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Abstract—We study the dynamic cache dimensioning problem,
where the objective is to decide how much storage to place in
the cache to minimize the total costs with respect to the storage
and content delivery latency. We formulate this problem as a
Markov decision process, which turns out to be a restless multi-
armed bandit problem and is provably hard to solve. For given
dimensioning decisions, it is possible to develop solutions based
on the celebrated Whittle index policy. However, Whittle index
policy has not been studied for dynamic cache dimensioning,
mainly because cache dimensioning needs to be repeatedly solved
and jointly optimized with content caching. To overcome this
difficulty, we propose a low-complexity fluid Whittle index policy,
which jointly determines dimensioning and content caching. We
show that this policy is asymptotically optimal. We further de-
velop a lightweight reinforcement learning augmented algorithm
dubbed fW-UCB when the content request and delivery rates are
unavailable. fW-UCB is shown to achieve a sub-linear regret as
it fully exploits the structure of the near-optimal fluid Whittle
index policy and hence can be easily implemented. Extensive
simulations using real traces support our theoretical results.

I. INTRODUCTION

Content delivery networks (CDNs) carry more than 50%
of the Internet traffic today, and this number is predicted to
increase over the coming years [1]]. However, the entry cost of
traditional CDNss is high, especially for small content providers
(CPs) since the lease is on a long-term basis with fixed prices.
This motivated the popular “cloud CDNs”, which provide
managed platforms with a pay-as-you-go model for CPs. For
example, Amazon AWS [2| provides both cache dimensioning
and caching implementation software services to CPs. A CP
can lease storage from AWS and implement caching policy
using open software such as Amazon CloudFront [3[], which
allows dynamic storage scaling. Caching dimensioning in
cloud CDNs provides large economic yields to CPs since CPs
can shut down storage in clouds when the traffic is low.

At the same time, this new model brings significant chal-
lenges. First, the CPs not only have to decide how much stor-
age to lease to meet user content requests, but also what con-
tent to store in cache. This challenge is further exacerbated in
cloud CDNs, where the storage is leased on-the-fly using cloud
resources, and dimensioning needs to be solved regularly, often
on a per-day or per-hour basis, to accommodate the time-
varying nature of content requests. Finally, leasing more stor-
age improves caching performance, e.g., reduced user content
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service latency, but also incurs additional expenditure. With a
given operational expenditure budget, all cache dimensioning
decisions are strongly coupled over time. Indeed, finding the
optimal tradeoff between maximizing caching performance
and minimizing cache dimensioning costs naturally leads to a
new set of algorithmic challenges as the caching performance
also depends on the variability of content popularity.

In this paper, we are interested in jointly optimizing cache
dimensioning and content caching when a CP regularly leases
storage from cloud CDNs. We note that there is a natural
timescale separation between cache dimensioning and content
caching, where the former is a much slower operation than
the latter. Using this observation, we formulate the problem
of dynamic dimensioning of cloud caches as a two-timescale
Markov decision process (MDP) [4] in Section [[II, where the
goal is to propose provably optimal algorithms to minimize
the total expected costs due to cache dimensioning and content
delivery latency. This MDP turns out to be a restless multi-
armed bandit (RMAB) problem [5]. Though in theory it can be
solved by value iteration [4], this approach suffers from the
curse of dimensionality. Therefore, it is highly desirable to
design provably optimal and low-complexity solutions. A cel-
ebrated heuristic is the Whittle index policy [J5]], which relaxes
the hard constraint, in which the number of cached contents
is exactly the leased storage, to a time-averaged constraint, in
which the number of cached contents is the leased storage on
average. However, to the best of our knowledge, there is no
such Whittle index policy for dynamic dimensioning of cloud
caches. Part of the difficulty is that Whittle index policy is not
feasible when the lease storage is unknown, which needs to be
repeatedly solved and jointly optimized with content caching.

In this paper, we design a new Whittle-like index policy
for dynamic dimensioning of cloud caches. Similar to Whittle
[5], we first relax the MDP, and then overcome the above
difficulties of directly designing Whittle policy by studying the
corresponding fluid dynamics, the optimal solution to which is
described by a linear programming (LP). The optimal values
of the LP (i.e., the optimal dimensioning decisions) provide
a lower bound on the cost of the original MDP [6], [7], and
are then used to design Whittle index policy for the original
MDP. We show that our original MDP is indexable, and derive
explicitly the Whittle indices of each content. Based on this
result, we propose an associated policy by caching contents
with the largest Whittle indices whose number is constrained
by the optimal dimensioning decisions. Finally, we prove
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that our proposed index policy is asymptotically optimal. Our
contribution in Section [[V]is non-trivial since establishing the
Whittle indexablity of RMAB problems is typically intractable
[8]] and the Whittle indices of many practical problems remain
unknown except for a few special cases. Exacerbating this
problem is the fact that the cache dimensioning and content
caching decisions are coupled in our problem.

Due to the time-varying nature of cloud CDNs, the sys-
tem parameters such as content request and delivery rates
are typically unknown. In Section we further propose a
reinforcement learning (RL) augmented algorithm to address
this issue. However, simply applying off-the-shelf methods
such as UCRL2 [9] or Thompson Sampling [[10] is tricky
due to the curse of dimensionality, since these generic RL
approaches ignore the rich underlying structure of our problem
and hence are inefficient of learning in our settings. To this
end, we propose fW-UCB that not only leverages the approach
of optimism-in-the-face-of-uncertainty [9)], [11] to balance
exploration and exploitation, but more importantly, it learns to
leverage the near-optimal index policy for making decisions.
We show that fW-UCB achieves an optimal sub-linear regret
with a low-complexity, and hence can be easily implemented
in real systems. To the best of our knowledge, our work is the
first in the literature to design an index based reinforcement
learning algorithm for dynamic dimensioning of cloud caches.

We support our analytical results with extensive simulations
in Section [VIusing both synthetic and real-world traces, which
demonstrate the superior performance of our proposed policies
over state of the arts that are employed in today’s major CDNSs.
Furthermore, our simulation results are in close agreement
with theoretical models and confirm a desired tradeoff between
cache dimensioning and content delivery latency costs, which
can be achieved by tuning a system-wide parameter.

II. RELATED WORK

In this section, we mainly overview two main areas that are
closely related to our work: cache dimensioning and restless
multi-armed bandit, and further provide a brief discussion of
our design methodology in the context of prior work.

Cache Dimensioning. Though offline cache dimensioning
with known content requests has been studied for designing
CDN systems prior to their deployment [[12]], [[13]], it is not
appropriate for cloud CDNs with unknown and time-varying
content requests. Online cache dimensioning has received little
attention to date. A TTL-based approximation approach was
proposed for elastic cloud provisioning to minimize the storage
and miss costs [[14]. We instead formulate the problem as
a MDP and study the storage and content delivery latency
costs, which are critical for many emerging delay-sensitive
applications. Cache dimensioning in wireless CDNs studied
in [15] requires strong assumptions on request process, while
our proposed research provides provable performance for any
request process. Similar problem was considered in memory
management systems [16] for the assignment of memory to
various applications with a computationally intensive policy.

Restless Multi-Armed Bandit. The RMAB is a general
model for sequential decision making problems ranging from
wireless communication [[17]-[[19]], cloud computing [20],
queueing systems [21]], etc. However, the RMAB is PSPACE
hard [22]]. One celebrated heuristic is the Whittle index policy
[5]]. Since then, many studies focused on finding index policies
for RMABSs, e.g., [7], [23]-[26]. These works assume that
system parameters are known. Since the true parameters are
typically unavailable, it is important to examine RMAB from
a learning perspective, e.g., [18]], [27]-[34]]. However, these
methods contend directly with an extremely high dimensional
state-action space yielding the algorithms to be too slow to be
of any practical use. Reinforcement learning based algorithms
have been developed in recent works [35]-[38] to explore
the problem structure through index policy. However, they
either are designed for one class of decision variables (e.g.,
only caching), unlike us with two coupled variables (i.e.,
dimensioning and caching); or lack finite-time performance
analysis and multi time-scale stochastic approximation algo-
rithms usually suffer from the slow convergence.

Our Design Philosophy. This paper contributes to both
areas. First, we pose the cache dimensioning problem as a
RMAB to minimize the overall costs, including not only
dimensioning costs, bust also content delivery latency costs.
This enables us to characterize tradeoffs between those two in-
terrelated costs. Second, we depart from existing assumptions
on content request processes and consider this RMAB from an
online perspective. A key differentiator between our approach
and existing ones stems from two perspectives: (i) we focus
on designing index policies for dynamic cache dimensioning,
which operate on a much smaller dimensional subspace by
exploiting the inherent structure of our problem; and (ii) our
index-policy approach naturally lends itself to a lightweight
RL based framework that can fully exploit the structure of our
index policy so as to reduce the high computational complexity
and achieve an optimal sub-linear regret.

III. MODEL AND PROBLEM FORMULATION

In this section, we present the system model and formulate
the dynamic cache dimensioning problem.

A. System Model

Consider a system where a CP dynamically leases storage
from cloud CDNs to provide services to users. Let N' =
{1,--- , N} be the content camlo with each integer repre-
senting a different content of equal size. We note that there is a
natural timescale separation between cache dimensioning and
content caching where the former is a much slower operation
than the latter. To this end, we consider a two-timescale
dynamic system. Specifically, the cache dimensioning is per-
formed in a slower timescale indexed by k € K = {1,--- , K}

'Our formulation allows the content catalog to be dynamic. Following our
design philosophy, for the index policy design in Section [[V] we assume that
the content catalog N remains static throughout all K frames, but the number
of requests to each content is bounded and varies across frames. A content
is also possible to be never requested within one frame. This assumption is
fully relaxed in our RL solutions in Section [V}



and K < oo. We call each k as one frame with a fixed
duration, e.g., 1 hour or 1 day in some real-world systems.

Requests. Requests for content n € A follow a Poisson
proces with arrival rate A, ; in frame k. The time taken to
deliver content n to users in frame k is a random variable
that is exponentially distributed with mean 1/, , which is
independently across different contents. Note that the content
arrival rates and delivery rates often vary across different
frames due to the time-varying nature of CDN systems which
necessitates the need of dynamic cache dimensioning for CPs.

Cache Dimensioning. At the beginning of each frame, the
CP determines how much storage to lease from the cloud
CDN. We denote the leased storage in frame k as a random
variable By, which is measured in the number of content size
units. Note that Bj must be non-negative as it is impossible
to sell storage, and it is meaningless to lease more than N
content size units since that would be enough to fit the entire
content catalog. Hence we have By € [0, N]|, Vk.

Content Caching. We use a binary variable A,, to indicate
caching decisions on content n, where A,, = 1 means content
n is cached and A,, = 0, otherwise. Since the CP leases B,
storage in frame k, the set of feasible content caching decisions
in frame k is Ay = {4, € {0,1}V : Zf:]:l A, < Bg}.

B. System Dynamics

Now we formulate the dynamic cache dimensioning prob-
lem for the above model as an MDP.

States. We denote the number of outstanding requests for
content n at time ¢ in frame k as Sy, (k, t) < Smax, where Siax
is the maximum number of requests expected in each frame for
any content, and can be arbitrarily large but bounded. Denote
S(k,t) = (S1(k,t),---,Sn(k,t)). For the ease of readability,
we denote S as the finite state space in our system.

Actions. The action A, (k,t) for content n at time ¢ in
frame k is defined as whether to cache content n or not.
Hence A, (k,t) € Ag, Vt. Since the cache dimensioning
decision By, is fixed in frame k£ and for the abuse of no-
tation, denote A(k,t) := (Ai(k,t),---,An(k,t), By), and
A = {(A(L,¢),--- ,A(K,t)),Vt}. Decisions are made only
at those time instants when either a new request arrives, or a
content delivery occurs. As a result, A(k,t) stays unchanged
in between these time instants.

A cache dimensioning policy 7 maps the state of the system
S(k,t) to the action A(k,t), i.e., A(k,t) = 7(S(k,t)).

Controlled Transition Kernel. In frame k, the state of
content n can change from S,, to either S,, +1 or (S, — 1)
with the transition rates satisfy

S {S + e, with transition rate by, x (S, A,), 0

S — e, with transition rate d,, x(Sy, A,),

where e, is a N-dimensional vector with the n-th entry being
1 and all other elements being zero, and by, 1. (Sy, Arn) = Ak,

2Poisson arrivals are widely used in the literature, e.g., [39]-[43]. However,
our model holds for general stationary process [44] and our RL solutions in
Section m hold for any request process. See Section [Y] for details.

Ak (Sn, An) = pin ke (Sn)An, with u, ,(0) = 0. We allow
a state-dependent content delivery rate, which enables us to
model realistic settings [45]], [46]. In this paper, we consider
the classic M/M/k queue, i.e., dy k(Sn, An) = fn kSnAn.

C. Problem Formulation

Dynamic Cache Dimensioning Problem. A CP may have
different requirements on content delivery latency and dimen-
sioning costs. A CP for applications that are more delay-
sensitive may place a greater penalty for its content delivery
latency, while a CP with a smaller dimensioning expenditure
may be more sensitive to the dimensioning costs. To posit a
tradeoff between content delivery latency and dimensioning
cost, we incorporate unit costs for content delivery latency, cg
and for cache dimensioning, cy.

Our goal is to derive a policy 7 to minimize the total
expected costs incurred by cache dimensioning and content
delivery latency as defined below:

Cr (A) = ’fclatency + (1 - "Q)Odim7 2

where Claency is the total content delivery latency cost, Cyi, is
the total cache dimensioning cost and k € [0,1] is a system-
wide weighting factor that determines how the two costs are
weighted against each other. By Little’s Law, the total expected
content delivery latency cost under policy 7 is given by

K

N T,
. 1 F
Chatency = Ex <cd Z lim sup Z T /f=1 Sn(k, t)dt) , 3

k=1 Ty —00 n=1 k

where the subscript denotes the fact that expectation is taken
with respect to the measure induced by the policy w. We
focus on Markovian policies which base their decisions on the
current state and time. Similarly, we have Cy, = Zle cp By,
Then we can write the overall cost under policy 7 as

K N T
Cr(A) =FE,| key lim sup —/ S (k, t)dt
W= (e S [ s
K
+ (=R Bk>. (4)
k=1

Therefore, our dynamic cache dimensioning problem to
minimize the total costs subject to the dimensioning constraint
in each frame can be formulated as the following MDP:

N
st. > An(k,t) < By, Vht. (5

n=1

min Cr(A),

We refer to (B) as the “original problem”.

Remark 1. We cannot directly apply the conventional value
iteration method [4] to solve (E]) since the cache dimensioning
and content caching decisions are strongly coupled and need
to be jointly optimized in (3). Even when the cache dimen-
sioning decisions, i.e., By, Vk are given, it is well known
that solving the above MDP using value iteration suffers from
the curve of dimensionality and lacks of insights. As a result,
many efforts have been focusing on designing low-complexity
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solutions. One celebrated heuristic is the Whittle index policy
[5\]. However, Whittle index policy is infeasible if the resource
constraint is not given or unknown, which in our case is the
cache dimensioning By, in each frame. This is because in the
RMAB literature, whether to activate an arm (resp. whether
to store a content in our model) is not only determined by its
Whittle index value, but also depends on constrained resource
(resp. By in our model). To overcome this challenge, we next
introduce a new notion of fluid Whittle index policy.

IV. FLUID WHITTLE INDEX POLICY

In this section, we propose asymptotically optimal index
policies when cache dimensioning and content caching deci-
sions are coupled. Specifically, we introduce the notation of
fluid Whittle index policy, which generalizes the classic Whittle
index policy to the dynamic cache dimensioning setting.

Our proposed policy is based on a relaxed formulation
of (§) and consists of two interdependent steps, as illustrated in
Figure [T} First, we show that the optimal cache dimensioning
decisions in each frame can be solved using a fluid version
of the relaxed problem. Second, given the optimal cache
dimensioning decisions, we show that our problem is Whittle
indexable and explicitly derive the Whittle indices. These two
steps enable us to design the fluid Whittle index policy, which
we show is asymptotically optimal. Note that the our relaxed
formulation and hence the fluid problem is very general and
can be applied to other MDPs. Hence our methodologies not
only apply to the dynamic cache dimensioning problem in
this paper but also to other large MDP problems with coupled
decision-makings on resource allocation and scheduling.

A. Optimal Fluid Control

In this subsection, we first introduce the relaxed formula-
tion. We then solve the fluid version of this relaxed formula-
tion, i.e., we only take into account the average behavior of
the system. The optimal fluid solution provides a lower bound
on the optimal cache dimensioning in the original model [6].

Following Whittle [5]], we study the relaxed problem in
which the cache dimensioning constraint at each time in a
frame in (§) is satisfied on average, i.e.,

min Cr(A),

well

s.t.  lim sup —
Tk — 00

/ ZA (k,t)dt < Bi, Vk. (6)
t

We then define the fluid limit model of the relaxed problem
under a stationary Markovian policy 7, which is independent
of the initial state of the MDP [6], [47]], [48]]. Let xn ks be the
fraction of content n in state s under action a at frame & and
let zp, ks = xn ks +:rn ks be the fraction of content n in state
s. Similar to [7] we focus on finding an optimal equilibrium
point of the fluid dynamics that minimize the total costs. More
precisely, we formulate the following LP problem:

{wn,k,s'}}{kaCd Z Z Z STy,

min
k=1n=1 (s,a)

N
sUY S ah g, < Bi, VE, (8)

n=1seS
sznks nk |S (l sznks’ "k? |5 Cl) (9)

Zmn,kv,s = 17xn,k,s > OaO < B < N7 Vn,s,a,k, (10)

+(1— k) cbZBk (7)

where (8] is equivalent with the constraint in (&), constraint (9)
represents the equilibrium condition of the fluid system, i.e.,
the fluid flows in state s equals to the fluid flows out state s,
and (10] . ) holds due to the definition of x7 , ..

Denote the optimal cache dimensioning solutions to this LP
as {B},Vk}. It is well-known that this LP is equivalent to the
relaxed problem (6) [[6]] and there exists a stationary policy for
this LP [[7]. Furthermore, the fluid analysis achieves a lower
bound of the original problem [5]], [7]], which is leveraged for
the asymptotic optimality analysis of index policy.

B. Fluid Whittle Index Policy

Since there exists a stationary Markovian policy 7 for each
frame k € K that is independent of the initial state, the fluid
control in (7)-(T0), or equivalently the relaxed problem (6] can
be decomposed into each frame k. To this end, we decompose
the relaxed problem (6) to obtain the following “per-frame
MDPs” given the optimal caching dimensioning 5}, which
only need to make content caching decisions in each frame k:

Tk
min S (k,t)d

E. L —
nin, r, im sup Z

Ty —o0

s.t.  lim sup
Ty —>00

Ty
M/ ZA (k,t)dt < Br, (11)

where we drop the constant xcy for simplicity but we con-
sider it when compute the total costs. Next we consider the
following Lagrangian associated with (TT),

1 T
L., (W) =limsup —E, /
T —>00 Tk t=1

N
~ Wi (B = Y Aulk,)
n=1

N
[Z Sy (K, t)

)]dt, (12)



where Wy is the Lagrangian multiplier for the k-th frame.
Then dual function is then defined as

D(Wy) := min Ly, (Wy). (13)

A key observation made by Whittle is that (I3) can be
decomposed into N subproblems, one for each content n. As a
result, we obtain the following “per-content per-frame MDP”:

T

min lim sup iJEm/ (Sn(k:, £) = Wi(1—An(k, t))) dt. (14)
Tk Tp—oo L1k t=1

Definition 1. (Passive Set) Consider the per-content per-frame

MDP in ([4), let M,,(W}) be the set of states s for which the

optimal action for content n in frame k is passive, i.e., not to

cache content n in state s in frame k.

Definition 2. (Indexability) The per-content per-frame MDP
in for content n in frame k is indexable if the passive
set M,,(Wy) increases with Wy, i.e., if Wy, > W], then

Definition 3. (Whittle Index) If the per-content per-item MDP
for content n in frame k is indexable, then the Whittle index
in state s is denoted as W, 1,(s), and is given as follows:

Whk(s) == V['}ilio{s e M, (W)}, (15)

which is the smallest value of the Wy, such that the optimal
policy for content n is indifferent towards a = 0 and a = 1
under state s in frame k.

Threshold Policies. We show that the optimal policy of
(T4) is of threshold-type, and then the MDP (I4) is indexable.
Based on these results, we explicitly derive the Whittle indices
and the fluid Whittle index policy for the original problem (5).

Proposition 1. For a fixed Wy, > 0, Yk, the optimal policy
for the per-content per-frame MDP in (T4) is of threshold type
depending on Wi.

We then compute the stationary distribution under a thresh-
old policy as a function of the threshold.

Proposition 2. The stationary distribution of the threshold
policy 7, = R satisfies pZ(R') = 0,¥0 < R’ < R, and

NS WIRN 1
BRy=1/|1+ ( "’“) : , 16
st 1/ (1035 (2) g ) 0o
Aoe ) 1
R(R l:(””‘) BR)1=1,2,--.

For the notation abuse, we use a superscript R to denote the
stationary distribution under a particular threshold policy R.

Proposition 3. The MDP (14) is indexable.
We are now ready to present the Whittle indices for (T4).

Proposition 4. For an indexable (14) with Zf:() oE(s)
strictly increasing with R, the Whittle index is given by
ER-H[STL] — ER[Sn]

YR 0R(S,) — S (S

Wi(R) a7

Since the cost function and the stationary probabilities are
known, the Whittle indices can be computed. Such an
approach was first used in [45], [46] for queuing systems.

Fluid Whittle Index Policy. We now describe how the
solutions to the LP (7)-(I0) and relaxed problem are
used to obtain a policy for the original problem (3). It is clear
that the optimal solutions to (7)-(I0) and (TI)) are not always
feasible for @), since in the latter at most Bj, content can be
cached. If By, is known, then we can follow the Whittle policy.
However, in our problem, By, Vk are unknown and need to be
solved from the LP (7)-(I0). Hence, we refer to this as the
fluid Whittle index policy as defined below.

Definition 4. (Fluid Whittle Index Policy) At time t in frame
k, the Fluid Whittle index policy prioritizes the content in the
decreasing order of their Whittle indices Wy, ,(Sy(k,t)) and
caches the top B} contents that have the largest index values.

C. Asymptotic Optimality

Our fluid Whittle Index Policy achieves asymptotic optimal-
ity when the number of contents /N and the cache dimension-
ing B} go to infinity while holding B} /N constant in any
frame £ € K. Hence we only present the main results in a
particular frame k for the ease of exposition. This asymptotic
regime is the same as Whittle [5] and many others [6], [7],
[45]], [49]. For the abuse of notation, we let the number of
contents be p/N and the value of cache dimensioning be pB};
in the limit with p — oo. In other words, it represents the
scenarios where there are [V different classes of contents and
each class contains p contents. Let B;” * be the optimal cache
dimensioning for the original original problem (3 obtained
by a genie-aided policy 7" *. Denote the corresponding cost
as C(m", pB*", pN). Similarly, let C(mg, pBy, pN) be the
expected cost under a stationary policy 7. Following the fact
that the LP (7)-(T0) is invariant with the scaling parameter p,
the per-frame optimal cost of the fluid model(7)-(10) satisfies
pCr1uia(BE, N) < O (7P, pBJP*, pN).

Theorem 1. Denote the fluid Whittle Index Policy under B}
as . Then, m; achieves the asymptotic optimality as follows

1
lim *(C(ﬂ';,pB;,pN) - C(sztapBZpt7pN)) =0. (18)

p—00 p
V. REINFORCEMENT LEARNING SOLUTIONS

The knowledge of content request and delivery rates are
needed for the computation of the fluid Whittle index policy.
However, these parameters are often unknown and time-
varying in cloud CDNs over different frames. Hence, we now
adopt a learning perspective on top of the fluid Whittle index
policy. We denote the resulting learning rule as fW-UCB and
show that fW-UCB achieves an optimal sub-linear regret. Due
to the decomposition nature of our problem across different
frames as discussed in Section we describe our proposed
JW-UCB and its finite-time performance in a particular frame
for the ease of readability, which applies to any frame &k € K.



A. Algorithm Description

To simplify the exposition, we sample our continuous-time
system at those discrete time-instants when the system state
changes (see Section [[II). This results in a discrete-time MDP
[4]] and henceforth we will work exclusively with this discrete-
time system. We adapt the upper confidence bound (UCB) [[11]]
to our setting and design the fW-UCB policy as summarized
in Algorithm [T} More precisely, fW-UCB have two phases:
a planning phase and a policy execution phase. The planning
phase focuses on defining a set of plausible MDPs [9] based on
the number of visits to state-action pairs (s, a) and transitions
tuples (s,a,s’) as accurate as possible (Lines 1-5). We can
define the corresponding fluid Whittle index policy by solving
an optimistic planning problem, which is expressed as an LP
(Lines 6-8). Our key contribution here is to choose the right
value of f(T}) to balance the accuracy and complexity, which
contributes to the sub-linear regret and low-complexity of fW-
UCB. At the policy execution phase (Line 9), the derived
Sfluid Whittle index policy is executed for the rest in frame
k. Our key contribution here is to fully exploit our fluid
Whittle index policy, instead of directly contending with the
high-dimensional state-action space as in conventional RL
algorithms. As a result, fW-UCB achieves a sub-linear regret
and performs close to the offline optimum since our proposed
fluid Whittle index policy is asymptotically optimal.

Optimistic Planning. In frame k&, the CP first observes
each content n € A with a state-action pair (s,a) for f(T})
times (the value of f(T}) will be specified later). Since the
transition is deterministic with a = 0, we only observe the
transition under ¢ = 1. We denote the number of times
that a transition tuple (s, 1, s’) was observed within f(T}) as
TH(s,1,8) = [0 Usn(h +1) = o'|sn(h) = 5,an(h) =
1), V(s,1,8") € § x A x S, where s,(h) represents the
state for content n at time h, a,(h) is the corresponding
action and A = {0,1}. Then the CP estimates the true
transition probability P, j(s'|s,1) V(s,a,s’) € S x A x S
by the corresponding empirical average as P, x(s'|s,1) =
Tk(s,1,5")/f(Ty). It further defines the confidence interval
such that the true transition probabilities lie in them with high
probability. Formally, for any n at frame k, we define

P,]f(s,l) 5:{pn,k(5/|571) : |pn,k(5/‘571)*pn,k(sl‘salﬂ < Onk}s
(19)

where the size of the confidence interval 4,, ; is built using
the empirical Hoeffding inequality [50], i.e., Vn € (0,1),
\/ﬁ log (|S|N f(Tk)/n). The set of plausible
MDPs associated with the confidence intervals is then ME =
(M = (S,Py) : Pugi(ls,1) € PJ(s,a)}. Then fW-
UCB computes a policy 7 by performing optimistic planning.
Given the set of plausible MDPs, it selects an optimistic
transition function and an optimistic policy by solving a
“modified LP”, which is similar to the LP defined in ({7)-(10),
but with the transition functions replaced by P(-|-,-) in the
confidence ball since the corresponding true values are
not available.

5n,k =

Algorithm 1 fW-UCB Policy

Require: Horizon T}, in frame Vk and learning counts f(7}).
1: forn=1,2,.... N do
2: Observing content n until there are f(T}) visits of
pairs (s,1), Vs € S.
end for
Construct P% (s, 1) according to (T9);
Construct the plausible set of MDPs Mﬁ,Vn;
Solve the extended LP in to determine P* , (s'|s, 1)
for all s’, s according to and B}; ’
Compute Whittle indices based on P, x(s'|s, a);
: Establish the corresponding fluid Whittle index policy 7};
9: Execute 7} for the rest of the time in frame k.

AN

®

The Extended LP. We cannot directly solve the “modified
LP” since he true transition probabilities are unknown. To this
end, we rewrite it as an extended LP problem by leveraging
the state-action-state occupancy measures 2z, i(s,a,s’) =
Ty, k,s]:’n’k(s' |s,a) to express the confidence intervals of
the transition probabilities. The extended LP over z =

{#nk(s,a,s")} is expressed as

N
KCq Z Z sznk(s,a,8") + (1 — Kk)ep By,

n=1(s,a.5")

N
s.t. Z Z znk(s,1,8") < By, VEk,

min
Bi{2zn,k}

n=1s,s’'€S
S () = 33 e k(5 a,s),
a s paliaw
Zn.i(8,1,8) . /
_cnk\> ) (P 1 5 <0
Zy Zn,k:(s, ].,y) ( n,k(s |S7 )+ ’rL,k) S U,
Zn’k;(s, 17 S/)

+ (P i(s']5,1) = 6.1) <O0. (20)

a Zy Zn,k(sa 17 y)
This approach was also used for adversarial and constrained
MDPs [51]-[53]]. Once we compute the optimal z;k and By,
the transition probabilities are recovered by

z;7k(s,1,s')

. 21
yzz,k(salay) ( )

Prk(s']s,1) =
Finally, using this transition probabilities, we can compute the
Whittle indices in for all states of all contents, and then
define the fluid Whittle index policy as in Definition 4] and
execute this policy for the rest of time in frame k.

B. The Learning Regret

We evaluate the efficiency of fW-UCB policy using regret,
which is defined as the expected gap between the cost ob-
tained by the offline optimum, i.e., the genie-aided policy
with full knowledge of all transition probabilities, and that
of fW-UCB. Denote the cumulative cost under policy 7y as
C(mk, Tx) = kKeg ZtTil Zi\lesn(t)7 which is a random
variable. Then the expected average cost under policy g
satisfies vy, := limz, 00 TikIEm [C (7, Tk)], and the optimal
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average reward is ;" := sup,., v;. Then the regret of my, is
defined as A(Ty) := Tpy " — Er, [C (7, Th))-

Theorem 2. The regret of fW-UCB policy satisfies
A(Tx) = O((ISIN + 2N (1 +0)) v/ Tk)-

Proof Outline: Since there are two phases in fW-UCB, we
decompose the regret in two parts as A(Ty,) = A(Ty)+A(Th),
where A(T}) is the regret for the planning phase with any
random policy and A(T3) is the regret for the policy execution
phase, and 75 = T}, — T;. The regret of the planning phase
is upper bounded by O(|S|N+/T},). The regret of the policy
execution phase is caused by either “failure event” (confidence
ball fails) or “good event” (true MDP is within confidence
ball). We show that they are bounded by O(2Nn\/T},) and
O(2N+/Ty,), respectively. Combining them completes the
proof. Please see Appendix [B] for the detailed proof.

(22)

Remark 2. Although fW-UCB is a non-episodic algorithm in
each frame k, it still achieves the O(\/Ty) regret no worse
than the episodic UCRL2. Specifically, the proposed fW-UCB
spends no time for searching a better MDP instance. Instead,
it constructs a upper confidence ball for all plausible MDPs.
Then, it determines the optimal policy by calculating the
extended LP [20) for only once, which significantly reduces
the exponential implementation complexity compared with
UCRL2, colored-UCRL2 [30] to a linear scale.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
our proposed fluid Whittle index policy (f-Whittle) and fW-
UCB using both synthetic and real traces. We compare to the
widely used Least Recently Used (LRU) and Random policies.
Since LRU and Random policies are designed for a fixed cache

3
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Fig. 6: Accumulated regret.
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Fig. 7: Impact of tradeoff parameter .

size and do not account for cache dimensioning, we evaluate
them using a fixed cache size over all frames that have the
same total dimemsioning cost as our policies.

A. Evaluation Using Synthetic Trace

We simulate a system with N = 100 contents over K = 30
frames. The requests in each frame are selected randomly
following a Zipf distribution with a delivery rate of 0.1. The
Zipf parameter is fixed to be 0.6 but the total number of
requests varies across frames, as shown in Figure Q We use
k = 0.5, ¢qg = 1 and ¢, = 10. The leased storage in each
frame is shown in Figure 3] The per-frame cost is presented
in Figure @ with the dashed lines representing the average
cost over all frames. It is evident from Figure [3] that dynamic
cache dimensioning can adaptively tune the leased storage
to meet the time-varying trends of content requests, as it is
common in cloud CDNs. This results in a much smaller cost
than conventional policies as shown in Figure 4] These results
reflect the intelligence of our proposed policies: when the
number of requests is low, the CP can lease less cloud storage
with a smaller total cost. We further note that our learning
policy fW-UCB can almost achieve the same performance as
the f-Whittle, which is consistent with our theoretical results.

We further validate the asymptotic optimality of our pro-
posed fluid Whittle index policy (f-Whittle) (see Theorem [I)
and the sub-linear regret of fW-UCB (see Theorem [2). Due to
the decomposition nature of our problem, we use the requests
from a frame randomly selected in Figure 2} Similar trends
hold for all other frames and hence are omitted. We consider
a similar setting as above. The average cost obtained by our
f-Whittle and the theoretical upper bound achieved by solving
the LP in (7)-(I0) is shown in Figure [3] It is clear that f-
Whittle achieves asymptotic optimality when the number of
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contents increases. The learning regrets of fW-UCB in three
randomly selected frames are shown in Figure [6] where we
use the Monte Carlo simulation with 10,000 independent
trails. Finally, we investigate the impact of the system-wide
parameter . The blue curve in Figure [7] presents the optimal
cache dimensioning vs. « in one frame and the red curve is the
corresponding average cost. A key takeaway from Figure [/]is
that the variation of cache dimensioning and content delivery
latency costs as « goes from O to 1. When & is small, our
problem (3) weighs more on minimizing cache dimensioning
costs, hence a smaller leased storage is preferred. For example,
when « < 0.35, no leasing is the optimal decision. On the
other hand, when & is large, our problem tends to minimize
the content delivery latency costs, and hence a larger leased
storage is beneficial. This provides a tunable knob that can
be used by the network operator to balance the dimensioning
and latency costs for applications with different dimensioning-
latency tradeoff requirement.

B. Evaluation Using Real Trace

We further evaluate our proposed policies for dynamic cache
dimensioning using two real CDN traces: (i) Igiyi [54], which
contains mobile video behaviors; and (i) YouTube [55]], which
contains trace data about user requests for specific YouTube
content collected from a campus network. For the Iqiyi (resp.
YouTube) trace, there are more than 67 (resp. 0.6 ) million
requests for more than 1.4 million (resp. 0.3) unique contents
over a period of 335 (resp. 336) hours. To this end, we consider
the cache dimensioning occurring every 1, 3, 6, 12, and 24
hours. Due to space constraints, we only present results for
12 hours and similar trends hold for other cases. The number
of requests, the cache dimensioning and cost in each frame are
shown in Figure [§] Again, it is clear that our dynamic cache
dimensioning is able to tune the leased storage to follow the

variations of content requests in real systems. As a result,
our proposed policies significantly outperform conventional
policies with a smaller cost. Finally, we note that fW-UCB
can quickly learn the system dynamics and perform close to
f-Whittle, which matches well with our theoretical results.

VII. CONCLUSION

We studied the problem of dynamic cache dimensioning in
the cloud to minimize the total average costs for both storage
and content delivery latency. Though it can be posed as an
MDP, it is hard to solve due to the curse of dimensionality.
To this end, we proposed a fluid Whittle index policy which
is provably asymptotically optimal. Since the system param-
eters are often unknown and time-varying in the cloud, we
proposed an RL algorithm entitled fW-UCB that fully exploit
the structure of our index policy and hence is lightweight.
We showed that it has an optimal sub-linear regret. Extensive
simulations using real traces demonstrated the significant gains
of our proposed policies over conventional ones.

APPENDIX A
PROOF SKETCHES ON FLUID WHITTLE INDEX POLICY

Proof Sketch of Proposition [I} Denote R* = max{S :
AT (S) = 0}, where AT (S) is the action at state S for
content n under optimal policy 7*. By definition, AZ* =1,
VS, > R*. To prove the threshold policy, we need to show
AT (S,) =0, VS, < R*. Denote ¢7 the stationary distribu-
tion under 7* and assume there exists at least one state S that
A7'(S,) = 1. Consider another policy =’ which keeps all ac-
tions for states other than 5, = R*+1 same and let AT (R*+
1) = 0, we can prove that Z?ﬂiégbzl (Sn)Lgar (s,)=0} =
Z?:ZO qzﬁz*(Sn)]l{Az*(Sn):O}, i.e., ' achieves a lower aver-
age cost than 7*. This is a contradiction with the fact that 7*
is optimal. Thus, we have Z?ﬂ;é S, 6T (S,) = 0, indicating
the threshold policy with threshold R*.

Proof Sketch of Proposition 2} This is straightforward by
using the threshold property and transitions (TJ).

Proof Sketch of Proposition B Since the optimal policy
for (T4) is a threshold policy, for a given W}, the optimal
average cost under threshold R is concave non-increasing and
hence M (W) € M(W)) if W), < W}. Next we show that
Zf:() #(s) is strictly increasing in R using Proposition
Proof Sketch of Proposition @ This follows from Whittle
index definition that the performance of a policy with threshold
R equals to that of a policy with threshold R + 1, and the
stationary property under threshold policy R. See [435]], [46].
Proof Sketch of Theorem |1} From the definition of 7™, for
policy wj; under B}, we have lim,_, +C (7}, pBj, pN) >

1
P
lim,_, 0 %C’ (m7P*, pByP*, pN). Hence it suffices to prove that

lim, o 2C(mf, pBf, pN) < lim o0 1O (m", pBY*, pN).
Let D, 1(s) be the average number of class-n contents
under state s in frame %k under the stationary policy mj.
Following [49], when pN — oo and Bj/N is a constant,
limy o0 Dy k(s)/p = Zn ks, V1, k. Therefore, we have

lim C(ry, pBy, pN)/p
p—r00



pN Ty
= lim ]E ¢ | £eq limsu — S, (k,t)dt|+(1—k)cy B
p—00 p ¢ Tkawp; kJi=1 (k.2) ( oo

(@)
plggo KCq Z Z $Dpr(8)/p+ (1 — K)ey By

n=1 s

(b)
—=KCq

N
SN sa .+ (1= k)ewBy = Criuia(Bji, N)

(©)
< lim C(x%", pBY', pN)/p,
p—00

where (a) follows from definition of D,, 1 (s), (b) holds since
limy o0 Dp k(5)/p = Tn ks, and (c) is due to definition.

APPENDIX B
PROOF OF THEOREM [2]

The Regret of the Planning Phase. In the planning phase,
each state-action pair (s,1) for each content is randomly
sampled for f(7}) times. The performance gap between the
genie-aided policy and the random policy for each time is
bounded because the cost is bounded, and hence we have

Lemma 1. Since the reward is bounded, the regret in the
planning phase can be bounded by A(Ty) = O (|S|N f(Tk)) -

Proof. The result follows the fact that there are N contents
with a total S state-action pairs and to guarantee each state-
action pair being sampled for f(T}) times. O

The Regret of the Policy Execution Phase. We next analyze
the regret of the policy execution phase, i.e., A(T3), which is
defined as A(Ty) := Toy?" — E[C(nf, Tz)], which charac-
terizes the accumulated cost gap when the true MDP employs
the optimal policy 7°P* and the learned policy 7}, respectively.
For the entire parameter space, two possible events can occur
at the policy execution phase, which separates the regret into
two disjoint parts. Next we bound these two parts separately.

The first event is called the failure event, which occurs when
the true MDP M, = {Mn k, Vn} lies outside the plausible
MDPs set MF := {MF ¥n} (see definition in ) and the
second is the good event when true MDP M lies inside the
plausible MDPs set MF. Therefore, the regret of the policy
execution phase can be decomposed into two parts as follows

A(Ty) = A(To)1L(My, ¢ M) + A(To)1(My, € M¥).

Regret Conditioned on the Failure Event. Define the failure
event as &, := {3s,n, | Py x(s']s,1) — Py i(s'|8,1)| > S}
which means that the true parameters are outside the confi-
dence interval constructed in (T9). The associated complemen-
tary event is denoted as ;. Therefore, we have the following
relations: {Mj, ¢ M*} := &, and {M), € M*} := 5. We
now characterize the probability that the failure event occurs.

Lemma 2. With 6, = \/ﬁ log (|S|N f(Tx)/n), we

have P(Mj, ¢ MF) < 2n/f(Ty).

Proof. By Chernoff-Hoeffding inequality [50], we have
P(|Pose(s']5,1) = Poie(s']8,1)] > 8nie) < 20/|S|N f(T).

By leveraging union bound over all states, actions, number of
arms, we have P(Mj, ¢ M*) < SN 5™ B(|P, (s's, 1) —
n k( |3 1)| > 5n k) < 277/f(Tk)

Lemma 3. The regret conditioned on the failure event is
A(T)L(My ¢ M¥) = O(2NTan/ f(T) ).

Proof. From Lemma [2, we have A(Ty)1(M; ¢ M¥)
O(NT1 (M, ¢ ./\/lk)) = O(2NTyn/f(Tk)), where the first
equality is due to that A(T%) is bounded by O(NT3). O

Regret Conditioned on the Good Event. From Lemma 5,
we have that the true MDP is inside the plausible MDPs
set, i.e., My € MPF, with probability at least 1 — 2n/f(T}).
Now we consider the regret conditioned on the good event
M,, € M*. Define 4** as the optimal average cost achieved
by the optimal policy ;" " and 7y as optimistic average reward
achieved by the learned policy 7, for the ture MDP Mj,. Then

A(To) L (M, € MF) = Ty — Tory?

Before showing the regret conditioned on the good event,
we first present a key lemma.

Lemma 4. (Optimism) Conditioned on the good event,
there exists a transition P, € P,i,Vn such that

S S A% (s)s = Y02 S S, bul(s)s, where

qbn is the stationary distribution derived from {P, j,Vn}.

Proof. The true P, j is contained in P,, 1, Vn for a good event.
The result directly comes from the fact that confidence interval
expands the feasibility region of original problem. O

Remark 3. Lemmad|indicates that inside the plausible MDPs
set MF, there exists an MDP M, with parameters {Pn k)
achieving no more accumulated cost compared to the cost
achieved by optimal policy for the true MDP Mj,.

Lemma 5. The regret conditioned on the good event is

A(To)1L(My, € M¥) = O(2N\/Ty,).
Proof. Based on Remark 2, we have
A(Ty) = Toyj — Toyi?' < Tovi — To
N N
=15 Z ZQi);(S)S -1 Z Z ¢7L(5)(5 - 6n,k‘)
n=1 s n=1 s
(@) N N .
< ToSma 3 S (65(5) = 3u() + T2 3 Gu(s)dn
n=1 s n=1 s
term 1 term 2

Y 0N/ F(T)).

where (a) follows the fact that s is bounded by Sp.x. Since én
and ¢}, are probability distributions, we have term 1 = 0 and
term 2 < NT56, i. (b) is based on the definition of §,, ;. O

Total Regret. Combining Lemma 1} [3| and [5] and let f(T}) =
v/ T}, the total regret is given by

A(Ty) = A(T1) + A(Tz) = O((ISIN + 2N (1 + ) V/Ty).
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