
m are C-linear combinations of reduced multicurves in

RMC
0. Then for any resolution of e
m, there is no resolution at a vertex (the second

relation in Definition 2.4). Thus it does not produce any extra vertex class, so as

a linear combination of the vertex classes,

e
 D
X

m2ZV

e
mvm:

Therefore e
 D 0 implies that e
m D 0 for all m. Then by the assumption on e,


m D 0 for all m. Therefore 
 D 0.

If 
m is a C-linear combination of elements elements in RMC1
v , then for every

resolution of e
m, there is only one resolution at a vertex v. Thus ve
m is a C-

linear combination of reduced multicurves, and we have the unique decomposition

e
 D
X

m2ZV

ve
mvm�e1 (9.1)

where e1 is the first standard coordinate vector. Now e
 D 0 implies ve
m D 0

for all m, since the vm are linearly independent in C.†/. Since v is a unit in C.†/,

it now follows that e
m D 0. Our assumption eˇ ¤ 0 for any ˇ that is a non-

zero C-linear combination of reduced multicurves means that 
m D 0 for all m.

Therefore 
 D 0.

The cases of RMC2 are similar and we can obtain the same conclusion. The

only difference is that instead of (9.1), we have

e
 D
X

m2ZV

vwe
mvm�e1�e2 : (9.2)

When e is an edge whose ends are both v, then we have a decomposition

RMC D RMC
0 t RMC2. We also argue in the same way. The only difference here is

that in RMC2 case, we have (9.1) instead of (9.2) because there is only one endpoint

resolution at v. �
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Putting together Propositions 9.3 and 9.6, we immediately arrive at the state-

ment of Theorem 5.1, which states that when e is an edge of a locally planar

triangulation of †, then e is not a zero divisor in C.†/. This also completes the

proof in Section 3 of Theorem B, which states that when † is locally planar, the

Poisson algebra homomorhpism ˆWC.†/! C 1.T d .†// is injective.

10. The Roger–Yang skein algebra �h.†/

Having finished the proofs of Theorems A and B about the commutative curve

algebra C.†/, we now turn to the quantum setting. Let us now consider the skein

algebra �h.†/ as defined by Roger and Yang [23].

10.1. Framed knots and arcs in a thickened punctured surface. Previously,

we considered only loops and arcs in the 2-dimensional punctured surface †. We

now go up a dimension, to the 3-dimensional product † � Œ0; 1�. In particular we

define framed knots, arcs, and generalized framed links in † � Œ0; 1� as analogies

of, respectively, the loops, arcs, and multicurves in the 2-dimensional punctured

surface †. Recall that V are the punctures of †.

A framed knot in †�Œ0; 1� is an embedding of an oriented annulus into x†�Œ0; 1�

that is disjoint from V � Œ0; 1�. A framed arc in † � Œ0; 1� is a map of a strip

Œ0; 1� � Œ0; 1� into x† � Œ0; 1� so that on the set .0; 1/ � Œ0; 1� it is an embedding

into x† � Œ0; 1� that is disjoint from V � Œ0; 1�, and on each of the sets ¹0º � Œ0; 1�

and ¹1º � Œ0; 1�, it is an embedding into V � Œ0; 1� that is increasing in the second

coordinate. A generalized framed link in † � Œ0; 1� is a disjoint union of finitely

many framed knots and framed arcs. Thus, although more than one component of

a generalized framed link may end above a particular puncture vi , the components

must do so at different heights above vi .

We consider generalized framed links up to a suitable notion of regular isotopy

which is described in detail in [23]. In particular, regular isotopy of generalized

framed links can be described using three moves on their diagrams (the Reidemeis-

ter II and III moves on the interior and one more move for ends of arcs meeting

at a vertex). In this paper, we will assume that diagrams are obtained from repre-

sentatives with vertical framing, so that the restriction of the embedding from the

definition of a framed knot or arc is always increasing in the second coordinate.

Breaks in the diagrams are enough to show crossing information at double points

in the interior or at a vertex, but further numbering according to height will be

necessary when more than two ends of arcs meet at a vertex. We say that a gener-

alized framed link in †� Œ0; 1� is simple or reduced when its diagram is a reduced
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multicurve in †. In particular, the empty set ; is a reduced generalized framed

link.

There is a natural stacking operation for two generalized framed links ˛; ˇ in

† � Œ0; 1�. In particular, ˛ stacked on top of ˇ is the union of the framed curve

˛0 � x†� Œ0; 1
2
� (obtained by rescaling ˛ in x†� Œ0; 1� vertically by half ) and of the

framed curve ˇ0 � x† � Œ1
2
; 1� (obtained by rescaling ˇ in x† � Œ0; 1� vertically by

half ). We denote the framed link obtained from ˛ stacked on top of ˇ as ˛ � ˇ.

10.2. Roger–Yang skein algebra. Suppose that h is some indeterminate. Then

the ring of power series in h, equipped with a natural h-adic topology, will be

denoted by CŒŒh��. Furthermore, in this ring, we distinguish a certain power series

q D eh=4 2 CŒŒh��. In addition, let there be an indeterminate vi associated to each

puncture in V , such that a formal inverse v�1
i exists. Let CŒŒh��Œv˙1

i � denote the

commutative CŒŒh��-algebra generated by ¹v˙1
i º.

Definition 10.1. Let † be a surface with punctures. Let h be some indeterminate,

and associate a variable vi to the i-th puncture. Then the Roger–Yang skein algebra
�h.†/ is the CŒŒh��Œv˙1

i �-algebra freely generated by by the generalized framed

links on † modded out by the following relations:

�

 

q C q�1

!

;1)

vi �

 

q
1

2 C q� 1

2

!

;2)

� .�q2 � q�2/;3)

� .q C q�1/;4)

where we use q D eh=4, and where the diagrams in the relations are assumed to be

identical outside of the small balls depicted. Multiplication of elements in �h.†/

is the one induced by the stacking operation for generalized framed links.

Observe that in the absence of punctures on †, the Roger–Yang �h.†/ and the

Kauffman bracket skein algebra coincide. Hence, �h.†/ can be regarded as an

extension of the Kauffman bracket skein algebra.
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From comparing the definitions of the curve algebra C.†/ and the Roger–

Yang skein algebra �h.†/, we see that the Roger–Yang algebra is some non-

commutative version of the curve algebra. Formally, we have the following

theorem.

Theorem 10.2 ([23, Proposition 2.10 and Theorem 2.13]). Let pW �h.†/! C.†/

be the map which associates a generalized framed link in † � Œ0; 1� with its
projection to a multicurve in †. Then p induces an isomorphism between the
C-algebras �h.†/=.h � �h.†// and C.†/.

Furthermore, �h.†/ is a deformation quantization of C.†/.

The above theorem generalizes the analogous statements about the Kauffman

bracket skein algebra [24, 12, 5]. For the definition and details about deformation

quantizations, see [14].

Although one is commutative whereas the other is usually not, the underlying

module structure of �h.†/ is no more complicated than C.†/. We say that a

CŒŒh��-module M is topologically free if M Š V ˝ CŒŒh�� for some vector space

V in the category of CŒŒh��-modules.

Theorem 10.3 ([23, Theorem 2.4]). The algebra �h.†/ is topologically free.
Furthermore, �h.†/ Š C.†/ŒŒh�� as CŒŒh��-modules.

Remark 10.4. Variations in the definition of �h.†/ exist in the literature. In

particular, let AA.†/ be the ZŒA�Œv˙
i �-algebra generated by RMC on † and with

the same four relations as in Definition 10.1. Observe that AA.†/ can be regarded

as a coordinate restriction of �h.†/, by mapping A! q D eh=4. Thus statements

about AA.†/ apply also to C.†/ and �h.†/. In particular, �h.†/ and C.†/ are

also finitely generated, with an explicit generating set [2], and a presentation is

known for certain small surfaces including the three-punctured sphere and the

one-punctured torus [3].

10.3. Integrality of the Roger–Yang algebras. As we mentioned in the intro-

duction, �h.†/ seems a likely candidate to be a quantization of the decorated Te-

ichmüller space. In the case of the Kauffman bracket skein algebra, its integrality

was an important step towards showing that it is a quantization of the decorated

Teichmüller space [4, 21, 22]. Analogously, we also have integrality for the Roger–

Yang algebras.

Theorem 10.5. Suppose that Conjecture 1.1 is true for a punctured surface †.
Then �h.†/, AA.†/, and C.†/ are all domains. In particular, if † is locally
planar, then �h.†/, AA.†/, and C.†/ are domains.
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Proof. By the proof of Theorem 3.1, C.†/ is a subalgebra of CŒ�˙
i �. The latter is

an integral domain, thus C.†/ is, too.

Recall from Theorem 10.3 that �h.†/ is topologically free. As aCŒŒh��-module,

�h.†/ Š C.†/ŒŒh��. Let ˛; ˇ 2 �h.†/ be two nonzero elements. Then ˛ (resp. ˇ)

can be written as
P

i�m ˛ih
i (resp.

P

i�n ˇih
i ) with ˛i ; ˇi 2 C.†/. Now

˛ˇ D ˛mˇnhmCn CO.hmCnC1/:

Since the smallest degree term is nonzero by the classical case, ˛ˇ ¤ 0 in �h.†/.

The algebra A
A.†/ is a subalgebra of �h.†/ by sending A 7! q D eh=4, and

any subring of a domain is a domain. �
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