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ABSTRACT

Content delivery networks (CDNs) distribute much of today’s In-
ternet traffic by caching and serving users’ contents requested. A
major goal of a CDN is to improve hit probabilities of its caches,
thereby reducing WAN traffic and user-perceived latency. In this
paper, we develop a new approach for caching in CDNs that learns
from optimal caching for decision making. To attain this goal, we
first propose HRO to compute the upper bound on optimal caching
in an online manner, and then leverage HRO to inform future con-
tent admission and eviction. We call this new cache design LHR. We
show that LHR is efficient since it includes a detection mechanism
for model update, an auto-tuned threshold-based model for con-
tent admission with a simple eviction rule. We have implemented
an LHR simulator as well as a prototype within an Apache Traf-
fic Server and the Caffeine, respectively. Our experimental results
using four production CDN traces show that LHR consistently out-
performs state of the arts with an increase in hit probability of up
to 9% and a reduction in WAN traffic of up to 15% compared to a
typical production CDN cache. Our evaluation of the LHR proto-
type shows that it only imposes a moderate overhead and can be
deployed on today’s CDN servers.

CCS CONCEPTS

« Theory of computation — Caching and paging algorithms;
» Computing methodologies — Machine learning.
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1 INTRODUCTION

Caches are pervasive in networked systems, and play a critical
role in end-to-end application performance. For example, content
delivery networks (CDNs) deploy hundreds of thousands of servers
across the world to serve user requests. If the requested content
resides in servers near the user, a cache hit occurs and the user
promptly receives the content. Otherwise a cache miss occurs and
the response time degrades dramatically. Consequently, there has
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been a renewed focus on increasing cache hit probabilities, particu-
larly for content delivery [12, 20, 21, 34, 46, 64].

Algorithms that determine what contents to cache in each CDN
server play a key role in achieving a high hit probability. Upon a
content request, the CDN server makes cache admission and cache
eviction decisions. Cache admission determines whether to cache
the content while cache eviction decides what content to evict
when the cache is full. Indeed, there is a plethora of work focusing
on improving caching performance by proposing admission and
eviction algorithms. However, major CDNs today still employ the
classic Least Recently Used (LRU) [22] or its variants for content
caching [46]. In spite of decades of studies on caching, including
a recent trend on using machine learning (ML) techniques, the
fundamental limitation of existing caching algorithms remains. We
still observe a large gap between hit probabilities of state-of-the-art
caching algorithms (SOTAs) and the Bélady’s offline MIN algorithm
[9].

One way to understand such a large gap in caching design is by
studying the performance of the offline optimum algorithm (OPT).
The classic such algorithm is Bélady’s algorithm [9]. Although OPT
cannot be implemented in production systems since it assumes
exact knowledge of future requests, it can provide guidance on
designing practical caching algorithms as well as bounding their
performance. For example, if OPT can achieve a hit probability of
x%, then any online caching algorithm can achieve at most x%.
Our approach to improving the performance of CDN caches is to
use lessons learned from OPT to guide our design of a practical
learning augmented online caching algorithm.

Limitations of existing algorithms. We begin in Section 2 by
showing the fundamental limitations of existing state-of-the-art
caching algorithms. We measure hit probabilities using four pro-
duction traces with hundreds of millions of requests across cache
sizes from 64GB to 1,024GB. We find that there remains a gap of
15%-25% between state of the arts and the Bélady algorithm.
Optimal caching. Having demonstrated such a large gap, we turn
to the question: how much further hit probability can be improved.
To provide a principled answer to this question, an upper bound on
maximum achievable hit probability! has been widely used as a per-
formance metric. For equal size contents, it is well known that OPT
is the Bélady algorithm. However, content sizes often vary widely
in production CDNs from a few bytes [50] to several gigabytes [34].
Unfortunately, computing OPT for variable content sizes is known
to be NP-hard [19]. Existing bounds widely used by practitioners,
e.g., PFOO [11] are offline and can be fragile (Section 2).

System designers often have no access to the exact request trace
but can estimate statistical properties of the content request process
such as the inter-request time distribution. Thus we address the

!For the notation abuse, we also call the maximum achievable hit probability for online
state-of-the-art caching algorithms as OPT.
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Dataset CDN-A | CDN-B | CDN-C | Wiki
Duration (Hours) 24 9.9 330 0.1
Unique contents 330,446 | 162,104 | 297,920 | 406,883
Total requests (Millions) 0.97 1 0.6 1
Total bytes requested (TB) 36.42 107.21 57.22 34.34
Unique bytes requested (GB) 8,242 10,832 29,094 27,618
Active bytes (GB) 1,183 2,180 286 1,642
Mean content size (MB) 25.5 68.4 100 69.5
Max content size (MB) 7,790 38,392 101 92,100

Table 1: Key characteristics of production traces used throughout our evaluation spanning different CDNs.

above challenges by designing a practical online upper bound on
OPT using the hazard rate density function (Section 3). We call this
upper bound HRO, which can be computed in an online manner
for both equal and variable sized contents with limited knowledge
on content arrivals and no look ahead option. We then quantify
the gap between SOTAs and HRO, PFOO, and Bélady. We find that
Bélady and PFOO are 4%-16% worse than HRO on average.
Learning to leverage optimal caching. We use HRO as our guide
for the design of practical learning augmented online caching algo-
rithms in Section 4. Specifically, we present a novel ML approach
that is fundamentally different from SOTAs. Our approach is to
leverage HRO into content caching, using ML to simultaneously
find content to admit and evict based on recent content request
patterns. A naive ML algorithm that imitates HRO would incur
prohibitively high computational costs. To overcome this challenge,
our key insight is that it suffices to leverage a lightweight super-
vised learning based model along with HRO to learn a content
admission probability, which is used for both content admission
and eviction. We call this new algorithm LHR (i.e., learning from
HRO).

Upon a new request, LHR first extracts its features and trains a
supervised learning model using HRO, which outputs an admission
probability. LHR only admits a content whose admission probability
is greater than a threshold. To set a proper threshold, we develop a
simple estimation algorithm that adaptively adjusts the threshold
value based on recent requests. We show that the hit probability
of LHR using this auto-tuned threshold can be significantly larger
than that for a fixed threshold (e.g., 0.5) that has been widely used
in the literature (Sections 5.2.3 and 7.4).

Once admitting a content, LHR needs to decide what content
to evict when the cache is full. Unlike prior approaches that use
a small set of static or learned content features for eviction, we
design a simple eviction rule in LHR that weights a larger set of
features including the learned admission probability. The auto-
tuned threshold and the simple eviction rule together give our
system a much more accurate set of choices to aim for, which
has one major consequence: it allows our system to quickly and
accurately adapt to changes in the workload and provide better
caching decisions compared to SOTAs (Sections 5.2.5 and 7.4).

Even with the above design insights for LHR, training a potential
ML framework on CDN traces is often computationally intensive
and time consuming. To reduce computational complexity, we con-
sider a sliding time window over content requests. Naively training
the learning model over every sliding window would still incur
high computational cost. We instead update the model only when
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the request patterns in two consecutive time windows exhibit sig-
nificant changes. To that end, we develop a lightweight detection
mechanism and we observe that it leads to a dramatic decrease in
implementation overhead (Sections 5.2.2 and 7.4).

These insights enable us to design LHR. We have implemented
an LHR simulator as well as an LHR prototype within an Apache
Traffic Server [3] and the Caffeine [47], respectively. Our exten-
sive evaluations using four production CDN traces show that LHR
consistently outperforms all candidate SOTAs with an increase in
content hit probability of up to 9% and a reduction in WAN traffic
of up to 15%. Furthermore, our prototype evaluation shows that
LHR incurs comparable computational and memory overheads to
other designs. Hence LHR can be deployed on today’s CDN servers.

2 BACKGROUND AND MOTIVATION

Real world systems usually exhibit quirks and dynamic behaviors
that are hard to capture with tractable assumptions. In this section,
we quantify opportunities in such production systems, discuss lim-
itations of existing SOTAs and offline bounds on OPT, as well as
challenges to the design of practical online caching algorithms.
Real request traces are diverse. We consider production traces
from four CDNss, three of which chose to remain anonymous. (1)
CDN-A collected from several nodes in one continent serves a
mixture of web and video traffic; (2) CDN-B captures mobile video
behaviors collected from one live streaming system; (3) CDN-C
contains user requests for specific contents collected from a local
network; and (4) a Wikipedia (Wiki) trace collected on a west-
coast node serving photos and other media content. Key trace
characteristics are summarized in Table 1 and Figure 1.

The traces typically span several tens to hundreds of thousands
of requests, and tens of thousands of contents with sizes varying
from 10 KB to 10* MB. The total bytes requested are on the order
of TBs; however, the active bytes® [40] are on average on the order
of GBs. As a result, we choose the cache size in the range of 64 GB
to 1,024 GB for different traces in our evaluations. For the sake of
readability, we present the results using two cache sizes for each
trace in the rest of the paper. Similar observations hold for other
cache sizes. We conclude that content requests in production sys-
tems exhibit extreme variability in content popularity, content size,
and inter-arrival time distributions. This makes cache management
challenging for a CDN server and the need to design an online

2A content is said to be active at time ¢ in a trace if ¢ lies between the first and the
last requests for the content. The total size of active contents at time # is defined as
active bytes.
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Figure 1: Content popularity and inter-arrival time.

caching algorithm that can automatically adapt to these changes
with a robust performance.

Limitations of practical algorithms and bounds. System de-
signers usually take advantage of the aforementioned quirks and
dynamics in production systems [16, 59] to build new algorithms
that outperform classic ones. In this subsection, we quantify oppor-
tunities to improve hit probabilities of existing SOTAs and existing
bounds on OPT.

Experimental setup. We implement a cache simulator includ-
ing a wide range of SOTAs and only report on the seven best-
performing algorithms including LRU, LRB [56], AdaptSize [12],
etc in this paper (more details in Section 7.5). For comparison, we
compute two state-of-the-art offline upper bounds on OPT, i.e.,
PFOO [11] and Bélady-size, a simple Bélady variant widely used by
the community [34, 44, 55]. For each workload, we simulate a set
of cache scenarios. For ease of exposition, we only present results
for one scenario as shown in Figure 2, where the “best-performing”
SOTA is the one with the highest content hit probability among all
SOTAs in consideration.

Significant opportunities to improve hit probabilities and
upper bounds on OPT. We observe a large gap between existing
SOTAs and upper bounds on OPT. Two possible reasons behind
this observation: the offline bounds (e.g., Bélady-size) widely used
by practitioners offer no optimality guarantees, and there are still
achievable gains on hit probability to be explored. We will answer
yes to both these possibilities. We show that these upper bounds
are in fact far from OPT, and hence give practitioners a false sense
of complacency. As a result, existing learning-based algorithms
that leverage OPT for decision making may suffer performance
losses. Our interpretation is that upper bounds leveraged in these
algorithms ignore many practical content features (e.g., content
inter-arrival time) exhibited in production workloads, and hence
are not tight on OPT for arbitrary traces.

We conclude that there is significant need to realize online
caching algorithms that can automatically adapt to changes in
content request patterns over time. Furthermore, there is still room
to develop tight upper bound on maximum achievable cache hit
probability in an online manner to gauge the potential effectiveness
of caching algorithms. Developing such a practical online upper
bound and leveraging it along with ML for CDN caching require us
to overcome many challenges as we describe in Sections 3 and 5.

3 AN ONLINE UPPER BOUND ON OPT

Since existing bounds on OPT are offline, weak or computationally
expensive, they are hard to leverage into learning augmented online

346

CoNEXT 21, December 7-10, 2021, Virtual Event, Germany

Il PFOO Belady-Size HRO Il SOTA Il LHR
70
<
60
>
=
= 50
S
O 40
j
o
=30
T
o
220
©
o
o
> 10
<
0256GB 512GB 512GB 1024GB  64GB 128GB _ 512GB 1024GB
CDN-A CDN-B CDN-C Wikipedia

Figure 2: Simulated content hit probabilities of two widely
used offline bounds, our online bound HRO, the “best-
performing” SOTA, and LHR. There is a large gap of 15%-25%
between SOTAs and the tighter offline bound. HRO is much
tighter than the other two offline upper bounds. More de-
tails in Section 7.5.

caching designs. Recently, Panigraphy et al [53] proposed a hazard
rate (HR) based upper bound on OPT that outperforms existing
bounds. However, [53] requires the exact content request distribu-
tion, which is only available for synthetic workloads, to compute
the bound. To tackle this challenge, we generalize results in [53] and
develop a new online upper bound, HRO, with limited knowledge
of the content request process, which can be easily leveraged into
an ML model for online caching algorithm design. In the following,
we first present the upper bound in [53] for completeness and then
introduce HRO. For ease of readability, we relegate the performance
analysis of HRO to Appendix A.1.

3.1 Theoretical Model

We denote successive times when content i is requested as {z;, k €
Z}. Then the inter-request time (IRT) between the (k — 1)-st and
k-th requests to content i is defined as X;x = 73 — Tj(k_1), for
k > 1, and 7;0 = 0 by convention. We consider {X;x}x>1 to be a
stationary point process with cumulative inter-arrival time distri-
bution functions (c.d.f.) satisfying [6] F;(t) = P(X; < t). Denote
the corresponding density function as f;(¢). The mean request rate
1

u; for content i is then given by y; = E[)}'k] = TUF ot The
i o —F;

c.d.f. of the age associated with the inter-arrival time distribution
for content i satisfying [6] F;(t) = y; /Ot(l — F(x))dx. The hazard
rate function {;(t) associated with F;(t) is defined as

fi(®)
Gi(t) = -F @)’ 1)
which represents the conditional probability of the occurrence of
a content request at time #, given the realization of the request
processes over the interval [0, t).

Given the above definitions, a hazard rate based upper bound on
OPT can be computed as follows [53]. Upon a request for content i
at time ¢, contents are sorted according to their hazard rates at time
t in decreasing order. Then the request is classified as a hit if content
i is among the M contents with the largest hazard rates, where M

t € [0,F; (1)),
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is the cache size. Such a hazard rate based ordering is analogous
to the LFU policy since the hazard rate at time ¢ determines the
most popular contents at time ¢. The above hazard rate function is
defined under the assumption that content sizes in the system are
equal; however, the content sizes in production system usually vary
significantly. To overcome this drawback, the hazard rate function
by incorporating content size s; is redefined as follows

fi®)

W, t e [O, F;l(l)]

Gty = )

3.2 From Theory to Practice

To compute the hazard rate and obtain the hazard rate based policy,
the c.d.f. F;(¢) is needed. This is straightforward for synthetic work-
loads; however, the c.d.f. is usually unknown and computationally
expensive (e.g., kernel method) to obtain in production systems. We
are therefore unlikely to find the exact hazard rate for production
workloads. To overcome this challenge, our key insight is that it is
sufficient to develop a technique that accurately approximates the
hazard rate based upper bound on any trace, which we call HRO.

We consider a sliding time window?, and only contents within
the window are used to compute the IRTs. Given these IRTs, we
approximate the request process as a Poisson process to compute
an approximate c.d.f., which is used to update the approximated
hazard rates in (2). Finally, requests for contents with the top M
hazard rates are classified as cache hits. We show analytically (see
Appendix A.1) and empirically (Figure 2) that HRO yields a tighter
bound on traces seen in practice compared to SOTA bounds, and
can be efficiently computed in polynomial time. Therefore, we
believe these results demonstrate that HRO is both theoretically
well-founded and practically useful. More importantly, we will
show that it indeed leverages more accurate information about the
content request process, and hence can be used to improve online
algorithm performance.

4 LEARNING TO LEVERAGE HRO

In order to leverage HRO in the design of a learning augmented
online caching algorithm, this section introduces LHR, which is a
layered framework moving from detection to admission to eviction.
We will discuss the design details of LHR in Section 5.

4.1 LHR Algorithm

To overcome the limitations of SOTAs, we leverage a lightweight
supervised learning model (e.g., a XGBM [17] based model) along
with HRO to learn a per-content admission probability. LHR admits
a content if the learned admission probability is greater than an
auto-tuned threshold. We then develop a simple eviction rule based
on the learned probability for content eviction. Finally, to reduce
computational costs, we propose a detection mechanism to deter-
mine when to update the ML model. We call our algorithm LHR,
which leverages HRO to simultaneously learn content admission
and eviction through a unified learning framework that enables
detection, estimation, and training.

3Different from the sliding window in TCP, our sliding windows have no overlaps. For
example, for a window of size W, the first window contains the first W-th requests,
the second window contains the (W+1)-st to the 2W-th requests and so on.
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Figure 3: Framework of LHR.

Figure 3 shows the LHR framework, consisting of three compo-
nents: a supervisor, an admission agent and an eviction agent. We
consider a cache of size M and denote the set of cached contents
as M. LHR maintains a vector of size M to store the learned con-
tent admission probability, p; of content i in the cache. Denote this
vector as L.

Upon a new request for content i, LHR first extracts its feature
u; and computes HRO using request information in the past sliding
window. Then LHR outputs an admission probability p; for content i
via a XGBM based model (admission agent). This will be described in
detail in Section 5.2.4. LHR compares p; to an auto-tuned threshold
§ for cache admission decision. Upon a cache hit (i.e., content i is
already in the cache), we consider two cases: (i) p; > §: we simply
update its admission probability in .£L; (ii) p; < J: we not only
update its value in £ but also label it as an eviction candidate with
value of p;. Similarly, upon a cache miss, we consider two cases:
(iii) p; > J: content i is admitted, and its value p; is inserted into
L; (iv) p; < 8: simply discard the request.

When the cache is full, LHR needs to decide what content to
evict upon a cache admission (eviction agent). Given admission
probability p;, we develop a simple eviction rule that outputs an
eviction probability g; (eviction value), which is a function of p;.
See Section 5.2.5 for details. LHR evicts an eviction candidate with
the smallest eviction value g;.

4.2 Auto-tuned Threshold

LHR only admits a content whose admission probability is greater
than a threshold. A smaller threshold moves the hit probability of
LHR closer to the admit-all policy [40]. This will be particularly
useful for traces where existing learning based algorithms do not
perform as well as simple admit-all or admit-nothing models. A
larger threshold makes LHR more tractable but may discard popular
contents. It is thus important to find a proper threshold. To system-
atically choose a threshold for LHR, we design a simple estimation
algorithm that adaptively adjusts the threshold § based on recent
requests. This is described in detail in Section 5.2.3.

4.3 Efficient Training

Even with a simple threshold-based policy for content admission,
naively training LHR on arbitrary CDN traces may still be compu-
tationally intensive and time consuming. To reduce computational
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costs, we first consider a sliding time window and use only his-
tory data within the window for training. Then a straightforward
training process is to update model parameters at every sliding
window. However, our key observation is that this is not necessary
in production systems as it is time consuming with a high memory
overhead. If requests in two consecutive sliding windows exhibit
“similar” pattern, there is no need to update the model again. Then a
natural question arises: when should the model be updated? We pose
this problem as an anomaly detection problem, where an “anom-
aly” occurs when request patterns change significantly between
two consecutive sliding windows. We propose a simple detection
mechanism for LHR, which is built on the estimation of request
distribution. This will be described in detail in Section 5.2.2.

Key take-aways. LHR has four important properties.

e Leveraging HRO: LHR leverages HRO through a simple super-
vised learning framework to make caching decisions in an online
manner. This is possible since HRO can be efficiently updated in
production systems in polynomial time.

o Auto-tuned threshold-based admission policy. Rather than
using a fixed threshold (e.g., § = 0.5), we adaptively determine
threshold value § based on the request stream. This not only makes
the algorithm adapt to dynamics in production workloads, but also
reduces training error and hence improves model accuracy.

o Better eviction rule: Unlike prior approaches that only use a
small set of content features for cache eviction, we develop a new
eviction rule based on the learned admission probability p; and
other key content features (e.g., content size). This also improves
learning accuracy of our model through making better eviction
decisions.

o Efficient training via detection: Instead of training the ML
model after each sliding window, we design a detection mechanism
to determine when the model should be trained and updated. This
property provides a dramatic reduction of computational cost.

5 DESIGN OF LHR CACHE

This section presents the design details of LHR, which uses machine
learning to leverage HRO into online caching design. To make
LHR a reality, we have to simultaneously address three previously
unsolved problems:

o How to leverage HRO into an online caching design?

o How to design an ML approach that achieves hit probabilities
close to those of OPT with small WAN traffic?

e How to make this practical?

Each of these problems pose several challenges, and it addi-

tionally requires us to balance their often-competing goals when
addressing them simultaneously. We present a general ML frame-
work to leverage HRO for learning content admission and eviction
simultaneously as shown in Figure 4. There are two key design
issues:
Historical data. To compute HRO and to train the decision model,
it is of utmost importance to determine how much past information
is needed. More historical data may lead to a more accurate model,
but may also significantly increase resource overheads. As a result,
we need to consider a tradeoff in production CDN servers due to
hardware constraints.
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Figure 4: A general ML framework that leverages optimal
caching for learning content admission and eviction simul-
taneously.

Learning framework. This involves how to select and design a
supervised ML framework to achieve high hit probabilities. This
includes (i) selection of content features; (ii) the design of a “su-
pervisor” that can leverage HRO into cache decisions, determine
when the ML model should be updated, as well as the admission
and eviction rule; and (iii) an ML model to integrate all into caching
decision making.

In the following, we describe the design decisions of LHR for
each of these design issues. Our design is generally guided by the
practical online upper bound on OPT, i.e., the HRO.

5.1 History Data

LHR records information of contents that have been previously
requested. We represent each request as a vector including different
content features that will be described in details later. In our LHR
framework, history data are used for training the learning model
for content admission, as well as for computing HRO.

The admission agent in our LHR framework takes content fea-
tures as input and outputs an admission probability, which is further
used in the eviction process. We consider a sliding window and
only use data within the window for training and computing HRO.
To reduce computational costs, we do not train the model during
every sliding window but instead use a detection mechanism to
decide when to retrain.

As aresult, a proper window size is important to the performance
of LHR. On one hand, the admission model and the eviction rule will
not be accurate if the window size is too small. On the other hand,
a large window size may increase memory overhead and result in
more time required to process operations. In reality, CDN servers
need to process millions of requests per second, and the window size
can be large given the effective system computing capability. Since
content sizes vary significantly in production traces, we consider
the size of a window measured in the number of unique bytes seen
over a number of requests. We evaluate the impact of the window
size on four traces using two cache sizes as shown in Figure 5, where
2x means the unique bytes of content requests in the window is
twice the cache size. Given the characteristics of these traces, we
mimic real CDN systems with a window of content requests whose
unique bytes is 4X of the cache size for all traces considered in
this paper to achieve a reasonable tradeoff between hit probability,
memory overhead and running time.
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‘10d’ means IRT; to IRT{q are included.

Finally, data is needed to start the training process at the begin-
ning of a trace so as to build an initial model. Hence we use the
first sliding window as training data, and then execute the caching
algorithm from the second sliding window onwards.

5.2 LHR Framework

We describe the main components in the ML framework of LHR in
this subsection. For each component, we describe our choice and
design, and discuss the corresponding rationale.

5.2.1 Content features. The rationale for our feature selection is
to provide a superset of information used by SOTAs. Different from
those heuristic methods that only rely on one or a few features, we
consider a set of time-varying features along with a set of static
features.

o Inter-request times. Inspired by the design of HRO, we consider
inter-request times (IRTs) — the times between consecutive requests
to a content — as a time-varying feature. For example, IRT; rep-
resents the time since the last request, IRT; is the time between
the content’s previous two requests, and so on. We use IRTs as fea-
tures since they provide useful information used by many SOTAs,
including LRU with IRT; and LRU-K using IRT; to IRTy.

e Static Features. Static features capture additional non-time
varying content information such as content size and so on. These
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features are easy to obtain and consume little memory overhead.
Static features also play a role in labeling different contents.

IRTs and static features provide a set of information used by
SOTAs. We benefit from them by adding more features during
model training. However, adding more features may increase sys-
tem memory overhead, i.e., there is a tradeoff between adding more
information to the model for making better decisions and the sys-
tem overhead. Therefore, we determine the effectiveness of these
features and decide how many IRTs to store. Figure 6 shows the
marginal improvements from an accumulation of static features,
and 10-30 IRTs, where the hit probability improvement is measured
with respect to the case with 10 IRTs. As expected, more features
improves hits with diminishing improvements and larger memory
overhead and running time. We settle on 20 IRTs because this ap-
pears to guarantee good performance of our design across all traces.
We denote the features of content i as u;.

5.2.2 Detection mechanism. Although the content request pro-
cess varies over time, it has been observed [5, 14, 30] in production
systems that the request process is characterized by a Zipf distribu-
tion, where the popularity of the i-th most popular content follows
pi = A/i* with A being the normalization factor and « is the Zipf
parameter. If we know the value of « in each sliding window, then
we only need to update our model if there is a significant change in
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a between two consecutive windows, e.g., |@j+1 — ;| > €, where
Jj indicates the j-th time window and € is a constant. This greatly
reduces computational and memory overheads. Then we develop a
Least-Squared-Method (LSM) based model to estimate the value of
a in each sliding window. We first transform the Zipf popularity
into log p; = log A — alog i, and then directly use LSM to estimate
its intercept log A and gradient . This LSM-based method is well
known to be lightweight with a complexity of O(N), where N is
the number of unique contents in one sliding window. Hence it can
be easily implemented in production systems. We will show that
our LSM based model is accurate in Section 7.4 as well as additional
discussions on parameters in Appendix A.2.

5.2.3 Estimation algorithm. As observed in Section 2, realistic
content requests generated by users in production systems are non-
stationary, i.e., time-varying content popularities, variable content
size and so on. Consequently, it is inappropriate to use a fixed
threshold (e.g., § = 0.5 has been widely used) to decide whether to
admit a content upon a request as discussed in Section 4. Hence we
need to adaptively adjust the threshold § based on recent requests.

Suppose that the threshold used in the current sliding window
k is &y, and the corresponding hit probability is h(d). We set
a candidate threshold set Ay for sliding window k to be A =
{0,0.5,8; — 0.1, 5 + 0.1}. Note that we use a step size of 0.1 to
update the threshold. It can be any value in [0,0.1,- - - , 0.9, 1]. From
our experiments, we observe that our choice of §; provides good
performance in terms of hit probability and training time. We com-
pute the hit probability during the current sliding window k using
the candidate thresholds in Ag. Suppose that Sk € Ay returns the
largest hit probability h(Jj). To make the estimation robust, we
use the threshold Sk in the next sliding window k + 1 if and only
if h(8;) > h(8x), and |h(8;) — h(8;)| > B, where B is a constant.
Otherwise, we do not update the threshold. The above two update
rules help the learning algorithm avoid unnecessary updates and
hence reduce training time and computational costs.

Furthermore, we observe that there is no need to use all requests
in the current sliding window in the above estimation process. For
instance, using only half of requests in each sliding window still
provides a good performance (See Section 7).

5.24 Learning model. LHR uses an XGBoosting Machine (XGBM)
[17] based model to learn content admission probabilities. As men-
tioned above, the input consists of 20 IRTs and static features, and
the output is the learned admission probability for one content. To
be more specific, we assume that there are N requests in the cur-
rent sliding window ¢ with features {ui}f\i 1- Denote the decisions
{yi }f\i , on these requests from HRO, i.e., “optimal caching decision”,
which are used as content labels. Consider an XGBM based model
with parameter w(t — 1) and represent the output of the model as
A(w(t — 1), -), i.e., the admission probability for each content. Then
we train the model and update its parameter by leveraging HRO
through solving the following optimization problem

N
. 2
min )" (AGw(t = 1),up) = yi)’,
i=1
where we consider the mean squared error since it achieves the best
performance in our experiments compared to other loss functions
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Algorithm 1 LHR

Initialize the admission threshold as y = 0.5
for sliding windows k = 1,2, ..., do
Extract features of each requested content i and outputs an
admission probability p; (Section 5.2.4);
if p; > 5 then
Cache content i and evict content j with g; (Section 5.2.5);
end if
Estimate ay using LSM (Section 5.2.2)
if |ap — ar_1| = € then
Update 6y (Section 5.2.3)
Re-train the learning model (Section 5.2.4)
end if
end for

that we explored. The learned admission probability will be used in
the four cases described in Section 4, i.e., compare with a threshold
to determine whether to admit or not. Upon admission, then update
the admission probability for the content in £. This admission
probability is also used in the eviction process, as illustrated in
Figure 3.

5.2.5 Eviction rule. A straightforward eviction rule is to use
the learned probability p; and evict the cached content i with the
smallest p;. This eviction rule is simple and the resulting LHR
outperforms most SOTAs in some but not all production traces
considered in the paper, in particular for traces whose content
sizes vary significantly and exhibit stark variation in content inter-
arrival times. Therefore, instead of just using one feature (e.g., p;)
for eviction, we design a new and simple eviction rule that includes
a class of content features such as IRTs and content size.

To be more specific, we consider the output of p; from the XGBM
model and content features for content eviction. When a content
eviction is needed, we sort the contents in the cache according to
qi = %’ X ﬁ, and evict the content with the smallest g;. Such an
eviction rule not only captures content popularity, but also content
size and the approximate number of requests for content i. For
example, if the cached content has not been requested for a long
time (i.e., a large IRT; value), then it should be evicted with a higher
probability (i.e., a smaller g;).

5.3 Putting This All Together

Combining all of the above components results in the design shown
in Figure 3. LHR learns to cache using a sliding window of N
requests through the content admission and eviction models as
described above. The detection mechanism leads to a dramatic de-
crease in the computation overhead while HRO, the estimation
algorithm and eviction rule all improve the learning accuracy (i.e.,
a higher hit probability). We summarize LHR in Algorithm 1.

6 IMPLEMENTATION

We have implemented a LHR prototype within an Apache Traffic
Server (ATS) [3] and the Caffeine [47], respectively. An LHR cache
simulator® has also been implemented for the sake of comparison

4The cache simulator along with all implementations in this paper are available at
https://github.com/GYan58/lhr-work.
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with a wide range of state-of-the-art caching algorithms. The im-
plementations are written in C++, Java and Python3, respectively.
For ease of presentation and due to space constraints, we relegate
the implementation of Caffeine and the corresponding results to
Appendix A.3.

6.1 LHR Prototype

ATS is a multi-threaded and event-based CDN caching server with
a space-efficient in-memory lookup data structure as an index to
the cache. A typical ATS configuration consists of a disk/SSD cache
and a memory cache. To achieve high performance, ATS is accessed
using asynchronous I/O.

Upon a new request, ATS implements the following steps:

e Step 1. Based on the URL, it looks up the caches to check
whether the corresponding content is available.

o Step 2. If the requested content is already in the caches, it
will check if the content is fresh’. (a) If the content is fresh, it
directly sends the content to the user; (b) If the content is stale, it
communicates with the origin server to revalidate the content. If it
is still fresh, it directly sends it to user; otherwise, it re-fetches the
content into the caches and delivers it to the user at the same time.

o Step 3. If the requested content is not in the caches. ATS will
fetch the content from the origin server. Then it directly sends the
content to the user and admits the content into the cache at the
same time.

We implement LHR on top of ATS. To do so, we replace the
lookup data structures for the ATS cache with the LHR architec-
ture described in Section 4. The content admission and look-up
processes are implemented asynchronously. The decision model
is used in these two processes to make admission decisions and
to update the corresponding values that are used in the eviction
process. In particular, the eviction process is run by scheduling
cache admissions in a lock-free queue. It implements eviction rule
to select one eviction candidate when the cache is full. However,
we do not have access to the flash abstraction layer (e.g., RIPQ [60]).
Hence we emulate this layer, reading offsets randomly and writing
sequentially to the disk. The memory cache is typically small which
has little impact on hit probability [12], we keep this part of ATS
unchanged. We implement the framework by only modifying about
100 lines of codes in ATS. The LHR framework library contains
about 1,300 lines of codes.

6.2 LHR Simulator

We implement an LHR simulator that includes a wide range of
classic and learning-based algorithms, as well as several existing
upper bounds on OPT. We only report results for the seven best-
performing algorithms including LRB [56], Hawkeye [36], LRU,
LRU-4 [51], LFU-DA [4, 54], AdaptSize [12] and B-LRU®. Finally,
our implementation benefits from existing caching simulators in
the literature such as libCacheSim [45] and LRB simulators [56].

5The server could cache contents which were admitted into the cache long time ago
(the time to judge whether a content is stale can be configured on ATS). When a user
again requests these contents, ATS needs to communicate with the origin server to
make sure they have not been changed or updated.

®Bloom Filter LRU (B-LRU) uses Bloom filter to prevent one-hit content from being
admitted.
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7 EVALUATION

In this section, we evaluate our LHR prototype. We also use simu-
lation to compare LHR to a wide range of SOTAs using four pro-
duction traces. Our results address the following questions:

e What is the benefit of using our LHR prototype compared to
existing CDN production systems in terms of content hit probability,
WAN traffic, and implementation overhead (Section 7.2)?

e What is the performance of LHR cache, in terms of content
hit probability, WAN traffic, latency and throughput, compared to
SOTAs on a wide range of production CDN traces under various
settings (e.g., cache size) (Section 7.3)?

e How do the estimation algorithm and detection mechanism
impact the performance of LHR (Section 7.4)?

e What is the gap between LHR and upper bounds on OPT
(Section 7.5)?

e How well can LHR adapt to the workload changes (Section 7.6)?

For the sake of readability, some experimental results are rele-
gated to Appendix A.3.

7.1 Methodology

Algorithm settings. Our evaluation uses the following default
values. As discussed in Section 5.1, each sample is generated using
a sliding window of content requests whose unique bytes is 4X of
the cache size. We set § = 0.2% in the estimation algorithm. Their
rationales are discussed earlier (see Sections 5.1 and 5.2.3).
Baselines. As LHR leverages HRO to learn both content admission
and eviction, we compare it to a wide range of SOTAs. To improve
readability, we only show the seven best-performing algorithms in
the following figures.

Overhead. The metadata overhead varies across different algo-
rithms. We deduct the corresponding overheads from the cache
sizes in all experiments for all SOTAs for the sake of fairness. For
example, for an algorithm with 2GB overhead on a 512GB cache,
only 510GB is used for caching.

Performance evaluation. We evaluate the performance of these
algorithms using the four production workloads described in Sec-
tion 2 with different cache sizes, which are chosen based on the
active bytes. All results are generated by running on Ubuntu 18.04
with an Intel(R) Core(TM) i5-10400HQ processor and a 8GB RAM.

7.2 LHR Prototype vs. ATS

We first compare our LHR prototype to the unmodified ATS with
respect to hit probability, WAN traffic and implementation overhead
as shown in Figure 7 and Table 2.

Hit probabilities. Figure 7 compares hit probabilities of LHR and
an unmodified ATS using CDN-A, CDN-B, CDN-C and Wikipedia
traces with a cache of 512GB, 1,024GB, 128GB and 1,024GB, re-
spectively. LHR achieves a higher overall hit probability than ATS.
Furthermore, LHR quickly outperforms ATS after obtaining five
sliding windows of data, and LHR continues to improve its perfor-
mance as it obtains more data.

Implementation overhead. We then compare the implementa-
tion overhead of our LHR prototype against the unmodified ATS.
We measure the throughput, CPU and memory utility under the
“max” experiments, as shown in Table 2. We observe that LHR has
no measurable throughput overhead but the peak CPU utilization
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CDN-A CDN-B CDN-C [ Wikipedia
Metric Experiment | LHR ATS LHR  ATS LHR ATS LHR ATS
Throughput (Gbps) max 6.57 6.46 7.18 6.66 6.05 5.90 7.37 6.91
Peak CPU (%) max 22.5 3.7 24.1 4.8 225 4.1 23.9 4.2
Peak Mem (GB) max 2.8 2.2 25 23 2.1 1.7 1.9 1.7
P90 Latency (ms) normal 224 245 241 253 274 276 232 256
P99 Latency (ms) normal 304 305 324 325 322 322 305 314
Overall Latency (ms) average 104 118 119 133 163 168 91 117
Traffic (Gbps) average 1.41 1.47 2.52 2.69 3.47 3.61 2.12 2.37
Content Hit (%) normal 48.92 41.68 49.92 39.04 27.46 25.96 44.96 36.64

Table 2: Resource usage for LHR and ATS in max (throughput-bound) and normal (production-speed) experiments.

—— CDN-A —— CDN-B —— CDN-C —— Wikipedia

» [$)] [e2]
o o o
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Figure 7: The content hit probabilities of LHR (solid lines)
and unmodified ATS (dashed lines).

increases to 22.5% from 3.7% for ATS under CDN-A, 24.1% from
4.8% for ATS under CDN-B, 22.5% from 4.1% for ATS under CDN-
C and 23.9% from 4.2% for ATS under Wikipedia. However, we
note that most production servers, even at their busiest mode, have
sufficient CPU headroom.

We replay our traces using their original timestamps and mea-
sure the corresponding number of content hits. We label these
“normal” experiments as shown in Table 2. It is clear that LHR sig-
nificantly increases content hit probability by 2%-11% over ATS.
This improvement allows LHR to improve the 90-th percentile la-
tency (P90 latency) by 2%-10%, the 99-th percentile latency (P99
latency) by 1%-5%, and overall average latency by 4%-23% compared
to ATS. This further translates to a traffic reduction of 5%-12% over
ATS. Finally, we measure peak memory overhead for all traces and
cache sizes, we observe that LHR uses 0.2%-1.6% of the cache size
to store metadata. As we show later, such a small loss in available
caching space is more than offset by LHR’s significant improve-
ments in hit probability and WAN traffic.

We conclude from these experiments that LHR is a practical
design for today’s CDNs and can be easily implemented in existing
production CDN servers with modest resource overhead.

7.3 LHR vs. SOTAs

We further compare LHR to a large number of SOTAs using four
production traces across a wide range of cache sizes.
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Hit probabilities and WAN traffic. Figure 8 shows the average
content hit probability and the average WAN traffic of each candi-
date algorithm with different cache sizes. LHR consistently outper-
forms the best SOTAs (which varies in different settings). Overall,
LHR improves hit probability by 2%-9% on average besides on the
CDN-C trace, and reduces traffic by 5%-15% on average. Note that
the improvement in the hit probability in CDN-C trace is not sig-
nificant. Our interpretation is that most contents in CDN-C are
only requested once, which leaves less room for LHR to learn the
features, e.g., inter-request times.

Note that LHR improves hit probabilities and reduces traffic
across all traces whereas none of the SOTAs does so. For example,
Hawkeye is the best in CDN-B but among the worst with CDN-
C. LFU-DA does well with CDN-A and CDN-C but not well with
Wikipedia with 512 GB cache. Furthermore, LHR simultaneously
achieves the largest hit probability and the least traffic while the
large hit probabilities of SOTAs often do not translate into low
traffic rates. For example, Hawkeye has one of the highest hit prob-
abilities among SOTAs on CDN-A with 512 GB cache but exhibits
one of the most traffic. These results indicate that existing SOTAs in-
cluding recently developed learning-augmented caching algorithms
perform well on certain workloads but poorly on others.
Memory overhead and running time. Figure 9 shows the mem-
ory overhead for training the learning-based caching algorithms.
We observe that LHR requires less memory than LRB, which re-
quires more space to store content features, but more memory than
Hawkeye. Note that the amounts of memory required by all of
these algorithms are much smaller than the cache size. We further
characterize the running times of learning augmented caching algo-
rithms, which include training time, and the time to process content
admission and eviction. From Figure 9, we observe that LHR dra-
matically reduces running time compared to LRB. The reason is
that LRB needs to use the ML model to predict the next request
time for all cached contents upon each eviction. Further, it requires
updating corresponding features for all contents before making the
prediction. Neither is required in the design of LHR.

Latency and throughput. We further characterize latency (e.g.,
query time) and throughput of LHR on production traces. We as-
sume the trace-based simulation is run in an ideal environment
where (a) network transmission rate is 8 Gbps, i.e., each content
can be transmitted at the rate of 8 Gbps. (b) latency is mainly af-
fected by two factors: distance and content size. The larger the
size, the slower the user receiving the complete content. We also
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Figure 8: Comparison of average content hit probabilities and WAN traffic of LHR and SOTAs using production traces. It is
clear that LHR consistently outperforms all candidate SOTAs in all traces with difference cache sizes.
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Figure 9: Comparison of peak memory and running time be-
tween LHR and SOTAs.

take the running time of the ML model into account. The average
latency and throughput of LRU (the default algorithm in ATS), LRB,
Hawkeye, and LHR are given in Table 3. We observe that LHR con-
sistently improves latency and throughput over SOTAs across all
traces.

7.4 LHR: Estimation and Detection

To further understand where the improvements of LHR come from
in Sections 7.2 and 7.3, we focus on understanding how our pro-
posed techniques in LHR impact its performance. In other words,
we validate the detection mechanism (Section 5.2.2) and the esti-
mation algorithm (Section 5.2.3) using production traces. To that
end, we consider two variants of LHR: D-LHR which is LHR using
a fixed threshold § = 0.5 for content eviction; and N-LHR which is
D-LHR without the detection mechanism. The average content hit
probabilities, peak memory and running time of LHR, D-LHR and
N-LHR are shown in Figure 10.

7.4.1 Impact of an auto-tuned threshold. We first validate the
importance of including an estimation algorithm on improving
learning accuracy by comparing LHR to D-LHR. From Figure 10(a),
it is obvious that LHR significantly outperforms D-LHR in CDN-C
with various cache sizes. Content hit probabilities are improved by
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Metrics [ Traces [ LHR [ Hawkeye [ LRB [ LRU
CDN-A 52.6 57.9 55.0 | 55.9

Latency CDN-B 50.2 58.0 59.6 | 63.3
CDN-C 67.8 83.0 69.3 | 69.3

Wikipedia 50.3 60.1 58.9 | 62.1

CDN-A 8.11 7.24 7.70 | 7.56

Throughput CDN-B 9.50 8.23 7.99 | 7.44
CDN-C 5.45 3.06 5.22 | 5.22

Wikipedia 8.47 6.91 7.09 | 6.58

Table 3: Estimated average latency (ms) and throughput
(Gbps) for LHR, Hawkeye, LRB and LRU on a cache of 512GB,
1,024GB, 128GB, and 1,024GB for CDN-A, CDN-B, CDN-C,
and Wikipedia, respectively.

160% and 143%, respectively. While in other traces, LHR achieves
similar performance as D-LHR. We find that the threshold value
derived from our estimation algorithm is roughly 0.5 across all of
the sliding windows in these traces, and hence D-LHR is almost
the same as LHR.

From Figure 10(b), we observe that the improvement in content
hit probability comes at the cost of a marginal increase in train-
ing time and a memory overhead of 1%-8%. However, the latter
is much smaller than the available cache size. For a given cache
size, although LHR might incur a little more memory overhead
(leaving less cache space for contents), it achieves a much better
hit probability compared to D-LHR.

7.4.2 Impact of the detection mechanism. Next we validate
the importance of the detection mechanism in reducing computa-
tional cost (e.g., training time) by comparing D-LHR and N-LHR.
From Figure 10(c), we observe that the detection mechanism in D-
LHR consistently reduces training times over N-LHR by 15%-40%.
More importantly, we observe from Figure 10(b) that this training
time reduction causes no additional memory overhead, which fur-
ther validates the lightweight nature of our detection mechanism.
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Figure 10: Comparison of average hit probabilities, peak memory and running time of LHR, D-LHR and N-LHR.

Furthermore, since the detection mechanism reduces the fre-
quency at which the learning model is updated, it may suffer an
accuracy loss. However, from Figure 10(a), we observe that the
detection mechanism actually does not generally decease the hit
probability.

7.4.3 Joint impact. Finally we characterize their joint impact
on the design of LHR by comparing LHR and N-LHR. Again, from
Figure 10(a), LHR consistently achieves a higher hit probability
than N-LHR. As discussed above, we believe this benefits from the
auto-tuned threshold, i.e., the estimation algorithm with a marginal
increase in memory overhead. Finally, the training time has been
improved on the CDN-B, CDC-C and Wikipedia datasets, i.e., LHR
decreases the training time by 8%-20% on average compared to
N-LHR. However, LHR takes a bit longer to train on CDN-A. Our
interpretation is that there is a tradeoff between estimation and
detection. For example, in CDN-A, the estimation of Zipf parameter
o dominates detection overhead, while other traces, the detection
mechanism benefits the design by reducing training time.

We conclude that our proposed detection and estimation algo-
rithms are beneficial to LHR providing an improved hit probability
at moderate memory overhead and training time in general. More
importantly, it provides greater flexibility to the system. Together
with the discussions in Section 7.3, this suggests that improvements
of LHR come from the “accurate information” leverage from HRO,
the detection mechanism and the estimation algorithm.

7.5 LHR vs. OPT

Given the above discussions, it is clear that LHR consistently out-
performs SOTAs on considered traces. Now we compare LHR with
several offline upper bounds that are widely used by the system
communities and our online upper bound HRO. As shown in Fig-
ure 2 in Section 2, we observe that HRO provides a tighter online
upper bound on OPT compared to existing offline upper bounds,
and LHR indeed reduces the gap between SOTAs and the upper
bounds on OPT of up to 30%. Furthermore, we observe that LHR is
closer to HRO and other offline upper bounds. The remaining gap
between LHR and HRO is mainly due to the errors in our model. We
will explore the improvement in the learning model as a promising
direction for future work.
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Figure 11: Responsiveness of LHR.

7.6 Responsiveness of LHR

Finally, we evaluate the responsiveness of LHR to workload changes
to understand how well LHR and existing algorithms are able to
track the arrival process. A simple and widely used model that
possesses the desired changeability property is a Markov modu-
lated request process. Under this model, each state corresponds to
one content request process. Requests are drawn from the request
distribution corresponding to the current state. In particular, we
consider two cases named “Syn One” and “Syn Two”.

Under “Syn One”, we define a Markov chain {Y;};5, with state
space {0, 1}, each corresponding to one content request process (i.e.,
one content popularity distribution). We say Y; = 0 if the system is
at state 0 and the popularity follows one Zipf distribution, and Y; =
1 if the system is at state 1 and follows another Zipf distribution.
Without loss of generality, we consider two Zipf distributions over
N distinct contents, one with increasing order of ranking, i.e., p; =
A/i%, the other with decreasing order of ranking, i.e., p i =A/(N -
j+ 1)% wherei,j € {1,---,N} and A is the normalization factor.
We assume that if the Markov chain is in a particular state, a fixed
number of requests r will be drawn according to the corresponding
distribution, and a state transition occurs.

Under “Syn Two”, we consider a Markov chain with state space
{0, 1, 2}. The Zipf distribution corresponds to each state with an
increasing order of ranking over contents, i.e., p; = A/i%! but with
a; depending on the state. In particular, we consider ap = 0.7,
a1 = 0.9 and a2 = 1.1. The Markov chain starts from state 0, and
then transitions to state 1, state 2, state 1 and back to state 0. In
any particular state, a fixed number of requests r will be drawn
according to the corresponding distribution.
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We consider 1 million requests over N = 1, 000 distinct contents
and r = 200, 000. The performance of LHR and existing algorithms
is presented in Figure 11. We observe that the best performing
SOTA under “Syn One” is LRB and under “Syn Two” is AdaptSize,
while LHR consistently outperforms existing algorithms in both
hit probability and traffic, i.e., LHR is adaptive to the changes in
workloads.

8 RELATED WORK

Optimal caching and upper bound on hit probability. The op-
timal algorithm for equal sized contents is the Bélady [9], which
is offline since it uses exact knowledge of future content requests.
It has been widely used by the systems community as an upper
bound on hit probability. In addition, LFU achieves the maximum
hit probability when requests for equal sized contents follow the
Independent Reference Model (IRM). Computing the optimal hit
probability for variable contents is known to be NP-hard [19].
Results on bounding OPT has been proposed, for example, Bélady
variants (e.g., Bélady-Size) are widely used as an upper bound on
OPT. The few known results with variable content sizes include
InfiniteCap [2], Flow-based offline optimal (FOO) and Practical
FOO (PFOO) [11]. But, all these bounds are offline, i.e., they assume
exact knowledge of future requests. Instead, we develop a practical
online upper bound based on the recently proposed hazard rate
based upper bound [53] that can be computed for both equal and
variable sized contents in polynomial time, and hence can be easily
leveraged into online caching algorithm design.
Conventional caching algorithms. Many previous works have
focused on improving caching hit probabilities. We classify them
by admission or eviction. The widely used admission algorithms in-
clude AdaptSize [12], TinyLFU [25] and SecondHit [46], and among
others where static features such as content sizes are used for
admission [1, 2, 15, 26, 57]. A large number of works proposed
eviction algorithms from classic Least Recently Used (LRU) [22],
RANDOM, FIFO, to more sophisticated ones that are more difficult
to implement in practice, e.g., LRU-K [51], LFU-DA [4, 54], GDSF
[18], A-LRU [43], ARC [48], CAR [7] and among others, where re-
cency, frequency or their combinations are usually used for eviction
decision [8, 13, 27, 33, 34, 37-39, 42].
Learning augmented caching algorithms. Recently, ML based
caching algorithms have been proposed. On the one hand, some
focus on learning content popularities for content eviction via deep
neural networks (DNNs), e.g., DeepCache [49], FNN-Cache [29],
PopCache [58] and PA-Cache [28], or by approximating or imi-
tating offline optimal Bélady for content eviction, e.g., LFO [10],
LRB [56] and Hawkeye [36] which we use them as SOTAs for com-
parisons. Though Hawkeye was designed for hardware cache, its
idea of applying Bélady to history data with prefetching can be
implemented in CDNs. Note that LFO also learns from heuristic
OPT but it performs even worse than some conventional algorithms
on production traces and hence are not included in the top seven
algorithms presented in Section 7. On the other hand, some algo-
rithms learn to decide whether or not to admit a content upon a
request (i.e., content admission) via reinforcement learning (RL),
e.g., RL-Cache [40], CACA [32], RL-Bélady [63] and among others
[41, 61, 65].
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There are mainly three key limitations of these ML based al-
gorithms. (1) Non-robust performance, i.e., good performance for
some access systems and poor for others. On the one hand, DNNs
require the entire training dataset to be available for learning a
fine-tuned but might outdated prediction model with high com-
putational complexity, which makes it difficult to adopt DNNs
based methods at production CDNs. On the other hand, RL-based
caching has been shown to perform suboptimally compared to sim-
ple heuristics; however, rewards (cache hits) manifest with large
delays, which prevents timely feedback to the learning algorithm
and introduces notable complexity. (2) Still a big gap in hit rates
between heuristic algorithms and the offline optimum [56]. (3) Only
learn content admission or content eviction independently. How-
ever, content admission and eviction processes are interrelated and
their performance have an impact on each other. In this paper, we
propose LHR using a unified model to learn content admission and
eviction simultaneously that can consistently outperform all can-
didate SOTAs with improved hit probabilities and reduced WAN
traffic.

9 CONCLUSION

In this paper, we designed, implemented and evaluated LHR. We
showed that LHR is a practical ML-based CDN cache design that
consistently outperforms state of the arts over four production CDN
traces with both an increase in content hit probability and a reduc-
tion in WAN traffic. To bridge the gap with optimal caching (OPT),
we proposed HRO and then leveraged HRO to learn the content
admission probability, which is used for both content admission and
eviction. To improve learning accuracy and reduce computational
costs of ML caching, we proposed a simple estimation algorithm,
a new eviction rule and a lightweight detection mechanism. We
showed that LHR’s implementation is practical and deployable in
today’s CDN servers.
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Figure 12: Performance of detection mechanism.

A APPENDIX
A.1 Analysis of HRO

We consider a set of N distinct contents, where the successive times
when content i is requested are denoted as {r;;, k € Z}. Denote
{tx,k € Z} as the superposition of N such processes. A hazard
rate (HR) based policy [53] was shown to be an upper bound for
all non-anticipative caching policies. However, its computation
requires exact knowledge of request distributions, i.e., the c.d.f..
We generalize this result and develop a new online upper bound
without such exact knowledge (Section 3). We approximate the
request process as a Poisson process to compute the c.d.f., which
is an accurate approximation for the point process [52, 62] under
the assumption that the number of requests in each sliding window
is large as in our system. As in [53], it can be shown that such an
approximated HR based policy is still an upper bound when taking
content size into consideration as in (2). Specifically, consider any
caching policy & and let H; = 1 if the k-th request is a hit and
Hy = 0 otherwise under policy 7. Denote Nj = lele Hy as the
number of hits during the first K requests and M as the set of
cached contents. Then it can be easily shown [53] that E[Hy | =
Diemy, i(Tk)
= Gilme)

problem:

, which can be maximized by solving a 0-1 knapsack

N

max E

N
xi(i(tx), S.tZS,’xi <M, x; € {0,1}.
i=1 i=1

This problem is NP-hard and the solution to the corresponding
relaxed problem serves as an upper bound [31, 35]. Thus, an upper
bound can be found on E[H] by ordering contents at time 7
according to g;i(t) in (2).

PROPOSITION A.1. The hit probability achieved by the sized hazard
rate (i.e., {i(t) in (2)) based policy is an upper bound on that of all
non-anticipative caching policies.

ProoF. Following the definition of HRO, we have 3, . y1ro é: i(t) >
k

Die Mz f i(t) for Vz. Then by the definition of E[Hy ], we directly
have that E[HIEIRO]
E[NJRO] > B[NT].

>

E[HI’; ]. Summing over k, we have that
m|
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A.2 Additional Results on LHR Design

We measure the accuracy of our proposed LSM based model. We first
generate synthetic datasets including 10 million requests for 10, 000
contents where the requests follow Zipf distribution. We vary the
Zipf parameter every 100,000 requests which leads to different
synthetic datasets. We test the performance of our algorithm using
four synthetic datasets, where the miss detection occurs only 3 times
on average, i.e., with 97% detection accuracy when we set € = 0.002.
Similarly, we test its performance using production traces, as shown
in Figure 12. In Figure 12, the red box is the sliding window detected
by our LSM model where our XGBM based learning model should be
updated and trained. We observe that our detection mechanism can
accurately detect 99% of the significant change of request patterns
between two consecutive sliding windows.

—— CDN-A —— CDN-B

—— CDN-C —— Wikipedia

50

Hit Probability (
N
o

20 80 100

40 60
Sliding Window

Figure 13: The content hit probabilities of LHR (solid lines)
and Caffeine (dashed lines).

A.3 LHR Prototype vs. Caffeine

Similar to our LHR prototype in ATS in Section 6, we also implement
and compare LHR with the caching benchmark Caffeine caching
[47]. Caffeine is an in-memory cache using a Google Guava inspired
API and the baseline policy is the state-of-the-art W-TinyLFU [23-
25]. Different from ATS, the implementations in Caffeine are written
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CDN-A | CDN-B CDN-C | Wikipedia
Metric Experiment | LHR  Caffeine | LHR  Caffeine | LHR  Caffeine LHR Caffeine

Throughput (Gbps) max 5.45 5.42 6.54 6.43 6.75 6.51 5.56 5.24
Peak CPU (%) max 21.6 17.2 22.1 18.7 25.7 23.3 25.3 20.1

Peak Mem (GB) max 3.5 3.3 3.6 33 3.6 3.3 3.4 3.3
P90 Latency (ms) normal 324.1 324.3 425.1 420.3 401.2 405.2 272.6 272.4
P99 Latency (ms) normal 363.1 360.7 525.5 525.5 444.1 443.3 331.7 329.5
Overall Latency (ms) average 2235 231.3 248.0 251.4 316.1 322.7 163.0 172.5
Traffic (Gbps) average 2.19 221 3.59 3.60 4.66 4.78 1.40 1.46
Content Hit (%) normal 28.23 23.61 33.01 30.85 21.19 19.17 40.24 34.76

Table 4: Resource usage for LHR and Caffeine in max (throughput-bound) and normal (production-speed) experiments.

in Java. Similar to Section 7.2, we compare LHR and Caffeine in
terms of hit probabilities and implementation overhead.

The hit probability comparison of LHR and Caffeine using CDN-
A, CDN-B, CDN-C and Wikipedia traces with a cache of 64GB,
128GB, 16GB and 128GB are presented in Figure 13. We observe
that LHR achieves a higher overall hit probability than Caffeine.
We further compare the implementation overhead as shown in
Table 4. Again, we observe that LHR has no measurable throughput
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overhead with a slightly increased peak CPU utilization compared
to Caffeine. However, most production servers have sufficient CPU
headroom even at their busiest mode. Similar to the settings in
Section 7.2, it is clear that LHR outperforms Caffeine in terms of hit
probability by 2%-6%. It is interesting to observe that LHR slightly
increases the P90 and P99 latency but reduce the overall latency
by 2%-6%. Finally, we observe that both LHR and. Caffeine uses a
small cache size to store metadata.
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