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1. Introduction

Let X be a closed surface with finitely many punctures. Defined by Penner [19],
the decorated Teichmiiller space 7 ¢ (%) consists of complete, finite area hyper-
bolic metrics on X that come with a choice of horoball around each puncture.
This paper describes progress in a program initiated by Roger and Yang in [23] to
establish a certain skein algebra S;,(X) as a quantization of 79 ().

One of Roger and Yang’s objective was to extend the rich body of work
showing that the Kauffman bracket skein algebra is a quantization of the usual
Teichmiiller space, via the SL,-character variety [4, 5, 6, 7, 12, 21, 24]. In
particular, they introduced an extension §,(X) of the Kauffman bracket skein
algebra to the case of punctured surfaces that uses arcs. Observe that, in contrast
to the usual Teichmiiller space, in 7¢ (%) one can assign a length to arcs that go
from puncture to puncture, by truncating at the horoballs. This way of assigning
lengths leads to the so-called lambda-length functions which parameterize 74 (X)
(see [19]). Roger and Yang’s skein algebra $;(X) is generated by both framed arcs
and loops, and an indeterminate variable for each of the punctures that accounts
for the size of the horoballs decorations. Besides the two usual Kauffman bracket
skein relations, S5, (%) has two more which, by design, match the relations between
lambda-length functions of arcs. For the definition of §;(X), see Section 10.

Roger and Yang also define a commutative curve algebra €(X) generated by
loops and arcs in X (see Section 2 for the relations), and they show that it has a
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Poisson bracket that generalizes the Goldman bracket formula for the Kauffman
bracket skein algebra. Furthermore, there is a Poisson algebra homomorphism

D: () — C®(TD)), (1.1)

where C®(7 ¢ (X)) is the algebra of C-valued smooth functions on 79 (X). The
Poisson structure on C (74 (X)) is an extension of the Weil-Petersson Poisson
structure [20] whose action on lambda-length functions was explicitly computed
by [16].

Roger and Yang show that the skein algebra, $;(X) is a deformation quanti-
zation of €(X) ([23, Theorem 1.1]). It then follows that $,(X) seems a likely
candidate for quantization of 7¢(X). However, there remain several technical
hurdles to the program Roger and Yang sketched out.

1.1. Main results. The main purpose of this paper is to present progress toward
the biggest obstacle, which Roger and Yang conjectured, as below.

Conjecture 1.1 ([23, Conjecture 3.17]). The Poisson algebra homomorphism ®
in (1.1) is injective.

In this paper, we provide an overall strategy for proving the conjecture, and
carry it out in full for locally planar surfaces, which are surfaces that have an ideal
triangulation without self-folded edges or triangles (and is not the three-puncture
sphere). Note that for any surface, if we drill enough extra points, then it becomes
locally planar. The following two theorems are the main results of this paper.

Theorem A (Theorem 3.1). If ¥ has an ideal triangulation such that no edge of
the triangulation is a zero divisor in €(X), then ® in (1.1) is injective.

Theorem B (Theorem 5.1). If X is locally planar, then no edge of a locally planar
triangulation is a zero divisor in €(X). In particular, ® in (1.1) is injective.

An interesting algebraic consequence of the injectivity of ® is the following,
which is proved in Section 10.3.

Theorem C (Theorem 10.5). If Conjecture 1.1 is true, then € (X) and its quanti-
zation S§y(X) are domains. In particular, if ¥ is locally planar, €(X) and $,(%)
are domains.

A similar statement for the Kauffman bracket skein algebra $4(X) appeared
in [21, 22], and was a necessary step in showing that when 4 = +1, $*1(X) is
isomorphic with the coordinate ring of the SL,-character variety [4, 7].
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In addition, we developed a generalization of the theory of normal curves on a
surface (as in [15]) to describe normal arcs. Whereas the corner coordinates of a
normal loop is an integer, the generalized corner coordinate of a normal arc ending
at a puncture is the negative fraction —%. The generalized corner coordinates
satisfy the usual matching equation at edges. See Section 6, which may be of

independent interest in combinatorial topology.

1.2. Summary of the proof. We give here a brief summary of the main points
of the proofs of Theorems A and B.

The key insight for Theorem A is to consider the localization S~'€(X) by
the multiplicative set S that is generated by edges of an ideal triangulation. If
A; denotes the lambda-length function of the i-th edge of the triangulation, we
show that ®: €(X) — C®(T¢ (X)) factors through C[Aii] and its localized map
v:sTle(m) — C[)Ll.i] is an isomorphism. Furthermore, we show that if none
of the edges are zero divisors, then the localization map L: €(X) — S~1€(X) is
injective. This implies the injectivity of ®. See Section 3.

The proof of Theorem B is significantly more complicated, and we only
mention some interesting points here. The proof is outlined in Section 5 and
takes up Sections 6-9. The goal is to show that given any edge e in a locally
planar triangulation, 8 # 0 implies ef # 0 for every f € €(X). When = o;,
representing a single reduced multicurve class (no self-crossings or turn-backs
inside a triangle, and no component is a trivial loop or loop around a puncture),
that eqr; # 0 is fairly obvious, since eq; is a linear combination of distinct, linearly
independent resolutions. However, it is not so obvious when 8 = 3 .., fje; is
a C[vii]—linear combination of reduced multicurves ¢;. In particular, we must
understand the various ways that resolutions of ec; and ec; could cancel out in
ef, in order to rule out the scenario where all the resolutions cancel each other
out in ef.

Our solution is to define an order on the reduced multicurves and to consider
resolutions that produce “leading terms” according to that order. In particular, we
consider the two resolutions of ew; without turnbacks, the so-called positive and
negative resolutions, P, (c;) and N, (w;), respectively. Our strategy is to explicitly
find an o; component of § so that the positive resolution P,(c;) becomes the
leading term of ¢f. Although this strategy is very much inspired by similar results
and techniques developed for the Kauffman bracket skein algebra, e.g. recently in
[22, 10], multiplying by arcs leads to complications not present when only looking
at loops. For example, in the Roger—Yang skein algebra, there are numerous cases
where o; # o; but P.(o;) = N.(o;), even when «; and o; have the same order.
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We found that most natural and reasonably simple choices of order produced such
examples, so cancellations in e were consistently an issue. See Remark 1.2
below.

To understand when cancellations happen, we needed a very precise descrip-
tion of the positive and negative resolutions, which we found tractable in the lo-
cally planar case. In the larger non-locally planar examples that we examined, the
positive and negative resolutions can simplify in very unexpected ways, and find-
ing explicit formulas for them seemed to require ad hoc methods. We nonetheless
believe that our method should still work; namely, that it is possible to show that
no edge of a triangulation zero divisor, even when the triangulation is not locally
planar.

We close this section with a few remarks.

Remark 1.2. In the algebraic viewpoint, a natural way to attack Theorem B is as
follows. First, introduce a total order > on the generating set of multicurves of
€(X). Next, establish a particular resolution R which is a >-preserving map, i.e.,
so that ¢ > B implies Ro > Rf, and Re is the leading term in ew«. Finally, prove
that for any B = };c; fja;, if @ is the leading term, then Roy is the nonzero
leading term of ef}, thus ef # 0. For example, such an algebraic scheme was
successfully implemented for the Kauffman skein algebra, [22, 10].

In our context, there are a number of natural candidates for R. However, as
we mentioned briefly above, we were unable to find a total order > satisfying the
algebraic scheme just described. Various, different issues arose, mainly because
of the existence of arc classes. Thus we decided to use a partial order, and relied
on some extra tie-breaking conditions when necessary.

Remark 1.3. It is known that Conjecture 1.1 is true for the non-locally planar
cases of the three-puncture sphere and one-punctured torus. One can directly
compute, or use the presentations of the Roger—Yang skein algebra from [3], to
show that no edge is a zero divisor.

Remark 1.4. A natural way to extend Theorem B to arbitrary X is to drill new
punctures and get another pointed surface X’ which is locally planar, and then
compare €(X) and €(X’). However, the lack of functorial morphisms makes
comparing €(X) and €(¥’) difficult.

Remark 1.5. The proof of the three main theorems are completely independent
from the choice of base ring. So one may use arbitrary commutative ring A4 instead
of C, with a replacement of C*(7¢(X)) by the ring of A-valued functions on
ad

T4 ().
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1.3. An extended remark about the Muller skein algebra. At about the same
time as Roger and Yang used hyperbolic geometry to motivate the algebras € (%)
and §y (%) for punctured surfaces, Muller [18] used the theory of cluster algebras
to define a different set of algebras for surfaces with marked points on its boundary.
Both theories relate to the decorated Teichmiiller space 7¢(X), and so they are
expected to be parallel in many ways. However, explicit connections between the
two points of view are still lacking.

To start, the algebra generated by lambda-length functions of edges of an ideal
triangulation forms a cluster algebra A (X), so that 79 (X) has a cluster manifold
structure ([11], see also [9]). This result applies for any surface with markings.
This includes the case of a surface with punctures (the X studied in this paper), and
a surface with non-empty boundary and marked points on the boundary (which,
to contrast, we denote by i).

In the latter case, Muller in [18] defined three related algebras related to
74 (i). Based on the work of [1], he defined a quantum cluster algebra Aq(i)
and an upper quantum cluster algebra Uq(fl) associated to . When ¢ = 1,
the quantum cluster algebra corresponds to A (2) in the previous paragraph. In
addition, Muller also defined a skein algebra Sk, (2) that is generated by framed
loops and arcs which end at the marked points on the boundary components.
Muller showed that there are natural inclusions

Ag() S T7Sky () S Uy () (12)

where 771 Skq(fl) is the non-commutative localization of Skq(fl) by T, the set
containing the boundary parallel curves. When there are two or more marked
points on each boundary component, the inclusions are equalities, so that the
skein algebra is identical to the two quantum cluster algebras. Up to localization,
T-1 Sk (2) becomes isomorphic to the algebraic coordinate ring O(7 ¢ (2)).

Returning to the case of punctured surfaces that we study in this paper, at least
for the classical case (¢ = 1 or i = 0), we expect that Roger and Yang’s skein
algebra §;,(X) fits into a similar framework. The cluster algebra A;(X) coming
from T d(E) is generated by arc classes and ‘decorated’ arc classes ([9]). We
expect that the decoration can be understood by using vertex classes, and there is
an injective homomorphism

A1(2) — E(2) = 8o(2) (1.3)

regardless of the local planarity of X ([17]). Furthermore, the proof of Lemma 3.2
tells us that every curve class « is a Laurent polynomial with respect to {e;} in a
fixed (arbitrary) triangulation. Similarly, by applying the second skein relation in
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Definition 2.4, we may conclude that each v;eje; is a linear combination of arc
classes, so v; is also a Laurent polynomial with respect to {e;}. This observation
suggests a connection between €(X) and U;(X). In the specific case where X is
a one-punctured torus, €(X) is a localization of U; (X) (see [17]), but in general,
a precise relation between them is still not yet known.

The analogy between the Roger—Yang and Muller algebras may extend also
to the more algebraic geometric approach of Fock and Goncharov. In [8], they
described how to understand A; (X) as a coordinate ring of a certain moduli space
of decorated SL local systems. It would be really interesting to have an analogous
statement for X, i.e., find a moduli space B(X) whose coordinate ring (or Cox ring)
O(B(%)) is isomorphic to €(X).

1.4. Structure of the paper. Section 2 reviews the main points of [23]. In
particular, we define the curve algebra €(X), the decorated Teichmiiller space
74(%), and the map ®. Theorem A is proven in Section 3. Section 4 is a very
short section introducing locally planar surfaces. The proof of Theorem B is
outlined in Section 5, and the details appear in Sections 6-9. Note that in Section 6
we generalize the theory of normal curves on surfaces for normal arcs, and this
may be of independent interest. In Section 10 we define Roger—Yang’s skein
algebra §j,(X), and we prove Theorem C.

Acknowledgements. The authors thank Tian Yang and Francis Bonahon for
helpful discussions, and the referees for many valuable suggestions.

2. Background: Roger and Yang’s curve algebra
and decorated Teichmiiller space

2.1. Triangulation. We begin with some notation for a surface with triangula-
tion.

Let X be a compact Riemann surface without boundary and V = {v;} be a
finite set of points in X. Then ¥ := X \ V is a punctured surface and V is the set
of its punctures.

For a triangulation T = (V, E, T') of a compact Riemann surface X, let V be the
set of vertices, E be the set of edges, and T be the set of triangles. A triangulation
for a punctured surface ¥ = X \ V is a triangulation of ¥ whose vertex set is V.

A corner of T is a pair (v, A) where A € T is a triangle and v € V is a vertex
of A. Let C be the set of all corners of T.
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2.2. Curve classes on a punctured surface. Let ¥ = X \ V be a punctured
surface. A loop in ¥ is an immersion of a circle into ¥ that is disjoint from V.
An arc in X is a map of a closed finite interval into X such that the interior of the
interval is immersed into X \ V, and the endpoints of the interval are mapped to
(one or two points in) V. A multicurve in ¥ is a union of finitely many loops and
arcs in 2. Note that more than one component of a multicurve may have endpoints
at the same puncture. If & and g are two multicurves, then we denote their union,
which is again a multicurve, by « - 8 or «f.

We will consider multicurves up to regular homotopy, as defined in detail in
[23, 25]. In practice, this means that we allow Reidemeister II and III moves,
but not Reidemeister I moves, on diagrams. We assume that multicurves are in
general position and although many arcs can end at a vertex, only double points
occur in the interior. For simplicity, we say that a double point in the interior form
an interior crossing, and endpoints at the same vertex form an endpoint crossing.

Let 7 be a fixed triangulation of . We may further assume that our curve class
« is general with respect to this triangulation. By this we mean that for any edge
e € E, if o intersects the relative interior of e then the intersection is transversal
and if o ends at a vertex v, then any component of & does not tangent to any edge
e € E at v, except the case that e is a component of .

A trivial loop in X is a loop bounding a disk in ¥ that contains no punctures,
and a puncture loop in X is a loop bounding a disk in X that contains exactly one
puncture.

Definition 2.1. Let X be a surface with a triangulation 7. We say that a multicurve
« on X is normal if it is an embedding (thus no crossings at all), and there are no
turn-backs inside any triangle. A multicurve is reduced if it is a normal multicurve
such that no component is a trivial loop or a puncture loop.

By convention, the empty set @ is a reduced multicurve. Note that, since a
normal multicurve has no crossings, there is at most one arc component ending
at a vertex, and therefore a normal multicurve is the union of disjoint simple arcs
and loops.

If all of the components of a normal multicurve are loops, we may also call it
a normal multiloop. Let NMC be the set of isotopy classes of normal multicurves
and NML be the set of isotopy classes of normal multiloops. Let RMC be the set
of isotopy classes of reduced multicurves on X. Let RML be the subset of isotopy
classes of reduced multiloops.

Remark 2.2. (1) The definition of a normal multiloop above is the same as that
of normal curve in [15, Section 3.2].
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(2) Note that, as sets, the isotopy classes NMC, NML, RMC, and RML are inde-
pendent from a choice of triangulation. This is because we can always perform an
isotopy on a multicurve without crossings so that it is has no turn-backs and is in
general position with respect to any triangulation.

2.3. Decorated Teichmiiller space. Suppose for the moment that y(X) < 0 so
that the surface ¥ with punctures V' admits a hyperbolic metric. In [19], Penner
introduced the decorated Teichmiiller space T (X) to be the space of pairs (m, )
where m is a complete hyperbolic metric on X with finite area, regarded up to
an isometry that is isotopic to the identity map, and r: V" — R is a function
which assigns a length r(v) horocycle to each puncture v € V. The decoration
of horocycles r allows us to measure the length of arcs in X. In particular, given
some (m,r) € 7¢(X) and an arc «, the length £(«) is, up to sign, the length in the
metric m of the part of the geodesic representative of o between the horocycles
described by r. When « is a reduced loop (meaning it is not a trivial or puncture
loop), its length £(«) is the usual one determined by m.

Define the lambda-length to be A(e) = ¢*@/2 when « is an arc class, and
A(a) = 2cosh @ when « is a loop. The decorated Teichmiiller space is param-
eterized by the lambda-length functions; more specifically we have the following
theorem due to Penner.

Theorem 2.3 ([19, Theorem 3.1]). Let {e1, - ,e,} be the set of edges of a
triangulation T of X. Then there is a homeomorphism

L TYD) — R,
which maps each edge e; to its lambda-length A; = A(e;).

Note that 79¢(X) is a Zariski-dense semi-algebraic set in the complex n-
dimensional torus Spec C[)Ll.i] 1<i<n 2 (C*)". More precisely, 7¢(Z) is the set of
positive real points (C*)"*(R~¢) in (C*)". There are no algebraic relations between
the A;’s.

2.4. The curve algebra €(X) of loops and arcs in a punctured surface. To
define the curve algebra € (X), we associate an indeterminate v; for each puncture
in V, and further assume that the formal inverse v;"! exists. (Note, by a slight

i
abuse of notation, we use v; for both a puncture and its associated indeterminate

variable.) Let C[v!] denote that C-algebra generated by {v!}.
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Definition 2.4. The (classical) curve algebra €(X) is the C[viil]—algebra freely
generated by the multicurves in ¥ modded out by the following relations:

: X -0 (=)
) (A )
3) () +2
4) ) -2

where the diagrams in the relations are assumed to be identical outside of the
small balls depicted, and the i-th vertex v; is depicted in the second relation.
Multiplication of elements in €(X) is the one induced by taking the union of
multicurves in X, and the unit is the empty curve @.

Figure 2.1 shows how the skein relations are applied when more than two
strands cross at a vertex.

PN TN
Figure 2.1. Skein relations are applied to a crossing at the i -th vertex, and then to a crossing
in the interior.

Remark 2.5 (on vector notation). We will make the following notational conven-
tion, to use in the following proposition and throughout the rest of the paper. When
we need to describe a tuple of objects, we use a boldface letter. For instance, for
a finite subset {vy, v3, -+ , v, } of a commutative algebra R and an integral vector
m= (my,my, -+ ,my), vV =[[/_; v/".

Proposition 2.6 ([23, Remark 2.5, Proposition 2.10]). Let W be the C-vector
space generated by RMC. Then€(X) =~ W ® C[vii]. In other words, any € €(X)
can be written uniquely as a finite sum

Z ,Bme,
meZz"

where B is a C-linear combination of elements in RMC and v™ is a monomial in
C[vii]. And B € €(X) can also be written uniquely as a finite sum

R
jelI

where a; € RMC and f; (vE) € Clvi].
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Although €(X) is in itself interesting from the algebraic point of view, it
is its relationship with hyperbolic geometry that is most intriguing. Indeed, its
definition grew out of a study of the decorated Teichmiiller space of the punctured
surface X, and we will describe this relationship in the next section.

2.5. The Poisson algebra structures of 7% (X) and €(X). Let C®(74(%))
be the space of C-valued smooth functions on the decorated Teichmiiller space.
The algebra C (7% (X)) admits a Poisson structure which is an extension of the
Weil-Petersson Poisson structure on the usual Teichmiiller space [20]. To describe
the Poisson bracket, one can use the lambda-length functions A; (or equivalently,
the length functions £(«)) that we introduced in Section 2.3 .

The Poisson bracket for the lambda-length functions was explicitly computed
in [16]. Although we will not need it in this paper, we include formulas of it here
for the sake of completeness. Fix a triangulation T on X. For notational simplicity,
assume that two ends of any edge are different vertices. For an edge «, let £(«)
be the normalized length of «. For two edges «, § € E which meet at v, let 8, be
the generalized angle (equal to the length of the part of the horocycle) from « to
B in the positive direction, and 6, be the generalized angle from f to . Then the
following bi-vector field

1 9, -6, 9 9
Mo =32 T
4 veV a,B€E r(v) aE(a) aE(IB)
anp=v

defines the Poisson bracket on C®(74(%)).

On the other hand, Roger and Yang in [23] show that the curve algebra €(X)
admits a Poisson structure using a bracket {, } that generalizes Goldman’s con-
struction for loops on a closed surface. The generalized Goldman bracket on € (%)
is a bilinear map {, }: €(X) x €(X) — €(X) satistying:

(1) forany v € V and B € €(X), {v,B} = 0;

(2) fora, B € RMC,

@hli=g Y (@Bt Y (@] - @),

pEANBNX veaNnBNV

where (¢B)T denotes two resolutions (called positive/negative resolutions
(Definition 7.1)) of a8 at the point x.

Roger and Yang were able to show that the lambda-length functions satisfy the
skein relations of the curve algebra € (X), and moreover, there is a map & which
respects the Poisson brackets of €(X) and C®(T%(%)).
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Theorem 2.7 ([23, Theorem 3.4]). For any vertex v, set ®(v) = r(v), the length
of the horocycle around v, and for any non-self intersecting arc or reduced loop o,
set ®(a) = A(), the lambda-length function of «.

Then there exists a well-defined map ®:€(X) — C®(T (X)) which extends
uniquely the map ® before. Furthermore, ® is a Poisson algebra homomorphism
with respect to the generalized Goldman bracket on € (X) and the Weil-Petersson
Poisson bracket on C®(T4(X)).

3. Proof of Theorem A

The following appeared as Theorem A in the introduction.

Theorem 3.1. If X has an ideal triangulation such that no edge of the triangula-
tion is a zero divisor in €(X), then ® in (1.1) is injective.

Several lemmas will build up to the proof. Let T = (V,E,T) be a (not
necessarily locally planar) triangulation on X with edges {e; }1 <; <». For any vector
m = (m;)i<i<n € (Z=0)", we define €™ to be the monomial e]''e;? - e,
Let S = {€™ | m € (Zx¢)"} be the set of all monomials with variables in {e;}.
Then S is a multiplicative subset of € (X). Thus, we may consider the localization
S~1'€(X), consisting of formal fractions e% where § € €(X) ande™ € S. Let L

denote the associated localization map L: €(X) — S~1€(X).

Lemma 3.2. The localization S™V€(X) is generated by the set {eii} of edges and
their formal inverses.

Proof. Let R be the subring of S™1€(X) generated by {eii}.

First consider the case where « is a multicurve. Lemma 3.18 of [23] says that
if m is the vector whose i-th coordinate is the intersection number of o and the
edge ¢;, then the product e™a € €(X) can be expressed as a polynomial with
variables in {e;}. It follows that &, when regarded as an element of S™1€(X), can
be expressed as a polynomial with respect to {eii}. Therefore « is in R.

Next consider the case of a vertex v. Let e, e; be two (not necessarily distinct)
edges ending at v. Then by using the second relation in Definition 2.4, we obtain
vejey as a linear combination of multicurves. By the previous case, we have
vejey € R. Since edges e, e; € S are invertible, then v € R as well. O

Returning to the proof of Theorem 3.1, recall that ®: €(Z) — C®(T74(%))
denotes the Poisson algebra homomorphism from [23], which we introduced in
Section 2.5. For every edge e;, let us denote ®(e;) = A(e;) by A;.



The Roger—Yang skein algebra 13

Lemma 3.3. @ factors through C[Aii] C C®(T(D)).

Proof. By Lemma 3.2, for any linear combination of generalized curves and
vertex classes f € €(X), there is some €™ € S such that €™ is a polynomial
with respect to {e;}. Therefore ®(e™p) € C[)L;JE]. But ®(e™p) = P(e™)D(B).
Notice that ® maps every edge e; to a unit in C[Aii]. So &(e™) € C[Aii] is a unit.
Thus ®(8) € C[AF], as desired. O

By the Universal Property of Localization, there is a unique homomorphism
v SsTle(x) — C[A;JE] so that the following diagram commutes:

t’(z) —— C®(TYUE))

\ ]ld (3.1)

sle(s) —X— CAF]
Lemma 3.4. The localized map WV is an isomorphism.
Proof. Consider the map E: C[Aii] — S~1€(X) which sends A; to e;. Then E is
an algebra homomorphism such that Wo E = idC[ JESE implying that E is injective.
By Lemma 3.2, any generator of S~!€(X) can be written as a Laurent polynomial
with respect to {e;}. Thus E is surjective. Hence E and W are bijective. |

The proof now falls easily from the previous lemmas.

Proof of Theorem 3.1. If no e; is a zero divisor, then S will not contain any zero
divisors. It follows that the localization map L: €(X) — S~ 1€(X) is injective.
Indeed, suppose that L(x) = L(B). By the definition of localization, there is
e™ € § such that e™(« — 8) = 0. But because e™ is not a zero-divisor, « = 8. By
Lemma 3.4, ® is injective because it is a composition of injective morphisms. [

4. Locally planar surfaces

Definition 4.1. A locally planar triangulation of ¥ is a triangulation T =
(V,E,T) of &, where ¥ = X \ V such that

(1) there is no 1-cycle or 2-cycle in the 1-skeleton of T;
(2) X is not the three-punctured sphere.

In that case, we also say that a surface X is locally planar.
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In other words, a locally planar triangulation (except for the three-punctured
sphere) is one where no edge is self-folded, with both endpoints at the same vertex,
and where no pair of edges have the same pair of endpoints. Obvious examples of
non-locally planar surfaces are the one- and two- punctured surfaces. On the other
hand, the four-punctured sphere, which has a tetrahedral triangulation, is locally
planar. It is evident that any triangulation can be refined to a locally planar one
by introducing more vertices. Indeed, by [13, Theorem 1.1] and a standard Euler
characteristic computation, one can show that X is locally planar if and only if

7+/1+48g
V> [ 2 g-" g7#2
~ |10, g =2,

where g is the genus of X.
Locally planar triangulations 7 satisfy the following properties.

(1) There is no self-folded triangle in 7.
(2) Forany v € V, the star Star(v) := | J,cper A has at least three triangles.

(3) For any edge e, the relative interior of the star Star(e) := (J,nazp A (se€
Figure 7.3) is contractible. No two triangles can be identified because other-
wise there must be a two-cycle connecting v and w. Also any internal edge
cannot be identified with a boundary edge. Thus the map int Star(e) — X is
a continuous embedding.

However, note that it is possible that two boundary edges of d Star(e) are identified
in a locally planar triangulation.

5. Outline of the proof of Theorem B

For the convenience of the reader, we here give an outline and purpose of each of
Sections 6-9 in proving the next main result of this paper.

Theorem 5.1. If X is locally planar, then no edge of a locally planar triangulation
is a zero divisor in €(X). In particular, ® in (1.1) is injective.

Before proving Theorem 5.1, in Section 6 we introduce an extension of the
theory of normal curves on surfaces, as in Chapter 3 of [15]. In the usual theory,
normal loops on a surface correspond to integer-valued corner coordinates that
satisfy a matching condition at each edge. In the extended theory, normal multi-
curves (recall Definition 2.1) now correspond to integer- and half-integer-valued
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generalized corner coordinates that also satisfy the same matching conditions at
each edge, and some other obvious conditions.

Let e be an edge of a locally planar triangulation of ¥, and y € €(X). We
here outline a proof that ey # 0. We refer the reader to the appropriate sections,
as mentioned below, for formal definitions and detailed proofs.

6]

2)

3)

“)

®)

Since the set of reduced multicurves RMC generates €(X), in Section 7 we
focus first on the resolutions of e U o where « € RMC. We pick out the two,
the positive resolution P, (c) and the negative resolution N,(«), where all the
intersections are resolved in the same direction. We give explicit formulas for
their generalized corner coordinates.

In Section 8 we define an ordering on RMC, which we call edge degree deg, .
Given a finite set of reduced multicurves, we may now determine which are
leading terms with respect to deg,, i.e. which have the highest degree. We
apply this to the case when « € RMC, and e is a finite linear combination
of resolutions. Lemma 8.3 shows that, with respect to deg,, the resolutions
P.(x) and N, () are the only possible leading terms of e«.

Next, we consider C-linear combinations of reduced multicurves, say some
non-zero f = Y s ek and ¢x € C. Thenef = Y ;o cx(eay) isa ClvE]-
linear combination of resolutions of all the e« . We wish to understand when
resolutions of the eaj could cancel each other out in ef.

(a) Proposition 8.6 shows that for « € RMC, the maps o +— P.() and
@ +— Ng(x) are injective. In other words, P.(o;) # Pe(cj) and
Ne(otj) # Ne(aj) for a; # oj € RMC. So a positive resolution cannot
cancel out with another positive resolution in ef, and similarly for the
negative resolutions.

(b) In Section 9, we encounter examples where P.(x;) = N.(a;) for
a; # o; € RMC, as illustrated in Figures 9.1 and 9.2. Thus there
can be situations where cancellations between resolutions of different
components occur in ef.

Proposition 9.3 proves ef8 # 0 for B = ) o, ckax and cx € C. The proof
gives instructions on how to identify «; so that P.(c;) # N.(a) for all
J # k € 1. So P.(a;) is a resolution that does not cancel with any other
resolutions in ef, and hence it is a non-zero leading term of ef.

Proposition 9.6 finishes with the most general case, fory = ) ", o, f (vl.i)ozk
with fx(v¥) € C[vi]. The result follows from Proposition 9.3 and a short
algebraic argument based on Proposition 2.6.
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We remark that, with the exception of Proposition 9.6, all the statements men-
tioned in the outline above require the local planarity assumption. In particular,
our analysis relies on having exact formulas for the generalized corner coordinates
of the positive and negative resolutions.

6. Generalized corner coordinates

Let ¥ = X\ V be a punctured surface with a triangulation 7 = (V, E, T). The
set of corners C consists of pairs (v, A) where A € T and v € V is a vertex
of A. Recall Definition 2.1 of a normal and reduced multicurves. In this section,
we describe how to uniquely describe them using a tuple of numbers that encodes
essential geometric information.

6.1. Edge and corner coordinates. The well-known theory of normal curves
on surfaces applies when our normal multicurve « has no arc components (see for
example [15, Section 3.2]). In that case, there are two equivalent ways to describe
a normal multiloop as a tuple of integers. One way is to record the intersection
numbers of o with the edges. For any normal multiloop « and edge e, let a(e)
be the minimal number of transversal intersections of « with e. Then the edge
coordinates of o are ¢g () = (x(e))ecE-

Another way to coordinatize is to use the corners. For any normal multiloop
« and corner ¢ = (v, A), let a(c) be the number of components of @ N A that
connect one edge adjacent to v to the other edge adjacent to v. Then the corner
coordinates are ¢c (o) = (x(c))cec.

Clearly, the two coordinates maps ¢g () and ¢¢ (o) are related. Let ¢, c1, c2
be the three corners of a triangle A, and let e; be the edge opposite to ¢;. Then for
i taken modulo 3,

a(e;) = a(ci+1) + alci+2), (6.1)

a(c) = % (a(eit+1) + alei+2) —alei)). (6.2)

From now on, we will use corner coordinates exclusively, as they are more suitable
for arcs.

To characterize the tuples of Z€ which are corner coordinates of some multi-
loop, we have the following definition. For any corner ¢ € C, we denote the c-th
coordinate of some w € ZC by w(c).
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Definition 6.1. Let ¢ be the common edge of two triangles A; and A,. Let ¢; and
dj be the corners of A adjacent to e, and ¢, and d, be the corners of A, adjacent
to e. Then a tuple w € ZC satisfies the matching condition at e if

w(cy) + w(dy) = w(cz) + w(dz).

A vector w € ZC is the corner coordinates of some a € NML if and only if
w has all non-negative coordinates and satisfies the matching condition at every
edge.

6.2. Generalized corner coordinates. We now extend the corner coordinate
map ¢¢c to normal multicurves, which include both arcs and loops. Any normal
multicurve « can intersect a triangle A € T in one of three ways, as illustrated in
Figure 6.1.

I A A

(a) type I (b) type I (c) type III
Figure 6.1. A normal multicurve « can intersect a triangle in one of three ways. The corner
coordinates of « are integers and half-integers.
We say « in A is
o type L, if there is no component of & N A is an arc connecting to a vertex of A;
o type I, if some component of @ N A is an arc from an edge to a vertex of A;
o type III, if some component of & N A is an edge of A.

Notice that in the case of type III, o contains an edge of the triangulation as
a component. We will also use the notation type,(c¢) € {L IL III} to describe
the type of the triangle that contains the corner ¢ for @. In addition, we use
%Z = {k € Q | 2k € Zj} for the set of integers and half-integers. To be more
precise, integers are elements of Z, and half-integers are elements of %Z — 7.

Definition 6.2. For each « € NMC and corner ¢ = (v, A) € C, the generalized
corner coordinate «(c) is computed as follows. Let a be the number of compo-
nents of @ N A that connect the edges adjacent to v.
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o Iftype,(c) =1, a(c) =a.

o Iftype,(c) =11, alc) = —% if there is an arc connecting v and the opposite
edge, and otherwise a(c) = a + %

o If type,(c) = 1II, alc) = —% if v is one end of e, and otherwise a(c) =
a+ 3.

The generalized corner coordinate map is ¢:NMC — ( Z)C such that ¢ (a) =

(a(c))cec-

1
2

See Figure 6.1 for some examples. It is evident that ¢ is well-defined and gen-
eralizes the corner coordinate map ¢¢ for normal multiloops. For example, all
of the generalized corner coordinates satisfy the matching condition of Defini-
tion 6.1. Furthermore, two distinct normal multicurves must be assigned distinct
generalized corner coordinates, so that the map ¢ is injective. We leave the proof
of the following lemma as an exercise.

Lemma 6.3. For any « € NMC, its generalized corner coordinates ¢(o) =
(x(c))cec satisfy the following:

(1) forevery triangle A, its corners cy, c1, C2 satisfy one of three mutually exclu-
sive possibilities:
o all three a(cy), a(c1), a(cy) are non-negative integers (A is type 1), or

o all three w(cyp),a(c1),a(c2) are half-integers larger than or equal
fo —%, and exactly one is equal t —% (A is type 1), or

o all three w(cy),a(cy1),a(c2) are half-integers larger than or equal
to —%, and exactly two are equal to —% (A is type 1II);

(2) at every vertex v, there are at most two corners (v, A1) and (v, A,) € C with
corner coordinates —% (if there are two of them, then they must be adjacent
and both Ay and A, are of type 111);

3) ¢(a) satisfies the matching condition at every edge e € E.
Conversely, if w € (%Z)C satisfies (1)—(3) above, then there exists & € NMC such
that ¢(a) = w.

Because of the second condition in the lemma above, we will often say that a
triangle of type I is integral, whereas triangles of type II and III are fractional or
half-integral.
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Remark 6.4. The inquisitive reader may ask whether it is possible to generalize
edge coordinates instead of corner coordinates. For type I and II triangles, the
corner numbers are easily deduced from edge numbers, and vice versa, by For-
mulas (6.1) and (6.2). But for type III, it is unclear, at least to the authors, how to
generalize the edge coordinates.

For the remainder of this article, we will focus on the reduced multicurves
RMC, since they generate the curve algebra €(X).

Observation 6.5. For any ¢ € RMC, its generalized corner coordinates ¢ () =
(a(c))cec € ( %Z)C satisfy the three conditions (1)—(3) of Lemma 6.3 and

(4) at every vertex v, there must be at least one corner ¢ = (v, A) such that
a(c) =0or —1.

Conversely, if w € (%Z)C is a vector satisfying (1)—(3) of Lemma 6.3 and (4)

above, then there exists a unique « € RMC such that ¢ () = w.

7. The positive and negative resolutions

Leto € RMC, and lete € E. If |@ N e| = n, then their product ea € €(X) can be
decomposed into a C[vii]-linear combination of 2" crossingless multicurves. Of
those, there are two special ones.

7.1. Definition of Pa and Na. We say that a positive resolution of an interior
crossing of e and « is one that goes counterclockwise from e to « as in Figure 7.1a.
A positive resolution of an endpoint crossing of e and « is one that goes clockwise
from e to « as in Figure 7.1b, and when in the exceptional case where e and «
coincide (e.g. when e is a component of «), is the one in Figure 7.1c. Let P,
be the reduced multicurve isotopic to the one obtained by a positive resolution at
every crossing of e and « and called the positive resolution of e U « (or of ex).
For notational simplicity, we write P« instead of Pc.

e | e e
P _\_ P P
o — \l o — . o =

(a) interior crossing (b) endpoint crossing (c) Pa whene C a

Figure 7.1. P« is depicted in blue on the right side of the arrow.
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We may similarly define the negative resolution N« = Na by taking the
opposite resolution for every intersection. For an interior crossing of e and o, we
go clockwise from e to «. For an endpoint crossing, we move counterclockwise
from e to @. And in the exceptional case where e is a component of «, so that
a=el(x\e),then No = —2(x \ e).

e | e e p

N N N |

o — |f o — A o - U
(a) interior crossing (b) endpoint crossing (c) Na whene C o

Figure 7.2. N« is depicted in blue on the right side of the arrow.

When e and « do not intersect, there are no crossings to resolve; in that case
Po=Na=ale.
By identifying « € RMC with its generalized corner coordinates ¢(x) €
c . c c
(3Z)", we may regard P and N as functions (1Z)  — (3Z) . The goal of
the next few sections is to write down formulas for these two resolution maps

when X is locally planar.

7.2. Definition of RMC’/. The formulas for the positive and negative resolution
maps will usually require us to subdivide RMC. For j = 0, 1,2, define RMC/ to
be the set of reduced multicurves which share j endpoints with e. Let €(X)/ be
the submodule of €(X) generated by RMC/ . Since the basis elements are disjoint,
e =@ apeE! ()

When the edge e has two distinct vertices vg and v, on occasion we will further
refine RMC! and €(X)! into two smaller sets, according to where « and e intersect.
Fori = 0,1 let RMCll,i be the set of reduced multicurves in RMC with an endpoint
at v;, and let ‘(?(E)},l, be the submodule of €(X) generated by RMC})i. Clearly,
e = t’(E)},l. @ ‘C’(E)},l_i.

The next two lemmas are immediate from the definition of the curve algebra.

Lemma 7.1. e - €(X)/ C €(X)>/. Moreover, e - “6(2)11,1, C ‘C’(E)},l_i .

Lemma 7.2. P, N:RMC/ — RMC*~/. Moreover, P, N:RMC, — RMC,

Vi—i®

7.3. Notation for the corners of Star(e). We assume from now on that ¥ admits
a locally planar triangulation 7.

Our first objective will be to describe the corner coordinates of Po and No
when X. To do so, we need notation for the vertices and edges in a star neighbor-
hood of the edge e.
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Let the two vertices of e be denoted by v and w. We will think of e as vertical,
so that v is at the top and w is at the bottom. There is also an endpoint opposite
e to the left, and an endpoint opposite e to the right, and these two and v and w
are distinct from local planarity. Let Ay, be the triangle on the left of e, and Ag
be the triangle on the right.

Label the corners in Star(e) as in Figure 7.3. In particular, let a¢ be the corner

at v which is adjacent to and on the left of e. Let ag, aq, .. ., a5 be the successive
corners going counterclockwise around v, so that ag is the corner at v which
is adjacent to and on the right of e. For eachi = 0,...,s, let aiL (resp. al.R)

correspond to the corner opposite to and on the left side (resp. right side) of the
triangle containing the corner a;. We say that a;, a’, aR fori = 0,...,s are the
top corners, near v. Similarly, let by, . . . b; be the corners going counterclockwise
around w, starting at e, let bjL and b]R be the corners opposite b; for j =0, ...,1¢,

and we say that these near w are the bottom corners.

Figure 7.3. Notation for vertices and edges in Star(e)
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Note that by local planarity assumption, s,¢ > 2 and all of the corners near
v and the corners near w are distinct and the notation is well-defined, except for
the six corners at the two triangles on either side of e. The only identifications are
bt—ao,aosz aosz andas—bo,bozaL —bL

7.4. Corner coordinates of P« and No when X is locally planar. By the local
planarity assumption, any change in the corner coordinates between o and P« or
Na can occur only on Star(e). The changes are tractable, and in this section we
describe the algorithms to compute them. Because there are no turnbacks in P«
or Na, the only place where an isotopy is needed to reduce them is near the vertices
of e. For example, if « does not intersect e at the vertex v, then Po and No will
end at v and could wind around it. See Figure 7.4, which we will discuss in more
detail shortly.

As we shall see, the formulas obtained for Po and N« are relatively simple.
Each formula is composed of two independent parts, one for each of vertices. Each
of those two parts depends only on whether @ ends at v, whether « ends at w,
and on the placement of the first corner around the vertex such that the corner
coordinate is 0 or —3.

7.4.1. Formulas when « € RMC®. Figure 7.4 shows two sample computations
for P« near the top vertex v.

D, 1
INEZONEZN
ey, By g
N 2N %N

Figure 7.4. Computations of Pa for o € RMC,

Notice that Po can be unwound around v, depending exactly on how far
the innermost strand of « winds around v to begin with. Because there are no
turnbacks in P, no other simplifications are possible, except at the bottom vertex
where similar unwinding can occur. If the reader so wishes, they may rotate
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each of the pictures in Figure 7.4 by 180° to see examples of calculations near
the bottom vertex. Any unwinding around the top vertex does not interfere with
unwinding around the bottom vertex.

Algorithm 7.3 (Coordinates for Pa when a € RMC?). Let a,, be the first corner
of v (going counterclockwise, starting at e) where o has corner number zero.
Define the top change P} linearly as follows: Pla(a;) = a(a;) —1ifi < m,
Pla(am) = a(am) — 3, Pla(aR) = a(aR) — 1, and Pla(al) = a(ak) + 5. The
other corners are same.

Let b, be the first corner of w (going counterclockwise, starting at e) where
B has corner number zero. Define the bottom change Pé’ linearly as follows:
Pba(b) = a(b;))—1ifi <n, Pea(by) = a(by) — %, PEa(bR) = a(bR)—1, and
Pba(bl) = a(bk) + 1. The other corners are same.

When X is locally planar and & € RMC?, Pa = P} Pé’oc = Pé’ Pla.

For example, if m # 0,s and n = 0, then because a; = b(f, Pa(as) =
Pl(Pba(as)) = Pl(x(as) — 1) = a(as;) — 1. However, in this case and in all
others we subsequently describe, the corners ag, as, by, and b, are the only ones
that could possibly be affected by both the top change and the bottom change.

We leave verification of the algorithm as an exercise for the interested reader.
Notice that for @ € RMC?, the case m = s and n = 0 is impossible. Furthermore,
the top change and bottom change do not affect each other, whence it follows that
PEPE = PLPL.

By reflecting the figure horizontally, we get the computation for N. Thus, in
contrast, the formulas for No go clockwise.

Algorithm 7.4 (Coordinates for Na when « € RMC?). Let a,, be the first corner
of v (going clockwise, starting at e) where « has corner number zero. Define a
top change N} linearly as follows: Nja(a;) = a(a;) — 1ifi > m, Nje(am) =
a(am)—%, Nya(aR) = a(aR)+ 3, and Nja(ak) = a(al)— 3. The other corners
are same.

Let b, be the first corner of w (going clockwise, starting at e) where « has
corner number zero. Define a bottom change Né’ linearly as follows: Né’ a(b;) =
ab) — Lifi > n, Noa(by) = a(by) — 1, Noa(dF) = a(F) + 1, and
Nba(bl) = a(bk) — 1. The other corners are same.

When X is locally planar and & € RMC®, N = N Nba = N Nia.

7.4.2. Formulas when « € RMC2. In this case, o intersects e at both endpoints.
In Figure 7.5, we’ve illustrated how to compute P« where « approaches the top
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vertex in a type II triangle, and another where o approaches in a type III triangle.
In both examples, the a, is the first corner of v where o has corner number —%.

Ve

NI

I~
/
AN

5

I

\><' _ \><

e e

)

e

Figure 7.5. Computing P« for & € RMC?

Moreover, we see that the affected corners are a», a§, aZL, and as, ..., ay, and that
the changes are by the same amount for both. This generalizes to the following
algorithm.

Algorithm 7.5 (Coordinates for Pa when o € RMC?). Let a,, be the first corner
1

of v (going counterclockwise, starting at e) where o has corner number —7.
Define a top change P! linearly as follows: Pla(a;) = a(a;) + 1if i > m,
Pla(am) = a(am) + 5, Pla(aR) = a(af) — 1, and Pla(al) = a(al) + 5. The
other corners are same.

Let b, be the first corner of w (going counterclockwise , starting at e) where o
has corner number — % Define a bottom change Plb linearly as follows: Plb a(b;) =
a(b)) + 1if i > n, Pla(by) = a(b,) + % PPa(bR) = a(bR) — % and
Pba(bl) = a(bk) + L. The other corners are same.

When ¥ is locally planar, Pa = P/ Plb o= Plb Pla.
As before, by reflecting the picture horizontally, we obtain the algorithm for N.

Algorithm 7.6 (Coordinates for N when o € RMC?). Let a,, be the first corner
of v (going clockwise, starting at e) where « has corner number —%. Define a
top change NI linearly as follows: Nla(a;) = a(a;) + 1ifi < m, Nia(am) =
a(@m)+%, Nia(al) = a(aR®)+1, and Nla(al) = a(al;)— 1. The other corners
are same.
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Let b, be the first corner of v (going clockwise, starting at e) where « has
corner number —%. Define a bottom change Nlb linearly as follows: Nlboz(bi) =
a(b)) + 1ifi < n, NPa(by,) = a(by) + % NPa(bR) = a(bR) + 1, and
Nba(bE) = a(bk) — L. The other corners are same.

Then Na = N/ NPa = NP Nia.

7.4.3. Formulas when @ € RMC!. The top change and bottom change are as
described previously.

Algorithm 7.7 (Coordinates for Pa when & € RMC!). We set
(1) Pa = PPPla = P{Ptaif o € RMCL;

(2) Pa = PlPla = Pl Pbaif a € RMC).

Algorithm 7.8 (Coordinates for Noo when o € RMC!). We set
(1) Na = NP Nia = NENPa if o € RMCL;

(2) Na = N0 Nfa = NINPa if o € RMCL.

We leave the verification to the interested readers.

8. Injectivity of the two resolutions on RMC

As in the previous section, assume that X is locally planar, and fix an edge e. The
goal of this section is to show that for « € RMC, the resolution maps o +— P, and
a +— N,a are injective. We first introduce an important notion, the edge degree,
that will be crucial to the proof of injectivity. We use the notation established in
Sections 6 and 7; see especially Figure 7.3.

8.1. Edge degree and leading terms

Definition 8.1. For any o € RMC, the edge degree of o with respect to e is defined
to be

deg, (@) := % (a(ao) + alas) +a(bo) + a(by)).

If there is no chance of confusion, we will drop the subscript e. Note that
deg(a) € Z, and by the matching condition at the edge e,

deg(a) = a(ao) + a(b;) = a(as) + a(bo). (8.1)
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Definition 8.2. For any element 8 € €(X), write itas a f = ) ;; ¢, where
ci € C[vl.i] and o; is a reduced multicurve. A leading term with respect to deg,
of B is a component «; with maximal edge degree, i.e., such that deg,(«;) =
max{deg,(o;) | i € I}.

We will use deg(«) to compare the different resolutions of e«. In particular, by
the following lemma, it allows us to pick out the positive and negative resolutions.

Lemma 8.3. Let « € RMC. When computing ea € €(X), there are at most two
leading terms with respect to deg,, and they are Po and Na.

Proof. Recall that ex can be written as a C[vii]—linear combination of 2" crossing-
less curves. Each crossingless curve comes from a choice of a positive or negative
resolution at each of the n intersections between e and «. The distinguished res-
olutions P« and Nu are the only two without any turn-backs (which occur when
adjacent intersections are resolved in opposite ways). For all the others, the exis-
tence of a turnback implies that their degree is strictly smaller. |

By the formulas for P and N« in Section 7.4, we have the following lemma.
Lemma 8.4. Let o € RMC/. Then deg(Pa) = deg(Na) = deg(e) + j — 1.

8.2. Visualizing the P and N maps for degree d curves. For any o € RMC, let

m(a) = (alas), a(bs)).

Then the algorithms from Section 7.4 imply the following lemma. There is a
similar one for the negative resolution, which we omit for brevity.

Lemma 8.5. (1) For o € RMC®, with
m=min{i | a(a;) =0} and n = min{i | a(b;) = 0},
we have

(0,0) ifm+#0,sandn # 0,t,

(—%,O) ifm+#0,sandn =0
orifm=s,n+#0,t,

(O,—l) ifm#0,sandn =t
orifm=0andn # 0,t,

m(Pa) = m(a) +

(—%,—%) ifm=n=0orifm=sn=1t.
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(2) For a € RMC! with an endpoint at the bottom vertex w,
m =min{i | a(a;) =0} and n=min{i |a(b;) = -1}
we have

0,1) ifm+#0,sandn # 0,t,
(—3.1) ifm+#0.sandn =0o0rifm=sandn # 0.t
(0.1) ifm#0,sandn =torifm=0andn # 0,t,

(—3.3) ifm=n=0orifm=sn=rt.

(3) For o € RMC?,

m=min{i |a(a;) =—-3} and n=min{i |a(b;)=—13}
we have
(1,1) ifm+#0,sandn #0,t,
21) 0.sandn =0orifm=sandn # 0.1,
(P = 7(e) + (3 1) l.fmyé s and n or?‘m s andn #
(1,5) ifm=£0,sandn =torifm=0andn # 0,t,
(%%) ifm=n=0orifm=sandn =t.

Fix d € IN. For reduced multicurves of degree d, we visualize the change of
coordinates from Lemma 8.5 as in Figures 8.1-8.3. The arrows in the left figure
point from 7 («) to 7 (Pa), while the arrows in the right figure point from 7 («) to
w(Na).

N T TN s S IS
TTi\<—<—<— —

NoT TR
Tgﬁ;%\l*

by

N
N
\«g S SRS SR

(a) Arrows go from 7 («) to 7(Pa) (b) Arrows go from 7 («) to 7(Na)

s

Figure 8.2. Change of local coordinates for « € RMC! with an endpoint at the bottom
vertex w.
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Figure 8.1. Change of local coordinates for o € RMC®
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(b) Arrows go from 7 («) to 7 (Na)

Figure 8.3. Change of local coordinates for RMCZ.

(a) Arrows go from 7 (a) to 7(Pa)
First, observe that each diagram is supported inside the square ([—1.d + 3] N

)2. This is because a(as) = d —a(bo) and a(bg)

and similarly for o (b;).

1
2
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Moreover, some points inside the square ([— % d+ %] H%Z)z do not correspond
to a reduced multicurve. In the RMC? case depicted in Figure 8.1, o cannot have
negative corner coordinates. So there are no arrows based along the o (as) = —%
and a(b;) = —% lines. In the RMC! case depicted in Figure 8.2, we assume that
« has an endpoint at the bottom vertex w, and thus there cannot be arrows based
along the a(as) = —3 line.

Lastly, notice that when one of the two coordinates is at most zero or at least d
(that is, along the edges of the square in Figures 8.1-8.3), there can be multiple
arrows based at w(«). In particular, the change of corner coordinates at those
extremal points does not depend only on 7 («), but also on the actual curve class .
Figure 8.4 illustrates examples where 7 () = w (o), but 7 (Pa) # n(Pa’).

p (
- e

N

I

Figure 8.4. edge degree can depend on the curve class. Pictured are examples such that
w(a) = n(a) but 7 (Pa) # 7 (Pa)

8.3. Positive and negative resolutions are injective. We are now ready to prove
the main result of this section.

Proposition 8.6. When X is locally planar, the positive resolution map P: RMC/ —
RMC2/ and the negative resolution map N:RMC/ — RMC2~/ are injective for
j=0,12.

Proof. We prove the case of P only, as the proof for N is identical. The proofs
for j =0, 1,2 are slightly different.

Let o, o’ such that P = Po'. It follows from the Algorithms in Section 7.4
that the positive resolution map P affects only Star(e). Indeed, P« is completely
determined by the coordinates of « at the corners around v and w,which are
ao,...,ds and by, ..., b, respectively. So « and o’ must agree at all corners, if
they agree at ag,ay,--- ,das, bo, b1, , by.
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Case j = 0, with P:RMC? - RMC?. Let o, o’ € RMC®. We start with the four
corners do, ds, bg, and b, nearest e. If deg(e) # deg(«’), then Lemma 8.4 implies
deg(Pw) # deg(Pa'), sothat Pa # Pa’. Thus let d = deg(a) = deg(o).

Suppose that a(as) # o'(as), and without loss of generality say «(as) >
o'(ag). For the corner ay in the RMC? case, P decreases the corner coordinate
at as by 0 or % (Figure 8.1). From Pa = P«/, it follows that P decreases « at a;
by 1, but leaves o’ at a; unchanged.

Because P decreases « at ag by %, one of two scenarios are possible. Either
the decrease is caused by the top change when m = s, or it is caused by the bottom
change when n = 0. In both scenarios, « is zero at one of a; or by. So « is integral,
and P is half-integral, in the triangle containing those two corners. On the other
hand, because Pa = Pa’ and P leaves the corner number of o’ at a; unchanged,
o’ must be half-integral in the triangle containing as and bg. Type III is ruled out,
since &’ € RMC® means o’ cannot have an endpoint at either v or w. Thus o’ is
type I, with endpoint at the remaining vertex (not v or w). After applying positive
resolutions, we see that Po must be type I, and P’ type Il in that triangle. Again
this contradicts Pa = Pa’. We thus deduce that a(as) = o' (ay).

We take a moment to remark that the first part of our case analysis above can be
seen visually using Figure 8.1a. Each arrow in the figure depicts how the positive
resolution map P affects the corner coordinates at a; and b;. Since P decreases
« atag by %, the x-coordinates of the arrows in Figure 8.1a are either the same or
go down by 1. Furthermore, identifying o and o satisfying a(as) > o'(as) and
Pa(as) = Pa'(ag) corresponds to finding pairs of arrows which start at different
x-coordinates and land at the same spot. Such pairs of arrows occur only on the far

right of the figure, where a/(a5) = d, a(bo) = 0, and o (a;) = d — 1, &'(bo) = 3.
The proof can be finished as before, by analyzing triangle type.
A nearly identical argument proves that «(b;) = «'(b;). And because

deg(a) = deg(a’), the identity in Equation 8.1 implies that « and &’ agree on
all four corners.

We now consider the remaining corners, beginning with the ones around v.
Suppose that & and o’ disagree at some corner around v which is not ag or
as. Let k be the smallest index such that a(ax) # o'(ax), and without loss of
generality, say a(ar) > o'(ax). Let m and m’ be as in Algorithm 7.3; namely, let
m = min{i | a(a;) = 0} and m’ := min{i | «’(a;) = 0}. Taking the positive
resolution P can cause the corner coordinate at aj to decrease by 0, % or 1, and
so there are three cases to consider.

In the first case, P decreases « at a; by 1, and P decreases o’ at a; by %
This implies (respectively) that m > k, and that k = m’ with «’(ax) = 0 and
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Po/(ax) = —3. Since Pa = P/, it follows that a(ax) = 3. Notice that o’ is
integral in the triangle containing ag, and hence is type 1. On the other hand, « is
half-integral in the triangle containing aj. Type III is ruled out, since a(ay) = %
would force the previous angle to have a(ag—;) = 0, contradicting that m > k.
So o must be type II, with one end at the corner to the left of ay; otherwise, it
would again force a(ax—;) = 0. After applying positive resolutions, we see that
P o must be type III, whereas Po’ is type II. This contradicts Pa = Po/.

In the second case, P decreases « at ai by 1, and P leaves the corner number
of o’ at aj unchanged. This occurs only if m’ < k < m. Since k was the smallest
index where o and o’ disagreed, we have that «(a,/) = o'(an’) = 0. But this
contradicts that a,, was the first corner where « is zero.

In the third case, P decreases « at aj by %, and P leaves the corner number
of o’ at a; unchanged. The first can occur only if & = m with a(ar) = 0 and
Pa(ax) = —3. From Pa = Pd/, it follows that &’ (ax) = —31. But o’ cannot have
negative corner coordinate, since it is in RMC® and cannot have an endpoint at v.

By repeating the argument above for the corners around w, we see that « and
o’ must agree at the corners around w. We thus conclude that o = «'.

Case j = 1, with P:RMC! - RMC!. Let o, o' € RMC' such that Po = Po’.
Since P: RMC}H — RMCllji_1 , both &, &’ must have an endpoint at the same vertex.
Without loss of generality, assume that common vertex to be w. As in the previous
case, we have d = deg(«) = deg(e’). By Lemma 8.4, d = deg(P«) = deg(Pa’)
as well.

Suppose that «(as) > o’(as). Since P = Po’, and P can decrease the corner
coordinate at as only by O or %, it follows that P decreases « at ag by %, but leaves
o’ at ag unchanged. We look in Figure 8.2 for pairs of arrows that start at different
x-coordinates, but land at the same spot. These are found only on the far right,
when a(a;) = d + 3, a(by) = —3 and &'(a5) = d, o/(by) = 0. Figure 8.4
illustrates such a scenario for d = 0. Notice that because «’ has an endpoint at w
and o/(bg) = 0, &' () = —% for some 0 < j < ¢. After taking P, Pa’(bj) = 0.
On the other hand, a(by) = —% implies that Pa(b;) > 0 for all 0 < i < ¢. Thus,
a(as) > o'(as) implies Pa # Po'.

Next suppose «a(b;) > o'(b;). P can increase the corner coordinate at b, by
% or 1. As before, we can look in Figure 8.2, to find that necessarily «(b;) = d
and o’(by) = d — % Suppose d > 0. Since d is always an integer, type, (b;) =1
and typey, (b;) = 1I. If d = 0, type,,(b;) can be either II or III. But in any case,
after the positive resolution, typep,(b;) = II and typep, (b;) = III, implying
Pa # Puo'.
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We may now assume that o and o’ agree at ag, as, bo, b;. The proof that
a(a;) = a'(a;) for 1 <i < s — 1is the same as in the case of P:RMC® — RMC?

above. For the remaining corners, let n = min{i | a(b;) = —%}. Then
by Algorithm 7.7, Pa(b,) = 0, and all Pa(b;) > O for i > n. Thus also
n = max{i | Pa(b;) = 0}. For o, we similarly have n’ = min{i | o/(b;) =

—%} = max{i | Pa'(h;) = 0}. Then Pa = Po’ implies n = n’. It follows from
Algorithm 7.7 for RMC, that a(b;) = &'(b;) for 1 < j <t — 1. Since all their
corner numbers are the same, we may conclude that o = «’.

Case j = 2, with P:RMC?> — RMC’. Suppose that o,a’ € RMC? with
Pa = Pa’. As before, deg(a) = deg(a’) = d, and arguments like in the RMC!
case shows that « and o’ must agree along the corners ay, a5, bg, and b;.

If « and o’ disagree at some corner around v which is not ag or ag, then let
k be the smallest index such that a(ax) # «(ar). Without loss of generality,
say a(ax) < «'(ax). Let m and m’ be as in Algorithm 7.5. Taking the positive
resolution P can cause the corner coordinate at ay to increase by 0, % orl. If P
increases o at ax by 1 and o’ at ax by 0 or 1, then m < k and k < m'. Since
ay is the first corner where o and o’ disagree, a(am) = o'(am) = —%. But
this contradicts the minimality of m’. If P increases « at ag by 3 but leaves o’
at a; unchanged, then ¥ = m and k < m’. Focusing on the corner a,, from
m’ > m it follows that « increases by 1, whereas «’ increases from —% to 0.
However, 0 = Pa(an) = a(ay) + 1 is impossible. So all the corner coordinates
agree, and &« = o’. The case where « and o’ disagree at some corner around w is
identical. O

9. Edges are not zero-divisors

The goal of this section is to prove Theorem 5.1, by showing ef # 0 for all
B € €(X). In Section 9.1, we first prove that e # 0is when § is a nontrivial linear
combination of reduced multicurves with coeflicients in C. In Section 9.2 we
shows the result of Section 9.1 implies the general case where the coefficients of
B are in C[vF!]. Section 9.1 requires that ¥ be locally planar, whereas Section 9.2
does not. Both proofs are reductive, and make use of Lemma 9.1 as its first step.
It will allow us to split our analysis according to membership in RMC/ .

Recall that « € RMC] if v meets an end of « (see Section 7.2 for the formal
definition).
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Lemma 9.1. Let e be an edge in a triangulation of 3. Let y € €(X), and write
itasy = y° 4+ y! + y2, where y’ is a C[vii]-linear combination of reduced
multicurves in RMC/. Then ey = 0 if and only if ey’ =0 for j = 0,1,2.

Suppose that the edge e has distinct endpoints v and w, we may further write
Y=yl +yl whereylisa C[vii]—linear combination of reduced multicurves in
RMC! and vy} is that of reduced multicurves in RMCL. Then ey' = 0 if and only if
and eyl = eyl =0.

Proof. By Proposition 2.6, RMC is the set of generators in the free C[v;*]-module
€(%), and by Lemma 7.1 ey’ is a C[vii]—linear combination of elements in
RMC2™/. Thus 0 = ey = ey? + ey! + ey® implies ey’ = 0 for each j. The
converse is clear. The proof for y! = y! + y} is similar. O

The next simple computational lemma will be used in the proof of Proposi-
tion 9.3.

Lemma 9.2. Let o € RMC and deg,(a) = d.
If one of the conditions below holds:

(1) « e RMC®, d > 0, and n(a) = (d, d);
(2) @ € RMC, and m(e) = (d + 5.d);
(3) a € RMC? and () = (d + %,d + %)
then Pa(b;—1) > Na(bs—1).

If one of the conditions below holds:
(1) « e RMC®, d > 0, and 7(a) = (0, 0);
2) e RMC}U and (a) = (0, —%);
(3) a € RMC? and mr(ar) = (— %—%)
then Pa(by) < Na(by).

Proof. The proof is immediate if one apply Algorithms in Section 7.4. Here we
give the proof of the very first statement to describe how the proof goes.

Suppose that « € RMC?, d > 0, and n(e) = (d,d). Then deg, (o) = d
and a(b;) = d, so we have a(by) = 0. Thus n = min{i | a(b;) = 0} = 0.
Therefore Pa(b;—1) = a(bs—1) by Algorithm 7.3. On the other hand, because
alb;) =d > 0, max{i | a(b;) =0} <t —1. Thus Na(b;—1) < a(bs—1) and we
obtain the result.

The second half of the statement is obtained by symmetry. |
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9.1. First step: complex coefficients

Proposition 9.3. Suppose that e is an edge of a locally planar triangulation of
3. For any B that is a nonzero C-linear combination of reduced multicurves, the
product ef # 0in €(X).

Proof. To begin, we split the components of § according to their membership in
RMC’. Applying Lemma 9.1, we may thus fix j and assume that 8 = Y, ; cia,
where ¢; € C and @; € RMC’. From here on out, the general strategy is to consider
the leading terms of S and e¢f. We show that some leading term of e¢f is nonzero,
and thus ef # 0.

Letd = max{deg,(o;) |i € I}andJ = {i | deg,(«;) = d}. Then S ={w;}ics
consists of the leading terms in 8, and PS = {Pw;}icys and NS = {Pw;}iej con-
sist of the positive and negative resolutions of the leading terms. By Lemmas 8.3
and 8.4, Pa; and Ne; are the only possible leading terms in e¢;, and their degree
is d 4+ j — 1. So the set of leading terms of ef is a subset of PS U NS.

However, as we will see, the leading terms of e¢f can be a proper subset of
PS U NS, meaning there can be cancellations among the possible leading terms
when computing ef8. Because the resolution maps are injective by Proposition 8.6,
cancellations cannot occur amongst the positive resolutions, and the same is true
of the negative resolutions. But Po; = Noy for i,k € J may occur. See
Figures 9.1 and 9.2 for examples. Our goal is to show that some member of
PS U NS survives to be a leading term of ef.

Based on our discussion above, from now on we thus replace / with J and
show ef # 0 when f is deg,-homogeneous. Proof of the following lemma then
finishes the proof of Proposition 9.3.

Lemma 94. Fix j = 0,1,2, and let B = ) ,.; cioy with ¢; € C and all the
o; € RMC/ having edge degree d. Then leading terms of ef have degree d + j —1,
and each is a positive or negative resolution of a leading term of f.

Proof. To distinguish between the possible leading terms, we analyze their pro-
jection onto two coordinates, with 7(«) = (a(as), a(b;)) for any reduced mul-
ticurve «. See Section 8.2. Let us denote n(S) = {m(w;)}ies, and similarly
w(PS) = {n(Puj)}ies and m(NS) = {m(Na;)}ics. We order the projected co-
ordinates using lexicographical ordering >; that is, (x, y) > (x’,y’) if x > x’ or
x = x"and y > y’. There is a maximal ;p,x in 7(S). We begin with the cases
j = 1,2, as they are simpler.
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For the case j = 1, compare the action of the P and N maps, as depicted
in Figure 8.2. Observe that m(Pa) > m(Na) for all « € RMC! except those
with w(a) = (d + 1.d). If mmax # (d + 3.d), pick any amax € {ti}ies
with 77 (¥max) = ZTmax. Since mmax € 7T (PS) \ 7(NS), Pamax # Nao; for every
i € J. Moreover, because of the injectivity of the positive resolution map, P omax
is distinct from every other Po; in PSS as well. Thus Popax will be a leading term
of ef.

However, if mmax = (d + 1.d), there may exist i,k € J such that 7 (a;) =
(o) = Tmax and w(Pa;) = w(Nay). See Figure 9.1 for an illustrated example.
In this case, the projected coordinates are not enough to determine how to locate
a suitable omax.

In this case, pick ax € {o; | 7(®;) = mmax} With the maximum P oy (bs—1).
We claim that Py will survive after the cancellation with other terms. Suppose
not. Then Poy = Nay for some oy € {o; | m(¢t;) = mmax}- Then by Lemma 9.2,
Poag(bi—1) = Noag(bi—1) < Pag(bs—1). It violates the maximality of Poay (bs—1).
Therefore such £ does not exist and Py is a nonzero leading term of ef.

The case j = 2 is very similar. From Figure 8.3, we see that 7 (P«) > w(Nw)
for all @ € RMC?, except those with m(a) = (d + 3.d + 1) or (— 3. —3). If
Tmax # (d 4+ 3.d + 3).(— 3.—3), pick any amax with 7(max) = Tmax. If
Tmax = (d + 3.d + 1) or mmax = (— 3. —3), cancellations are possible.

Suppose that 7wy = (d + % d+ %) Pick o € {o; | m(atj) = 7max )} with the
maximum Poy (b;—1). If Pax = Nay for some other oy € {; | w(e;) = Tmax}>
then Poy(bi—1) = Noy(bi—1) < Payg(bs—1) by Lemma 9.2. Thus such «y does
not exist and Pay is a leading term in e¢f. When mp,x = (— % —%), then one can
show in a similar way by using N and b, instead of P and b;_; by symmetry.

The case j = 0 also proceeds along the same lines, but we are first required
to subdivide RMC? based on whether the triangles on either side of e are integral
of type 1, or fractional of type II. (Type III is not possible here.) Let RMCY. be
the set of & € RMC® with type, (a;) = I and type, (b;) = I, and let RMCY; be the
set where type, (a5) = I and type, (b;) = I Similarly define RMC{; and RMCP;.
Clearly, RMC® = RMCY; LI RMCY; LI RMCQ. LI RMCY,. It turns out that P and N are
>-preserving on these sets.

Lemma9.5. Let f =) ;. cioi, withc; € Cand a; € RMCO. Let
Tii .= {Pui,No; | a; € RMC?i

and define Tis, Tti, Tt in a similar way. Then Tii, Ti¢, Tti, and Ter are mutually
disjoint.



The Roger—Yang skein algebra 37

Proof. We show that Tj; and T¢; are disjoint. The other cases are similar.

When integral on the left, we have type, (as) =1, and we show that Pa(aX) > 0.
There are two cases, either typep,(as) is I or II. The type I case is clear. If
typepy(as) is type 11, one of Pa(as) and Pa(by) is and so Pa(aR) > o.
Similarly, Na(a?) > 0.

On the other hand, when fractional on the left, we have type, (as;) = II, and
then typep, (as) and typey, (as) are II or III. Furthermore,

1
2’

Poz(af) = Noz(af) = —%. A

In our setting, Lemma 9.5 implies that cancellations are possible only when
the types of the triangles on either side of e agree. Let us further assume that
B = Y ;e cio;i is a linear combination of «; that are in one of RMC;, RMCY;,
RMCY., or RMCY,.

Lexicographically order the projected coordinates 7 (¢;) fori € J, and let wyax
be the maximal coordinates with respect to >. From Figure 8.1, one can check
that if we restrict the domain to one of RMCY;, RMCY;, RMC?., and RMCY;, then P
and N are >-preserving maps. We remark that this is not true for RMC® without
the subdivision.

One can verify that 7 (Pa) > w(Na) except possibly when 7 (a) = (0, 0) or
(o) = (d,d). If mmax # (0,0), (d, d), pick any amax such that 7 (&max) = Tmax-
If mmax = (d, d), pick omax S0 that Pomax (by—1) is the maximum. Arguing like in
the j = 1, 2 cases, we see that P ap,x will survive in ef. The case of 7 () = (0, 0)
is obtained in a similar way. A

We conclude our proof of Proposition 9.3. If 8 has a leading term of degree d,
Lemma 9.4 shows that ef has a nonzero leading term with the expected degree
d + j —1.Henceef # 0. |

9.2. Second step: general coefficients. Unlike Proposition 9.3, Proposition 9.6
below is valid for arbitrary surfaces, and does not require X to be locally planar.

Proposition 9.6. Let e be an edge of a triangulation of X, and suppose that ef8 # 0
for any B that is a non-zero C-linear combination of reduced multicurves. Then e
is not a zero divisor in €(X).

Proof of Proposition 9.6. Let y € €(X) be nonzero and ey = 0. First consider
the case where the edge e has two distinct vertices, v and w. We may assume that
in the vector of vertices v = (v, v2,--+,v,), v = v; and w = vs,.
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By Lemma 9.1, we may fix j = 0,1,2 and assume that y = ) ., fk(vii)ak,
where fi(v) € C[vi] and o € RMC/. In the case that j = 1, we may further
assume that . belongs to RMC! or RMCL, and without loss of generality, let us
assume RMC!.

Because of Proposition 2.6, we now rewrite y as a linear combination of vertex

classes as
m
Y= ymv"™

meZz"

and all yy, are C-linear combinations of elements of one of RMC®, RMC], or RMC2.

In the first case, all y, are C-linear combinations of reduced multicurves in
RMCP. Then for any resolution of ey, there is no resolution at a vertex (the second
relation in Definition 2.4). Thus it does not produce any extra vertex class, so as
a linear combination of the vertex classes,

ey = Zeymvm.

mezY

Therefore ey = 0 implies that ey, = 0 for all m. Then by the assumption on e,
ym = 0 for all m. Therefore y = 0.

If ym is a C-linear combination of elements elements in RMC., then for every
resolution of eym, there is only one resolution at a vertex v. Thus veyy is a C-
linear combination of reduced multicurves, and we have the unique decomposition

ey = Zveymvm_e‘ 9.1)

mez"

where e; is the first standard coordinate vector. Now ey = 0 implies vey, = 0
for all m, since the v are linearly independent in €(X). Since v is a unit in €(X),
it now follows that ey, = 0. Our assumption e # 0 for any § that is a non-
zero C-linear combination of reduced multicurves means that y,, = 0 for all m.
Therefore y = 0.

The cases of RMC? are similar and we can obtain the same conclusion. The
only difference is that instead of (9.1), we have

ey = Z vweyyv™ 162, 9.2)

meZz"

When e is an edge whose ends are both v, then we have a decomposition
RMC = RMC® LI RMC2. We also argue in the same way. The only difference here is
that in RMC? case, we have (9.1) instead of (9.2) because there is only one endpoint
resolution at v. O
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Putting together Propositions 9.3 and 9.6, we immediately arrive at the state-
ment of Theorem 5.1, which states that when e is an edge of a locally planar
triangulation of X, then e is not a zero divisor in €(X). This also completes the
proof in Section 3 of Theorem B, which states that when ¥ is locally planar, the
Poisson algebra homomorhpism ®: €(X) — C®(7% (X)) is injective.

10. The Roger-Yang skein algebra S;(X)

Having finished the proofs of Theorems A and B about the commutative curve
algebra €(X), we now turn to the quantum setting. Let us now consider the skein
algebra §;,(X) as defined by Roger and Yang [23].

10.1. Framed knots and arcs in a thickened punctured surface. Previously,
we considered only loops and arcs in the 2-dimensional punctured surface X. We
now go up a dimension, to the 3-dimensional product ¥ x [0, 1]. In particular we
define framed knots, arcs, and generalized framed links in X x [0, 1] as analogies
of, respectively, the loops, arcs, and multicurves in the 2-dimensional punctured
surface . Recall that V' are the punctures of X.

A framed knot in £x[0, 1] is an embedding of an oriented annulus into X x[0, 1]
that is disjoint from V x [0, 1]. A framed arc in ¥ x [0, 1] is a map of a strip
[0,1] x [0, 1] into = x [0, 1] so that on the set (0, 1) x [0, 1] it is an embedding
into X x [0, 1] that is disjoint from V x [0, 1], and on each of the sets {0} x [0, 1]
and {1} x [0, 1], it is an embedding into V' x [0, 1] that is increasing in the second
coordinate. A generalized framed link in ¥ x [0, 1] is a disjoint union of finitely
many framed knots and framed arcs. Thus, although more than one component of
a generalized framed link may end above a particular puncture v;, the components
must do so at different heights above v;.

We consider generalized framed links up to a suitable notion of regular isotopy
which is described in detail in [23]. In particular, regular isotopy of generalized
framed links can be described using three moves on their diagrams (the Reidemeis-
ter II and III moves on the interior and one more move for ends of arcs meeting
at a vertex). In this paper, we will assume that diagrams are obtained from repre-
sentatives with vertical framing, so that the restriction of the embedding from the
definition of a framed knot or arc is always increasing in the second coordinate.
Breaks in the diagrams are enough to show crossing information at double points
in the interior or at a vertex, but further numbering according to height will be
necessary when more than two ends of arcs meet at a vertex. We say that a gener-
alized framed link in X x [0, 1] is simple or reduced when its diagram is a reduced
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multicurve in X. In particular, the empty set @ is a reduced generalized framed
link.

There is a natural stacking operation for two generalized framed links «, 8 in
¥ x [0, 1]. In particular, @ stacked on top of § is the union of the framed curve
o' C £ x[0, 1] (obtained by rescaling & in £ x [0, 1] vertically by half) and of the
framed curve 8’ C £ x [3, 1] (obtained by rescaling § in = x [0, 1] vertically by
half). We denote the framed link obtained from « stacked on top of 8 as « - 8.

10.2. Roger-Yang skein algebra. Suppose that / is some indeterminate. Then
the ring of power series in &, equipped with a natural i-adic topology, will be
denoted by C[[/]]. Furthermore, in this ring, we distinguish a certain power series
g = e"* e C[[h]]. In addition, let there be an indeterminate v; associated to each
puncture in V, such that a formal inverse v;"! exists. Let C[[4]][v:F!] denote the

commutative C[[h]]-algebra generated by {viil }.

Definition 10.1. Let ¥ be a surface with punctures. Let & be some indeterminate,
and associate a variable v; to the i -th puncture. Then the Roger—Yang skein algebra
$p(2) is the C[[h]][vE!]-algebra freely generated by by the generalized framed
links on ¥ modded out by the following relations:

) A=) (+2),
2 i (o Ay ),
3) () —a*-a7.
4) () —@+4a™,

where we use ¢ = eh/* and where the diagrams in the relations are assumed to be

identical outside of the small balls depicted. Multiplication of elements in $;(X)
is the one induced by the stacking operation for generalized framed links.

Observe that in the absence of punctures on X, the Roger—Yang §;,(X) and the
Kauffman bracket skein algebra coincide. Hence, $,(X) can be regarded as an
extension of the Kauffman bracket skein algebra.
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From comparing the definitions of the curve algebra €(X) and the Roger—
Yang skein algebra §;(X), we see that the Roger—Yang algebra is some non-
commutative version of the curve algebra. Formally, we have the following
theorem.

Theorem 10.2 ([23, Proposition 2.10 and Theorem 2.13]). Let p: $,(¥) — € (%)
be the map which associates a generalized framed link in ¥ x [0, 1] with its
projection to a multicurve in . Then p induces an isomorphism between the
C-algebras §,,(2)/(h - $;,(2)) and €(X).

Furthermore, Sy(X) is a deformation quantization of €(X).

The above theorem generalizes the analogous statements about the Kauffman
bracket skein algebra [24, 12, 5]. For the definition and details about deformation
quantizations, see [14].

Although one is commutative whereas the other is usually not, the underlying
module structure of §;(X) is no more complicated than €(X). We say that a
C[[h]]-module M is topologically free if M =~ V ® C[[h]] for some vector space
V in the category of C[[h]]-modules.

Theorem 10.3 ([23, Theorem 2.4]). The algebra $;(X) is topologically free.
Furthermore, §;(X) = €(X)[[h]] as C[[h]]-modules.

Remark 10.4. Variations in the definition of §,(X) exist in the literature. In
particular, let A4(X) be the Z[A][vi]-algebra generated by RMC on ¥ and with
the same four relations as in Definition 10.1. Observe that A4 (X) can be regarded
as a coordinate restriction of §;,(X), by mapping A — ¢ = ¢"/#. Thus statements
about A4(X) apply also to €(X) and S;(X). In particular, $;,(X) and €(X) are
also finitely generated, with an explicit generating set [2], and a presentation is
known for certain small surfaces including the three-punctured sphere and the
one-punctured torus [3].

10.3. Integrality of the Roger—Yang algebras. As we mentioned in the intro-
duction, §5(X) seems a likely candidate to be a quantization of the decorated Te-
ichmiiller space. In the case of the Kauffman bracket skein algebra, its integrality
was an important step towards showing that it is a quantization of the decorated
Teichmiiller space [4, 21, 22]. Analogously, we also have integrality for the Roger—
Yang algebras.

Theorem 10.5. Suppose that Conjecture 1.1 is true for a punctured surface X.
Then $,(X), AA(X), and €(X) are all domains. In particular, if ¥ is locally
planar, then 8,(X%), A4(X), and € (X) are domains.
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Proof. By the proof of Theorem 3.1, €(X) is a subalgebra of C[A]. The latter is
an integral domain, thus €(X) is, too.

Recall from Theorem 10.3 that §, () is topologically free. As a C[[/]]-module,
S$p(2) = €(2)[[h]]- Let o, B € $,(X) be two nonzero elements. Then « (resp. )
can be written as Y ;. a;h' (resp. Y ;- Bih') with a;, B; € €(Z). Now

05,3 — amﬁnhm+n 4 0(hm+n+l).

Since the smallest degree term is nonzero by the classical case, & # 0 in §;,(X).
The algebra A4(X) is a subalgebra of §;,(X) by sending A > g = ¢”/*, and
any subring of a domain is a domain. |
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