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ABSTRACT
Content delivery networks (CDNs) distribute much of today’s In-

ternet traffic by caching and serving users’ contents requested. A

major goal of a CDN is to improve hit probabilities of its caches,

thereby reducing WAN traffic and user-perceived latency. In this

paper, we develop a new approach for caching in CDNs that learns

from optimal caching for decision making. To attain this goal, we

first propose HRO to compute the upper bound on optimal caching

in an online manner, and then leverage HRO to inform future con-

tent admission and eviction. We call this new cache design LHR. We

show that LHR is efficient since it includes a detection mechanism

for model update, an auto-tuned threshold-based model for con-

tent admission with a simple eviction rule. We have implemented

an LHR simulator as well as a prototype within an Apache Traf-

fic Server and the Caffeine, respectively. Our experimental results

using four production CDN traces show that LHR consistently out-

performs state of the arts with an increase in hit probability of up

to 9% and a reduction in WAN traffic of up to 15% compared to a

typical production CDN cache. Our evaluation of the LHR proto-

type shows that it only imposes a moderate overhead and can be

deployed on today’s CDN servers.

CCS CONCEPTS
• Theory of computation→ Caching and paging algorithms;
• Computing methodologies → Machine learning.
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1 INTRODUCTION
Caches are pervasive in networked systems, and play a critical

role in end-to-end application performance. For example, content

delivery networks (CDNs) deploy hundreds of thousands of servers

across the world to serve user requests. If the requested content

resides in servers near the user, a cache hit occurs and the user

promptly receives the content. Otherwise a cache miss occurs and
the response time degrades dramatically. Consequently, there has
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been a renewed focus on increasing cache hit probabilities, particu-

larly for content delivery [12, 20, 21, 34, 46, 64].

Algorithms that determine what contents to cache in each CDN

server play a key role in achieving a high hit probability. Upon a

content request, the CDN server makes cache admission and cache
eviction decisions. Cache admission determines whether to cache

the content while cache eviction decides what content to evict

when the cache is full. Indeed, there is a plethora of work focusing

on improving caching performance by proposing admission and

eviction algorithms. However, major CDNs today still employ the

classic Least Recently Used (LRU) [22] or its variants for content

caching [46]. In spite of decades of studies on caching, including

a recent trend on using machine learning (ML) techniques, the
fundamental limitation of existing caching algorithms remains.We

still observe a large gap between hit probabilities of state-of-the-art

caching algorithms (SOTAs) and the Bélády’s offline MIN algorithm

[9].

One way to understand such a large gap in caching design is by

studying the performance of the offline optimum algorithm (OPT).

The classic such algorithm is Bélády’s algorithm [9]. Although OPT

cannot be implemented in production systems since it assumes

exact knowledge of future requests, it can provide guidance on

designing practical caching algorithms as well as bounding their

performance. For example, if OPT can achieve a hit probability of

x%, then any online caching algorithm can achieve at most x%.
Our approach to improving the performance of CDN caches is to

use lessons learned from OPT to guide our design of a practical

learning augmented online caching algorithm.

Limitations of existing algorithms. We begin in Section 2 by

showing the fundamental limitations of existing state-of-the-art

caching algorithms. We measure hit probabilities using four pro-

duction traces with hundreds of millions of requests across cache

sizes from 64GB to 1,024GB. We find that there remains a gap of

15%-25% between state of the arts and the Bélády algorithm.

Optimal caching. Having demonstrated such a large gap, we turn

to the question: how much further hit probability can be improved.
To provide a principled answer to this question, an upper bound on

maximum achievable hit probability
1
has been widely used as a per-

formance metric. For equal size contents, it is well known that OPT

is the Bélády algorithm. However, content sizes often vary widely

in production CDNs from a few bytes [50] to several gigabytes [34].

Unfortunately, computing OPT for variable content sizes is known

to be NP-hard [19]. Existing bounds widely used by practitioners,

e.g., PFOO [11] are offline and can be fragile (Section 2).

System designers often have no access to the exact request trace

but can estimate statistical properties of the content request process

such as the inter-request time distribution. Thus we address the

1
For the notation abuse, we also call the maximum achievable hit probability for online

state-of-the-art caching algorithms as OPT.
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Dataset CDN-A CDN-B CDN-C Wiki
Duration (Hours) 24 9.9 330 0.1

Unique contents 330,446 162,104 297,920 406,883

Total requests (Millions) 0.97 1 0.6 1

Total bytes requested (TB) 36.42 107.21 57.22 34.34

Unique bytes requested (GB) 8,242 10,832 29,094 27,618

Active bytes (GB) 1,183 2,180 286 1,642

Mean content size (MB) 25.5 68.4 100 69.5

Max content size (MB) 7,790 38,392 101 92,100

Table 1: Key characteristics of production traces used throughout our evaluation spanning different CDNs.

above challenges by designing a practical online upper bound on

OPT using the hazard rate density function (Section 3). We call this

upper bound HRO, which can be computed in an online manner

for both equal and variable sized contents with limited knowledge

on content arrivals and no look ahead option. We then quantify

the gap between SOTAs and HRO, PFOO, and Bélády. We find that

Bélády and PFOO are 4%-16% worse than HRO on average.

Learning to leverage optimal caching.WeuseHRO as our guide

for the design of practical learning augmented online caching algo-

rithms in Section 4. Specifically, we present a novel ML approach

that is fundamentally different from SOTAs. Our approach is to

leverage HRO into content caching, using ML to simultaneously

find content to admit and evict based on recent content request

patterns. A naive ML algorithm that imitates HRO would incur

prohibitively high computational costs. To overcome this challenge,

our key insight is that it suffices to leverage a lightweight super-

vised learning based model along with HRO to learn a content

admission probability, which is used for both content admission

and eviction. We call this new algorithm LHR (i.e., learning from

HRO).

Upon a new request, LHR first extracts its features and trains a

supervised learning model using HRO, which outputs an admission

probability. LHR only admits a content whose admission probability

is greater than a threshold. To set a proper threshold, we develop a

simple estimation algorithm that adaptively adjusts the threshold

value based on recent requests. We show that the hit probability

of LHR using this auto-tuned threshold can be significantly larger

than that for a fixed threshold (e.g., 0.5) that has been widely used

in the literature (Sections 5.2.3 and 7.4).

Once admitting a content, LHR needs to decide what content

to evict when the cache is full. Unlike prior approaches that use

a small set of static or learned content features for eviction, we

design a simple eviction rule in LHR that weights a larger set of

features including the learned admission probability. The auto-

tuned threshold and the simple eviction rule together give our

system a much more accurate set of choices to aim for, which

has one major consequence: it allows our system to quickly and

accurately adapt to changes in the workload and provide better

caching decisions compared to SOTAs (Sections 5.2.5 and 7.4).

Even with the above design insights for LHR, training a potential

ML framework on CDN traces is often computationally intensive

and time consuming. To reduce computational complexity, we con-

sider a sliding time window over content requests. Naively training

the learning model over every sliding window would still incur

high computational cost. We instead update the model only when

the request patterns in two consecutive time windows exhibit sig-

nificant changes. To that end, we develop a lightweight detection
mechanism and we observe that it leads to a dramatic decrease in

implementation overhead (Sections 5.2.2 and 7.4).

These insights enable us to design LHR. We have implemented

an LHR simulator as well as an LHR prototype within an Apache

Traffic Server [3] and the Caffeine [47], respectively. Our exten-

sive evaluations using four production CDN traces show that LHR

consistently outperforms all candidate SOTAs with an increase in

content hit probability of up to 9% and a reduction in WAN traffic

of up to 15%. Furthermore, our prototype evaluation shows that

LHR incurs comparable computational and memory overheads to

other designs. Hence LHR can be deployed on today’s CDN servers.

2 BACKGROUND AND MOTIVATION
Real world systems usually exhibit quirks and dynamic behaviors

that are hard to capture with tractable assumptions. In this section,

we quantify opportunities in such production systems, discuss lim-

itations of existing SOTAs and offline bounds on OPT, as well as

challenges to the design of practical online caching algorithms.

Real request traces are diverse.We consider production traces

from four CDNs, three of which chose to remain anonymous. (1)

CDN-A collected from several nodes in one continent serves a

mixture of web and video traffic; (2) CDN-B captures mobile video

behaviors collected from one live streaming system; (3) CDN-C

contains user requests for specific contents collected from a local

network; and (4) a Wikipedia (Wiki) trace collected on a west-

coast node serving photos and other media content. Key trace

characteristics are summarized in Table 1 and Figure 1.

The traces typically span several tens to hundreds of thousands

of requests, and tens of thousands of contents with sizes varying

from 10 KB to 10
4
MB. The total bytes requested are on the order

of TBs; however, the active bytes2 [40] are on average on the order

of GBs. As a result, we choose the cache size in the range of 64 GB

to 1,024 GB for different traces in our evaluations. For the sake of

readability, we present the results using two cache sizes for each

trace in the rest of the paper. Similar observations hold for other

cache sizes. We conclude that content requests in production sys-

tems exhibit extreme variability in content popularity, content size,

and inter-arrival time distributions. This makes cache management

challenging for a CDN server and the need to design an online

2
A content is said to be active at time t in a trace if t lies between the first and the

last requests for the content. The total size of active contents at time t is defined as

active bytes.
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Figure 1: Content popularity and inter-arrival time.

caching algorithm that can automatically adapt to these changes

with a robust performance.

Limitations of practical algorithms and bounds. System de-

signers usually take advantage of the aforementioned quirks and

dynamics in production systems [16, 59] to build new algorithms

that outperform classic ones. In this subsection, we quantify oppor-

tunities to improve hit probabilities of existing SOTAs and existing

bounds on OPT.

Experimental setup.We implement a cache simulator includ-

ing a wide range of SOTAs and only report on the seven best-

performing algorithms including LRU, LRB [56], AdaptSize [12],

etc in this paper (more details in Section 7.5). For comparison, we

compute two state-of-the-art offline upper bounds on OPT, i.e.,

PFOO [11] and Bélády-size, a simple Bélády variant widely used by

the community [34, 44, 55]. For each workload, we simulate a set

of cache scenarios. For ease of exposition, we only present results

for one scenario as shown in Figure 2, where the “best-performing”

SOTA is the one with the highest content hit probability among all

SOTAs in consideration.

Significant opportunities to improve hit probabilities and
upper bounds on OPT.We observe a large gap between existing

SOTAs and upper bounds on OPT. Two possible reasons behind

this observation: the offline bounds (e.g., Bélády-size) widely used

by practitioners offer no optimality guarantees, and there are still

achievable gains on hit probability to be explored. We will answer

yes to both these possibilities. We show that these upper bounds

are in fact far from OPT, and hence give practitioners a false sense

of complacency. As a result, existing learning-based algorithms

that leverage OPT for decision making may suffer performance

losses. Our interpretation is that upper bounds leveraged in these

algorithms ignore many practical content features (e.g., content

inter-arrival time) exhibited in production workloads, and hence

are not tight on OPT for arbitrary traces.

We conclude that there is significant need to realize online

caching algorithms that can automatically adapt to changes in

content request patterns over time. Furthermore, there is still room

to develop tight upper bound on maximum achievable cache hit

probability in an online manner to gauge the potential effectiveness

of caching algorithms. Developing such a practical online upper

bound and leveraging it along with ML for CDN caching require us

to overcome many challenges as we describe in Sections 3 and 5.

3 AN ONLINE UPPER BOUND ON OPT
Since existing bounds on OPT are offline, weak or computationally

expensive, they are hard to leverage into learning augmented online
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0

10

20

30

40

50

60

70

A
ve

ra
ge

 H
it 

P
ro

ba
bi

lit
y 

(%
)

PFOO Belady-Size HRO SOTA LHR

Figure 2: Simulated content hit probabilities of two widely
used offline bounds, our online bound HRO, the “best-
performing” SOTA, and LHR. There is a large gap of 15%-25%
between SOTAs and the tighter offline bound. HRO is much
tighter than the other two offline upper bounds. More de-
tails in Section 7.5.

caching designs. Recently, Panigraphy et al [53] proposed a hazard

rate (HR) based upper bound on OPT that outperforms existing

bounds. However, [53] requires the exact content request distribu-

tion, which is only available for synthetic workloads, to compute

the bound. To tackle this challenge, we generalize results in [53] and

develop a new online upper bound, HRO, with limited knowledge

of the content request process, which can be easily leveraged into

an ML model for online caching algorithm design. In the following,

we first present the upper bound in [53] for completeness and then

introduce HRO. For ease of readability, we relegate the performance

analysis of HRO to Appendix A.1.

3.1 Theoretical Model
We denote successive times when content i is requested as {τik ,k ∈

Z}. Then the inter-request time (IRT) between the (k − 1)-st and

k-th requests to content i is defined as Xik = τik − τi(k−1), for
k ≥ 1, and τi0 = 0 by convention. We consider {Xik }k≥1 to be a

stationary point process with cumulative inter-arrival time distri-

bution functions (c.d.f.) satisfying [6] Fi (t) = P(Xik ≤ t). Denote
the corresponding density function as fi (t). The mean request rate

µi for content i is then given by µi =
1

E[Xik ]
= 1∫ ∞

0
(1−Fi (t ))dt

. The

c.d.f. of the age associated with the inter-arrival time distribution

for content i satisfying [6] F̂i (t) = µi
∫ t
0
(1 − F (x))dx . The hazard

rate function ζi (t) associated with Fi (t) is defined as

ζi (t) =
fi (t)

1 − Fi (t)
, t ∈ [0, F−1i (1)], (1)

which represents the conditional probability of the occurrence of

a content request at time t, given the realization of the request

processes over the interval [0, t).
Given the above definitions, a hazard rate based upper bound on

OPT can be computed as follows [53]. Upon a request for content i
at time t , contents are sorted according to their hazard rates at time

t in decreasing order. Then the request is classified as a hit if content
i is among theM contents with the largest hazard rates, whereM

346



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Gang Yan, Jian Li, and Don Towsley

is the cache size. Such a hazard rate based ordering is analogous

to the LFU policy since the hazard rate at time t determines the

most popular contents at time t . The above hazard rate function is

defined under the assumption that content sizes in the system are

equal; however, the content sizes in production system usually vary

significantly. To overcome this drawback, the hazard rate function

by incorporating content size si is redefined as follows

˜ζi (t) =
fi (t)

(1 − Fi (t))si
, t ∈ [0, F−1i (1)]. (2)

3.2 From Theory to Practice
To compute the hazard rate and obtain the hazard rate based policy,

the c.d.f. Fi (t) is needed. This is straightforward for synthetic work-
loads; however, the c.d.f. is usually unknown and computationally

expensive (e.g., kernel method) to obtain in production systems. We

are therefore unlikely to find the exact hazard rate for production

workloads. To overcome this challenge, our key insight is that it is

sufficient to develop a technique that accurately approximates the

hazard rate based upper bound on any trace, which we call HRO.

We consider a sliding time window
3
, and only contents within

the window are used to compute the IRTs. Given these IRTs, we

approximate the request process as a Poisson process to compute

an approximate c.d.f., which is used to update the approximated

hazard rates in (2). Finally, requests for contents with the top M
hazard rates are classified as cache hits. We show analytically (see

Appendix A.1) and empirically (Figure 2) that HRO yields a tighter

bound on traces seen in practice compared to SOTA bounds, and

can be efficiently computed in polynomial time. Therefore, we

believe these results demonstrate that HRO is both theoretically

well-founded and practically useful. More importantly, we will

show that it indeed leverages more accurate information about the

content request process, and hence can be used to improve online

algorithm performance.

4 LEARNING TO LEVERAGE HRO
In order to leverage HRO in the design of a learning augmented

online caching algorithm, this section introduces LHR, which is a

layered framework moving from detection to admission to eviction.

We will discuss the design details of LHR in Section 5.

4.1 LHR Algorithm
To overcome the limitations of SOTAs, we leverage a lightweight

supervised learning model (e.g., a XGBM [17] based model) along

with HRO to learn a per-content admission probability. LHR admits

a content if the learned admission probability is greater than an

auto-tuned threshold. We then develop a simple eviction rule based
on the learned probability for content eviction. Finally, to reduce

computational costs, we propose a detection mechanism to deter-

mine when to update the ML model. We call our algorithm LHR,

which leverages HRO to simultaneously learn content admission

and eviction through a unified learning framework that enables

detection, estimation, and training.

3
Different from the sliding window in TCP, our sliding windows have no overlaps. For

example, for a window of size W, the first window contains the first W-th requests,

the second window contains the (W+1)-st to the 2W-th requests and so on.

Figure 3: Framework of LHR.

Figure 3 shows the LHR framework, consisting of three compo-

nents: a supervisor, an admission agent and an eviction agent. We

consider a cache of size M and denote the set of cached contents

asM . LHR maintains a vector of sizeM to store the learned con-

tent admission probability, pi of content i in the cache. Denote this

vector as L.

Upon a new request for content i, LHR first extracts its feature

ui and computes HRO using request information in the past sliding

window. Then LHR outputs an admission probabilitypi for content i
via a XGBMbasedmodel (admission agent). This will be described in

detail in Section 5.2.4. LHR compares pi to an auto-tuned threshold

δ for cache admission decision. Upon a cache hit (i.e., content i is
already in the cache), we consider two cases: (i) pi ≥ δ : we simply

update its admission probability in L; (ii) pi < δ : we not only

update its value in L but also label it as an eviction candidate with
value of pi . Similarly, upon a cache miss, we consider two cases:

(iii) pi ≥ δ : content i is admitted, and its value pi is inserted into

L; (iv) pi < δ : simply discard the request.

When the cache is full, LHR needs to decide what content to

evict upon a cache admission (eviction agent). Given admission

probability pi , we develop a simple eviction rule that outputs an

eviction probability qi (eviction value), which is a function of pi .
See Section 5.2.5 for details. LHR evicts an eviction candidate with

the smallest eviction value qi .

4.2 Auto-tuned Threshold
LHR only admits a content whose admission probability is greater

than a threshold. A smaller threshold moves the hit probability of

LHR closer to the admit-all policy [40]. This will be particularly

useful for traces where existing learning based algorithms do not

perform as well as simple admit-all or admit-nothing models. A

larger threshold makes LHRmore tractable but may discard popular

contents. It is thus important to find a proper threshold. To system-

atically choose a threshold for LHR, we design a simple estimation
algorithm that adaptively adjusts the threshold δ based on recent

requests. This is described in detail in Section 5.2.3.

4.3 Efficient Training
Even with a simple threshold-based policy for content admission,

naively training LHR on arbitrary CDN traces may still be compu-

tationally intensive and time consuming. To reduce computational
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costs, we first consider a sliding time window and use only his-

tory data within the window for training. Then a straightforward

training process is to update model parameters at every sliding

window. However, our key observation is that this is not necessary

in production systems as it is time consuming with a high memory

overhead. If requests in two consecutive sliding windows exhibit

“similar” pattern, there is no need to update the model again. Then a

natural question arises: when should the model be updated? We pose

this problem as an anomaly detection problem, where an “anom-

aly” occurs when request patterns change significantly between

two consecutive sliding windows. We propose a simple detection
mechanism for LHR, which is built on the estimation of request

distribution. This will be described in detail in Section 5.2.2.

Key take-aways. LHR has four important properties.

• Leveraging HRO: LHR leverages HRO through a simple super-

vised learning framework to make caching decisions in an online

manner. This is possible since HRO can be efficiently updated in

production systems in polynomial time.

•Auto-tuned threshold-based admission policy. Rather than
using a fixed threshold (e.g., δ = 0.5), we adaptively determine

threshold value δ based on the request stream. This not only makes

the algorithm adapt to dynamics in production workloads, but also

reduces training error and hence improves model accuracy.

• Better eviction rule: Unlike prior approaches that only use a

small set of content features for cache eviction, we develop a new

eviction rule based on the learned admission probability pi and
other key content features (e.g., content size). This also improves

learning accuracy of our model through making better eviction

decisions.

• Efficient training via detection: Instead of training the ML

model after each sliding window, we design a detection mechanism

to determine when the model should be trained and updated. This

property provides a dramatic reduction of computational cost.

5 DESIGN OF LHR CACHE
This section presents the design details of LHR, which uses machine

learning to leverage HRO into online caching design. To make

LHR a reality, we have to simultaneously address three previously

unsolved problems:

• How to leverage HRO into an online caching design?

• How to design an ML approach that achieves hit probabilities

close to those of OPT with small WAN traffic?

• How to make this practical?

Each of these problems pose several challenges, and it addi-

tionally requires us to balance their often-competing goals when

addressing them simultaneously. We present a general ML frame-

work to leverage HRO for learning content admission and eviction

simultaneously as shown in Figure 4. There are two key design

issues:

Historical data. To compute HRO and to train the decision model,

it is of utmost importance to determine how much past information

is needed. More historical data may lead to a more accurate model,

but may also significantly increase resource overheads. As a result,

we need to consider a tradeoff in production CDN servers due to

hardware constraints.

Figure 4: A general ML framework that leverages optimal
caching for learning content admission and eviction simul-
taneously.

Learning framework. This involves how to select and design a

supervised ML framework to achieve high hit probabilities. This

includes (i) selection of content features; (ii) the design of a “su-

pervisor” that can leverage HRO into cache decisions, determine

when the ML model should be updated, as well as the admission

and eviction rule; and (iii) an ML model to integrate all into caching

decision making.

In the following, we describe the design decisions of LHR for

each of these design issues. Our design is generally guided by the

practical online upper bound on OPT, i.e., the HRO.

5.1 History Data
LHR records information of contents that have been previously

requested. We represent each request as a vector including different

content features that will be described in details later. In our LHR

framework, history data are used for training the learning model

for content admission, as well as for computing HRO.

The admission agent in our LHR framework takes content fea-

tures as input and outputs an admission probability, which is further

used in the eviction process. We consider a sliding window and

only use data within the window for training and computing HRO.

To reduce computational costs, we do not train the model during

every sliding window but instead use a detection mechanism to

decide when to retrain.

As a result, a proper window size is important to the performance

of LHR. On one hand, the admissionmodel and the eviction rule will

not be accurate if the window size is too small. On the other hand,

a large window size may increase memory overhead and result in

more time required to process operations. In reality, CDN servers

need to process millions of requests per second, and thewindow size

can be large given the effective system computing capability. Since

content sizes vary significantly in production traces, we consider

the size of a window measured in the number of unique bytes seen

over a number of requests. We evaluate the impact of the window

size on four traces using two cache sizes as shown in Figure 5, where

2× means the unique bytes of content requests in the window is

twice the cache size. Given the characteristics of these traces, we

mimic real CDN systems with a window of content requests whose

unique bytes is 4× of the cache size for all traces considered in

this paper to achieve a reasonable tradeoff between hit probability,

memory overhead and running time.
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Figure 5: The impact of sliding window size.
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Figure 6: The impact of content features, where ‘s’ and ‘d’ represent static and dynamic features, respectively. For example,
‘10d’ means IRT1 to IRT10 are included.

Finally, data is needed to start the training process at the begin-

ning of a trace so as to build an initial model. Hence we use the

first sliding window as training data, and then execute the caching

algorithm from the second sliding window onwards.

5.2 LHR Framework
We describe the main components in the ML framework of LHR in

this subsection. For each component, we describe our choice and

design, and discuss the corresponding rationale.

5.2.1 Content features. The rationale for our feature selection is

to provide a superset of information used by SOTAs. Different from

those heuristic methods that only rely on one or a few features, we

consider a set of time-varying features along with a set of static
features.

• Inter-request times. Inspired by the design of HRO, we consider

inter-request times (IRTs) – the times between consecutive requests

to a content – as a time-varying feature. For example, IRT1 rep-

resents the time since the last request, IRT2 is the time between

the content’s previous two requests, and so on. We use IRTs as fea-

tures since they provide useful information used by many SOTAs,

including LRU with IRT1 and LRU-K using IRT1 to IRTk .

• Static Features. Static features capture additional non-time

varying content information such as content size and so on. These

features are easy to obtain and consume little memory overhead.

Static features also play a role in labeling different contents.

IRTs and static features provide a set of information used by

SOTAs. We benefit from them by adding more features during

model training. However, adding more features may increase sys-

tem memory overhead, i.e., there is a tradeoff between adding more

information to the model for making better decisions and the sys-

tem overhead. Therefore, we determine the effectiveness of these

features and decide how many IRTs to store. Figure 6 shows the

marginal improvements from an accumulation of static features,

and 10-30 IRTs, where the hit probability improvement is measured

with respect to the case with 10 IRTs. As expected, more features

improves hits with diminishing improvements and larger memory

overhead and running time. We settle on 20 IRTs because this ap-

pears to guarantee good performance of our design across all traces.

We denote the features of content i as ui .

5.2.2 Detection mechanism. Although the content request pro-

cess varies over time, it has been observed [5, 14, 30] in production

systems that the request process is characterized by a Zipf distribu-

tion, where the popularity of the i-th most popular content follows

pi = A/iα with A being the normalization factor and α is the Zipf

parameter. If we know the value of α in each sliding window, then

we only need to update our model if there is a significant change in
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α between two consecutive windows, e.g., |α j+1 − α j | ≥ ϵ, where
j indicates the j-th time window and ϵ is a constant. This greatly
reduces computational and memory overheads. Then we develop a

Least-Squared-Method (LSM) based model to estimate the value of

α in each sliding window. We first transform the Zipf popularity

into logpi = logA − α log i , and then directly use LSM to estimate

its intercept logA and gradient α . This LSM-based method is well

known to be lightweight with a complexity of O(N ), where N is

the number of unique contents in one sliding window. Hence it can

be easily implemented in production systems. We will show that

our LSM based model is accurate in Section 7.4 as well as additional

discussions on parameters in Appendix A.2.

5.2.3 Estimation algorithm. As observed in Section 2, realistic

content requests generated by users in production systems are non-

stationary, i.e., time-varying content popularities, variable content

size and so on. Consequently, it is inappropriate to use a fixed

threshold (e.g., δ = 0.5 has been widely used) to decide whether to

admit a content upon a request as discussed in Section 4. Hence we

need to adaptively adjust the threshold δ based on recent requests.

Suppose that the threshold used in the current sliding window

k is δk , and the corresponding hit probability is h(δk ). We set

a candidate threshold set ∆k for sliding window k to be ∆k =
{0, 0.5, δk − 0.1, δk + 0.1}. Note that we use a step size of 0.1 to

update the threshold. It can be any value in [0, 0.1, · · · , 0.9, 1]. From

our experiments, we observe that our choice of δk provides good

performance in terms of hit probability and training time. We com-

pute the hit probability during the current sliding window k using

the candidate thresholds in ∆k . Suppose that ˆδk ∈ ∆k returns the

largest hit probability h( ˆδk ). To make the estimation robust, we

use the threshold
ˆδk in the next sliding window k + 1 if and only

if h( ˆδk ) > h(δk ), and |h( ˆδk ) − h(δk )| > β, where β is a constant.

Otherwise, we do not update the threshold. The above two update

rules help the learning algorithm avoid unnecessary updates and

hence reduce training time and computational costs.

Furthermore, we observe that there is no need to use all requests

in the current sliding window in the above estimation process. For

instance, using only half of requests in each sliding window still

provides a good performance (See Section 7).

5.2.4 Learningmodel. LHRuses anXGBoostingMachine (XGBM)

[17] based model to learn content admission probabilities. As men-

tioned above, the input consists of 20 IRTs and static features, and

the output is the learned admission probability for one content. To

be more specific, we assume that there are N requests in the cur-

rent sliding window t with features {ui }
N
i=1. Denote the decisions

{yi }
N
i=1 on these requests fromHRO, i.e., “optimal caching decision”,

which are used as content labels. Consider an XGBM based model

with parameterw(t − 1) and represent the output of the model as

A(w(t − 1), ·), i.e., the admission probability for each content. Then

we train the model and update its parameter by leveraging HRO

through solving the following optimization problem

min

w

N∑
i=1

(A(w(t − 1),ui ) − yi )
2,

where we consider the mean squared error since it achieves the best

performance in our experiments compared to other loss functions

Algorithm 1 LHR

Initialize the admission threshold as δ0 = 0.5

for sliding windows k = 1, 2, . . . , do
Extract features of each requested content i and outputs an

admission probability pi (Section 5.2.4);

if pi ≥ δk then
Cache content i and evict content j with qj (Section 5.2.5);

end if
Estimate αk using LSM (Section 5.2.2)

if |αk − αk−1 | ≥ ϵ then
Update δk+1 (Section 5.2.3)

Re-train the learning model (Section 5.2.4)

end if
end for

that we explored. The learned admission probability will be used in

the four cases described in Section 4, i.e., compare with a threshold

to determine whether to admit or not. Upon admission, then update

the admission probability for the content in L. This admission

probability is also used in the eviction process, as illustrated in

Figure 3.

5.2.5 Eviction rule. A straightforward eviction rule is to use

the learned probability pi and evict the cached content i with the

smallest pi . This eviction rule is simple and the resulting LHR

outperforms most SOTAs in some but not all production traces

considered in the paper, in particular for traces whose content

sizes vary significantly and exhibit stark variation in content inter-

arrival times. Therefore, instead of just using one feature (e.g., pi )
for eviction, we design a new and simple eviction rule that includes

a class of content features such as IRTs and content size.

To be more specific, we consider the output of pi from the XGBM

model and content features for content eviction. When a content

eviction is needed, we sort the contents in the cache according to

qi =
pi
si × 1

IRT1

, and evict the content with the smallest qi . Such an

eviction rule not only captures content popularity, but also content

size and the approximate number of requests for content i . For
example, if the cached content has not been requested for a long

time (i.e., a large IRT1 value), then it should be evicted with a higher

probability (i.e., a smaller qi ).

5.3 Putting This All Together
Combining all of the above components results in the design shown

in Figure 3. LHR learns to cache using a sliding window of N
requests through the content admission and eviction models as

described above. The detection mechanism leads to a dramatic de-

crease in the computation overhead while HRO, the estimation

algorithm and eviction rule all improve the learning accuracy (i.e.,

a higher hit probability). We summarize LHR in Algorithm 1.

6 IMPLEMENTATION
We have implemented a LHR prototype within an Apache Traffic

Server (ATS) [3] and the Caffeine [47], respectively. An LHR cache

simulator
4
has also been implemented for the sake of comparison

4
The cache simulator along with all implementations in this paper are available at

https://github.com/GYan58/lhr-work.
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with a wide range of state-of-the-art caching algorithms. The im-

plementations are written in C++, Java and Python3, respectively.

For ease of presentation and due to space constraints, we relegate

the implementation of Caffeine and the corresponding results to

Appendix A.3.

6.1 LHR Prototype
ATS is a multi-threaded and event-based CDN caching server with

a space-efficient in-memory lookup data structure as an index to

the cache. A typical ATS configuration consists of a disk/SSD cache

and a memory cache. To achieve high performance, ATS is accessed

using asynchronous I/O.

Upon a new request, ATS implements the following steps:

• Step 1. Based on the URL, it looks up the caches to check

whether the corresponding content is available.

• Step 2. If the requested content is already in the caches, it

will check if the content is fresh
5
. (a) If the content is fresh, it

directly sends the content to the user; (b) If the content is stale, it

communicates with the origin server to revalidate the content. If it

is still fresh, it directly sends it to user; otherwise, it re-fetches the

content into the caches and delivers it to the user at the same time.

• Step 3. If the requested content is not in the caches. ATS will

fetch the content from the origin server. Then it directly sends the

content to the user and admits the content into the cache at the

same time.

We implement LHR on top of ATS. To do so, we replace the

lookup data structures for the ATS cache with the LHR architec-

ture described in Section 4. The content admission and look-up

processes are implemented asynchronously. The decision model

is used in these two processes to make admission decisions and

to update the corresponding values that are used in the eviction

process. In particular, the eviction process is run by scheduling

cache admissions in a lock-free queue. It implements eviction rule

to select one eviction candidate when the cache is full. However,

we do not have access to the flash abstraction layer (e.g., RIPQ [60]).

Hence we emulate this layer, reading offsets randomly and writing

sequentially to the disk. The memory cache is typically small which

has little impact on hit probability [12], we keep this part of ATS

unchanged. We implement the framework by only modifying about

100 lines of codes in ATS. The LHR framework library contains

about 1,300 lines of codes.

6.2 LHR Simulator
We implement an LHR simulator that includes a wide range of

classic and learning-based algorithms, as well as several existing

upper bounds on OPT. We only report results for the seven best-

performing algorithms including LRB [56], Hawkeye [36], LRU,

LRU-4 [51], LFU-DA [4, 54], AdaptSize [12] and B-LRU
6
. Finally,

our implementation benefits from existing caching simulators in

the literature such as libCacheSim [45] and LRB simulators [56].

5
The server could cache contents which were admitted into the cache long time ago

(the time to judge whether a content is stale can be configured on ATS). When a user

again requests these contents, ATS needs to communicate with the origin server to

make sure they have not been changed or updated.

6
Bloom Filter LRU (B-LRU) uses Bloom filter to prevent one-hit content from being

admitted.

7 EVALUATION
In this section, we evaluate our LHR prototype. We also use simu-

lation to compare LHR to a wide range of SOTAs using four pro-

duction traces. Our results address the following questions:

•What is the benefit of using our LHR prototype compared to

existing CDN production systems in terms of content hit probability,

WAN traffic, and implementation overhead (Section 7.2)?

• What is the performance of LHR cache, in terms of content

hit probability, WAN traffic, latency and throughput, compared to

SOTAs on a wide range of production CDN traces under various

settings (e.g., cache size) (Section 7.3)?

• How do the estimation algorithm and detection mechanism

impact the performance of LHR (Section 7.4)?

• What is the gap between LHR and upper bounds on OPT

(Section 7.5)?

•Howwell can LHR adapt to the workload changes (Section 7.6)?

For the sake of readability, some experimental results are rele-

gated to Appendix A.3.

7.1 Methodology
Algorithm settings. Our evaluation uses the following default

values. As discussed in Section 5.1, each sample is generated using

a sliding window of content requests whose unique bytes is 4× of

the cache size. We set β = 0.2% in the estimation algorithm. Their

rationales are discussed earlier (see Sections 5.1 and 5.2.3).

Baselines. As LHR leverages HRO to learn both content admission

and eviction, we compare it to a wide range of SOTAs. To improve

readability, we only show the seven best-performing algorithms in

the following figures.

Overhead. The metadata overhead varies across different algo-

rithms. We deduct the corresponding overheads from the cache

sizes in all experiments for all SOTAs for the sake of fairness. For

example, for an algorithm with 2GB overhead on a 512GB cache,

only 510GB is used for caching.

Performance evaluation. We evaluate the performance of these

algorithms using the four production workloads described in Sec-

tion 2 with different cache sizes, which are chosen based on the

active bytes. All results are generated by running on Ubuntu 18.04

with an Intel(R) Core(TM) i5-10400HQ processor and a 8GB RAM.

7.2 LHR Prototype vs. ATS
We first compare our LHR prototype to the unmodified ATS with

respect to hit probability,WAN traffic and implementation overhead

as shown in Figure 7 and Table 2.

Hit probabilities. Figure 7 compares hit probabilities of LHR and

an unmodified ATS using CDN-A, CDN-B, CDN-C and Wikipedia

traces with a cache of 512GB, 1,024GB, 128GB and 1,024GB, re-

spectively. LHR achieves a higher overall hit probability than ATS.

Furthermore, LHR quickly outperforms ATS after obtaining five

sliding windows of data, and LHR continues to improve its perfor-

mance as it obtains more data.

Implementation overhead. We then compare the implementa-

tion overhead of our LHR prototype against the unmodified ATS.

We measure the throughput, CPU and memory utility under the

“max” experiments, as shown in Table 2. We observe that LHR has

no measurable throughput overhead but the peak CPU utilization
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CDN-A CDN-B CDN-C Wikipedia

Metric Experiment LHR ATS LHR ATS LHR ATS LHR ATS

Throughput (Gbps) max 6.57 6.46 7.18 6.66 6.05 5.90 7.37 6.91

Peak CPU (%) max 22.5 3.7 24.1 4.8 22.5 4.1 23.9 4.2

Peak Mem (GB) max 2.8 2.2 2.5 2.3 2.1 1.7 1.9 1.7

P90 Latency (ms) normal 224 245 241 253 274 276 232 256

P99 Latency (ms) normal 304 305 324 325 322 322 305 314

Overall Latency (ms) average 104 118 119 133 163 168 91 117

Traffic (Gbps) average 1.41 1.47 2.52 2.69 3.47 3.61 2.12 2.37

Content Hit (%) normal 48.92 41.68 49.92 39.04 27.46 25.96 44.96 36.64

Table 2: Resource usage for LHR and ATS in max (throughput-bound) and normal (production-speed) experiments.
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Figure 7: The content hit probabilities of LHR (solid lines)
and unmodified ATS (dashed lines).

increases to 22.5% from 3.7% for ATS under CDN-A, 24.1% from

4.8% for ATS under CDN-B, 22.5% from 4.1% for ATS under CDN-

C and 23.9% from 4.2% for ATS under Wikipedia. However, we

note that most production servers, even at their busiest mode, have

sufficient CPU headroom.

We replay our traces using their original timestamps and mea-

sure the corresponding number of content hits. We label these

“normal” experiments as shown in Table 2. It is clear that LHR sig-

nificantly increases content hit probability by 2%-11% over ATS.

This improvement allows LHR to improve the 90-th percentile la-

tency (P90 latency) by 2%-10%, the 99-th percentile latency (P99

latency) by 1%-5%, and overall average latency by 4%-23% compared

to ATS. This further translates to a traffic reduction of 5%-12% over

ATS. Finally, we measure peak memory overhead for all traces and

cache sizes, we observe that LHR uses 0.2%-1.6% of the cache size

to store metadata. As we show later, such a small loss in available

caching space is more than offset by LHR’s significant improve-

ments in hit probability and WAN traffic.

We conclude from these experiments that LHR is a practical

design for today’s CDNs and can be easily implemented in existing

production CDN servers with modest resource overhead.

7.3 LHR vs. SOTAs
We further compare LHR to a large number of SOTAs using four

production traces across a wide range of cache sizes.

Hit probabilities and WAN traffic. Figure 8 shows the average
content hit probability and the average WAN traffic of each candi-

date algorithm with different cache sizes. LHR consistently outper-

forms the best SOTAs (which varies in different settings). Overall,

LHR improves hit probability by 2%-9% on average besides on the

CDN-C trace, and reduces traffic by 5%-15% on average. Note that

the improvement in the hit probability in CDN-C trace is not sig-

nificant. Our interpretation is that most contents in CDN-C are

only requested once, which leaves less room for LHR to learn the

features, e.g., inter-request times.

Note that LHR improves hit probabilities and reduces traffic

across all traces whereas none of the SOTAs does so. For example,

Hawkeye is the best in CDN-B but among the worst with CDN-

C. LFU-DA does well with CDN-A and CDN-C but not well with

Wikipedia with 512 GB cache. Furthermore, LHR simultaneously

achieves the largest hit probability and the least traffic while the

large hit probabilities of SOTAs often do not translate into low

traffic rates. For example, Hawkeye has one of the highest hit prob-

abilities among SOTAs on CDN-A with 512 GB cache but exhibits

one of the most traffic. These results indicate that existing SOTAs in-

cluding recently developed learning-augmented caching algorithms

perform well on certain workloads but poorly on others.

Memory overhead and running time. Figure 9 shows the mem-

ory overhead for training the learning-based caching algorithms.

We observe that LHR requires less memory than LRB, which re-

quires more space to store content features, but more memory than

Hawkeye. Note that the amounts of memory required by all of

these algorithms are much smaller than the cache size. We further

characterize the running times of learning augmented caching algo-

rithms, which include training time, and the time to process content

admission and eviction. From Figure 9, we observe that LHR dra-

matically reduces running time compared to LRB. The reason is

that LRB needs to use the ML model to predict the next request

time for all cached contents upon each eviction. Further, it requires

updating corresponding features for all contents before making the

prediction. Neither is required in the design of LHR.

Latency and throughput. We further characterize latency (e.g.,

query time) and throughput of LHR on production traces. We as-

sume the trace-based simulation is run in an ideal environment

where (a) network transmission rate is 8 Gbps, i.e., each content

can be transmitted at the rate of 8 Gbps. (b) latency is mainly af-

fected by two factors: distance and content size. The larger the

size, the slower the user receiving the complete content. We also

352



CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Gang Yan, Jian Li, and Don Towsley

256GB 512GB20

30

40

50

A
ve

ra
ge

 H
it 

P
ro

ba
bi

lit
y 

(%
)

4.16%

3.11%

256GB 512GB
Cache Size

6

7

8

9

10

11

12

E
st

im
at

ed
 T

ra
ffi

c 
(G

bp
s)

(a) CDN-A

512GB 1024GB30

35

40

45

50

55

60

8.80%

7.89%

512GB 1024GB
Cache Size

6

7

8

9

10

11

(b) CDN-B

64GB 128GB10

15

20

25

30

35

0.12%
0.36%

64GB 128GB
Cache Size

8

10

12

14

(c) CDN-C

512GB 1024GB30

35

40

45

50

55

4.10%

5.47%

512GB 1024GB
Cache Size

6

7

8

9

10

11

(d) Wikipedia

LHR Hawkeye LRB LRU LRU-4 LFU-DA AdaptSize B-LRU

Figure 8: Comparison of average content hit probabilities and WAN traffic of LHR and SOTAs using production traces. It is
clear that LHR consistently outperforms all candidate SOTAs in all traces with difference cache sizes.
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Figure 9: Comparison of peakmemory and running time be-
tween LHR and SOTAs.

take the running time of the ML model into account. The average

latency and throughput of LRU (the default algorithm in ATS), LRB,

Hawkeye, and LHR are given in Table 3. We observe that LHR con-

sistently improves latency and throughput over SOTAs across all

traces.

7.4 LHR: Estimation and Detection
To further understand where the improvements of LHR come from

in Sections 7.2 and 7.3, we focus on understanding how our pro-

posed techniques in LHR impact its performance. In other words,

we validate the detection mechanism (Section 5.2.2) and the esti-

mation algorithm (Section 5.2.3) using production traces. To that

end, we consider two variants of LHR: D-LHR which is LHR using

a fixed threshold δ = 0.5 for content eviction; and N-LHR which is

D-LHR without the detection mechanism. The average content hit

probabilities, peak memory and running time of LHR, D-LHR and

N-LHR are shown in Figure 10.

7.4.1 Impact of an auto-tuned threshold. We first validate the

importance of including an estimation algorithm on improving

learning accuracy by comparing LHR to D-LHR. From Figure 10(a),

it is obvious that LHR significantly outperforms D-LHR in CDN-C

with various cache sizes. Content hit probabilities are improved by

Metrics Traces LHR Hawkeye LRB LRU

Latency

CDN-A 52.6 57.9 55.0 55.9

CDN-B 50.2 58.0 59.6 63.3

CDN-C 67.8 83.0 69.3 69.3

Wikipedia 50.3 60.1 58.9 62.1

Throughput

CDN-A 8.11 7.24 7.70 7.56

CDN-B 9.50 8.23 7.99 7.44

CDN-C 5.45 3.06 5.22 5.22

Wikipedia 8.47 6.91 7.09 6.58

Table 3: Estimated average latency (ms) and throughput
(Gbps) for LHR,Hawkeye, LRB andLRUon a cache of 512GB,
1,024GB, 128GB, and 1,024GB for CDN-A, CDN-B, CDN-C,
and Wikipedia, respectively.

160% and 143%, respectively. While in other traces, LHR achieves

similar performance as D-LHR. We find that the threshold value

derived from our estimation algorithm is roughly 0.5 across all of

the sliding windows in these traces, and hence D-LHR is almost

the same as LHR.

From Figure 10(b), we observe that the improvement in content

hit probability comes at the cost of a marginal increase in train-

ing time and a memory overhead of 1%-8%. However, the latter

is much smaller than the available cache size. For a given cache

size, although LHR might incur a little more memory overhead

(leaving less cache space for contents), it achieves a much better

hit probability compared to D-LHR.

7.4.2 Impact of the detection mechanism. Next we validate
the importance of the detection mechanism in reducing computa-

tional cost (e.g., training time) by comparing D-LHR and N-LHR.

From Figure 10(c), we observe that the detection mechanism in D-

LHR consistently reduces training times over N-LHR by 15%-40%.

More importantly, we observe from Figure 10(b) that this training

time reduction causes no additional memory overhead, which fur-

ther validates the lightweight nature of our detection mechanism.
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Figure 10: Comparison of average hit probabilities, peak memory and running time of LHR, D-LHR and N-LHR.

Furthermore, since the detection mechanism reduces the fre-

quency at which the learning model is updated, it may suffer an

accuracy loss. However, from Figure 10(a), we observe that the

detection mechanism actually does not generally decease the hit

probability.

7.4.3 Joint impact. Finally we characterize their joint impact

on the design of LHR by comparing LHR and N-LHR. Again, from

Figure 10(a), LHR consistently achieves a higher hit probability

than N-LHR. As discussed above, we believe this benefits from the

auto-tuned threshold, i.e., the estimation algorithm with a marginal

increase in memory overhead. Finally, the training time has been

improved on the CDN-B, CDC-C and Wikipedia datasets, i.e., LHR

decreases the training time by 8%-20% on average compared to

N-LHR. However, LHR takes a bit longer to train on CDN-A. Our

interpretation is that there is a tradeoff between estimation and

detection. For example, in CDN-A, the estimation of Zipf parameter

α dominates detection overhead, while other traces, the detection

mechanism benefits the design by reducing training time.

We conclude that our proposed detection and estimation algo-

rithms are beneficial to LHR providing an improved hit probability

at moderate memory overhead and training time in general. More

importantly, it provides greater flexibility to the system. Together

with the discussions in Section 7.3, this suggests that improvements

of LHR come from the “accurate information” leverage from HRO,

the detection mechanism and the estimation algorithm.

7.5 LHR vs. OPT
Given the above discussions, it is clear that LHR consistently out-

performs SOTAs on considered traces. Now we compare LHR with

several offline upper bounds that are widely used by the system

communities and our online upper bound HRO. As shown in Fig-

ure 2 in Section 2, we observe that HRO provides a tighter online

upper bound on OPT compared to existing offline upper bounds,

and LHR indeed reduces the gap between SOTAs and the upper

bounds on OPT of up to 30%. Furthermore, we observe that LHR is

closer to HRO and other offline upper bounds. The remaining gap

between LHR and HRO is mainly due to the errors in our model. We

will explore the improvement in the learning model as a promising

direction for future work.
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Figure 11: Responsiveness of LHR.

7.6 Responsiveness of LHR
Finally, we evaluate the responsiveness of LHR to workload changes

to understand how well LHR and existing algorithms are able to

track the arrival process. A simple and widely used model that

possesses the desired changeability property is a Markov modu-

lated request process. Under this model, each state corresponds to

one content request process. Requests are drawn from the request

distribution corresponding to the current state. In particular, we

consider two cases named “Syn One” and “Syn Two”.

Under “Syn One”, we define a Markov chain {Yl }l ≥0 with state

space {0, 1}, each corresponding to one content request process (i.e.,

one content popularity distribution). We say Yl = 0 if the system is

at state 0 and the popularity follows one Zipf distribution, and Yl =
1 if the system is at state 1 and follows another Zipf distribution.

Without loss of generality, we consider two Zipf distributions over

N distinct contents, one with increasing order of ranking, i.e., pi =
A/iα , the other with decreasing order of ranking, i.e., pj = A/(N −

j + 1)α , where i, j ∈ {1, · · · ,N } and A is the normalization factor.

We assume that if the Markov chain is in a particular state, a fixed

number of requests r will be drawn according to the corresponding

distribution, and a state transition occurs.

Under “Syn Two”, we consider a Markov chain with state space

{0, 1, 2}. The Zipf distribution corresponds to each state with an

increasing order of ranking over contents, i.e., pi = A/iαl but with
αl depending on the state. In particular, we consider α0 = 0.7,

α1 = 0.9 and α2 = 1.1. The Markov chain starts from state 0, and

then transitions to state 1, state 2, state 1 and back to state 0. In

any particular state, a fixed number of requests r will be drawn

according to the corresponding distribution.
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We consider 1 million requests over N = 1, 000 distinct contents

and r = 200, 000. The performance of LHR and existing algorithms

is presented in Figure 11. We observe that the best performing

SOTA under “Syn One” is LRB and under “Syn Two” is AdaptSize,

while LHR consistently outperforms existing algorithms in both

hit probability and traffic, i.e., LHR is adaptive to the changes in

workloads.

8 RELATEDWORK
Optimal caching and upper bound on hit probability. The op-
timal algorithm for equal sized contents is the Bélády [9], which

is offline since it uses exact knowledge of future content requests.

It has been widely used by the systems community as an upper

bound on hit probability. In addition, LFU achieves the maximum

hit probability when requests for equal sized contents follow the

Independent Reference Model (IRM). Computing the optimal hit

probability for variable contents is known to be NP-hard [19].

Results on bounding OPT has been proposed, for example, Bélády

variants (e.g., Bélády-Size) are widely used as an upper bound on

OPT. The few known results with variable content sizes include

InfiniteCap [2], Flow-based offline optimal (FOO) and Practical

FOO (PFOO) [11]. But, all these bounds are offline, i.e., they assume

exact knowledge of future requests. Instead, we develop a practical

online upper bound based on the recently proposed hazard rate

based upper bound [53] that can be computed for both equal and

variable sized contents in polynomial time, and hence can be easily

leveraged into online caching algorithm design.

Conventional caching algorithms.Many previous works have

focused on improving caching hit probabilities. We classify them

by admission or eviction. The widely used admission algorithms in-

clude AdaptSize [12], TinyLFU [25] and SecondHit [46], and among

others where static features such as content sizes are used for

admission [1, 2, 15, 26, 57]. A large number of works proposed

eviction algorithms from classic Least Recently Used (LRU) [22],

RANDOM, FIFO, to more sophisticated ones that are more difficult

to implement in practice, e.g., LRU-K [51], LFU-DA [4, 54], GDSF

[18], A-LRU [43], ARC [48], CAR [7] and among others, where re-

cency, frequency or their combinations are usually used for eviction

decision [8, 13, 27, 33, 34, 37–39, 42].

Learning augmented caching algorithms. Recently, ML based

caching algorithms have been proposed. On the one hand, some

focus on learning content popularities for content eviction via deep

neural networks (DNNs), e.g., DeepCache [49], FNN-Cache [29],

PopCache [58] and PA-Cache [28], or by approximating or imi-

tating offline optimal Bélády for content eviction, e.g., LFO [10],

LRB [56] and Hawkeye [36] which we use them as SOTAs for com-

parisons. Though Hawkeye was designed for hardware cache, its

idea of applying Bélády to history data with prefetching can be

implemented in CDNs. Note that LFO also learns from heuristic

OPT but it performs even worse than some conventional algorithms

on production traces and hence are not included in the top seven

algorithms presented in Section 7. On the other hand, some algo-

rithms learn to decide whether or not to admit a content upon a

request (i.e., content admission) via reinforcement learning (RL),

e.g., RL-Cache [40], CACA [32], RL-Bélády [63] and among others

[41, 61, 65].

There are mainly three key limitations of these ML based al-

gorithms. (1) Non-robust performance, i.e., good performance for

some access systems and poor for others. On the one hand, DNNs

require the entire training dataset to be available for learning a

fine-tuned but might outdated prediction model with high com-

putational complexity, which makes it difficult to adopt DNNs

based methods at production CDNs. On the other hand, RL-based

caching has been shown to perform suboptimally compared to sim-

ple heuristics; however, rewards (cache hits) manifest with large

delays, which prevents timely feedback to the learning algorithm

and introduces notable complexity. (2) Still a big gap in hit rates

between heuristic algorithms and the offline optimum [56]. (3) Only

learn content admission or content eviction independently. How-

ever, content admission and eviction processes are interrelated and

their performance have an impact on each other. In this paper, we

propose LHR using a unified model to learn content admission and

eviction simultaneously that can consistently outperform all can-

didate SOTAs with improved hit probabilities and reduced WAN

traffic.

9 CONCLUSION
In this paper, we designed, implemented and evaluated LHR. We

showed that LHR is a practical ML-based CDN cache design that

consistently outperforms state of the arts over four production CDN

traces with both an increase in content hit probability and a reduc-

tion in WAN traffic. To bridge the gap with optimal caching (OPT),

we proposed HRO and then leveraged HRO to learn the content

admission probability, which is used for both content admission and

eviction. To improve learning accuracy and reduce computational

costs of ML caching, we proposed a simple estimation algorithm,

a new eviction rule and a lightweight detection mechanism. We

showed that LHR’s implementation is practical and deployable in

today’s CDN servers.
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Figure 12: Performance of detection mechanism.

A APPENDIX
A.1 Analysis of HRO
We consider a set of N distinct contents, where the successive times

when content i is requested are denoted as {τik ,k ∈ Z}. Denote
{τk ,k ∈ Z} as the superposition of N such processes. A hazard

rate (HR) based policy [53] was shown to be an upper bound for

all non-anticipative caching policies. However, its computation

requires exact knowledge of request distributions, i.e., the c.d.f..

We generalize this result and develop a new online upper bound

without such exact knowledge (Section 3). We approximate the

request process as a Poisson process to compute the c.d.f., which

is an accurate approximation for the point process [52, 62] under

the assumption that the number of requests in each sliding window

is large as in our system. As in [53], it can be shown that such an

approximated HR based policy is still an upper bound when taking

content size into consideration as in (2). Specifically, consider any

caching policy π and let Hk = 1 if the k-th request is a hit and

Hk = 0 otherwise under policy π . Denote Nk =
∑K
k=1 Hk as the

number of hits during the first K requests and Mk as the set of

cached contents. Then it can be easily shown [53] that E[Hk ] =∑
i∈Mk

ζi (τk )∑N
i ζi (τk )

, which can be maximized by solving a 0-1 knapsack

problem:

max

N∑
i=1

xiζi (τk ), s.t.
N∑
i=1

sixi ≤ M, xi ∈ {0, 1}.

This problem is NP-hard and the solution to the corresponding

relaxed problem serves as an upper bound [31, 35]. Thus, an upper

bound can be found on E[Hk ] by ordering contents at time τk
according to

˜ζi (t) in (2).

PropositionA.1. The hit probability achieved by the sized hazard
rate (i.e., ˜ζi (t) in (2)) based policy is an upper bound on that of all
non-anticipative caching policies.

Proof. Following the definition of HRO,we have

∑
i ∈MHRO

k

˜ζi (t) ≥∑
i ∈Mπ

k
˜ζi (t) for ∀π . Then by the definition of E[Hk ], we directly

have that E[HHRO

k ] ≥ E[Hπ
k ]. Summing over k , we have that

E[NHRO

k ] ≥ E[N π
k ]. □

A.2 Additional Results on LHR Design
Wemeasure the accuracy of our proposed LSMbasedmodel.We first

generate synthetic datasets including 10 million requests for 10, 000

contents where the requests follow Zipf distribution. We vary the

Zipf parameter every 100, 000 requests which leads to different

synthetic datasets. We test the performance of our algorithm using

four synthetic datasets, where themiss detection occurs only 3 times

on average, i.e., with 97% detection accuracy when we set ϵ = 0.002.

Similarly, we test its performance using production traces, as shown

in Figure 12. In Figure 12, the red box is the sliding window detected

by our LSMmodel where our XGBMbased learningmodel should be

updated and trained. We observe that our detection mechanism can

accurately detect 99% of the significant change of request patterns

between two consecutive sliding windows.
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Figure 13: The content hit probabilities of LHR (solid lines)
and Caffeine (dashed lines).

A.3 LHR Prototype vs. Caffeine
Similar to our LHR prototype in ATS in Section 6, we also implement

and compare LHR with the caching benchmark Caffeine caching

[47]. Caffeine is an in-memory cache using a Google Guava inspired

API and the baseline policy is the state-of-the-art W-TinyLFU [23–

25]. Different fromATS, the implementations in Caffeine are written
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CDN-A CDN-B CDN-C Wikipedia

Metric Experiment LHR Caffeine LHR Caffeine LHR Caffeine LHR Caffeine

Throughput (Gbps) max 5.45 5.42 6.54 6.43 6.75 6.51 5.56 5.24

Peak CPU (%) max 21.6 17.2 22.1 18.7 25.7 23.3 25.3 20.1

Peak Mem (GB) max 3.5 3.3 3.6 3.3 3.6 3.3 3.4 3.3

P90 Latency (ms) normal 324.1 324.3 425.1 420.3 401.2 405.2 272.6 272.4

P99 Latency (ms) normal 363.1 360.7 525.5 525.5 444.1 443.3 331.7 329.5

Overall Latency (ms) average 223.5 231.3 248.0 251.4 316.1 322.7 163.0 172.5

Traffic (Gbps) average 2.19 2.21 3.59 3.60 4.66 4.78 1.40 1.46

Content Hit (%) normal 28.23 23.61 33.01 30.85 21.19 19.17 40.24 34.76

Table 4: Resource usage for LHR and Caffeine in max (throughput-bound) and normal (production-speed) experiments.

in Java. Similar to Section 7.2, we compare LHR and Caffeine in

terms of hit probabilities and implementation overhead.

The hit probability comparison of LHR and Caffeine using CDN-

A, CDN-B, CDN-C and Wikipedia traces with a cache of 64GB,

128GB, 16GB and 128GB are presented in Figure 13. We observe

that LHR achieves a higher overall hit probability than Caffeine.

We further compare the implementation overhead as shown in

Table 4. Again, we observe that LHR has no measurable throughput

overhead with a slightly increased peak CPU utilization compared

to Caffeine. However, most production servers have sufficient CPU

headroom even at their busiest mode. Similar to the settings in

Section 7.2, it is clear that LHR outperforms Caffeine in terms of hit

probability by 2%-6%. It is interesting to observe that LHR slightly

increases the P90 and P99 latency but reduce the overall latency

by 2%-6%. Finally, we observe that both LHR and. Caffeine uses a

small cache size to store metadata.
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