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Newsfeed algorithms frequently amplify misinformation and other low-quality content. How8

can social media platforms more effectively promote reliable information? Existing ap-9

proaches are difficult to scale and vulnerable to manipulation. In this paper, we propose10

using the political diversity of a website’s audience as a quality signal. Using news source11

reliability ratings from domain experts and web browsing data from a diverse sample of 6,89012

U.S. citizens, we first show that websites with more extreme and less politically diverse au-13

diences have lower journalistic standards. We then incorporate audience diversity into a14

standard collaborative filtering framework and show that our improved algorithm increases15

the trustworthiness of websites suggested to users — especially those who most frequently16

consume misinformation — while keeping recommendations relevant. These findings suggest17

that partisan audience diversity is a valuable signal of higher journalistic standards that18

should be incorporated into algorithmic ranking decisions.19
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Concerns continue to grow about the prevalence of misinformation on social media platforms [31,20

50], including during the recent COVID-19 pandemic [51]. These types of content often exploit21

people’s tendency to prefer pro-attitudinal information [23], which can be exacerbated by platform22

content recommendations [5, 6]. In this paper, we explore a possible algorithmic approach to23

mitigate the spread of misinformation and promote content with higher journalistic standards24

online.25

Social media platform recommendation algorithms frequently amplify bias in human consump-26

tion decisions. Though the information diets of Americans are less slanted in practice than many27

assume, the people who consume the most political news are most affected by the tendency toward28

selective exposure [17]. As a result, the news audience is far more polarized than the public as29

a whole [10, 19]. Although the prevalence of so-called “fake news” online is rather limited and30

concentrated among relatively narrow audiences [2, 3, 16–18, 20], content that generally appeals31

to these tendencies — which does include low-quality or false news — may generate high levels32

of readership or engagement [50], prompting algorithms that seek to maximize engagement to33

distribute them more widely.34

Prior research indicates that existing recommendation algorithms tend to promote items that35

have already achieved popularity [13, 38]. This bias may have several effects on the consumption36

of low-quality and false news. First, sorting the news by engagement (either predicted or achieved)37

can exacerbate polarization by increasing in-group bias and discouraging consumption among out-38

group members [47]. Second, it may contribute to information cascades, amplifying differences39

in rankings from small variations or random fluctuations and degrading the overall quality of in-40

formation consumed by users [8, 12, 24, 32, 43]. Third, exposure to engagement metrics makes41

users more likely to share and less likely to fact-check highly engaging content from low-credibility42

sources, increasing vulnerability to misinformation [4]. Finally, popularity bias in recommendation43

systems can create socio-algorithmic vulnerabilities to threats such as automated amplifiers, which44

exploit algorithmic content rankings to spread low-quality and inflammatory content to like-minded45

audiences [45, 48].46

Given the speed and scale of social media, assessing directly the quality of every piece of content47

or the behavior of each user is infeasible. Online platforms are instead seeking to include signals48

about news quality in their content recommendation algorithms [9, 15], for example by extracting49

information from trusted publishers [26] or by means of linguistic patterns analysis [27, 40]. More50

generally, a vast literature examines how to assess the credibility of online sources [7, 22] and51

the reputations of individual online users [1, 14], which could in principle bypass the problem52
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of checking each individual piece of content. Unfortunately, many of these methods are hard to53

scale to large groups and/or depend upon context-specific information about the type of content54

being generated. For example, methods for assessing the credibility of content on Wikipedia often55

assume content is organized as a wiki. As a result, they are not easily applied to news content56

recommendations on social media platforms.57

Another approach is to try to evaluate the quality of articles directly [54], but scaling such58

an approach would likely be costly and cause lags in the evaluation of novel content. Similarly,59

while crowdsourced website evaluations have been shown to be generally reliable in distinguishing60

between high and low quality news sources [39], the robustness of such signals to manipulation is61

yet to be demonstrated.62

Building on the literature about the benefits of diversity at the group level [25, 46], we propose63

using the partisan diversity of the audience of a news source as a signal of its quality. This64

approach has two key advantages. First, audience partisan diversity can be computed at scale65

given that information about the partisanship of users is available or can be inferred in a reliable66

manner. Second, because diversity is a property of the audience and not of its level of engagement,67

it is less susceptible to manipulation if one can detect inauthentic partisan accounts [44, 49, 52,68

53]. These two conditions (inferring partisanship reliably and preventing abuse by automated69

amplification/deception) could easily be met by the major social media platforms, which have70

routine access to a wealth of signals about their users and their authenticity.71

We evaluate the merits of our proposed approach using data from two sources: a comprehensive72

data set of web traffic history from 6,890 Americans, collected along with surveys of self-reported73

partisan information from respondents in the YouGov Pulse survey panel, and a data set of 3,76574

news source reliability scores compiled by trained experts in journalism and provided by News-75

Guard [37]. We first establish that domain pageviews are not associated with overall news re-76

liability, highlighting the potential problem with algorithmic recommendation systems that rely77

on popularity and related metrics of engagement. We next define measures of audience partisan78

diversity and show that these measures correlate with news reliability better than popularity does.79

Finally, we study the effect of incorporating audience partisan diversity into algorithmic ranking80

decisions. When we create a variant of the standard collaborative filtering algorithm that explic-81

itly takes audience partisan diversity into account, our new algorithm provides more trustworthy82

recommendations than the standard approach with only a small loss of relevance, suggesting that83

reliable sources can be recommended without the risk of jeopardizing user experience.84

These results demonstrate that diversity in audience partisanship can serve as a useful signal85
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of news reliability at the domain level, a finding that has important implications for the design of86

content recommendation algorithms used by online platforms. Although the news recommendation87

technologies deployed by platforms are more sophisticated than the approach tested here, our88

results highlight a fundamental weakness of algorithmic ranking methods that prioritize content89

that generates engagement and suggest a new metric that could help improve the reliability of the90

recommendations that are provided to users.91

RESULTS92

Popularity does not predict news reliability93

To motivate our study, we first demonstrate that the popular news content that algorithmic94

recommendations often highlight is not necessarily reliable. To do so, we assess the relationship95

between source popularity and news reliability. We measure source popularity using the YouGov96

Pulse traffic data. Due to skew in audience size among domains, we transform these data to a97

logarithmic scale. In practice, we measure the popularity of a source in two ways: as the (log of)98

number of users, and as the (log of) number of visits, or pageviews. News reliability is instead99

measured using NewsGuard scores (see Methods A). Figure 1 shows that the popularity of a100

news source is at best weakly associated with its reliability (a full regression summary can be101

found in Supplementary Table 2). At the user level (left pane), the overall Pearson correlation is102

r(n = 1024) = 0.03 (two-sided p = 0.36, 95% c.i. = [−0.03, 0.09]). At the pageview level (right103

pane), r(n = 1024) = 0.05 (two-sided p = 0.12, 95% c.i. = [−0.01, 0.11]). Bootstrapped equivalence104

tests at the 0.05 significance level indicate that we can reject Pearson correlation coefficients larger105

than 0.096 at the visitor level and 0.094 at the pageview level.106

The association between the two variables remains weak even if we divide sources based on their107

partisanship. When measuring popularity at the user level, websites that have a predominantly108

Democratic audience have a significant positive association (r(n = 783) = 0.09, two-sided p = 0.02,109

95% c.i. = [0.02, 0.16]), but for websites with a Republican audience the correlation is negative110

and not significant at conventional standards (r(n = 237) = −0.12, two-sided p = 0.06, 95% c.i.111

= [−0.25, 0.005]). A similar pattern holds at the pageview level: a weak, positive and insignificant112

association for websites with predominantly Democratic audiences (r(n = 702) = 0.07, two-sided113

p = 0.07, 95% c.i. = [−0.01, 0.14]) and a weak, negative and non-significant association for those114

with predominantly Republican audiences (r(n = 322) = −0.01, two-sided p = 0.90, 95% c.i.115
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= [−0.10, 0.12]). Bootstrapped equivalence tests at the 0.05 significance level for websites with116

predominantly Democratic audiences reject correlation coefficients larger than 0.127. Similarly,117

for websites with a predominantly Republican audiences, we can calculate equivalence bounds of118

(−0.222, 0) and (−0.078, 0.092) at the visitor and pageview level, respectively. Overall, these results119

suggest the strength of association between the two variables is quite weak even after taking into120

account for the partisan traffic of a website.121

Audience partisan diversity is signal of reliable news122

In contrast, we observe that sites with greater audience partisan diversity tend to have higher123

NewsGuard scores while those with lower levels of diversity, and correspondingly more homogeneous124

partisan audiences, tend to have lower reliability scores. As our primary metric of diversity, we125

selected from a range of alternative definitions (see Methods B) the variance of the partisanship126

distribution. Figure 2 shows how NewsGuard scores vary with both mean audience partisanship127

and the variance in audience partisanship.128

As Figure 2 indicates, unreliable websites with very low NewsGuard scores are concentrated in129

the tails of the distribution, where partisanship is most extreme and audience partisan diversity130

is, by necessity, very low. This relationship is not symmetrical: low-reliability websites (whose131

markers are darker shades of blue in the figure) are especially concentrated in the right tail, which132

corresponds to websites with largely Republican audiences. The data in Figure 2 also suggests133

that the reliability of a website may be associated not just with the variance of the distribution134

of audience partisanship slants, but also with its mean. To account for this, we first compute the135

coefficient of partial correlation between NewsGuard reliability scores and the variance of audience136

partisanship given the mean audience partisanship of each website. Compared with popularity, we137

find a stronger (and significant) correlation regardless of whether mean partisanship and audience138

partisan diversity are calculated by weighting individual audience members equally (user level, left139

panel: partial correlation r(n = 1024) = 0.38, two-sided p < 10−4, 95% c.i. = [0.32, 0.43]) or by how140

often they visited a given site (pageview level, right panel: partial correlation r(n = 1024) = 0.22,141

two-sided p < 10−4, 95% c.i. = [0.16, 0.28]).142

Aside from mean partisanship, a related, but potentially distinct, confounding factor is the143

extremity of the partisanship slants distribution (i.e., the distance of the average partisanship of a144

website visitor on a 1–7 scale from the midpoint of 4, which represents a true independent). We thus145

computed partial correlation coefficients again, but instead keep the ideological extremity of website146
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audiences constant instead of the mean. Our results are consistent using this approach (user level:147

r(n = 1024) = 0.26, p < 10−4, 95% c.i. = [0.20, 0.31]; pageview level: r(n = 1024) = 0.15, p < 10−4,148

95% c.i. = [0.08, 0.21]; both tests are two-sided).149

Finally, we test whether bimodal distributions of audience partisanship are associated with150

quality. This test is important to conduct because unimodal and bimodal distributions may have151

the same variance. In the Supplementary Materials (Sec. S6), we define a metric for bipolarity and152

find that audience bipolarity is a much weaker signal of quality than partisan diversity as measured153

by the variance.154

We study the diversity–reliability relationship in more detail in Figure 3, which differentiates155

between websites with audiences that are mostly Republican and those with audiences that are156

mostly Democratic. Consistent with what we report above, Figure 3 shows that audience partisan157

diversity is positively associated with news reliability (full regression summary can be found in158

Supplementary Table 3). Again, this relationship holds both when individual audience members159

are weighted equally (user level, left panel) and when they are weighted by their number of accesses160

(pageview level, right panel). In addition, we find that the relationship is stronger for sites whose161

average visitor identifies as a Republican (standardized OLS coefficient of Republican domains:162

β = 10.6 (0.94) at user level; β = 8.80 (1.05) at pageview level) versus those whose average visitor163

identifies as a Democrat (standardized OLS coefficient of Democrat domains: β = 2.93 (0.66) at164

user level; β = 0.82 (0.86) at pageview level), which is consistent with Figure 2 (the partisan slope165

difference is 7.71 at user level, p < 10−4, 95% c.i. = [5.46, 9.97]; 7.97 at pageview level, p < 10−4,166

95% c.i. = [5.32, 10.62]).167

These results are not affected by popularity. Partisan diversity is weakly correlated with pop-168

ularity, regardless of the operational definition of either measure (see Supplementary Table 4). In169

fact, the association between diversity and Newsguard reliability scores is consistent even when con-170

trolling for popularity (user level: r(n = 1024) = 0.34, two-sided p < 10−4, 95% c.i. = [0.29, 0.40];171

pageview level: r(n = 1024) = 0.17, two-sided p < 10−4, 95% c.i. = [0.11, 0.23]), suggesting that172

diversity could contribute to detecting quality over and above the more typical popularity met-173

rics used by social media algorithms. However, the previous analysis of Figure 3 shows that the174

overall relationship masks significant heterogeneity between websites with mostly Republican or175

Democratic audiences. To tease apart the contributions of popularity from those of partisanship,176

we estimate a full multivariate regression model. After controlling for both popularity and polit-177

ical orientation, we find qualitatively similar results. Full regression summaries can be found in178

Supplementary Table 2 and Supplementary Table 3.179
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As mentioned before, variance in audience partisanship is not the only possible way to define180

audience partisan diversity; alternative definitions can be used (e.g., entropy; see Methods B). As181

a robustness check, we therefore consider a range of alternative definitions of audience partisan182

diversity and obtain results that are qualitatively similar to the ones presented here, though results183

are strongest for variance (see Supplementary Table 1).184

Audience diversity produces trustworthy, relevant rankings185

To understand the potential effects of incorporating audience partisan diversity into algorithmic186

recommendations, we next consider how recommendations from a standard user-based collaborative187

filtering (CF) algorithm [29, 41] change if we include audience partisan diversity as an additional188

signal. We call this modified version of the algorithm CF+D, which stands for Collaborative189

Filtering + Diversity (see Methods C for formal definition).190

In classic CF, users are presented with recommendations drawn from a set of items (in this case,191

web domains) that have been “rated” highly by those other users whose tastes are most similar to192

theirs. Lacking explicit data about how a user would “rate” a given web domain, we use a quantity193

derived from the number of user pageviews to a domain (based on TF-IDF; see also Methods C)194

as the rating.195

To evaluate our method, we follow a standard supervised learning workflow. We first divide196

web traffic data for each user in the YouGov Pulse panel into training and testing sets by domain197

(see Methods D). We then compute similarities in traffic patterns between users for all domains198

in the training set (not just news websites) and use the computed similarities to predict the afore-199

mentioned domain-level pageviews metric on the test set. The domains that receive the highest200

predicted ratings (i.e., expected TF-IDF-transformed pageviews) are then selected as recommen-201

dations. As a robustness check, we obtain consistent results if we split the data longitudinally202

instead of randomly (i.e., as a forecasting exercise; see Supplementary Figures 7 and 8 for details).203

Note that if a user has not visited a domain, then the number of visits for that domain will204

be zero. In general, due to the long tail in user interests [13], we cannot infer that the user has a205

negative preference toward a website just because they have not visited it. The user may simply206

be unaware of the site. We therefore follow standard practice in the machine learning literature207

in only evaluating recommendations for content for which we have ratings (i.e., visits in the test208

set), though in practice actual newsfeed algorithms rank items from a broader set of inputs, which209

typically includes content the user may not have seen (for example, content shared by friends [5]).210
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To produce recommendations for a given user, we consider all the domains visited by the user in211

the test set for which ratings are available from one or more respondents in a neighborhood of most212

similar users (domains with no neighborhood rating are discarded since neither CF nor CF+D can213

make a prediction for them; see Methods C) and for which we have a NewsGuard score (i.e., a214

reliability score). We then rank those domains by their rating computed using either CF or CF+D.215

This process produces a ranked list of news domains and reliability scores from both the standard216

CF algorithm and the CF+D algorithm, which has been modified to incorporate the audience217

partisan diversity signal. We evaluate these lists using two different measures of trustworthiness218

which are computed for the top k domains in each list: the mean score (a number in the 0–100219

range) and the proportion of domains with a score of 60 or higher, which NewsGuard classifies as220

indicating that a site “generally adheres to basic standards of credibility and transparency” [37]221

(see Methods F).222

By varying the number of top domains k, we can evaluate how trustworthiness changes as the223

length of the list of recommendations increases. In Figure 4 we plot the trustworthiness of the224

recommended domains as a function of k. We restrict values of k to 1–28, the values for which225

there are at least 100 users in each bin (see Supplementary Figure 2 for the plot spanning the full226

range). Each panel compares the average trustworthiness of domains ranked by CF and CF+D227

with two baselines. The first is the trustworthiness of websites that users visited in the test set,228

ranked by their TF-IDF-transformed number of visits (i.e., pageviews). This baseline captures the229

trustworthiness of the websites that users in the YouGov Pulse panel actually visited after adjusting230

for the fact that more popular websites tend to attract more visits in general. The second baseline231

is the trustworthiness of recommendations produced according to the overall popularity of domains.232

This baseline does not include any local information about user–user similarities, and thus can be233

seen as a “global” measure of popularity with no contribution due to user personalization (see234

Methods E).235

We observe in Figure 4 that the trustworthiness of recommendations produced by CF+D is236

significantly better than standard CF recommendations, global popularity recommendations, and237

baseline statistics from user behavior. In particular, CF produces less trustworthy rankings than238

both the recommendations based on global popularity and on user visits (for small values of k239

the difference is within the margin of error). In contrast, CF+D produces rankings that are more240

trustworthy than CF and either baseline (global popularity or actual visits) across different levels of241

k. These results suggest that audience partisan diversity can provide a valuable signal to improve242

the reliability of algorithmic recommendations.243
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Of course, the above exercise would be meaningless if our proposed algorithm recommended244

websites that do not interest users. Because CF+D alters the set of recommended domains to245

prioritize those visited by more diverse partisan audiences, it may be suggesting sources that offer246

counter-attitudinal information or that users do not find relevant. In this sense, CF+D could247

represent an audience-based analogue of the topic diversification strategy from the recommender248

systems literature [55]. If so, a loss of predictive ability would be expected.249

Figure 5 compares the accuracy of CF+D in predicting user visits to domain in the test set with250

that of CF. To evaluate accuracy, we compute both the fraction of correctly predicted domains251

(precision) and root mean squared error (RMSE) as a function of the number of recommended252

domains k (see Methods G for definitions). Note that precision improves with k (left panel) by253

definition — as k grows, we are comparing an increasingly large set of recommendations with a list254

of fixed size. Because each bin averages over users with at least k domains in their test set, when255

k reaches the maximum size of the recommendation list we can make, the precision necessarily256

becomes 100%. Note that the plots in Figure 5 do not reach this level — they include only bins257

with at least 100 users in them — but trend upward with k. (Supplementary Figure 3 shows results258

for all values of k.)259

As with precision, RMSE declines with k (right panel) since we focus progressively on users260

with longer lists and thus more training data. Like in the left panel, each bin in the right panel261

averages over users with at least k domains in their test set. Unlike precision, however, RMSE is262

more prone to producing outliers because it does not depend on the relative ranking of item ratings263

but instead on their magnitude. This difference is reflected in the sudden drop in the error bars for264

the RMSE at k = 27 due to the presence of a single user with a maximum list length of 26 domains265

in testing. We manually checked the data of this user and found that the training set included266

only domains visited infrequently, leading to large errors. Removing this outlier eliminated the267

observed change.268

To provide intuition about the contribution of popularity in recommendations, the left panel269

of Figure 5 also shows the precision of the näıve baseline obtained by ranking items by their270

global popularity. This baseline outperform CF and CF+D but at the price of providing the271

same set of recommendations to all users (i.e., the results are not personalized) and of providing272

recommendations of lower trustworthiness (Figure 4). Note that the RMSE cannot be computed273

for this baseline because this metric requires knowledge of the rating of a domain, not just of its274

relative ranking.275

Our results are generally encouraging. In both cases, precision is low and RMSE is high for low276



10

values of k, but error levels start to stabilize around k = 10, which suggests that making correct277

recommendations for shorter lists (i.e., k < 10) is more challenging than for longer ones. Moreover,278

when we compare CF+D with CF, accuracy declines slightly for CF+D relative to CF but the279

difference is not statistically significant for all but small values of k, suggesting that CF+D is still280

capable of producing relevant recommendations.281

Re-ranking items by diversity has minimal effects on predictive accuracy, but how does it affect282

user satisfaction? The recommendations produced by CF+D would be useless if users did not283

find them engaging. Unfortunately, we lack data about user satisfaction in the YouGov panel284

— our primary metric (log number of website visits) cannot be interpreted as a pure measure of285

satisfaction (other factors of course shape the decision by users in the YouGov panel to visit a286

website, including social media recommendations themselves).287

However, it is possible that more accurate recommendations will result in higher user satisfac-288

tion. To quantify the significance of the observed drop in accuracy due to re-ranking by diversity, we289

simulated the sampling distribution of the precision of recommendations obtained after re-ranking.290

We do so by re-shuffling domain labels in the ranked list produced by CF+D, while maintaining the291

sequence of predicted ratings fixed. We then compute precision on this reshuffled list. Repeated292

multiple times, this procedure allows us to calculate the probability, due to random chance alone,293

of a drop in precision (relative to CF) as small as the observed one. Compared with this null294

model, we find that our results lead to significantly higher precision — most random re-rankings295

of the same magnitude as the one produced by CF+D would result in lower precision than what296

we observe. We report the results of this additional analysis in Supplementary Figure 9.297

Audience diversity and misinformation exposure298

The results above demonstrate that incorporating audience partisan diversity can increase the299

trustworthiness of recommended domains while still providing users with relevant recommenda-300

tions. However, we know that exposure to unreliable news outlets varies dramatically across the301

population. For instance, exposure to untrustworthy content is highly concentrated among a nar-302

row subset of highly active news consumers with heavily slanted information diets [16, 20]. We303

therefore take advantage of the survey and behavioral data available on participants in the Pulse304

panel to consider how CF+D effects vary by individual partisanship (self-reported via survey),305

behavioral measures such as volume of news consumption activity and information diet slant, and306

contextual factors that are relevant to algorithm performance such as similarity with other users.307
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In this section, we again produce recommendations using either CF or CF+D and measure308

their difference in trustworthiness with respect to a baseline based on user visits (specifically the309

ranking by TF-IDF-normalized number of visits v; see Methods C). However, we analyze the310

results differently than those reported above. Rather than considering recommendations for lists311

of varying length k, we create recommendations for different subgroups based on the factors of312

interest and compare how the effects of the CF+D approach vary between those groups.313

To facilitate comparisons in performance between subgroups that do not depend on list length314

k, we define a new metric to summarize the overall trustworthiness of the ranked lists obtained315

with CF and CF+D over all possible values of k. Since users tend to pay less attention to items316

ranked lower in the list [28], it is reasonable to assume that lower-ranked items ought to contribute317

less to the overall trustworthiness of a given ranking.318

Let us now consider probabilistic selections from two different rankings, represented by random319

variables X and X ′, where X is the random variable of the ranking produced by one of the two320

recommendation algorithms (either CF or CF+D) and X ′ is the selection from the baseline ranking321

based on user visits. Using a probabilistic discounting method (see Eq. 8 in Method H), we compute322

the expected change in trustworthiness Q from switching the selection from X ′ to X,323

∆Q = E [Q(X)]− E
[
Q(X ′)

]
(1)324

where the expectations of Q(X) and Q(X ′) are taken with regard to the respective rankings (see325

Methods H). A value of ∆Q > 0 indicates that algorithmic recommendations are more trustworthy326

than what users actually accessed. If ∆Q < 0, the trustworthiness of a ranked list is lower than327

the baseline from user visits. (To ensure that the results below are not affected by the discounting328

method we employ, we report qualitatively similar results obtained without any discounting for a329

selection of values of k in Supplementary Figures 10–16.)330

Applying Eq. 1, we find that CF+D substantially increases trustworthiness for users who tend331

to visit sources that lean conservative (Figure 6(a)) and for those who have the most polarized332

information diets (in either direction; see Figure 6(c)), two segments of users who are especially333

likely to be exposed to unreliable information [2, 16, 20]. In both cases, CF+D achieves the greatest334

improvement among the groups where CF reduces the trustworthiness of recommendations the335

most, which highlights the pitfalls of algorithmic recommendations for vulnerable audiences and336

the benefits of prioritizing sources with diverse audiences in making recommendations to those337

users.338

Note that even though the YouGov sample includes self-reported information on both party ID339
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and partisanship of respondents, we use only the former variable (Figure 6(b)) for stratification to340

avoid circularity given the definition of CF+D, which relies on the latter. In Figures 6(a) and 6(c),341

we instead stratify on an external measure of news diet slant (calculated from a large sample of342

social media users; see Methods I).343

We also observe that CF+D has strong positive effects for users who identify as Republicans344

or lean Republican (Figure 6(b)) and for those who are the most active news consumers in terms345

of both total consumption (Figure 6(d)) and number of distinct sources (Figure 6(e)). Further-346

more, since the two recommendation schemes considered here (CF and CF+D) are predicated347

on identifying similar users according to their tastes and behaviors, we also segment the users of348

the YouGov sample according to the degree of similarity with their nearest neighbors (identified349

based on Kendall’s rank correlation coefficient between user vectors; see Methods C). Stratifying350

on the average of nearest neighbor similarities, we find that CF+D results in improvements for351

the users whose browsing behavior is most similar to others in their neighborhood and who might352

thus be most at risk of “echo chamber” effects (Figure 6(f)). Finally, when we group users by the353

trustworthiness of the domains they visit, we find that the greatest improvements from the CF+D354

algorithm occur for users who are exposed to the least trustworthy information (Figure 6(g)). By355

contrast, the standard CF algorithm often recommends websites that are less trustworthy than356

those that respondents actually visit (∆Q < 0).357

DISCUSSION358

The findings presented here suggest that the ideological diversity of the audience of a news359

source is a reliable indicator of its journalistic quality. To obtain these findings, we combined360

source reliability ratings compiled by expert journalists with traffic data from the YouGov Pulse361

panel. Of course, we are not the first to study the information diets of Internet users. Prior work362

has leveraged Web traffic data to pursue related topics such as identifying potential dimensions of363

bias of news sources [38, 42], designing methods to present diverse political opinions [34, 35], and364

measuring the prevalence of filter bubbles [10]. Unlike these studies, however, we focus on how to365

promote exposure to trustworthy information rather than seeking to quantify or reduce different366

sources of bias.367

A number of limitations must be acknowledged. First, our current methodology, which is based368

on reliability ratings compiled at the level of individual sources, does not allow us to evaluate369

the quality of specific articles that participants saw. However, even a coarse signal about source370
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quality could still be useful for ranking a newsfeed given that information about reliability is more371

widely available at the publisher level than the article level. Another limitation is that our data lack372

information about actual engagement. Though we show that our re-ranking procedure is associated373

with a minimal loss in predictive accuracy, it remains an open question whether diversity-based374

rankings lead not just to higher exposure to trustworthy content, but also to more engagement375

with it. Our analysis seems to suggest a tradeoff between ranking accuracy and trustworthiness,376

but the results are specific to one algorithm (user-based collaborative filtering); different ranking377

schemes might make better use of the diversity signal. In general, more research is needed to tease378

apart the causal link between political attitudes, readership, engagement, and information quality.379

Our work has a number of implications for the integrity of the online information ecosystem.380

First, our findings suggest that search engines and social media platforms should consider including381

audience diversity to their existing set of news quality signals. Such a change could be especially382

valuable for domains for which we lack other quality signals, like source reliability ratings compiled383

by experts. Media ratings systems such as NewsGuard could also benefit from adopting our384

diversity metric, for example to help screen and prioritize domains for manual evaluation. Likewise,385

designers of recommendation algorithms should consider measuring the trustworthiness of rankings386

as an additional measure of performance of their systems.387

Critics may raise concerns that such a change in ranking criteria would result in unfair outcomes,388

for example by reducing exposure to content by certain partisan groups but not others. To see389

whether ranking by diversity leads to any differential treatment for different partisan news sources,390

we compute the rate of false positives due to re-ranking by diversity. Here the false positive rate391

is defined as the conditional probability that CF+D does not rank a trustworthy domain among392

the top k recommendations while CF does, for both left- and right-leaning domains. To determine393

whether a domain is trustworthy we rely on the classification provided by NewsGuard (i.e. the394

domain has a reliability score ≥ 60). Figure 7 shows the rate of false positives as a function of395

k of both left- and right-leaning domains averaged over all users. Despite some small differences,396

especially for low values of k, we find no consistent evidence that this change would produce397

systematically differential treatment across partisan groups.398

Another concern is the possibility of abuse. For example, an attacker could employ a number399

of automated accounts to collectively engage with an ideologically diverse set of sources. This400

inauthentic, ideologically diverse audience could then be used to push specific content the attacker401

wants to promote atop the rankings of a recommender system. Similarly, an attacker who wanted402

to demote a particular content could craft an inauthentic audience with low diversity. Fortunately,403
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there is a vast literature on the topic of how to defend recommender systems against such “shilling”404

attacks [21, 30] and platforms already collect a wealth of signals to detect and remove inauthentic405

coordinated behavior of this kind. Future work should investigate the feasibility of creating trusted406

social media audiences that are modeled on existing efforts in marketing research using panels of407

consumers. We hope that our result stimulates further research in this area.408

METHODS409

This study complies with all relevant ethical regulations and was reviewed by the IRB under410

protocols #HUM00161944 (University of Michigan) and #STUDY000433 (University of South411

Florida).412

A. Data413

Our analysis combines two sources of data. The first is the NewsGuard News Website Reliability414

Index [37], a list of web domain reliability ratings compiled by a team of professional journalists and415

news editors. The data that we licensed for research purposes includes scores of 3,765 web domains416

on a 100-point scale based on a number of journalistic criteria such as editorial responsibility,417

accountability, and financial transparency. These data were current as of November 12, 2019418

and do not reflect subsequent updates; see Data Availability for more information. NewsGuard419

categorizes web domains into four main groups: “Green” domains, which have a score of 60 or420

more points and are considered reliable; “Red” domains, which score less than 60 points and are421

considered unreliable; “Satire” domains, which should not be regarded as news sources regardless422

of their score; and “Platform” domains like Facebook or YouTube that primarily host content423

generated by users. The mean reliability score for domains in the data is 69.6; the distribution of424

scores is shown in Supplementary Figure 1.425

The second data source is the YouGov Pulse panel, a sample of U.S.-based Internet users426

whose web traffic was collected in anonymized form with their prior consent. This traffic data427

was collected during seven periods between October 2016 and March 2019 (see Supplementary428

Table 6). A total of 6,890 participants provided data. Overall, this group is diverse and resembles429

the U.S. population on key demographic and political dimensions (47.9% male, 29.0% with a four-430

year college degree, 67.9% white, median age of 55, 37.8% identifying as Democrats, and 26.3%431

identifying as Republicans; see Supplementary Table 6 for a full summary by sample collection432
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period). Note that, to be eligible for the study, participants in the YouGov Pulse panel had to be433

18+ years of age, so the reported dimensions should be interpreted as being conditional on this434

extra eligibility criterion.435

We perform a number of pre-processing steps on this data. We combine all waves into a single436

sample. We pool web traffic for each domain that received thirty or more unique visitors. Finally,437

we use the self-reported partisanship of the visitors (on a seven-point scale from an online survey)438

to estimate mean audience partisanship and audience partisan diversity, which we estimate using439

different measures described next. These different measures are compared in the Supplementary440

Table 1.441

B. Definition of audience partisan diversity442

To measure audience partisan diversity, first define Nj as the count of participants who visited443

a web domain and reported their political affiliation to be equal to j for j = 1, . . . , 7 (where 1444

= strong Democrat and 7 = strong Republican). The total number of participants who visited445

the domain is thus N =
∑

j Nj , and the fraction of participants with a partisanship value of j446

is pj = Nj/N . Denote the partisanship of the i-th individual as si. We calculate the following447

metrics to measure audience partisan diversity:448

Variance: σ2 = N−1
∑

(si − s)2, where s is average partisanship;449

Shannon’s entropy: S = −
∑
p(j) log p(j), where p(j) is estimated in the following three dif-450

ferent ways: (i) p(j) = pj (maximum likelihood); (ii) p(j) =
Nj+α
N+7α (mean of the posterior451

distribution of Dirichlet prior with α = 1); and (iii) the method of Nemenman et al. [36],452

which uses a mixture of Dirichlet priors (NSB prior).453

Complementary Maximum Probability: 1−maxj {pj};454

Complementary Gini: 1−G where G is the Gini coefficient of the count distribution {Nj}j=1...7.455

The above metrics all capture the idea that the partisan diversity of the audience of a web456

domain should be reflected in the distribution of its traffic across different partisan groups. Each457

weighs the contribution of each individual person who visits the domain equally; they can thus be458

regarded as user-level measures of audience partisan diversity. However, the volume and content459

of web browsing activity is highly heterogeneous across internet users [19, 33], with different users460

recording different numbers of pageviews to the same website. To account for this imbalance, we461
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also compute the pageview-level, weighted variants of the above audience partisan diversity metrics462

where, instead of treating all visitors equally, each individual visitor is weighted by the number of463

pageviews they made to any given domain.464

As a robustness check, we compare the strength of association of each of these metrics to news465

reliability in the Supplementary Table 1. We find that all variants correlate with news reliability,466

but the relationship is strongest for variance.467

C. Audience diversity and collaborative filtering468

In general, a recommendation algorithm takes a set of users U and a set of items D and learns469

a function f : U × D → R that assigns a real value to each user–item pair (u, d) representing the470

interest of user u in item d. This value denotes the estimated rating that user u will give to item471

d. In the context of the present study, D is a set of news sources identified by their web domains472

(e.g., nytimes.com, wsj.com), so from now on we will refer to d ∈ D interchangeably as either a473

web domain or a generic item.474

Collaborative filtering is a classic recommendation algorithm in which some ratings are provided475

as input and unknown ratings are predicted based on those known input ratings. In particular,476

the user-based CF algorithm, which we employ here, seeks to provide the best recommendations477

for users by learning from others with similar preferences. CF therefore requires a user–domain478

matrix where each entry is either known or needs to be predicted by the algorithm. Once the479

ratings are predicted, the algorithm creates a ranked list of domains for each user that are sorted480

in descending order by their predicted ratings.481

To test the standard CF algorithm and our modified CF+D algorithm, we first construct a482

user–domain matrix V from the YouGov Pulse panel. The YouGov Pulse dataset does not provide483

user ratings of domains, so we instead count the number of times πu,d ∈ Z+ a user u has visited a484

domain d (i.e., pageviews) and use this variable as a proxy [28]. Because this quantity is known to485

follow a very skewed distribution, we compute the rating as the TF-IDF of the pageview counts:486

vu,d =
πu,d∑
h πu,h

log

(
π∑
u πu,d

)
(2)487

where π =
∑

u

∑
d πu,d is the total number of visits. Note that if a user has never visited a488

particular domain, then vu,d = 0. Therefore, if we arrange all the ratings into a user–domain489

matrix V ∈ R|U|×|D|, such that (V )u,d = vu,d, we will obtain a sparse matrix. The goal of any490

recommendation task is to complete the user–domain matrix by predicting the missing ratings,491
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which in turn allows us to recommend new web domains to users that may not have seen them. In492

this case, however, we lack data on completely unseen domains. To test the validity of our methods,493

we therefore follow the customary practice in machine learning of setting aside some data to be494

used purely for testing (see Methods D).495

Having defined V , the next step of the algorithm is to estimate the similarity between each pair496

of users. To do so, we use either the Pearson correlation coefficient or the Kendall rank correlation497

of their user vectors; i.e., their corresponding row vectors in V (i.e., zeroes included). For example,498

if τ(·, ·) ∈ [−1, 1] denotes the Kendall rank correlation coefficient between two sets of observations,499

then the corresponding coefficient of similarity between u ∈ U and u′ ∈ U can be defined as:500

sim(u, u′) =
τ(Vu, Vu′) + 1

2
(3)501

where Vu, Vu′ ∈ R1×|U| are the row vectors of u and u′, respectively. A similar definition can be502

used for Pearson’s correlation coefficient in place of τ .503

These similarity coefficients are in turn used to calculate the predicted ratings. In the standard504

user-based CF, the predicted rating of a user u for a domain d is calculated as:505

v̂CF
u,d = v̄u +

∑
u′∈Nud

sim(u, u′)(vu′,d − v̄u′)∑
u′∈Nud

sim(u, u′)
(4)506

where Nud ⊆ U is the set of the n = 10 most similar users to u who have also rated d (i.e., the507

neighbors of u), vu′,d is the observed rating (computed with Eq. 2) that neighboring user u′ has508

given to domain d, v̄u and v̄u′ are the average ratings of u and u′ across all domains they visited,509

respectively, and sim(u, u′) is the similarity coefficient (computed with Eq. 3) between users u and510

u′ based on either the Pearson or the Kendall correlation coefficient.511

Having defined the standard CF in Eq. 4, we now define our variant CF+D, which incorporates512

audience partisan diversity of domain d ∈ D as a re-ranking signal in the following way:513

v̂CF+D
u,d = v̂CF

u,d + g (δd) (5)514

where g (δd) is the re-ranking term of domain d, obtained by plugging the audience partisan diversity515

δd (for example, we use the variance of the distribution of self-reported partisan slants of its visitors,516

δd = σ2d) into a standard logistic function:517

g(δ) =
a

1 + exp
(
− (δ − t) /ψ

) . (6)518

In Eq. 6, parameters a, ψ, and t generalize the upper asymptote, inverse growth rate, and location519

of the standard logistic function, respectively. For the results reported in this study we empirically520
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estimate the location as t = δ̄, the average audience partisan diversity across all domains, which521

corresponds to the value of δ̄ = 4.25 since we measure diversity as the variance of the distribution522

of self-reported partisan slants. For the remaining parameters, we choose a = 1, ψ = 1. As a523

robustness check, we re-ran all analyses with a larger value of a and obtained qualitatively similar524

results (available upon reasonable request).525

D. Supervised learning evaluation workflow526

To evaluate both recommendation algorithms, we follow a standard supervised learning work-527

flow. We use precision and root mean squared error (RMSE), two standard metrics used to measure528

the relevance and accuracy of predicted ratings in supervised learning settings. We define these529

two metrics elsewhere (see Methods G). Here, we instead describe the workflow we followed to530

evaluate the recommendation methods. Since our approach is based on supervision, we need to531

designate some of the user ratings (i.e., the number of visits to each domain, which are computed532

using Eq. 2) as ground truth to compute performance metrics.533

For each user, we randomly split the domains they visited into a training set (70%) and a testing534

set (30%). This splitting varies by user: the same domain could be included in the training set of535

a user and in the testing set of another. Then, given any two users, their training set ratings are536

used to compute user-user similarities using Eq. 3 (which is based on Kendall’s rank correlation537

coefficient; a similar formula can be defined using Pearson’s correlation). If, in computing user–538

user similarities with Eq. 3, a domain is present for a user but not for the other, then the latter539

rating is assumed to be zero regardless of whether the domain is present in testing or not. This540

assumption, which follows standard practice in collaborative filtering algorithm, ensures that there541

is no leaking of information between the test and training sets.542

Finally, using either Eq. 4 or Eq. 5, we predict ratings for domains in the test set and compare543

them with the TF-IDF of the actual visit counts in the data.544

E. Recommendation based on global popularity545

We also generate ranked lists for users based on global domain popularity (user-level) as an546

additional baseline recommendation technique. All the domains are initially assigned a rank (global547

popularity rank) according to their user-level popularity, which is calculated from the training set548

views. Then, the domains in the test set of each user are ranked according to their global popularity549
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ranks to generate the recommendations. This method does not include any personalization as the550

rank of a domain for a particular user does not depend on other similar users but depends on the551

whole population. In particular, if two users share the same two domains in testing, their relative552

ranking is preserved, even if the two users visited different domains in training.553

F. Trustworthiness metrics554

In addition to standard metrics of accuracy (precision and RMSE; see Methods G), we define555

a new metric called trustworthiness to measure the news reliability of the recommended domains.556

It is calculated using NewsGuard scores in two ways: either using the numerical scores or the557

set of binary indicators for whether a site meets or exceeds the threshold score of 60 defined by558

NewsGuard as indicating that a site is generally trustworthy [37]. Let d1, d2, . . . , dk be a ranked559

list of domains. Using numerical scores, the trustworthiness is the average:560

1

k

k∑
r=1

Q(dr) (7)561

where Q(d) ∈ [0, 100] denotes the NewsGuard reliability score of d ∈ D.562

If instead we use the binary indicator of trustworthiness provided by Newsguard, then the563

trustworthiness of domains in a list is defined as the fraction of domains that meet or exceed the564

threshold score. Note that, unlike precision and RMSE, the trustworthiness of a list of recommen-565

dations does not use information on the actual ratings vu,d. Instead, using Eq. 7, we compute the566

trustworthiness of the domains in the test set ranked in decreasing order of user visits vu,d. We567

then compare the trustworthiness of the rankings obtained with either CF or CF+D against the568

trustworthiness of this baseline.569

G. Accuracy metrics570

Given a user u, let us consider a set D of web domains for which |D| = D. For each domain571

d ∈ D, we have three pieces of information: the two predicted ratings v̂CF
u,d and v̂CF+D

u,d produced by572

CF and CF+D and the actual rating vu,d (defined elsewhere; see Methods C). In the following, we573

omit the subscript u of the user, which is fixed throughout, and the CF/CF+D superscript unless574

it is not obvious from context.575

Let us consider a given recommendation method (either CF or CF+D) and denote with r(d)576

(respectively, r′(d)) the rank of d when the domains are sorted by decreasing order of recommen-577
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dation and actual ratings, respectively. Given a recommendation list length 0 < k ≤ D, let us578

define the set of predicted domains as:579

Pk = {d ∈ D : r(d) ≤ k}580

and the set of actual domains as:581

Ak = {d ∈ D : r′(d) ≤ k}.582

Then the precision for a given value of k is given by the fraction of correctly predicted domains:583

Precision =
|Pk ∩Ak|
|Pk|

.584

Similarly, the root mean squared error for a given value of k between the two ranked lists of ratings585

is computed as:586

RMSE =

√√√√1

k

k∑
r=1

(
v̂ρ(r) − vρ′(r)

)2
587

where ρ : [D] 7→ D (respectively ρ′) is the inverse function of r(·) (respectively, r′(·)); that is, the588

function that maps ranks back to their domain by the recommendation method (respectively, by589

actual visits). Note that, in the summation, ρ(r) and ρ′(r) do not generally refer to the same590

web domain: the averaging is over the two ranked lists of ratings, not over the set of domains in591

common between the two lists.592

H. Discounting via ranking593

To measure the effect of CF+D on the trustworthiness of rankings, we must select a particular594

list length k. Although Figure 4 shows improvements for all values of k, one potential problem595

when stratifying on different groups of users is that the results could depend on the particular596

choice of k. To avoid dependence on k, we consider a probabilistic model of a hypothetical user597

visiting web domains from a ranked list of recommendations and define overall trustworthiness as598

the expected value of the trustworthiness of domains selected from that list (i.e., discounted by599

probability of selection).600

Let us consider a universe of domains D as the set of items to rank. Inspired by prior approaches601

on stochastic processes based on ranking [11], we consider a discounting method that posits that602

the probability of selecting domain d ∈ D from a given ranked recommendation list decays as a603

power law of its rank in the list:604
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Pr {X = d} =
r−αd∑
h r
−α
h

(8)605

where X ∈ D is a random variable denoting the probabilistic outcome of the selection from the606

ranked list, rd ∈ N is the rank of a generic d ∈ D, and α ≥ 0 is the exponent of power-law decay607

(when α = 0, all domains are equally likely; when α > 0, top-ranked domains are more likely to608

be selected).609

This procedure allows us to compute, for any given user, the effect of a recommendation method610

(either CF or CF+D) simply as the difference between its expected trustworthiness and the trust-611

worthiness of the ranking obtained by sorting the domains visited by the user in decreasing order612

of pageviews (see Eq. 1).613

In practice, to compute Eq. 1, let d1, d2, . . . , dk and d′1, d
′
2, . . . , d

′
k be two ranked lists of domains,614

dr, d
′
r ∈ D ∀r = 1, . . . , k, generated by a recommendation algorithm and by actual user pageviews,615

respectively, and let us denote with Q(d) the NewsGuard reliability score of d ∈ D (see Methods F).616

Recall that Eq. 8 specifies the probability of selecting a given domain d ∈ D from a particular ranked617

list as a function of its rank. Even though any pair of equally-ranked domains will be different618

across these two lists (that is, dr 6= d′r in general), their probability will be the same because Eq. 8619

only depends on r. We can thus calculate the expected improvement in trustworthiness as:620

∆Q =
k∑
r=1

P (r)
(
Q (dr)−Q

(
d′r
))

(9)621

where P (r) is the probability of selecting a domain with rank r from Eq. (8), which we computed622

setting α = 1.623

I. Stratification analysis624

Recall that we use the self-reported partisanship of respondents in the YouGov Pulse panel as625

the basis for our diversity signal (see Methods B). To avoid the circular reasoning in stratifying626

on the same source of data, Figure 6(a) and Figure 6(c) group these users according to the slant of627

their actual news consumption, which may not necessarily reflect their self-reported partisanship628

(e.g., a self-reported Democrat might access mostly conservative-leaning websites). We determined629

this latter metric using an external classification originally proposed by Bakshy et al. [5], who630

estimated the slant of 500 web domains focused on hard news topics. In practice, Bakshy et al.631

based their classification on how hard news from those domains were shared on Facebook by users632

who self-identified as liberal or conservative in their profile. For almost all domains, Bakshy et al.633
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reported a value s ∈ [−1, 1] with a value of s = +1 for domains that are shared almost exclusively634

by conservatives, and a value of s = −1 for those shared almost exclusively by liberals. (These635

values could technically vary over [−2, 2] but only 1% of domains fell outside [−1, 1] using the636

measurement approach described by Bakshy et al. [5].)637

In Figure 6(c), respondents are grouped according to the absolute slant |s| of the visited domains638

where a value of |s| = 0 denotes domains with a perfectly centrist slant and a value of |s| = 1639

indicates domains with extreme liberal or conservative slants (i.e., they are almost exclusively640

shared by one group and not the other).641

Data Availability642

Data necessary to reproduce the findings in the main manuscript text and in the Supplemen-643

tary Materials are available, in aggregated and anonymized format, at https://github.com/644

glciampaglia/InfoDiversity/. The raw data that support the findings of this study are avail-645

able from NewsGuard Technology, Inc. but restrictions apply to the availability of these data,646

which were used under license for the current study and thus cannot be made publicly available.647

However, data are available from the authors upon reasonable request subject to licensing from648

NewsGuard. The data used in this study were current as of November 12, 2019 and do not reflect649

NewsGuard’s regular updates of the data.650

Code Availability651

Code necessary to reproduce the findings in the main text and in the Supplementary Materials652

are available at https://github.com/glciampaglia/InfoDiversity/.653
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FIGURE LEGENDS/CAPTIONS671

FIG. 1. Relationship between audience size (log-transformed) and news reliability by domain (blue solid

line; N = 1024 domains). Left: audience size as number of individual visitors. Right: audience size as

number of visits. The shaded area the 95% confidence interval. Note that the two panels use different scales

on the x axis and do not start at zero. Reliability scores provided by NewsGuard [37]. Full regression results

in Supplementary Table 2.

FIG. 2. Average audience partisanship versus variance (N = 11, 793 domains). Left: audience size as number

of individual visitors. Right: audience size as number of visits. Domains for which we have NewsGuard

reliability scores [37] are shaded in blue (where darker shades equal lower scores). Domains with no available

score are plotted in gray.

FIG. 3. Relationship between audience partisan diversity and news reliability for websites whose average

visitor is a Democrat (blue solid line) or a Republican (red solid line). Left panel: variance computed at

user level (N = 1020 domains). Right panel: variance computed at pageview level (N = 1024 domains).

The shaded area represents 95% confidence intervals. News reliability scores from NewsGuard [37]. Full

regression results in Supplementary Table 3.
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FIG. 4. Trustworthiness of recommended domains by length of ranked list k (Nk = 28 list lengths). Left:

Trustworthiness based on scores from NewsGuard [37]. Right: proportion of domains labeled as ‘trustwor-

thy’, also by NewsGuard. Actual visits v are normalized using TF-IDF (term frequencyinverse document

frequency, see Methods C). Global popularity is overall domain popularity (see Methods E). Each bin rep-

resents the average computed on the top-k recommendations for all users in the YouGov panel with ≥ k

recommendations in their test sets. Bars represent the standard error of the mean. The values of k are

capped so that each bin has ≥ 100 users in it (see Supplementary Figure 2 for plot with all values of k).

In this figure, both CF (collaborative filtering) and CF+D (collaborative filtering + diversity) compute the

similarity between users using the Kendall τ correlation coefficient (see Methods C). We obtain qualitatively

similar results using the Pearson correlation coefficient (see Supplementary Figure 4).

FIG. 5. Accuracy of domain recommendations by length of ranked list k (Nk = 28 list lenghts). Left:

Precision (proportion of correctly ranked sites) by length of ranked list k (higher is better). Right: RMSE

(root mean squared error) of predicted pageviews for top k ranked domains by length of ranked list k (lower

is better). Each bin represents the average computed on the top-k recommendations of all users with ≥ k

recommendations in their test sets. Bars represent the standard error of the mean. The values of k are

capped so that each bin has ≥ 100 users in it (see Supplementary Figure 3 for plot with all values of k).

In this figure, both CF (collaborative filtering) and CF+D (collaborative filtering + diversity) compute the

similarity between users using the Kendall τ correlation coefficient (see Methods C). We obtain qualitatively

similar results using the Pearson correlation coefficient (see Supplementary Figure 5).

FIG. 6. Effect of CF (collaborative filtering) and CF+D (collaborative filtering + diversity; versus actual

visits baseline) on trustworthiness by user characteristics and behavior. (a) Ideological slant of visited

domains (terciles using scores from Bakshy et al. [5]). (b) Self-reported party ID from YouGov Pulse

responses as measured on a 7-point scale (1–3: Democrats including people who lean Democrat but do not

identify as Democrats, 4: Independents, 5–7: Republicans including people who lean Republican but do not

identify as Republicans). (c) Absolute slant of visited domains (terciles using scores from Bakshy et al.).

(d) Total online activity (TF-IDF-transformed pageviews; terciles; TF-IDF is short for term frequencyinverse

document frequency). (e) Distinct number of domains visited (terciles). (f) Average user-user similarity with

nearest n = 10 neighbors in training set (terciles) (g) Trustworthiness of domains visited by users (in training

set; terciles). Bars represent the standard error of the mean of each stratum. Change in trustworthiness

∆Q based on scores from NewsGuard [37].
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FIG. 7. Probability that a trustworthy domain (NewsGuard score ≥ 60) is not recommended by CF+D

(collaborative filtering + diversity) but is recommended by CF (collaborative filtering) for left- and right-

leaning domains as a function of list length k (Nk = 28 list lengths). Each point is the average over a sample

of users, error bars represent the standard error of the mean. The shaded regions represent the values of

k for which the difference is not statistically significant at standard levels (α = 0.05, Welch’s t-tests with

Bonferroni correction for n = 28; all tests are two-sided, see Supplementary Table 7 for full summary).
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S1. NEWSGUARD DATA
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SUPPLEMENTARY FIGURE 1. Distribution of NewsGuard scores (N = 3,726) by trustworthiness rating.

Domains that score below 60 points (i.e., untrustworthy) on the rubric used by NewsGuard [3] are shown

in white. Those that score 60 or above are shown in green. The bin width is 5; the bin containing score 60

also includes a few domains with lower scores. The dashed line indicates the average score in the data.

S2. ALTERNATIVE DEFINITIONS OF AUDIENCE DIVERSITY

We repeat the analysis of Fig. 3 for all diversity metrics (see Methods B) and summarize the

results in Table 1. For each metric, we estimate the degree of linear association with news quality

using the Pearson correlation coefficient. We also report the R2 coefficient of determination and

the two-sided p-value of the F-statistic as a measure of significance of the fit. And finally, we

show the partial correlation coefficient by controlling the mean partisanship and the extremity of

domains. Each metric is positively correlated with quality at the user level, but we find that the

relationship is strongest for variance of audience partisanship. At the pageview level, however, the

association disappears for all metrics but variance, which still produces a modest correlation.
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SUPPLEMENTARY TABLE 1. Relationship between audience partisan diversity and news quality. (PCC

= ‘Partial Correlation Coefficient’.)

Diversity metric Corr. R2 p PCC (Mean) PCC (Extremity)

(n = 1707) Corr. p Corr. p

user level

Variance 0.32 0.10 < 10−4 0.38 < 10−4 0.26 < 10−4

Entropy (Dir.) 0.21 0.04 < 10−4 0.39 < 10−4 0.31 < 10−4

Entropy (ML) 0.20 0.04 < 10−4 0.34 < 10−4 0.24 < 10−4

Entropy (NSB) 0.22 0.05 < 10−4 0.2 < 10−4 0.14 < 10−4

Compl. Max. Prob. -0.04 0.00 0.14 0.26 < 10−4 0.14 < 10−4

Compl. Gini 0.14 0.02 < 10−4 0.26 < 10−4 0.21 < 10−4

pageview level

Variance 0.14 0.02 < 10−4 0.22 < 10−4 0.15 < 10−4

Entropy (Dir.) 0.03 0.00 0.24 0.044 0.07 0.04 0.09

Entropy (ML) 0.03 0.00 0.19 0.046 0.057 0.042 0.078

Entropy (NSB) 0.03 0.00 0.18 0.048 0.05 0.044 0.07

Compl. Max. Prob. 0.004 0.00 0.86 0.03 0.22 0.019 0.42

Compl. Gini -0.001 0.00 0.97 0.019 0.43 0.017 0.46
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S3. REGRESSION OF NEWSGUARD SCORES ON WEBSITE AUDIENCE VARIANCE

In Fig. 1 in the main text we show the relationship between NewsGuard reliability scores of news

domains and traffic, while in Fig. 3 in the main text we show the relationship between NewsGuard

reliability scores of news domains and audience partisan diversity, via linear regression. In Tables 2

and 3 we report the associated summary tables for these two regression modeling exercises. Each

table provides summary information for fitting a regression model with either user- or pageview-

level data, and for different controls.

SUPPLEMENTARY TABLE 2. Relationship between NewsGuard scores and popularity.

Dependent variable: NewsGuard score

Model 1 Model 2 Model 3 Model 4

Logged N visitors 0.533 1.164

[−0.598, 1.663] [0.006, 2.323]

p = 0.356 p = 0.049

Logged N pageviews 0.720 0.749

[−0.191, 1.631] [−0.263, 1.761]

p = 0.121 p = 0.147

Conservative indicator 3.840 −11.136

[−11.177, 18.858] [−24.230, 1.958]

p = 0.616 p = 0.095

N visitor × Conservative −4.572

[−7.252, −1.892]

p = 0.001

N pageview × Conservative −0.594

[−2.589, 1.400]

p = 0.559

Constant 79.729 81.074 78.045 82.552

[73.302, 86.156] [74.448, 87.701] [72.006, 84.083] [75.802, 89.303]

p < 10−4 p < 10−4 p < 10−4 p < 10−4

Num.Obs. 1024 1020 1024 1024

R2 0.001 0.154 0.002 0.089

R2 Adj. 0.000 0.152 0.001 0.086

F 0.854 61.657 2.406 33.245

Note: 95% confidence intervals are reported in square brackets and exact p values below.



4

SUPPLEMENTARY TABLE 3. Relationship between NewsGuard scores and diversity.

Dependent variable: NewsGuard score

Model 1 Model 2 Model 3 Model 4

User-level variance 6.662 2.926

[5.530, 7.793] [1.626, 4.226]

p < 10−4 p < 10−4

Pageview-level variance 3.919 0.822

[2.532, 5.305] [−0.861, 2.505]

p < 10−4 p = 0.338

Conservative indicator −11.372 −10.336

[−15.025, −7.718] [−13.632, −7.041]

p < 10−4 p < 10−4

User variance × Conservative 7.715

[5.457, 9.974]

p < 10−4

Pageview variance × Conservative 7.974

[5.321, 10.627]

p < 10−4

Constant 87.174 89.184 85.080 87.906

[85.613, 88.734] [87.578, 90.790] [83.420, 86.740] [85.979, 89.834]

p < 10−4 p < 10−4 p < 10−4 p < 10−4

Num.Obs. 1024 1020 1024 1024

R2 0.116 0.253 0.029 0.147

R2 Adj. 0.115 0.251 0.028 0.145

F 133.545 114.590 30.753 58.661

Note: 95% confidence intervals are reported in square brackets and exact p values below. User-level and

pageview-level variance measures are standardized to have zero mean and unit variance.



5

S4. CORRELATIONS BETWEEN DOMAIN POPULARITY AND AUDIENCE

DIVERSITY

In Table 4 we show the Pearson correlation coefficients between the popularity of a domain and

its diversity. We operationalize the popularity of website as either its audience size (i.e., number

of unique users) or its traffic (number of pageviews). For our diversity measures, we rely on the

user-level and pageview-level partisanship variance.

Overall, domain popularity is very weakly correlated with the variance of audience partisanship

regardless of how we choose to operationalize each measure. Recall that in our original analysis

we show that domain popularity is largely uncorrelated with quality (as proxied by NewsGuard

scores). Together, these findings suggest that audience partisan diversity is associated with quality

of news independent of the variation caused by domain popularity.

SUPPLEMENTARY TABLE 4. Pearson correlation coefficients between domain diversity and popularity

Variance (rows) / Popularity (columns) N Unique users N Pageviews

User-level 0.04 (p < 10−4) 0.0093 (p = 0.31)

Pageview-level 0.062 (p < 10−4) 0.019 (p = 0.038)

Furthermore, we estimate multivariate regressions interacting our diversity measures with an

indicator of whether the website has a predominantly Democratic or Republican website with the

following model:

Reliability = β0 + β1(Diversity measure) + β2(Conservative website dummy)+

β3(Logged audience size) + β4(Diversity measure × Conservative website dummy)

We estimate two separate regression models, using our two operational diversity measures: user-

level and pageview-level partisanship variance. At the user level, after controlling for audience size,

a one-standard deviation increase in diversity is associated with a 2.91 point increase in NewsGuard

reliability for websites with predominantly Democratic audiences, and with a 10.8 point increase

for websites with predominantly Republican audiences. Both estimates are statistically significant.

At the pageview level, we find that a one-standard deviation increase is associated with a 0.68

point increase (statistically indistinguishable from zero) in NewsGuard reliability for Democratic

websites, and with a 9.24 point increase for Republican websites. In summary, both methods

indicate that our diversity measure is a good predictor of journalistic quality, independent of
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audience size. This relationship is especially strong for websites with predominantly Republican

audiences.
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S5. ROBUSTNESS CHECKS

a. No minimum frequency capping. Figs. 2 and 3 are the analogous of Figs. 4 and 5 from the

main text, but unlike the plots in the main text, which capped the range of k to include only bins

with a minimum frequency, the plots here show all possible values of k.

b. Alternative similarity metric based on rank correlation. Figs. 4 and 5 also show the results

of analyses analogous to those in Figs. 4 and 5, but unlike the plots in the main text, which used the

Kendall rank correlation coefficient to compute the similarity between users, the plots here show

the results obtained using the Pearson correlation coefficient. Moreover, the plots here show all

possible values of k, without the aforementioned cap. To get a better sense sense of this difference,

Fig. 6 shows the distribution of the number of users as a function of the length of the ranked list

k. We observe that Pearson tends to produce smaller recommendation lists than Kendall.

c. Longitudinal analysis. Figs. 7 and 8 show the results of an analysis analogous to those in

Figs. 4 and 5, but in which training and testing sets are split longitudinally instead of randomly.

In this sense, they represent a true forecasting exercise. Despite a slightly larger loss of precision

relative to CF (compare the left panel of Fig. 5 in the main text with the left panel of Fig. 8),

our results remain qualitatively consistent with those shown in the main text. For the prior

Figs. 4, 5, 2, 3, 4 and 5, the data for each user are randomly split into a training (70%) and testing

set (30%), so that, for any given user, there is no overlap between the two sets. Note that each

user is split independently of the others, so a given domain can appear in the training set of one

user and in the testing set of another. Instead, in Figs. 7 and 8, the data of traffic that took place

before a fixed boundary date (which is identical for all users) form the training set, and those that

took place after form the testing set. This means that the same domain can occur in both the

training and the testing set.

Data collection for the YouGov Pulse panel took place in 7 different time periods (see Table 6),

but for simplicity we considered only 3 waves (the first three). Figs. 7 and 8 show the analysis

performed on the first wave of data collection, which took place between October 7 and November

14, 2016, and we split the data using November 1, 2016 as boundary. We find qualitatively similar

results for the second and third waves. (Data available upon reasonable request to the authors.)

d. Resampling. To estimate the significance of the observed drop in precision of CF+D, we

simulate the process of re-ranking a list of items. Recommendations are obtained in this context

by sorting items by their predicted rating. Since CF+D simply shifts the rating of each item by

adding a term that depends on diversity (see Eq. 5), we simulate this process by simply shuffling
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SUPPLEMENTARY FIGURE 2. Trustworthiness of recommended domains by length of ranked list k, for

all values of k. Left: Trustworthiness based on scores from NewsGuard [3]. Right: proportion of domains

labeled as ‘trustworthy,’ also by NewsGuard. Actual visits v are normalized using TF-IDF (see Methods C).

Each bin represents the average computed on the top-k recommendations for all users in the YouGov panel

with ≥ k recommendations in their test sets. Bars represent the standard error of the mean. In this figure,

both CF and CF+D compute the similarity between users using the Kendall τ correlation coefficient (see

Methods C).

the diversity terms among the items before ranking them. This procedure ensures that we consider

only lists obtained by shifting the ratings by the same amount of CF+D. Fig. 9 shows the sampling

distribution of the precision of re-rankings of the same magnitude as those of CF+D using this

process for k = 1 and k = 10. To sample from this distribution, we rank domains using the ratings

computed from Eq. 4. We then compute in a separate labeled vector the diversity term g(δd)

obtained using the logistic function (Eq. 6), reshuffle the labels at random, obtaining for each term

a new label d′, and finally apply the reshuffled term g(δd′) as in Eq. 5. We then re-rank based

on the new ratings and compute the precision of the ranked list. This reshuffling is carried out

separately for each user with at least k domains in their testing set. The precision is then averaged

over all users. This procedure is repeated 1,000 times to obtain the sampling distribution. Finally,

we compute a one-tailed p-value by finding the proportion of samples that have a precision higher

than the observed value for CF+D.

e. Stratification analysis without discounting. Fig. 10–16 show the results of the stratification

analysis without using the discounting model.
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SUPPLEMENTARY FIGURE 3. Accuracy of domain recommendations by length of ranked list k, for

all values of k. Left: Precision (proportion of correctly ranked sites) by length of ranked list k (higher is

better). Right: RMSE (root mean squared error) of predicted pageviews for top k ranked domains by length

of ranked list k (lower is better). Each bin represents the average computed on the top-k recommendations

of all users with ≥ k recommendations in their test sets. Bars represent the standard error of the mean.

In the last bin (k = 73) precision is 100% for all users. In this figure, both CF and CF+D compute the

similarity between users using the Kendall τ correlation coefficient (see Methods C).

SUPPLEMENTARY FIGURE 4. Trustworthiness of recommended domains by length of ranked list k, for

all values of k. Left: Trustworthiness based on scores from NewsGuard [3]. Right: proportion of domains

labeled as ‘trustworthy,’ also by NewsGuard. Actual visits v are normalized using TF-IDF (see Methods C).

All results represent averages computed for all users in the YouGov panel. Bars represent the standard error

of the mean. In this figure, both CF and CF+D compute the similarity between users using the Pearson

correlation coefficient.
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SUPPLEMENTARY FIGURE 5. Accuracy of domain recommendations by length of ranked list, for all

values of k. Left: Precision (proportion of correctly ranked sites) by length of ranked list k (higher is

better). Right: RMSE (root mean squared error) of predicted pageviews for top k ranked domains by length

of ranked list k (lower is better). Each bin represents the average computed on the top-k recommendations

of all users with ≥ k recommendations in their test sets. Bars represent the standard error of the mean. In

the last bin (k = 30) precision is 100% for all users. Bars represent the standard error of the mean. In this

figure, both CF and CF+D compute the similarity between users using the Pearson correlation coefficient.

SUPPLEMENTARY FIGURE 6. Number of users with k domains in the test set for neighborhoods (the

set of the n = 10 most similar users to a given user) computed using the correlation coefficient of Kendall

(solid line) and Pearson (dashed line). In general, Pearson leads to shorter lists of recommendations.



11

SUPPLEMENTARY FIGURE 7. Trustworthiness of recommended domains by length of ranked list k when

the data for training and test sets for the first wave of users are split based on time Left: Trustworthiness

based on scores from NewsGuard [3]. Right: proportion of domains labeled as ‘trustworthy,’ also by News-

Guard. Actual visits v are normalized using TF-IDF (see Methods C). Each bin represents the average

computed on the top-k recommendations for all users in the YouGov panel with ≥ k recommendations in

their test sets. Bars represent the standard error of the mean. In this figure, both CF and CF+D compute

the similarity between users using the Kendall τ correlation coefficient (see Methods C).

SUPPLEMENTARY FIGURE 8. Accuracy of domain recommendations by length of ranked list k when the

data for training and test sets for the first wave of users are split based on time. Left: Precision (proportion

of correctly ranked sites) by length of ranked list k (higher is better). Right: RMSE (root mean squared

error) of predicted pageviews for top k ranked domains by length of ranked list k (lower is better). Each

bin represents the average computed on the top-k recommendations of all users with ≥ k recommendations

in their test sets. Bars represent the standard error of the mean. In the last bin (k = 73) precision is 100%

for all users. In this figure, both CF and CF+D compute the similarity between users using the Kendall τ

correlation coefficient (see Methods C).



12

SUPPLEMENTARY FIGURE 9. Distribution of precision obtained after re-ranking the domains, by means

of re-shuffling the diversity signal values g(δd) from the CF+D ratings calculation (see Eq. 5 and Eq. 6).

The re-shuffling was repeated 1, 000 times. The two distributions correspond to different values of k. The

(one-sided) p-values are 0.002 (k = 1) and 0.021 (k = 10). The two vertical lines correspond to the observed

precision values of CF+D (solid) and CF (dashed).
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SUPPLEMENTARY FIGURE 10. Effect of CF and CF+D versus baseline by ideological slant of visited

domains (terciles using scores from Bakshy et al. [1]) and by length of ranked list k. In this and the following

plots, bars represent the standard error of the mean. Change in trustworthiness ∆Q based on scores from

NewsGuard [3].
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SUPPLEMENTARY FIGURE 11. Effect of CF and CF+D versus baseline by self-reported party ID from

YouGov Pulse responses as measured on a 7-point scale (1–3: Democrats including people who lean Democrat

but do not identify as Democrats, 4: Independents, 5–7: Republicans including people who lean Republican

but do not identify as Republicans) and by length of ranked list k. Change in trustworthiness ∆Q based on

scores from NewsGuard [3].
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SUPPLEMENTARY FIGURE 12. Effect of CF and CF+D versus baseline by absolute slant of visited

domains (terciles using scores from Bakshy et al.) and by length of ranked list k. Change in trustworthiness

∆Q based on scores from NewsGuard [3].
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SUPPLEMENTARY FIGURE 13. Effect of CF and CF+D versus baseline by total online activity (TF-

IDF-transformed pageviews; terciles) and by length of ranked list k. Change in trustworthiness ∆Q based

on scores from NewsGuard [3].
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SUPPLEMENTARY FIGURE 14. Effect of CF and CF+D versus baseline by distinct number of domains

visited (terciles) and by length of ranked list k. Change in trustworthiness ∆Q based on scores from

NewsGuard [3].
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SUPPLEMENTARY FIGURE 15. Effect of CF and CF+D versus baseline by average user–user similar-

ity with nearest n = 10 neighbors in training set (terciles) and by length of ranked list k. Change in

trustworthiness ∆Q based on scores from NewsGuard [3].
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SUPPLEMENTARY FIGURE 16. Effect of CF and CF+D versus baseline by baseline trustworthiness of

domains visited by users (terciles) and by length of ranked list k. Change in trustworthiness ∆Q based on

scores from NewsGuard [3].
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SUPPLEMENTARY TABLE 5. Analysis of bipolar audiances

Metric n r 95% C.I. two-sided p-value

Extremists (FE) 1, 680 0.064 [0.02, 0.11] 0.0083

Bimodality (BC) 1, 680 −0.097 [−0.14,−0.05] < 10−4

Harmonic Mean (FE, BC) 1, 680 −0.053 [−0.10,−0.00] 0.0304

S6. BIPOLAR AUDIENCES

To capture the idea of an ideologically diverse audience, our analysis relies on the second moment

of the distribution of audience partisan slant of the visitor of a site. However, two distributions

may have the same mean and variance but different numbers of modes. This is a reasonable

concern, since in the main text we show that, while keeping average partisanship constant, having

more variance in partisanship will increase quality. To capture the idea of a bipolar audience we

considered the following two metrics:

• The bimodality coefficient (BC), which is based on the skewness γ and kurtosis k of the

distribution and is defined as γ2+1
k ;

• The fraction of extremists (FE), defined as n1+n2+n6+n7∑7
k=1 nk

, where nk is the number of respon-

dents who reported a slant equal to k (where k = 1, . . . , 7).

The BC is a metric used in behavioral research to test for the presence of dual processes [2]

that seems appropriate in this case. Values above 5/9 indicate the presence of two or more modes.

The distribution of BC values in our data is displayed in Fig. 17, showing a prevalence of likely

bimodal audiences in the YouGov data. The FE is our own attempt at capturing the idea that

most of the probability mass should be located at the extremes of the distribution.

We repeated the analysis in the main text, but this time we computed three different partial

correlation coefficients between quality and diversity: the first given the BC of the distribution

of slants, the second given its FE, and the third given the harmonic mean of BC and REM. This

last metric is high only if both FE and BC are large, and thus should discriminate between truly

bipolar audiences and audiences that are merely skewed to one extreme but not both (high FE and

low BC), or that are bimodal but not extreme (high BC and low FE). The results are summarized

in Table 5.

We find a small negative correlation for the harmonic mean and for the BC alone, and a small

positive correlation for FE alone. Taken together, these results suggest that audience bipolarity is
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SUPPLEMENTARY FIGURE 17. Distribution of bimodality coefficients of the distributions of audience

partisanship slants of the websites in the YouGov data. The solid line represents a kernel density estimate.

SUPPLEMENTARY TABLE 6. YouGov Pulse respondent data summary

Dates Sample Male College White Age Dem. GOP Domains Pageviews

10/7–11/14/16 3,251 47.6% 29.2% 68.2% 58 37.2% 26.1% 158,706 26,715,631

10/25–11/21/17 2,100 47.6% 27.2% 69.1% 45 34.6% 25.0% 104,513 14,247,987

6/11–7/31/18 1,718 48.1% 30.2% 64.9% 54 38.4% 27.4% 108,953 15,212,281

7/12–8/2/18 2,000 48.8% 29.3% 65.2% 57 38.4% 26.0% 74,469 9,395,659

10/5–11/5/18 3,332 48.3% 29.0% 64.6% 55 39.5% 26.5% 98,850 19,288,382

11/12/18–1/16/19 4,907 48.7% 28.8% 64.1% 50 36.4% 26.8% 117,510 21,093,638

1/24–3/11/19 2,000 48.4% 29.6% 65.2% 55 34.9% 28.0% 113,700 27,482,462

Note: The participants for each data collection period were different. Some participants

took part in multiple waves but overlap was small.

a much weaker signal of quality than partisan diversity as measured by the variance.

S7. YOUGOV PULSE RESPONDENT DATA SUMMARY

Supplementary Table 6 gives a demographic summary of respondents in the YouGov Pulse

panel, broken down by collection period.
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SUPPLEMENTARY TABLE 7. Table for Figure 7

k Degrees of freedom p-value Effect size statistic (t)

1 853 < 10−4 3.56

2 1004 < 10−4 5.78

3 1059 < 10−4 4.17

4 997 < 10−4 2.32

5 920 0.503 0.89

6 824 0.054 1.45

7 752 0.238 1.23

8 678 0.683 −0.34

9 607 0.270 −0.56

10 525 0.022 −2.56

11 475 < 10−4 −4.67

12 416 < 10−4 −4.89

13 371 < 10−4 −6.21

14 345 < 10−4 −8.32

15 308 < 10−4 −10.56

16 266 0.0244 −3.67

17 242 0.002 −5.89

18 210 0.005 −6.78

19 197 0.138 −1.45

20 183 0.261 −1.12

21 162 0.206 −1.36

22 144 0.031 −3.78

23 128 0.007 −5.34

24 117 0.001 −7.54

25 102 < 10−4 −8.68

26 89 < 10−4 −6.45

27 76 0.009 −4.79

28 67 0.166 −2.45
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