
Agora: Real-time massive MIMO baseband processing in
software

Jian Ding
Yale University

Rahman Doost-Mohammady
Rice University

Anuj Kalia
Microsoft

Lin Zhong
Yale University

ABSTRACT
Massive multiple-input multiple-output (MIMO) is a key technol-

ogy in 5G New Radio (NR) to improve spectral efficiency. A major

challenge in its realization is the huge amount of real-time compu-

tation required. All existing massive MIMO baseband processing

solutions use dedicated and specialized hardware like FPGAs, which

can efficiently process baseband data but are expensive, inflexible

and difficult to program. In this paper, we show that a software-only

system called Agora can handle the high computational demand of

real-time massive MIMO baseband processing on a single many-

core server. To achieve this goal, we identify the rich dimensions

of parallelism in massive MIMO baseband processing, and exploit

them across multiple CPU cores. We optimize Agora to best use

CPU hardware and software features, including SIMD extensions

to accelerate computation, cache optimizations to accelerate data

movement, and kernel-bypass packet I/O. We evaluate Agora with

up to 64 antennas and show that it meets the data rate and latency

requirements of 5G NR.

CCS CONCEPTS
• Networks → Wireless access points, base stations and infras-
tructure.

ACM Reference Format:
Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong. 2020.

Agora: Real-time massive MIMO baseband processing in software. In The
16th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’20), December 1–4, 2020, Barcelona, Spain. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3386367.3431296

1 INTRODUCTION
We report the design and implementation of real-time massive

MIMO baseband processing in software, called Agora. To our knowl-

edge, Agora is the first software-based realization of massive MIMO

baseband processing that is publicly known. By software, we mean

software running in general-purpose processors; this is different from

“software” in software-defined radios (SDRs), which could include

any programmable hardware such as FPGA. Agora is an evolutionary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7948-9/20/12. . . $15.00
https://doi.org/10.1145/3386367.3431296

step toward a cloud-native mobile network that meets the compu-

tational need of mobile networks with a cloud-like infrastructure,

instead of dedicated and specialized computing equipment [1, 2].

A mobile network consists of two parts: the core network and

the radio-access network (RAN). Today, most of the core network

functions have already moved into the cloud, using network func-

tion virtualization [3–5]. 5G NR allows flexibly splitting the RAN

functionality between the remote radio unit (RRU) at each cell site,

and a centralized unit shared by multiple RRUs. This makes it pos-

sible to gradually migrate RAN functions away from the RRU [6]

and virtualize them in a cloud datacenter. Existing virtualized RAN

(vRAN) solutions, typically built on top of Intel’s FlexRAN [7] base-

band processing software, leave the most computationally-intensive

parts of baseband processing at the RRUs, or use specialized and

dedicated hardware such as FPGA and ASIC for them.

Agora targets the most ambitious functionality split that imple-

ments all digital RAN functions in software at the centralized base-

band unit shared by multiple cells. It leaves only the radio-frequency

(RF) functions at the RRU, following 5G NR split option 8. While

software realizations of baseband processing have been attempted

before, e.g., Sora [8] and BigStation [9], Agora is the first to support

massive MIMO at a scale required by modern mobile network stan-

dards like 5G NR. This includes supporting many more antennas

and users, and more computationally-intensive bit error correction

schemes like low-density parity check (LDPC) coding. Using 26

cores from a single multi-core server, Agora supports a 64-antenna

massive MIMO RRU to serve 16 data streams (or layers), achiev-

ing 1.25 Gbps baseband throughput in the uplink with 64-QAM

modulation and a 8/9 LDPC code rate.

In realizing Agora, we make the three contributions. First, Agora

demonstrates for the first time that massive MIMO à la 5G NR with

up to 64 RRU antennas is feasible with a single modern many-core

server. Second, it contributes a key insight towards addressing the

latency and data rate challenges in 5G NR: prioritizing data paral-

lelism within the processing of one frame yields better performance

than using pipeline parallelism across multiple frames. This insight

distinguishes Agora from prior work such as Sora [8] and BigSta-

tion [9], which rely on pipeline parallelism to meet their performance

goals. Our microbenchmarks show that this prioritization is highly

profitable with modern servers with a large number of cores. Agora

exploits the much lower communication cost between cores (than

between servers in BigStation) and further conceals such cost behind

computation. Third, Agora borrows a queue-based manager-worker

threading model from web server design [10, 11] to flexibly control

the CPU resource allocation in baseband processing. We identify and

232

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong

U E E D DDP P P

Time0 T
Frame Frame Frame Frame

2T 3T 4T

…

U U

Fixed-length
symbols

…… … …

P Pilot U Uplink data

D Downlink dataE Empty data

(a) Symbol-based frame structure

Channel
Estimation

Precoder
Calculation

Equalization Demodulation DecodingFFT

EncodingPrecodingIFFT Modulation

Precoder

Pilot

Uplink data

Downlink data

RRU MAC

(b) Signal processing blocks in massive MIMO baseband

Figure 1: (a) Typical frame structure in time division duplex (TDD) massive MIMO. A frame consists of four types of symbols. (b) The
baseband processing uses the Pilot symbols from users to estimate channels and compute the Precoder, which is then used to process
both the Uplink and Downlink symbols. LDPC Decoding and Encoding are forward error correction mandated by 5G standards.

evaluate new performance optimizations for massive MIMO base-

band processing software. The optimizations include cache-aware

optimizations that lower the overhead of inter-core communication,

code vectorization with SIMD (Single Instruction, Multiple Data)

instructions, and fast ways to use matrix libraries.

We evaluate Agora with two complementary methods. First, we

use a fast software-based workload generator that emulates different

RRU configurations. We show that Agora successfully meets the data

rate and latency requirements of 5G NR. Compared to a pipeline-

parallel variant of Agora that we implement, our data parallel design

achieves around 30% lower latency. Second, we experimentally

analyze the performance and scalability bottlenecks of Agora. We

find that, not surprisingly, LDPC decoding contributes to almost half

the total processing time. This points to future work on accelerating

LDPC decoding by parallelizing it or using specialized hardware

such as FPGAs and GPUs. As the number of RRU antennas and

the number of MIMO layers increases, overheads of inter-core data

communication and synchronization contribute a growing fraction

of Agora’s processing time. This points to future work on designing

a smart scheduler that automatically balances computation and data

communication, and NUMA-aware concurrent data structures. We

also present experimental results with Agora running in real-time

with a 64-antenna massive-MIMO RRU.

Agora is open-source [12].

2 BACKGROUND
To improve spectral efficiency via higher spatial reuse, modern wire-

less standards employ a technology called multi-user MIMO (MU-

MIMO). In MU-MIMO, an RRU with M antennas can concurrently

serve K (M ≥ K) users. We term this configuration M × K MIMO.

The RRU uses precoding to realize this spatial multiplexing. Let x,

a K × 1 vector, denotes the data streams intended for the K users. In

linear precoding, the M RRU antennas send out an M × 1 vector y
derived from a linear transformation of x: y =Wx, where W is an

M × K matrix, called precoder.

We use linear precoding methods, the only ones considered prac-

tical for modern wireless standards (e.g., 5G, 4G/LTE and 802.11).

Linear precoding methods, specifically the zero-forcing method

adopted by Agora, are known to approach the capacity of non-linear

methods when M � K . Others have considered non-linear precoding

methods using specialized or unconventional hardware [13, 14].

The base station computes the precoder using the channel state

information (CSI) between all pairs of base station and user antennas,

represented by a M × K matrix, H. Zero-forcing (ZF) is a widely-

used precoding technique that aims to ensure that each user receives

only its intended data stream, eliminating inter-user interference.

The zero-forcing precoder is computed using a pseudo-inverse of

H , Wzf = c · H∗
(
HTH∗

)−1
, where c is a constant factor to ensure

no antenna exceeds the maximum allowable transmission power.

Computing ZF requires matrix inversion and multiplication, so the

computational complexity is O (M × K2).

Because the spectral efficiency (and the cell capacity) gain im-

proves according tomin(M,K), there is a strong incentive to scale up

the RRU to tens or even hundreds of antennas, a technology known

for 5G as massive MIMO. However, supporting large numbers of

antennas or users in massive MIMO is challenging because of the

increased computational demand. For example, the base station must

compute the precoder within the channel coherence time (the time

for which the channel is approximately constant), which can be as

short as a few milliseconds for mobile users [15]. To address this

challenge, real-time massive MIMO systems rely on specialized

hardware such as FPGAs. The only reported software implementa-

tion, BigStation, supports only 12 RRU antennas [9].

Baseband processing, often known as the physical layer, exists

between radios and the MAC; it converts time-domain IQ samples

received from the radios to bits usable by the MAC and vice versa.

Modern wireless systems employ Orthogonal Frequency-Division

Multiplexing (OFDM) modulation, which divides a large frequency

band (e.g., tens of MHz) into up to thousands of narrow subcarriers

(e.g., tens of KHz). We denote the number of subcarriers by Q .

Baseband processing handles data structured in frames as shown

in Figure 1(a). User mobility, and its resulting channel coherence

time, determines the frame length, which can range from 100s down

to a few milliseconds. A frame consists of tens of OFDM symbols of

equal duration (∼71 μs each). At the beginning of a frame, users send

orthogonal pilots, interleaved either in time or frequency to allow

the base station to estimate their channels represented by matrix

H. In each data symbol, all users concurrently transmit or receive

one block of modulated data bits (e.g., 4 bits for 16-QAM) on each

OFDM subcarrier allocated to them.

Figure 1(b) shows the signal processing for each symbol type. A

frame usually starts with uplink pilot symbols, from which the base

station obtains the CSI matrix and computes its precoder. We use

233

Agora: Real-time massive MIMO baseband processing in software CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 1: Computational complexity of baseband processing
blocks. M: # antennas, K: # users, Q: # subcarriers per OFDM
symbol, L: code block length. A block consists of identical, inde-
pendent tasks that process disjoint subsets of data in parallel.

Block # of Complexity Data
tasks per task parallelism

FFT O (M) O (Q logQ) Antenna
Channel estimation O (QM) O (1) Subcarrier, antenna

Precoder calculation O (Q) O (MK2) Subcarrier
Equalization O (Q) O (MK) Subcarrier
Demodulation O (QK) O (1) Subcarrier, user
Decoding O (K) O (L) User
Encoding O (K) O (L) User
Modulation O (QK) O (1) Subcarrier, user
Precoding O (Q) O (MK) Subcarrier
IFFT O (M) O (Q logQ) Antenna

this precoder for both equalization, i.e., demultiplexing user data

from uplink symbols received by M RRU antennas, and precoding,

i.e., downlink beamforming.

It is challenging to realize massive MIMO baseband processing

in software because of its high computation and data rate demands.

Two more factors make the challenge even trickier. First, the signal

processing blocks differ significantly in their compute time. Table 1

lists the computational complexity of each block. In our setup us-

ing 2.1 GHz Intel Xeon Gold 6130 processors, LDPC decoding is

the dominant block. For example, decoding one code block with

8448 information bits, 1/3 code rate and 8 iterations takes ∼300 μs.

Precoder calculation is a distant second thanks to its use of matrix

inversion that has a complexity of O (M · K2); inverting one matrix

for M = 64 and K = 16 takes ∼20 μs. In comparison, the time taken

for modulation, demodulation, FFT, and IFFT is almost negligible.

Second, each block is data-parallel in a different way, as shown

in Table 1. For example, the FFT block is antenna-parallel because

it processes data from each antenna independently. A block can

be viewed as a collection of identical, independent tasks, each pro-

cessing a disjoint set of data. A task in one block may need the

output from all the parallel tasks in the previous block, creating a

synchronization barrier. For example, the precoder calculation for a

subcarrier needs data from channel estimation performed on all an-

tennas. Agora effectively exploits these patterns toward its advantage

as will be discussed in §3.

Pipeline parallelism and data parallelism: Prior software-based

baseband processing, including BigStation [9], Sora [8] and Atomix [16],

extensively exploit pipeline parallelism, in which processing for

one baseband processing block overlaps with that for other blocks.

Pipeline parallelism can improve throughput but not latency. The

large numbers of antennas, subcarriers, and users in massive MIMO

bring abundant data parallelism, which is key to reduce latency. For

example, the RAN can perform precoding for different OFDM sub-

carriers, or decoding for different users in parallel. At the hardware

level, Agora exploits data parallelism by using multiple cores, as

well as multiple SIMD lanes within a core.

Performance metrics: 5G imposes demanding requirements on

the latency and the data rate a base station must satisfy while serving

its users. Here latency refers to the one-way transmit time between a

user and the base station which includes the processing time at the

base station. 5G requires latency to be less than 1 ms for ultra-reliable

Time

Pipeline
parallel

Agora

Time

Frame id

Frame id

Frame 11
Frame 2

Frame 1
Frame 2

Frame 3
Frame 4

2
Frame 333

Frame 4

T 2T 3T 4T0

Figure 2: Frame processing schedule in Agora and the alterna-
tive pipeline-parallel design.

and low-latency communications (URLLC) and 4 ms for enhanced

mobile broadband (eMBB) [17, 18]. Data rate, measured in informa-

tion bits per second communicated between a base station and its

users, has different targets for different frequency bands. For sub-6

GHz, which has a maximum bandwidth of 100 MHz, the minimum

required downlink peak spectral efficiency of 30 bit/s/Hz [17, 18]

corresponds to a peak data rate of 3 Gbps.

3 DESIGN
We design Agora to meet the challenging latency and data rate re-

quirements imposed by 5G NR. Prior designs for software baseband

processing are inadequate because they target either single-antenna

wireless systems [8, 19], or small-scale MIMO systems in less de-

manding wireless standards like 4G [9].

3.1 Data parallelism and pipeline parallelism
The key design principle in Agora is to use all available CPU cores

for the earliest available frame, thus minimizing its processing time.

We call this approach “data parallel”, since it favors data parallelism

available within a frame’s processing whenever possible.

In contrast, prior baseband processing systems such as BigSta-

tion [9] and Atomix [16] prioritize pipeline parallelism over data

parallelism. Pipeline parallelism allows processing multiple frames

at the same time. Our insight is that for single-machine systems like

Agora, the data-parallel approach has fundamentally lower latency

than a pipeline-parallel approach. This is because the latter approach

shares CPU cores among the processing of multiple frames, and

therefore has higher per-frame latency. Figure 2 shows the high-level

difference between the two approaches. A mathematical explanation

of this can be found in [20] (Chapter 3.4.2).

Pipeline parallelism was necessary in the past baseband process-

ing systems such as BigStation and Atomix due to fundamental

hardware architecture constraints that our target platform, i.e., to-

day’s many-core servers, does not have. BigStation requires multiple

servers for baseband processing since it uses less powerful hard-

ware from 2013. In such a distributed design, pipeline parallelism is

crucial for hiding the high overhead of inter-server communication

based on heavyweight OS network stacks. In contrast, Agora uses

only intra-server communication for baseband processing, which has

much lower overhead than inter-server communication. Atomix uses

pipeline parallelism in part because their target hardware architecture

(i.e., multi-processor DSPs) lacks coherent shared memory neces-

sary for data parallelism. In contrast, commodity servers support

high-speed shared memory.

234

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong

Server

NIC

Agora

…

Manager thread

Worker threads

Network threads

…

F
ro

nt
ha

ul

R
R
U DPDK

Global
buffers

Msg(RX)

Msg(TX)

Task
queues

Msg(complete)

Msg(task)

Figure 3: System overview: Agora implements massive MIMO
baseband processing on a single many-core server receiving
IQ samples from a remote radio unit (RRU) via a fronthaul
link. Agora’s threads synchronize through FIFO queues us-
ing 64-byte messages each containing two fields: task type and
buffer location. Agora’s threads exchange intermediate results
via global shared memory buffers.

Another important drawback of a pipeline parallel design for a

single-machine baseband processing system is the additional com-

plexity in core allocation: the number of cores assigned to each block

must be computed separately based on the block’s computational

demands. In Agora, however, we only need to determine the total

number of cores required for all blocks.

3.2 Design overview
We now present a high-level overview of Agora’s design, shown in

Figure 3. Agora uses a manager-worker model with one manager

thread and many worker threads, which communicate via message

queues. We dedicate a configurable number of worker threads for

network I/O. To reduce context switches, Agora pins each thread

to a dedicated physical core. Therefore, we use the terms thread,

worker and core interchangeably. Although the manager-worker

model has been shown to be effective in other domains, e.g., web

servers [10, 11], Agora is the first to apply it to software-based

baseband processing.

The basic unit of work in Agora is a task, which roughly follows

the task definition in § 2. A type of task implements a baseband

processing block as shown in Figure 1(b). A worker thread serves

one task at a time. At any given moment, Agora executes a large

number of tasks of the same type, each operating on disjoint data

in parallel. Each worker thread handles all types of tasks except

network I/O, for which we use dedicated threads.

The manager thread communicates with the worker threads via

lock-free shared memory queues using 64-byte messages that fit in

one cache line to minimize inter-core communication. The manager

sends a message when it creates a task, i.e., Msg(task) in Figure 3;

a worker sends one when it completes a task, i.e., Msg(complete).

A message contains the task type, and an offset indicating the ad-

dress of the task’s input buffer in shared memory. The manager and

network threads similarly exchange messages, i.e., Msg(TX) and

Msg(RX), via a pair of lock-free queues.

Worker threads exchange intermediate results using a set of shared

memory buffers. Workers access these buffers without locking, using

non-temporal stores to improve performance when possible. We

provision sufficient shared memory buffer space for tens of frames

to handle performance jitter.

P

f1
f2

fn

…

c1
c2

cn

…

Sync point in the manager thread

P

f1
f2

fn

…

c1
c2

cn

…
fi FFT on i-th core ci ChannelEst on i-th core

Merge

Figure 4: Block fusion in the pilot processing.

3.3 Lock-free message queues
The lock-free queues can be accessed by senders and receivers

concurrently [21, 22]. There is a task queue for messages of each

task type sent by the manager to workers, where the manager is the

only sender and the workers are concurrent receivers. Having one

queue for every task type makes it easier to control the order of tasks

being processed. All workers send their complete messages via a

single queue, for which the manager is the sole receiver.

The worker threads run an infinite loop busy polling (and dequeu-

ing) messages from the task queues. Agora statically determines the

order that workers should poll the task queues, i.e., the priorities of

tasks based on their types. The order is determined based on an anal-

ysis of the baseband processing as illustrated in Figure 1. Notably, at

any given time, all tasks in the queues belong to the same frame as

the workers try to get the current frame processed as fast as possible.

3.4 Scheduling optimization
Agora’s manager thread implements our scheduling policy of getting

all (non-network) worker threads to process the earliest available

symbol from the earliest available frame. Our implementation of this

policy includes the following two optimizations.

Batching. Some blocks in massive MU-MIMO baseband pro-

cessing such as FFT and demodulation require little computation.

For such blocks, the manager assigns multiple tasks to a worker in

one message to reduce the overhead of inter-core messaging. For

example, consider the FFT block in which one task processes IQ

samples from a single antenna. Agora’s manager assigns a worker a

batch of N FFT tasks per message, reducing manager-worker mes-

sages by a factor of N . We empirically determine the batch size N
based on the FFT task’s execution time and the cost of inter-core

communication. In our setup, N = 2 provides the best performance.

Block fusion. Some consecutive baseband processing blocks are

parallel in the same dimension. For example, both FFT and channel

estimation are antenna-parallel; and demodulation and equalization

are subcarrier-parallel. Agora fuses these pairs of blocks into larger

blocks to reduce inter-core communication. Figure 4 shows an ex-

ample of block fusion in pilot symbol processing. The uplink and

downlink blocks after fusion are listed in Table 2.

3.4.1 Leveraging pipeline parallelism. While Agora focuses on

data parallelism and dedicates all available CPU cycles to the oldest

frame when necessary, we do find two occasions where pipeline

parallelism can be additionally exploited.

Intra-frame pipeline parallelism. For some blocks, their limited

number of tasks does not allow their processing to be distributed

to all available cores. When processing these blocks, we leverage

pipeline parallelism within a frame to let other blocks that satisfy data

dependency to be processed simultaneously, which helps improve

235

Agora: Real-time massive MIMO baseband processing in software CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 2: Concurrency and block fusion in Agora.

Block Parallelism
dimension Fused blocks

FFT (UL) Antennas Channel estimation
Precoder calculation (UL) Subcarriers
Demodulation (UL) Subcarriers Equalization
Decoding (UL) Users

Encoding (DL) Users
Precoding (DL) Subcarrier Modulation
IFFT (DL) Antennas

CPU utilization. For example, the number of LDPC decoding tasks

is constrained by the number of users, which is typically up to 16 in

the state-of-the-art massive MIMO systems. We therefore let the idle

cores take any other available tasks, e.g., FFT, in the future symbols

of the same frame.

Inter-frame pipeline parallelism. As mentioned in § 2, the last

block in massive MIMO baseband processing, i.e., LDPC decoding,

is the most computationally demanding one. When the decoding

task queues have fewer tasks left than the number of workers, some

of the workers will be idle. Agora allows these idle workers to start

processing tasks from the next frame, before the current frame is

completely finished.

3.4.2 Reducing RRU idle time in the downlink. A downlink

symbol has to be sent to the RRU before it starts downlink transmis-

sion. In a TDD system, this means the RRU’s transmission needs

to wait until it finishes computing the downlink precoder from the

current frame’s pilots and processing a downlink data symbol, during

which the RRU is wasting its air time. To bridge this idle time, Agora

lets the current frame process downlink data symbols not only for

the current frame, but also for the next frame, which means the first

few data symbols in the next frame can be sent to the RRU before

the next frame’s precoder is ready, thus making it possible to fully

utilize the air time of RRU. The negative impact of this approach

is that the next frame’s first few data symbols are using a slightly

out-of-date precoder. However, we expect this negative impact to

be small when estimating CSI frequently, e.g., every 1 ms, and user

mobility is low, e.g., pedestrian mobility.

4 IMPLEMENTATION
We implemented Agora in C++ and C for Linux. It includes 20K

source lines of code, and runs as a userspace application. Agora uses

Intel FlexRAN’s publicly available LDPC libraries [7] for encoding

and decoding, which implement an offset min-sum belief propaga-

tion (BP) based decoding algorithm [23]. It uses Intel’s Math Kernel

Library (MKL) [24] for matrix operations, and uses AVX-512 SIMD

instructions for optimizing data type conversions (e.g., for converting

integer IQ samples to floats), demodulation, and matrix transposes.

Agora supports both AVX2 and AVX-512 machines, and requires

machines to have at least AVX2 support.

Agora supports configuring several cellular parameters, including

the number of OFDM subcarriers, wireless bandwidth, modulation

order, frame length, and LDPC code rate. Our current implementa-

tion supports only up to one code block per symbol.

4.1 Memory optimization
Agora employs a host of techniques to improve the performance of

the memory subsystem, especially the effectiveness of CPU caches.

These techniques are generally applicable to commodity x86 servers

with 64-byte cache lines.

Reducing sharing. To avoid expensive locks for concurrency

control, all tasks in a block operate on disjoint subsets of data. This

allows workers to handle tasks without locking. We also pad buffers

to cache line size to avoid false sharing.

Improving memory access efficiency. Recall that a block in Agora

consists of many parallel tasks (Table 1). When a block is parallel in

a different way from its downstream block, the output of a task in

the upstream block is used by all the tasks in the downstream block.

We optimize the communication of task outputs to task inputs to

improve memory access efficiency.

Consider the following example. In the uplink, the FFT block is

antenna-parallel, and the subsequent demodulation block is subcarrier-

parallel. A worker that executes an FFT task takes data from one an-

tenna as input, and generates a contiguous array of 8-byte frequency-

domain samples, one per subcarrier. If a demodulation task handles

only one subcarrier, the CPU core running this task must read an

entire cache line (64 bytes) of samples to access the required subcar-

rier’s sample, within which only 8 bytes are useful and the remaining

56 bytes are wasted. We eliminate this waste by implementing de-

modulation tasks to process eight consecutive subcarriers (§ 3.4),

thereby using all 64 bytes of the retrieved cache line. Agora applies

this idea to all blocks when possible.

Non-temporal stores. Consider two consecutive baseband pro-

cessing blocks X and Y are parallel in different dimensions. A task

for block Y uses the outputs of block X’s tasks as inputs. These

outputs were collectively generated by all cores in the system. With-

out any optimizations, this memory access pattern results in a high

cache coherence traffic. We find that it is often beneficial to use

non-temporal SIMD stores to write the outputs of block X’s tasks

directly to DRAM. Although this technique increases pressure on

the memory bus, it is faster than incurring high cache coherence

traffic. We show in § 6.3 that using non-temporal stores reduces

Agora’s frame-processing latency by 11%.

4.2 Matrix optimizations
Pesudo-inverse. MIMO equalization and precoding require comput-

ing channel matrix pseudo-inverses, W = c ·H∗
(
HTH∗

)−1
. The high

CPU cost of matrix inversion has been considered a key cause for

the computationally-intensive nature of massive MIMO baseband

processing. Interestingly, we find that matrix inversion is a relatively

cheap component. In massive MIMO, the number of antennas M
is much larger than the number of users K ; typical deployments

aim to support 16–32 users with 64–128 antennas. Therefore, we

need to invert a relatively small K × K matrix (HTH∗). With one

AVX-512–capable CPU core, we find that computing W takes only

15.8 μs for our target use case of M = 64 and K = 16.

Matrix libraries such as Intel MKL support computing a numerically-

robust pseudo-inverse for high condition number channel matrices

via a singular-value decomposition (SVD). We find that this ap-

proach is roughly an order of magnitude slower than computing

W by directly inverting the inner square matrix, taking 135 μs for

236

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong

M = 64 and K = 16. The added robustness is unneeded in practice

because we need channel matrices with low condition numbers for

effective beamforming with zero-forcing. In ill-conditioned chan-

nels, usually attributed to low SNR regime or highly correlated

user channels, zero-forcing is not the best linear precoding method

in terms of achievable rate and a lower overhead method such as

conjugate beamforming may perform better [25].

Matrix multiplication. Equalization and precoding require matrix

multiplication for a large amount of data (i.e., all data subcarriers and

all data symbols), resulting in a high computation cost. We find that

the performance of these multiplications improves drastically with

just-in-time (JIT) optimization of the matrix multiplication kernel,

which generates specially optimized code for the given problem size.

In our experiments, enabling JIT code generation in Intel MKL [26]

accelerates matrix multiplication by 3–5x for small matrix sizes,

including our target use case of M = 64 and K = 16.

4.3 Server configuration
We run Agora as a real-time process to reduce expensive OS context

switches. Real-time processes are not preempted by normal Linux

processes because they have higher priorities. In addition, we isolate

Agora’s cores from OS interrupts. We disable Turbo Boost, Hyper

Threading, and CPU idle states to reduce performance variance.

We use DPDK to bypass Linux’s heavyweight network stack, with

NIC steering rules to direct received packets to Agora’s network

threads. We dedicate two threads for network I/O, which is the

minimum number required to handle the 44.5 Gbps of fronthaul

traffic rate from 64 RRU antennas. We use 9000-byte jumbo Ethernet

frames to avoid packet fragmentation.

5 EVALUATION SETUPS
We evaluate Agora on a many-core server with two RRU setups.

The first setup uses another server to emulate the RRU of a massive

MIMO base station in software. This allows us to stress Agora with

various RRU configurations without being limited by real RRU

hardware. The second setup employs an actual massive MIMO RRU

with 64 antennas. In both setups, the RRU sends 24-bit IQ samples to

Agora; Agora pads them to be 32-bit before performing computation.

Our experiments consider a constant peak load, i.e., all users are

always active and all symbols in a frame are in use to carry either

pilot or data.

5.1 Server setup
We run Agora on a single many-core server connected to the RRU

(emulated or otherwise). The server has four Intel Xeon Gold 6130

CPUs. Each CPU has 16 cores running at 2.1 GHz, and 22 MB of

last-level cache. We use a dual-port 40 GbE NIC to connect to the

RRU, although our hardware RRU is only capable of 10 Gbps. We

use the RDTSC instruction to measure timestamps for performance

profiling. For each experiment, we collect data from 8000 frames.

5.2 Emulated RRU
High performance IQ sample generator. We emulate the MIMO

RRU with a fast and flexible software-based IQ sample generator

running on a second server. We implement it with DPDK for kernel-

bypass packet I/O. The generator follows the symbol-based frame

structure outlined in §2 to produce or consume time-domain IQ

samples. In each symbol duration, the generator uses a set of M
UDP packets to send/receive the IQ samples of all M antennas

to/from the Agora server (i.e., one UDP packet per antenna). A

frame consists of multiple consecutive sets of UDP packets. Each

packet consists of a 64-byte header specifying the frame, symbol

and antenna indexes, and as many 24-bit IQ samples as the number

of OFDM subcarriers. The IQ sample generator uses nanosecond-

precision RDTSC timestamps to precisely control the idle time

between sets of packets that determines the symbol duration. We can

then control the frame length by changing the symbol duration and

the number of symbols in a frame. Our measurements show that the

deviation between measured frame length and desired frame length

is less than 1 μs, e.g., for a 5 ms frame with 70 symbols, the average

error is 0.2 μs with a standard deviation of 0.26 μs.

Cellular parameters. We use the following 5G NR configuration:

20 MHz bandwidth, 64-QAM modulation order, 2048 subcarriers,

of which 1200 carry valid data and the rest are used as guard bands

to prevent interference. We emulate channels with additive white

Gaussian noise (AWGN) with 25 dB signal-to-noise ratio (SNR).

We report Agora’s performance with frame length between 1 ms

and 5 ms, which allows measuring the channel every 1–5 ms. This

is important because even with pedestrian mobility, the channel

coherence time for large-scale MIMO is 7 ms according to recent

measurement studies [15].

As shown in Figure 1(a), each frame consists of pilot symbols

and data symbols, and each symbol has a fixed length. We vary the

number of data symbols to change the frame length and use one pilot

symbol for all frame lengths. We implement frequency-orthogonal

pilots where different users occupy different subcarriers to send

pilots. We consider two extreme cases where a frame has only uplink

data symbols or has only downlink data symbols, to evaluate uplink

and downlink performance. In practice, a frame can have both uplink

and downlink symbols in the TDD mode that we operate in.

For LDPC, we use 1/3 code rate and base graph 1, the most com-

putationally demanding configuration supported by Intel FlexRAN,

for stress testing. We set our encoded code block size to 6864 bits

(LDPC lifting size Z = 104), so that each symbol maps to one code

block. We run up to five iterations for LDPC decoding.

5.3 Actual massive MIMO RRU
To verify that our implementation works with real cellular hardware,

we replace the packet generator in the emulated RRU setup described

above with a massive MIMO base station and eight mobile users as

shown in Figure 5, which are commercially available from Skylark

Wireless [27]. The base station has 64 MIMO antennas and operates

at the 3.6 GHz CBRS band, serving as our massive MIMO RRU. Its

10 GbE fronthaul limits our testing to 5 MHz bandwidth, beyond

which the traffic between the RRU and Agora’s server exceeds

10 Gbps. We evaluate Agora with this hardware setup under indoor

line-of-sight (LOS) channels and 17-26 dB SNR.

5.4 Pipeline-parallel comparison
To our knowledge, there is no prior work on software-based mas-

sive MIMO baseband processing in the public domain, thus we

cannot directly compare Agora against prior designs. BigStation [9],

237

Agora: Real-time massive MIMO baseband processing in software CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Figure 5: Our RRU hardware setup including a 64-antenna
Faros base station, shown in a red box, and eight Iris users,
shown in yellow box, both from Skylark Wireless.

which implements 12-antenna MIMO systems for 802.11 in soft-

ware running on multiple servers, is the most comparable prior work.

However, we are not able to directly compare Agora against it since

it is not open-source.

To highlight the benefits of Agora’s data-parallel design, we com-

pare it against a pipeline-parallel variant that we implement. The

design of this variant is close in spirit to BigStation. BigStation

favors pipeline parallelism because it targets a distributed system

in which each machine only has only a few (∼4) cores. In such a

system, the high cost of synchronization over the network prevents

intensive use of data parallelism.

We implement the pipeline-parallel variant of Agora with all

optimizations that we perform for Agora and test it on the same

many-core server. However, unlike Agora where a worker core can

process any type of tasks (and blocks), the pipeline-parallel variant

statically assigns a fixed, dedicated group of cores to each block in

Table 2. Each group of cores exploits the data parallelism within

the corresponding block. Non-overlapping groups of cores exploit

pipeline parallelism by processing different blocks of baseband

processing simultaneously. Given the number of cores, we use a

combination of empirical data and mathematical analysis to find the

allocation of cores to blocks that minimizes the frame latency. This

is made easier by the fact that each block must get enough cores

to finish within a frame’s time budget and there are only a small

number of blocks.

6 RESULTS
We now present our evaluation results, with the following three main

takeaways. First, we show that it is feasible to run massive MIMO

baseband processing on a single many-core server. Second, we show

the advantages of Agora’s data-parallel design over its pipeline-

parallel variant, achieving lower uplink and downlink processing

latency. Third, we show that Agora successfully handles over-the-

air traffic from a real hardware RRU. For brevity, we sometimes

present results only for the uplink because it is more computationally

challenging than the downlink.

1 2 3 4 5
Frame length (ms)

0

2

4

6

P
ro

ce
ss

in
g

tim
e

(m
s)

20

25

30

N
um

be
r

of
 c

or
es

Pipeline parallel
Agora
Frame length

(a) Uplink

1 2 3 4 5
Frame length (ms)

0

2

4

6

P
ro

ce
ss

in
g

tim
e

(m
s)

20

25

30

N
um

be
r

of
 c

or
es

Pipeline parallel
Agora
Frame length

(b) Downlink

Figure 6: Median processing latency (with 99.9th percentile
as errorbar) and number of cores of Agora and its pipeline-
parallel variant over different frame lengths. Both uplink and
downlink are based on 64×16 MIMO.

6.1 Feasibility of software massive MIMO
We evaluate Agora’s end-to-end performance with our software-

based IQ sample generator (§ 5.2) to show that massive MIMO

baseband processing is feasible in software. Two metrics are crucial

for feasibility. First, Agora must keep up with the frame rate. For

example, with a 1 ms frame length, Agora’s throughput must be at

least one frame per millisecond to avoid dropping frames. Second,

Agora must not add excessive latency, i.e., the time Agora takes to

complete frame processing must not be much larger than the frame

length. For example, to support the 5G NR use case of Enhanced

Mobile Broadband (eMBB), the one-way frame processing latency

in Agora—measured as the time from which the frame’s first packet

enters Agora to when we complete LDPC decoding for all users—

must be lower than 4 ms [17].

6.1.1 Overall processing latency. We first show that Agora

keeps up with the frame rate and latency requirements of eMBB. We

measure uplink and downlink processing latency for different frame

lengths, relevant to use cases with different channel coherence times.

The symbol duration is constant at 71 μs, so there are 14 and 70

symbols per frame for 1 ms and 5 ms frames, respectively. For each

frame length, we report the latency with the least number of cores

that allows matching the incoming/outgoing IQ sample rate.

Figure 6 shows that Agora keeps up with the IQ sample rate for

64 × 16 MIMO with 26 worker cores for the uplink, and 21 worker

cores for the downlink. Uplink baseband processing requires more

cores than the downlink due to the high computational overhead of

LDPC decoding. Considering that a frame with all uplink symbols

is the most computational intensive case, we expect 26 cores to be

sufficient to support frames with both uplink and downlink symbols.

For both uplink and downlink, Agora’s data rate is 454 Mbps and

482 Mbps for 1 ms and 5 ms frames, respectively. Note that these

results are for 1/3 code rate, which is the most computationally

demanding. With 8/9 code rate, Agora can achieve data rate of

1.25 Gbps and 1.33 Gbps for 1 ms and 5 ms frames, respectively.

Figure 6 also shows that Agora can achieve processing latencies

close to frame length for both uplink and downlink. For the uplink,

Agora’s processing cannot finish before all the packets of a frame

238

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong

Figure 7: Complementary CDF of Agora’s uplink processing
time using 1 ms frame and 26 worker cores.

0 10 20 30
Number of worker cores

0

5

10

15

20

25

P
ro

ce
ss

in
g

tim
e

(m
s)

0

10

20

30

S
pe

ed
up

Processing time
Speedup
Ideal speedup

Figure 8: Agora’s uplink processing time and speedup for 1 ms
frame and 64 × 16 MIMO.

arrive, resulting in a latency longer than the frame length. For all

frame lengths, Agora’s average latency is about 180 μs longer than

the frame length. For the downlink, the input data comes from the

MAC, so its arrival time is not constrained by frame length. There-

fore, Agora achieves latencies shorter than frame lengths, which can

be further reduced by adding more worker cores.

We also observe that Agora significantly outperforms the pipeline-

parallel variant (§ 5.4), especially for the downlink. Agora’s superior

performance comes from faster zero-forcing, which we discuss in

detail in § 6.3.1.

Figure 7 shows the uplink latency distribution for four MIMO

configurations, using 1 ms frames, measured from 8000 frames. For

64×16 MIMO, the most expensive configuration, Agora’s 99.9th

percentile and maximum latencies are 1.29 ms and 1.36 ms, respec-

tively, which meet the 4 ms target of eMBB. Agora achieves low

maximum latencies because we direct OS interrupts away from CPU

cores used by Agora.

6.1.2 Scalability. Figure 8 shows that Agora is effective in using

available cores to reduce its processing latency. As the number of

cores increases, the processing latency of a 1 ms frame quickly

decreases to below the 4 ms target. The latency stops improving

beyond 26 cores, since it is eventually bound by the frame length.

6.1.3 Over-the-air evaluation. We evaluate Agora as the base-

band processing system for the 64-antenna RRU described in § 5.3.

We program eight clients to send 4 ms frames, with time-orthogonal

full-band Zadoff-Chu sequence-based pilots and uplink random data

symbols. Each symbol includes 512 OFDM subcarriers with 64-

QAM (6-bit) modulation and 300 data subcarriers, corresponding to

1800 bits per symbol per user. The clients use −10 dBm RF trans-

mission power with 6 dB digital power reduction to avoid clipping

2 4 6 8
Number of users

10-4

10-3

10-2

10-1

B
lo

ck
 E

rr
or

 R
at

e
(B

LE
R

)

64QAM, 1/3 LDPC

5G-NR Target Rate

Figure 9: Worst-user block error rate (BLER) vs. number of
client uplink streams with Agora and a 64-antenna Faros base
station as RRU.

Table 3: Computation cost of uplink baseband processing
blocks with 64×16 MIMO, 1 ms frame, and 26 cores. ZF refers
to zero-forcing precoder calculation. “Demod” includes compu-
tation of equalization and demodulation.

FFT ZF Demod Decoding

Tasks per frame 896 75 15600 208
Time per task (μs) 2.7±0.09 21.1±0.51 0.19±0.002 46.5±0.25
Batching size 2 3 64 1
Total time across cores (ms) 2.45±0.08 1.59±0.04 2.92±0.03 9.67±0.05

of data signals with high peak-to-average power ratio. This results

in a pilot SNR of 17–26 dB among all 64 antennas at the RRU.

Agora comfortably supports the 64 × 8 MIMO setup in real-time

using only 7 cores while the block error rate (BLER) remains below

the 10% target rate defined by the 5G NR standard. We measure the

BLER as the fraction of uplink user data blocks (each with 1800

bits) for which LDPC decoding fails. We use BLER as an indicator

of the achievable baseband processing throughput. Figure 9 shows

the worst BLER across users for different numbers of users with 1/3

LDPC code rate. This maps to 16 bit/s/Hz spectral efficiency, i.e., 2

bit/s/Hz per user. Other possible avenues of improvement include

handling more client streams, e.g., 16 clients instead of 8, and using

higher modulation orders, e.g., 256-QAM.

6.2 Deconstructing performance
We next discuss how various components of Agora contribute to

its latency, in order to better focus optimization efforts in future

research. We break down Agora’s processing time into three compo-

nents: computation time, which measures the time spent in executing

useful baseband processing blocks; data communication time, which

measures the overhead of inter-core movement of baseband process-

ing state (e.g., the channel inverse matrix data); and synchronization

time, which measures the overhead of inter-core message passing.

6.2.1 Computation time. We first evaluate the computational

cost of each fused block listed in Table 2. Table 3 shows these costs

for 64 × 16 MIMO with 26 worker cores and 1 ms frame. For tasks

with low per-task cost, Agora processes them in a batch. We set

the batch sizes manually based on the task’s execution time and

inter-core synchronization cost. We use frequency-orthogonal pilots,

and perform zero-forcing once for every 16 subcarriers, resulting in

a total of 75 tasks (= 1200
16).

239

Agora: Real-time massive MIMO baseband processing in software CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

1 6 11 16 21 26
Number of cores

0

1

2

3

4

5

T
im

e
(m

s)

FFT
Demod
ZF
Decode

16 32 48 64
Number of antennas (M)

0

1

2

3

4

5

T
im

e
(m

s)

FFT
Demod
ZF
Decode

Figure 10: Cumulative data movement time across all cores in
different blocks increases as (Left) the # of worker cores in-
creases with 64 × 16 MIMO, and as (Right) the # of antennas
increases, with 16 users and 26 worker CPU cores.

16 32 48 64
Number of antennas (M)

1

1.5

2

2.5

3

T
im

e
(m

s)

15

20

25

30

35

40

N
um

be
r

of
 c

or
esSync time

Number of cores

Figure 11: Agora’s synchronization overhead for varying num-
bers of antennas and 16 users. For each antenna configuration,
we use the fewest number of cores needed to meet the data rate
in uplink processing (shown on the right vertical axis).

We observe that LDPC decoding takes the largest share of Agora’s

processing time budget. This makes LDPC decoding our primary

target of baseband processing optimizations in the future. These

optimizations can include software-level optimizations, or using

accelerators like FPGAs and GPUs.

In addition, we observe that the computational overhead of in-

dividual tasks remains almost constant over the number of cores.

However, it changes with the number of antennas (M) and users

(K). For example, the number of FFT tasks increases linearly with

the number of antennas, but the computation time per task remains

largely unchanged. For zero-forcing and demodulation, computation

time per task is affected by both M and K since they determine the

problem size of matrix operations. For example, with 64 × 8 MIMO,

the execution time per zero-forcing inversion decreases to 10.1 μs

from 21.5 μs. The number of LDPC decoding tasks and total LDPC

decoding time increase linearly with the number of users.

Finally, we observe that the cumulative time across all 26 cores

spent in doing useful baseband processing work is 2.45 + 1.59 +
2.92+ 9.67 = 16.63 milliseconds, which is less than the 26 ms (one

millisecond per core) available budget. The remaining time is spent

in inter-core data movement and synchronization. This is the tax we

pay for data parallelism, evaluated next.

6.2.2 Data communication overhead. Data parallelism in Agora

requires frequent movement of the intermediate results in baseband

processing from one core’s cache to another core’s cache. For ex-

ample, a CSI matrix requires data from all antennas and all pilots,

which is produced as output by multiple worker cores that perform

antenna-parallel FFT and CSI estimation. Therefore, for a worker

core to compute subcarrier-parallel precoder, it must first fetch the

CSI matrix from other cores.

We use the following method to measure the overhead of data

communication, with uplink processing as the running example. We

run a variation of Agora where we replace baseband processing

procedures such as FFT computation and matrix inversion with

dummy versions that simply perform the corresponding read or

write operations on the memory subsystem. This isolates the data

movement overhead from overall processing.

We evaluate how the number of cores and the MIMO size affect

Agora’s data communication overhead. Figure 10 plots the time

spent in data movement combined across all CPU cores for each

of the four uplink blocks. In all cases, we observe that FFT and

demodulation have a large data communication overhead, which

is because these two blocks process the largest amount of data—

almost all data received from the network. In contrast, the zero-

forcing and decoding tasks have negligible data movement overhead

because they process much less data. Zero-forcing runs for only pilot

symbols in the frame. Decoding processes data post equalization and

demodulation, which reduces the amount of data by ∼8x for 64× 16
MIMO and 64-QAM modulation.

Impact of number of cores. Figure 10 (Left) shows the data

movement overhead for 64 × 16 MIMO and 1 ms frame as the

number of cores increases. We observe that the data movement

overhead only increases slightly with more CPU cores, which does

not outweigh the benefits of parallelization.

Impact of number of antennas. In Figure 10 (Right), we vary

the number of RRU antennas M from 16 to 64, and use 16 users

and 26 worker cores for all the experiments. We observe that the

overhead of FFT grows almost linearly with M , which is because the

number of FFT tasks grows linearly with M while each task accesses

a fixed amount of data. The overhead of demodulation also grows

linearly with M , but for a different reason: the amount of data each

demodulation task accesses grows linearly with M due to the larger

matrix size.

6.2.3 Inter-core synchronization overhead. A key concern for

the feasibility of massive MIMO baseband processing in software

is the overhead of inter-core synchronization. To support data paral-

lelism and our scheduling policy of prioritizing the earliest symbol

first, Agora’s manager thread must frequently synchronize with

worker threads via the shared memory FIFO queues. For example,

the manager thread must wait for all FFT tasks of a data symbol and

all ZF tasks to complete before scheduling demodulation.

We compute the synchronization overhead by subtracting the

time spent in useful computation and data movement from the total

time budget, cumulated across all cores. Figure 11 shows that the

synchronization overhead grows with more RRU antennas and corre-

spondingly more worker cores. However, even with 64 × 16 MIMO

and 26 worker cores, Agora spends only up to 2.5 ms of its 26 ms

budget in synchronization, meaning that the cost of synchronization

does not outweigh the benefit of increasing CPU cores.

Combined, data movement and inter-core synchronization ac-

count for nearly 8.9 ms of cumulative CPU core time with 26 cores,

which is 34% of our 26 ms budget. Reducing this overhead is an

240

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong

0 10 20 30
SNR (dB)

0

0.1

0.2

0.3

0.4

B
it

er
ro

r
ra

te
 (

B
E

R
)

0

100

200

300

400

P
ro

ce
ss

in
g

tim
e

(u
s)Z=384 itr=10

Z=384 itr=5
Z=104 itr=10
Z=104 itr=5

(a) R=1/3

0 10 20 30
SNR (dB)

0

0.1

0.2

0.3

0.4

B
it

er
ro

r
ra

te
 (

B
E

R
)

0

100

200

300

400

P
ro

ce
ss

in
g

tim
e

(u
s)R=1/3

R=2/3
R=8/9

(b) Z=104, itr=5

Figure 12: BER and processing time of LDPC decoding change
with (a) lifting size (Z) and # of iterations, and (b) code rate (R).

3.45x

8.79x

4.18x
2.08x

FFT ZF Demod Decode
0

500

1000

1500

P
ro

ce
ss

in
g

tim
e

(u
s)

Agora Pipeline parallel

(a) Latency in blocks

Agora Pipeline parallel
0

500

1000

1500

P
ro

ce
ss

in
g

tim
e

(u
s)

Decode done
ZF done
Pilot done
Queuing delay

(b) Overall latency

Figure 13: Processing time breakdown for 64 × 16 MIMO and 1
ms frame using 26 cores.

important avenue of our future research. For example, performing

FFT in Agora’s network threads can reduce the high data movement

overhead of FFT. We are also experimenting with a NUMA-aware

work scheduler in the manager to reduce expensive cross-socket data

movement and synchronization.

6.2.4 LDPC decoding. Since LDPC decoding is the most expen-

sive block in Agora, here we provide more insights about how LDPC

configurations, such as SNR, lifting size (Z), number of iterations

and code rate (R), impact bit error rate (BER) and processing time.

BER and BLER are inter-dependent, i.e., a lower BER corresponds

to a lower BLER. We observe that BLER has a coarse granularity

and becomes all ones for 8/9 code rate, so we report BER in Fig-

ure 12 for finer granularity. We find that processing time increases

linearly over the number of iterations and the lifting size (Z). A

lower code rate (R) increases processing time but also reduces BER.

A lower SNR leads to significantly higher processing time and BER.

In Figure 12(a), we use Z = 384, the maximum lifting size accord-

ing to 5G NR, and Z = 104, the size used in the rest of evaluation, as

examples to show the impacts of Z , number of iterations and SNR.

Surprisingly, we observe that a smaller Z and fewer iterations do not

worsen BER while lowering processing time. Smaller Z values also

provide more data parallelism and therefore are favored by Agora.

When the SNR is lower than 10 dB, BER drops significantly, which

matches the results reported in the literature [28]. In Figure 12(b),

we show the impact of code rate with Z = 104 and up to 5 iterations.

The 1/3 code rate is the most computationally demanding, but also

gives the lowest BER, especially in the SNR range of 10–20 dB.

This result indicates that under high SNR, Agora can use a higher

code rate to reduce LDPC decoding time.

6.3 Effectiveness of optimization
We next investigate the effectiveness of the optimizations described

in § 3 and § 4. To demonstrate the importance of following our

design principle (§ 3.1) to minimize frame processing latency, we

compare Agora’s data-parallel oriented design against its pipeline-

parallel variant inspired by BigStation’s design. We then show the

importance of optimizations in minimizing CPU cycles spent on

useless work.

6.3.1 Data parallelism vs. pipeline parallelism. Figure 6 al-

ready shows that Agora’s prioritization of data parallelism over

pipeline parallelism is important for its low latency and high effi-

ciency. Figure 13(a) shows the break down of processing time in

individual blocks for each design. For the pipeline-parallel variant,

we allocate the 26 cores following the core allocation policy in § 5.4

to minimize its latency.

Agora’s largest gain comes from precoder calculation (ZF): 8.8

times faster than that of the pipeline-parallel variant. This is because

Agora allows any of its worker cores to process ZF while the pipeline-

parallel variant only has three cores dedicated for ZF. These three

cores, however, are already the maximum number of cores we can

allocate to ZF while avoiding frame drops in other blocks. Agora’s

performance advantage over pipeline parallelism in other blocks is

not as significant. The reason is that we dedicate more cores to those

blocks to keep up with the frame rate.

To show how the speedup in individual blocks impacts overall la-

tency, we examine important milestones within a frame’s processing

in Figure 13(b). These include the queuing delay and the milestones

of completing pilot processing, ZF and decoding. Queuing delay

is the time between when a frame’s first packet arrives in Agora to

when its processing starts. The other three milestones correspond

to the time of finishing processing three blocks, i.e., FFT for pilot

symbols, ZF, and LDPC decoding. Due to data dependencies, ZF

can not start until all pilots have finished processing; demodulation

and decoding can not start until ZF finishes. As expected, we ob-

serve Agora’s major advantage to be that it finishes ZF much earlier

than the pipeline-parallel variant. However, the time between ZF and

LDPC decoding completion is not significantly different between the

two designs. This is because between the two milestones, multiple

blocks, i.e., FFT, demodulation, and LDPC decoding, are processed

simultaneously in both designs. The time in pilot processing is about

the same in both designs since it is lower bounded by pilot symbol

duration. Agora’s queuing delay is slightly longer than that of the

pipeline-parallel variant because Agora (mostly) waits to start a new

frame until it finishes the current one while the pipeline-parallel

variant allows the new coming frame to be processed simultaneously

with previous frames. However, the small additional queuing delay

does not overwhelm Agora’s overall advantage.

6.3.2 Importance of performance optimizations. Agora’s abil-

ity to support real-time massive MIMO baseband processing relies

on a combination of optimizations applied for scheduling (§ 3.4), ma-

trix operations (§ 4.2), memory and cache performance (§ 4.1) and

server configurations (§ 4.3). Table 4 shows the impact of disabling

241

Agora: Real-time massive MIMO baseband processing in software CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

Table 4: Effectiveness of optimizations shown by disabling
them: median and 99.9th percentile latency for processing 1 ms
frame and 64×16 MIMO with 26 worker cores, uplink.

Optimization disabled Median Increase 99.9th Increase
(ms) (ms)

Baseline (with all optimizations on) 1.19 - 1.29 -

Batching (§ 3.4) 1.96 1.64x 2.33 1.81x

Memory access optimization (§ 4.1) 1.67 1.40x 1.72 1.33x
Non-temporal store (§ 4.1) 1.34 1.12x 1.47 1.14x

Matrix inverse optimization (§ 4.2) 1.52 1.27x 1.63 1.26x
JIT matrix multiplication (§ 4.2) 1.41 1.18x 1.50 1.16x

Real-time process (§ 4.3) 1.16 0.98x 4.78 3.71x

Table 5: Median and 99.9th percentile latency of Agora for pro-
cessing 1 ms frame and 64×16 MIMO, uplink.

Server SIMD # worker Median 99.9th
support cores (ms) (ms)

2 × Xeon E5-2697 v4, 2.3 GHz AVX2 32 1.34 1.38
4 × Xeon Gold 6130, 2.1 GHz AVX-512 26 1.19 1.29
4 × Xeon Gold 6252N, 2.3 GHz AVX-512 23 1.13 1.19
2 × Xeon Gold 6240, 2.6 GHz AVX-512 23 1.12 1.15

one of the optimizations on the median and 99.9th percentile laten-

cies. We can see that even disabling only one of the optimizations

can significantly increase processing latency, which demonstrates

the necessity of applying the combination of all optimizations. It is

worth noting that a proper server configuration is also crucial. For

example, as shown in Table 4, without running Agora as a real-time

process, its tail latency can suffer significantly due to OS context

switches.

6.3.3 Impact of hardware. We find Agora’s optimizations are ef-

fective on servers with recent x86 Xeon processors with AVX2/AVX-

512 support, as shown in Table 5, with small adjustments to batch

sizes due to difference in memory speed and cache size. The server

in the second row is used in the rest of evaluation (see § 5.1). On the

servers with AVX-512 support, Agora can achieve similar median

and tail latencies using similar number of cores. On the oldest server

with only AVX2 support (first row), Agora achieves a slightly longer

median latency of 1.34 ms in processing a frame, meeting the la-

tency requirement of 5G NR. However, more cores than available to

workers, i.e., 32, are needed to process arriving frames fast enough,

i.e., one frame per 1 ms. The results in Table 5 also highlight the

effectiveness of AVX-512 for massive MIMO baseband processing.

7 RELATED WORK
Software-based baseband processing. Existing frameworks such

as Sora and Ziria [8, 19] demonstrate that it is possible to achieve

hardware-comparable baseband processing performance in software.

These frameworks target earlier Wi-Fi standards like 802.11a, which

do not involve beamforming techniques and therefore only require

a small number of CPU cores for data processing. BigStation [9]

considers newer LTE and Wi-Fi standards that adopt beamforming

and presents a distributed pipeline-parallel architecture for baseband

processing of large MU-MIMO. In contrast, Agora uses a data-

parallel design running on a single multi-core server, which avoids

having to go over the datacenter network for synchronization and

data transfers. Open-source projects such as OpenAirInterface [29]

and srsLTE [30] also implement baseband processing in software.

However, these systems do not support massive MIMO yet. Intel’s

FlexRAN [31] is a reference design for virtualized RAN (vRAN)

and has been used in some vRAN offerings. However, FlexRAN is

closed-source, and due to the lack of publicly available information,

we are unable to compare it with Agora. FlexRAN’s LDPC libraries

are available publicly [7]; we use them for LDPC encoding and

decoding in Agora.

Some recent projects implement more computationally challeng-

ing non-linear precoding for massive MIMO in programmable or

novel hardware, e.g., FlexCore with GPUs [13] and QuAMax with

the D-Wave quantum annealing computer [14]. Different to these

works, Agora targets commodity general-purpose processors and

focuses on precoding methods that are already adopted by standards.

An early version of Agora is described in [20] as MILLIPEDE.

Real-time massive MIMO systems. Existing massive MIMO

base stations rely on specialized hardware to achieve real-time func-

tionality. LuMaMi[32] is an FPGA-based massive MIMO testbed

that supports up to 100 antennas and 12 users. LuMaMi uses in-

tensive computation acceleration and PCIe-based data movement

to reduce the delay between receiving pilots and starting downlink

transmission to only 143 μs (shorter than two symbols). Right now

baseband processing in software can be 2× slower. However, there

is a large space for further improvements with the programability

and flexibility in software, which can reduce the performance gap

between software and hardware. For example, Agora uses a stale

precoder for part of the downlink symbols (§ 3.4.2) to bridge the

processing gap that causes idle time at the RRU.

Latency and throughput optimization. Web and cloud application

servers share similar performance goals of high throughput and

low latency as Agora, as well as a similar optimization space, e.g.,

choosing a threading model, and optimizing the network stack. (i)
The choice of threading model plays a critical role in optimizing

latency and throughput for web and cloud application servers. Prior

work [10, 11, 33] has extensively studied performance tradeoffs of

threading models in different application scenarios. Agora’s choice

of threading model was informed by these studies, but also took into

consideration the unique workload pattern and data dependencies

in 5G baseband processing. (ii) The authors of [34] summarize the

inefficiencies from hardware, OS and application that add to tail

latency. Since Agora runs on a similar server environment, these

inefficiencies also affect Agora’s performance, e.g., interference

from background processes can introduce context switch overhead.

To eliminate them, Agora adopts common methods as those in prior

work, detailed in § 4.3. (iii) There have been extensive efforts on

reducing latency contributed by the network stack, including kernel

bypass such as DPDK [35] and OS optimization such as IX [36],

ZygOS [37] and Shinjuku [38]. Agora is orthogonal to them since it

mainly focuses on optimizing the part after packets are received in

the user space.

8 LIMITATIONS
Software or not? Agora demonstrates the feasibility of imple-

menting modern baseband processing completely in software on a

242

CoNEXT ’20, December 1–4, 2020, Barcelona, Spain Jian Ding, Rahman Doost-Mohammady, Anuj Kalia, and Lin Zhong

commodity server. However, our work says little about the profitabil-

ity of a software approach. That is, should a mobile network operator

adopt this approach? By running a software implementation in a

pay-by-use cloud infrastructure, the operator may reduce its capital

expenditure upfront, with cheaper and simpler base stations. How-

ever, the impact on its operational expenditure remains uncertain.

On the one hand, software implementations with general-purpose

processors are known to be less efficient than specialized hardware,

by orders of magnitude compared to ASICs [39]. On the other hand,

by using general-purpose processors in a shared infrastructure, the

operator no longer needs to pay for the time that it is not using,

which is not true for implementations with dedicated, specialized

hardware seen in traditional base stations. Future work is necessary

to settle the question about operational cost. This also highlights the

importance of improving the efficiency of Agora via the optimization

avenues identified in this paper.

Path towards scaling up. Scaling up to even wider bandwidth (Q),

more RRU antennas (M), and more MIMO layers (K) is desirable to

improve the cell capacity. This will put pressure on Agora in different

ways. For example, more bandwidth and antennas proportionally

increase the fronthaul capacity requirement. The fronthaul demand

of M = 64 and Q = 100MHz (the maximum bandwidth of 5G NR

at sub-6 GHz) exceeds even the capacity of 100 GbE NIC. This

suggests that FFT/IFFT should be left at the RRU, which can reduce

the fronthaul traffic by 45% for 5G NR parameters described in § 5.2,

without substantially increasing the base station cost.

Because of the rich parallelism in massive MIMO, adding more

cores could be a straightforward path for scaling to larger Q , M and

K . For a more challenging case such as M = 128 and K = 64, we

observe that the computation time of zero-forcing grows by ∼16x,

which would require us to parallelize inversion of a single matrix

across cores. The computation time of LDPC decoding grows by

4x due to the increased K . It is promising that a single server can

be enough for this more challenging case considering that a single

server nowadays can already have over 200 cores, which is ∼8x of the

26 cores we currently use for M = 64 and K = 16. In the next 5–10

years, we expect this number to grow further. We also expect Agora

to benefit from new features added into future servers, e.g., the new

bfloat16 support in Intel’s Cooper Lake microarchitecture [40]

can speed up both computation and data movement in Agora.

However, one roadblock of adding more cores is the increas-

ing inter-core communication cost. As shown in Figure 10 and 11,

the inter-core data movement and synchronization cost in Agora

grow with M; this can become problematic when M grows further,

e.g., 128 or even 256. One way to control this cost is to improve

Agora’s threading model design. For example, currently, the man-

ager thread places tasks in a task queue that is shared by all worker

threads. Moving to per-worker task queues, with the manager mak-

ing scheduling decisions explicitly and statically can reduce the

overhead of parallelization. For larger Q , M and K , we expect both

Agora and the pipeline-parallel variant to have higher data move-

ment cost since they both require inter-core data movement when

the processing proceeds from one block to another. However, we

expect Agora’s inter-core synchronization cost to grow faster than

its pipeline-parallel variant, which may lead to favoring pipeline par-

allelism over data parallelism when the number of cores increases

to a point that the inter-core synchronization cost overwhelms the

benefit of data parallelism.

Separating design from implementation. Massive MIMO sys-

tems have many configurable parameters, such as M , K , Q , and the

LDPC configurations. Currently, Agora can be considered as manu-

ally optimized for a limited subspace of the large configuration space.

There is a strong need for Agora to automatically find an optimal

or good configuration out of the large space. Achieving this goal

requires separating the description or design of a massive MIMO

system configuration from its actual implementation. We will need

a high-level language that allows the user to specify massive MU-

MIMO parameters, and a “compiler” that can automatically find

an optimized implementation. Existing studies, such as Ziria [19],

Halide [41] and TVM [42], use domain specific languages (DSLs)

to separate design from implementation. TVM’s compiler can gen-

erate optimized code from a large search space for deep learning

applications. Ziria’s compiler can also produce optimized code for

baseband processing. It currently has open-source implementation

for 802.11a/g and 4G-LTE release 8. However, it relies on com-

piler annotations to break the pipeline into threads, hence generating

pipeline-parallel code. We will draw inspirations from this literature

to design a DSL and an optimizing compiler for Agora.

9 CONCLUSION
This work presents Agora, a software-based framework for real-

time baseband processing of massive MIMO on a single many-core

server. Evaluation of Agora shows that it achieves significantly lower

latency and higher data rate than the state of the art and can scale

up to use all available cores effectively. Agora achieves this by

maximizing the use of data parallelism for massive MIMO baseband

while eschewing pipeline parallelism in the baseband processing.

Agora employs a carefully designed threading model to scale to

many cores and a series of non-trivial cache-aware optimizations to

cope with the memory bottleneck. Our experiments show that Agora

is able to support real-time baseband processing for 64 × 16 MIMO

with a single many-core server.

Agora was designed and optimized for massive MIMO baseband

processing. The primary challenge it addresses is latency; the pri-

mary opportunity it exploits is massive data parallelism within a data

stream. And it assumes a single many-core machine. We observe the

same challenge and opportunity are true for many applications in

data analytics and computer perception such as autonomous driving

and natural user interfaces. The tight latency requirement can also

limit these applications to use a local machine. Therefore, it is our

hope that their developers may also find the design, implementation,

and optimization ideas from Agora useful.

Acknowledgements
This work was supported in part by NSF Grant CNS 1518916 and

NSF/PAWR. Songtao He, Peiyao Zhao, and Caihua Li contributed

to a very early version of Agora. Xintong Liu contributed to Agora’s

AVX2 encoder. Brandon Liu helped with Intel MKL’s JIT bench-

marks. Douglas Moore helped improve the code quality of Agora.

The authors are grateful to the anonymous reviewers and paper

shepherd whose input made the final paper better.

243

Agora: Real-time massive MIMO baseband processing in software CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

REFERENCES
[1] China Mobile Research Institute. C-RAN: the road towards green RAN. White

Paper, ver. 2.5, 2011.
[2] Mike Wolfe. CommScope definitions: What is C-RAN? https://www.commscope.

com/Blog/CommScope-Definitions-What-is-C-RAN/, 2016.
[3] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia Ratnasamy,

and Scott Shenker. A high performance packet core for next generation cellular
networks. In Proc. ACM SigComm, 2017.

[4] Mehrdad Moradi, Yikai Lin, Z Morley Mao, Subhabrata Sen, and Oliver
Spatscheck. SoftBox: A customizable, low-latency, and scalable 5G core network
architecture. IEEE Journal on Selected Areas in Communications, 36(3):438–456,
2018.

[5] Mehrdad Moradi, Karthikeyan Sundaresan, Eugene Chai, Sampath Rangarajan,
and Z Morley Mao. Skycore: Moving core to the edge for untethered and reliable
uav-based lte networks. In Proc. ACM Int. Conf. Mobile Computing & Networking
(MobiCom), 2018.

[6] Parallel Wireless. 5G NR logical architecture and its functional splits. https:
//www.parallelwireless.com/wp-content/uploads/5GFunctionalSplits.pdf.

[7] Intel. FlexRAN LTE and 5G NR FEC software development kit mod-
ules. https://software.intel.com/en-us/articles/flexran-lte-and-5g-nr-fec-software-
development-kit-modules, 2019.

[8] Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen Wang, Yongguang
Zhang, Haitao Wu, Wei Wang, and Geoffrey M. Voelker. Sora: High performance
software radio using general purpose multi-core processors. In Proc. USENIX
Symp. Networked Systems Design and Implementation (NSDI), 2009.

[9] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu, Jiansong
Zhang, and Yongguang Zhang. BigStation: enabling scalable real-time signal
processing in large MU-MIMO systems. In Proc. ACM SigComm, 2013.

[10] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Proc. ACM Symp. Operating Systems
Principles (SOSP), 2001.

[11] Akshitha Sriraman and Thomas F Wenisch. μTune: Auto-tuned threading for
OLDI microservices. In Proc. USENIX Conf. Operating Systems Design and
Implementation (OSDI), 2018.

[12] jianding17/Agora. https://github.com/jianding17/Agora.
[13] Christopher Husmann, Georgios Georgis, Konstantinos Nikitopoulos, and Kyle

Jamieson. FlexCore: Massively parallel and flexible processing for large {MIMO}
access points. In Proc. USENIX Symp. Networked Systems Design and Implemen-
tation (NSDI), 2017.

[14] Minsung Kim, Davide Venturelli, and Kyle Jamieson. Leveraging quantum an-
nealing for large mimo processing in centralized radio access networks. In Proc.
ACM SigComm, 2019.

[15] Clayton Shepard, Jian Ding, Ryan E Guerra, and Lin Zhong. Understanding real
many-antenna mu-mimo channels. In Proc. IEEE Asilomar Conf. on Signals,
Systems and Computers (Asilomar), pages 461–467, 2016.

[16] Manu Bansal, Aaron Schulman, and Sachin Katti. Atomix: A framework for
deploying signal processing applications on wireless infrastructure. In Proc.
USENIX Symp. Networked Systems Design and Implementation (NSDI), 2015.

[17] 3GPP TR 38.913 v14.3.0. 5G: Study on scenarios and requirements for next
generation access technologies (Release 14), October 2017.

[18] ITU-R M.2410-0. Minimum requirements related to technical performance for
IMT-2020 radio interface(s), November 2017.

[19] Gordon Stewart, Mahanth Gowda, Geoffrey Mainland, Bozidar Radunovic, Dim-
itrios Vytiniotis, and Cristina Luengo Agullo. Ziria: A DSL for wireless systems
programming. In Proc. ACM Int. Conf. Architectural Support for Programming
Languages & Operating Systems (ASPLOS), 2015.

[20] Jian Ding. Software-based baseband processing for massive MIMO. Master’s
thesis, Rice University, August 2019. Available at: https://scholarship.rice.edu/
handle/1911/107406.

[21] cameron314/concurrentqueue. ConcurrentQueue. https://github.com/cameron314/
concurrentqueue, 2020.

[22] Cameron. A fast general purpose lock-free queue for c++. https://moodycamel.
com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++, 2014.

[23] Jinghu Chen and Marc PC Fossorier. Density evolution for two improved BP-
based decoding algorithms of LDPC codes. IEEE communications letters, 6,
2002.

[24] Intel. Math kernel library (MKL). https://software.intel.com/en-us/mkl, 2019.
[25] Hong Yang and T. L. Marzetta. Performance of conjugate and zero-forcing

beamforming in large-scale antenna systems. IEEE Journal on Selected Areas in
Communications, 31(2):172–179, February 2013.

[26] Intel. Intel math kernel library improved small matrix performance using
just-in-time (JIT) code generation for matrix multiplication (GEMM). https:
//software.intel.com/content/www/us/en/develop/articles/intel-math-kernel-
library-improved-small-matrix-performance-using-just-in-time-jit-code.html,
2018.

[27] Skylark Wireless. https://www.skylarkwireless.com.

[28] Jung Hyun Bae, Ahmed Abotabl, Hsien-Ping Lin, Kee-Bong Song, and Jungwon
Lee. An overview of channel coding for 5g nr cellular communications. APSIPA
Transactions on Signal and Information Processing, 8, 2019.

[29] Navid Nikaein, Mahesh K. Marina, Saravana Manickam, Alex Dawson, Raymond
Knopp, and Christian Bonnet. OpenAirInterface: A flexible platform for 5G
research. ACM SIGCOMM Comput. Commun. Rev., 44(5):33–38, 2014.

[30] Ismael Gomez-Miguelez, Andres Garcia-Saavedra, Paul D. Sutton, Pablo Serrano,
Cristina Cano, and Doug J. Leith. srsLTE: An open-source platform for LTE
evolution and experimentation. In Proc. ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation, and Characterization (WiNTECH),
2016.

[31] Sujata Tibrewala. The 5G network transformation. https://software.intel.com/en-
us/articles/the-5g-network-transformation, 2018.

[32] Steffen Malkowsky, Joao Vieira, Liang Liu, Paul Harris, Karl Nieman, Nikhil

Kundargi, Ian C Wong, Fredrik Tufvesson, Viktor Öwall, and Ove Edfors. The
world’s first real-time testbed for massive MIMO: Design, implementation, and
validation. IEEE Access, 2017.

[33] Vivek S Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and
portable web server. In Proc. USENIX Annual Technical Conf. (ATC), 1999.

[34] Jialin Li, Naveen Kr Sharma, Dan RK Ports, and Steven D Gribble. Tales of the
tail: Hardware, OS, and application-level sources of tail latency. In Proc. ACM
Symp. Cloud Computing (SOCC), 2014.

[35] Intel. Data plane development kit (DPDK). https://www.dpdk.org/, 2019.
[36] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos

Kozyrakis, and Edouard Bugnion. IX: A protected dataplane operating system
for high throughput and low latency. In Proc. USENIX Conf. Operating Systems
Design and Implementation (OSDI), 2014.

[37] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achieving low tail
latency for microsecond-scale networked tasks. In Proc. ACM Symp. Operating
Systems Principles (SOSP), 2017.

[38] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
ières, and Christos Kozyrakis. Shinjuku: Preemptive scheduling for μsecond-scale
tail latency. In Proc. USENIX Symp. Networked Systems Design and Implementa-
tion (NSDI), 2019.

[39] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov,
Benjamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz.
Understanding sources of inefficiency in general-purpose chips. In Proc. Int. Symp.
Computer Architecture (ISCA), 2010.

[40] Cliff Robinson. 2020 cooper lake socketed with 56 cores and
bfloat16. https://www.servethehome.com/2020-cooper-lake-socketed-with-56-
cores-and-bfloat16/, 2020.

[41] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. ACM
SIGPLAN NoticeS, 48(6), 2013.

[42] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. TVM: An automated end-to-end optimizing com-
piler for deep learning. In Proc. USENIX Conf. Operating Systems Design and
Implementation (OSDI), 2018.

244

