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1 | INTRODUCTION

Using Kuratowski's characterization of planar graphs [13], the Four Color Theorem [1-3,17]
can be stated as follows: Graphs containing no Ks-subdivision or K ;-subdivision are
4-colorable. Since Kj; ; has chromatic number 2, it is natural to expect that graphs containing no
K;-subdivision are also 4-colorable. Indeed, this is part of a more general conjecture made by
Hajos in the 1950s (see [23], although reference [6] is often cited): For any positive integer k,
every graph not containing K, ,-subdivision is k-colorable. It is not hard to prove this con-
jecture for k < 3. However, Catlin [4] disproved Hajos' conjecture for k > 6. Erd6s and
Fajtlowicz [5] then showed that Hajds' conjecture fails for almost all graphs. On the other hand,
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Kiithn and Osthus [12] proved that Hajos' conjecture holds for graphs with large girth,
and Thomassen [23] pointed out interesting connections between Hajés' conjecture and
several important problems, including Ramsey numbers, Max-Cut, and perfect graphs. Hajos'
conjecture remains open for k = 4 and k = 5.

In this paper, we are concerned with Hajos' conjecture for k = 4. We say that a graph G is a
Hajos graph if

(1) G contains no K;-subdivision,
(2) G is not 4-colorable, and
(3) subject to (1) and (2), IV(G)! is minimum.

Thus, if no Hajés graph exists then graphs not containing K.-subdivisions are 4-colorable.

Recently, He, Wang, and Yu [7-10] proved that every 5-connected nonplanar graph con-
tains a Ks-subdivision, establishing a conjecture of Kelmans [11] and, independently, of
Seymour [18] (also see Mader [15]). Therefore, Hajos graphs cannot be 5-connected. On the
other hand, Yu and Zickfeld [25] proved that Hajos graphs must be 4-connected, and Sun and
Yu [21] proved that for any 4-cut T in a Hajos graph G, G — T has exactly 2 components.

The goal of this paper is to prove a result useful for modifying the recent proof of the
Kelmans-Seymour conjecture in [7-10] to make progress on the Hajos conjecture; in particular,
for the class of graphs containing K, as a subgraph, where K, is the graph obtained from K, by
removing an edge.

To state our result precisely, we need some notation. Let G;, G, be two graphs. We use
G, U G, (respectively, G; N G,) to denote the graph with vertex set V(G;) U V(G,) (respectively,
V(G,) n V(G,)) and edge set E(G,) U E(G,) (respectively, E(G;) N E(G,)). Let G be a graph and
k a nonnegative integer; then a k-separation in G is a pair (G,, G,) of edge-disjoint subgraphs
G, G, of G such that G = G, U G, IV(G N Gy)l =k, and G, € G,_; fori =1, 2.

Let G be a graph and S C V(G). For convenience, we say that (G, S) is planar if G has a
drawing in a closed disc in the plane with no edge crossings and with vertices in S on the
boundary of the disc. We often assume that we work with such an embedding when we say
(G, S) is planar. Two elements of V(G) U E(G) are said to be cofacial if they are incident with a
common face. Our main result can be stated as follows, it will be used in subsequent work to
derive further useful structure of Hajos graphs.

Theorem 1.1. If G is a Hajos graph and G has a 4-separation (G, G,) such that
(G, V(G, n Gy)) is planar then IV(G))| < 5.

To prove Theorem 1.1, we first find a special wheel inside G;, then extend the wheel to
V (G, N G,) by four disjoint paths inside G;, and form a K;-subdivision with two disjoint paths in
G,. By a wheel we mean a graph which consists of a cycle C, a vertex v not on C (known as the
center of the wheel), and at least three edges from v to a subset of V(C). The wheels in this
paper are special—they are inside a plane graph consisting of vertices and edges that are
cofacial with a given vertex. For any positive integer k, let [k] := {1, ..., k}.

To effectively describe the process of extending wheel to a Ks-subdivision, we introduce the
following. Let H be a plane graph and T C V(H) such that IT| > 4 and all vertices in T are
incident with a common face of H. Let w € V(H)\S such that the vertices and edges of H
cofacial with w form a wheel, denoted as W. We say that W is T-good if T n V(W) C Ny(w).
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For any S C T with ISI < 4, we say that W is (T, S)-extendable if H has four paths B, B, B, P,
from w to T such that

« V(B n P) = {w} for all distinct i,j € [4],
¢« V(B -—w)n V(W) =1forie [4], and
« for any s € S there exists i € [4] such that B is from w to s.

Note that each P may use more than one vertex from 7. When S = @ we simply say that W is
T -extendable.

Remark: These concepts about wheel will be applied to separations (H, L) of a Hajos graph,
where H is a plane graph in which all vertices in T := V(H n L) are incident with a common
face of H.

For the proof of Theorem 1.1, we suppose G has a 4-separation (G, G,) such that
(G}, V(G, n G,)) is planar and IV(G,)l > 6. A result from [24] shows that G, has a V(G, n G,)-
good wheel. However, we need to allow the separation (G;, G,) to be a 5-separation to deal with
issues when such wheels are not V(G; n G,)-extendable. Another result from [24] characterizes
all such 5-separations (G;, G,) with G, containing no V(G; n G,)-good wheel. In Sections 2 and 3,
we characterize the situations where good wheels are also extendable. We complete the proof of
Theorem 1.1 in Section 4.

It will be convenient to use a sequence of vertices to represent a path or cycle, with
consecutive vertices representing an edge in the path. Let G be a graph. For v € V(G), we use
N;(v) to denote the neighborhood of v in G. Let T C V(G). We use G — T to denote the
subgraph of G induced by V(G)\T and write G — x when T = {x}. For any set S of 2-element
subsets of V(G), we use G+ S to denote the graph with V(G + S) = V(G) and
E(G+ S) = E(G) U S, and write G + xy if S = {{x, y}}.

Let C be a cycle in a plane graph, and letu,v € V(C). Ifu = vletuCv = u, and ifu # v let
uCv denote the subpath of C from u to v in clockwise order.

2 | EXTENDING A WHEEL

In [25] it is shown that Hajos graphs are 4-connected, and in [10] it is shown that Hajés graphs
are not 5-connected. So we have the following result.

Lemma 2.1. Hajos graphs are 4-connected but not 5-connected.

We also need a result from [24] which characterizes the 4-separations and 5-separations
(G, G,) with (G,, V(G; n G,)) planar such that G, has no V(G; n G,)-good wheel. See Figure 1
for the graph G, where the solid vertices are in V(G)\V(G,).

Lemma 2.2. Let G be a Hajés graph and (G,, G,) be a separation in G such that
4 <IV(G, N Gy)I <5, V(G n G, is independent in G, (G, V(G, N G,)) is planar, and
V(GD\V(G,) # @. Then, one of the following holds:

(i) G, contains a V(G, n G,)-good wheel.
(i) IV(G, N G,)l = 4 and V(G| = 5.
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FIGURE 1 Obstructions to good wheels inside 5-separations

(iii) IV(G, N Gyl = 5, G, is one of the graphs in Figure 1 with V(G,)\V(G,) consisting of
the solid vertices, and if [V (G,)| = 8 then the degree 3 vertex in G, has degree at least 5
in G.

Let G be a Hajos graph and (G, G,) be a separation in G such that IV (G, n G,)| € {4, 5} and
(G, V(G; n Gy)) is planar, and assume W is a V(G; N G,)-good wheel in G;. We wish to extend
W to a Ks-subdivision by adding two disjoint paths, which must be routed through the non-
planar part G,. The following lemma provides four paths extending one such good wheel to
V(G, n G,).

Lemma 2.3. Let G be a Hajés graph and let (G,, G,) be a separation in G with
V (G, N G,) independent in G, such that

(i) IV(G, n Gyl < 5, (G, V(G, n Gy)) is planar, and G, has a V(G, N G,)-good wheel,
(ii) subject to (i), G, is minimal, and
(iii) subject to (ii), V(G, n G,) is minimal.

Then any V(G, N G,)-good wheel in G, is V(G, N G,)-extendable.

Proof. By our convention, G, is drawn in a closed disc in the plane with no edge crossing
such that V(G; n G,) is on the boundary of that disc. Let W be a V(G; N G,)-good wheel
in G, with center w, U = V(W — w)\N;(w), and G| = G, — U. If G| has four disjoint
paths from N;(w) to V(G, N G,) then extending these paths to w (by adding one edge for
each path), we see that W is V(G; n G,)-extendable. So we may assume that such four
paths do not exist. Then G| has a separation (H,, H,) such that IV(H, N H,) < 3,
N;(w) U {w} C V(H,), and V(G, n G,) C V(H,). We choose (H,, H,) with IV(H, N H,)|
minimum.

We see that V(H, n H,) U U is a cut in G, separating H, from V(G; n G,). Thus, by the
planarity of (G, V(G, n G,)), we can draw a simple closed curve y in the plane such that
yN G CV(H nH,)UU, H, is inside y, and H, is outside y. We choose such y that
ly N G, is minimum.

Note V(H, N H,) C y by the minimality of IV (H; n H,)I. Also, y N N;(w) C V(H, n H,).
Moreover, y N U # @ as, otherwise, V(H, N H,) would be a cut in G, a contradiction as G is
4-connected.

For convenience, let N;(w) = {wy, ..., w}, and assume that the notation is chosen so
that wy, ..., w, occur on W — w in clockwise order. Moreover, for i € [t], let W, denote the
path in W — w from w; to w;,; in clockwise order, where w,,; = w;. We claim that

(1) any two vertices of y N U consecutive on y must be contained in the same W, for
some i € [t].
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For, otherwise, let u,v € y N U be consecutive on y such thatu € V(W,) and v € V(Wj),
with i < j. Then we see that G has a separation (L,, L,) such that V(L, N L,) = {u, v, w},
wy, € V(L — L), and G, C L,. This contradicts the fact that G is 4-connected.

Let k = IV(H, n H,)I. Then k > 2. For, otherwise, it follows from (1) thaty n U C W]
for some i € [k]. Choose u, v € y N U with uWy maximal. Then {u, v} U V(H, N H,) is a
cut in G, a contradiction.

Let V(H; N Hy) = {vy, ..., v}, where 2 < k < 3, and for i € [k], let y, be the open curve
in y from v; to v, ; in clockwise order, where v, ; = v;. We further claim that

(2) there exist unique i € [k] and unique j € [t], for which y N W, # @.

For, suppose otherwise. First, assume that there exist 3, and y with i # [ such that for
some W] 7N Wj # @ and 7N Wj # @. Without loss of generality, we may assume i = 1
and | = 2. Then, by planarity and by (1), U U (V(H, N H,)\{v,}) is a cut in G, separating
fw}u N;(w) from V(G NnG,); so G/ has a separation (H,,H,) such that
V(H{ n Hy) = V(H, n H)\{v,}, N;(w) U {w} C V(H]), and V(G, n G,) C V(H,). This
contradicts the choice of (H,, H,) that IV(H, N H,)! is minimum.

Hence, by (1), there exist p # g and i # j such that 7,0 W, # @ and ¥, N W, # @.
Without loss of generality, we may further assume that p =1,q =2, and i <j. Let
vy € V(W) such that v,, v} are consecutive on y, and v§ € V(W)) such that v,, v} are
consecutive on y. Then, by (1), G has a 4-separation (L,,L,) such that
V(L, N L,) = {v,, v5, v4, w} is independent in L, {w;,,, .., w} C V(L,), and G, C L,. If
IV(L,)! > 6 then, by Lemma 2.2, L, has a V(L; n L,)-good wheel; so (L,, L,) contradicts
the choice of (G,, G,). Hence, IV(L)l < 5and j =i+ 1.

We may assume k = 3. For, suppose k = 2. Let v € V(W) such that v;,v’ are
consecutive on y, and let v’ € V(W) such that v;, v” are consecutive on y. By (1), G has
a 4-separation (L{, L) such that V(L{n L) = {v;,v',v",w,,,;} is independent in L{,
w} U (N;w)\{w, 1)) € V(L}), and G, C L. Since IV(L{)l > 6, it follows from Lemma 2.2
that L{ contains a V(L{ N L%)-good wheel. So (L{, L4) contradicts the choice of (G;, G,).

Now let v{ € V(W) such that v;, v{ are consecutive on y, and let v; € V(W) such
that v;, v} are consecutive on y.

Suppose y, N U = @. Then v; # w, or v; # wy; otherwise, {v;, v;, w;, ;} would be a 3-cut
in G. If vy=w;, then by (1), G has a separation (L{,L5) such that
V(L{ N L) = {v}, v3, 5, w;, 1} is independent in L{, {w} U (Nzj(w)\{w;,,}) € V(L{), and
G, C L4; so by Lemma 2.2, L{ has a V(L{n Lj)-good wheel and, hence, (L{, L})
contradicts the choice of (G, G,). So v, # w,. Similarly, v; # w;. Then by (1), G has a
separation (L{,L4) such that V(L{ N Lj) = {v, v{,v;, v}, w,,;} is independent in L{,
w} U Nzw)\{w,1}) € VL)), G, C L4, and IV(L)\ V(L3I > 4. By the choice of (G,, G,),
L{ does not admit a V(L{ N L3)-good wheel. So by Lemma 2.2, V(L] — Lj))| = 4 and
(L{, V(L{ n L%)) is the 9-vertex graph in Figure 1, which means that the only neighbor of
w;,; in L{, namely w, should have degree 6 in L{ and must be adjacent to v{ and v4. But
this is a contradiction as v{, v{ & Ny(w).

So y, N U # @. But then by (1) and 4-connectedness of G, there exist [ € {1, 3} and
vertex v;” such that v/, v, v;" are consecutive on y in order listed and G has a 4-separation
(L{, L%) with V(L{ n L) = {w, v/, v, "} independent in L{, G, C L}, and IV (L)l > 6.
Then by Lemma 2.2, L{ contains a V/(L{ n Lj)-good wheel. Hence (L{, L}) contradicts the
choice of (G, G,).
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Thus, by (1) and (2), we may assume that N W, # @ and, for i€ [k]\{1}
and j € [¢]\{1},  n W; = @. Let v{,vj € V(W) such that, for i = 1,2, v; and v, are
consecutive on y. Then G has a separation (L;,L,) such that V(L,nL,) =
{v,:ie[k]}U{v,vi} is independent in L,, Ny(w) U {w} C V(L,), and G, C L,. Note
thatw € V(L,)\V(L,). Also note that v; # w, or v, # w,; otherwise, V(L; N L,) would be
a3-cutinG. If vy = w; or v, = w, thenIV(L; N L,)l = 4 and IV(L,)\V(L,)! > 6; hence, by
Lemma 2.2, L, has aV(L; n L,)-good wheel and, hence, (L,, L,) contradicts the choice of
(G, Gy). Sov; # w; and v, # w,. Hence IV(L,)l > 9 and w is not adjacent to {v,, v,, v{, v5}.
It follows from Lemma 2.2 that L, contains a V(L, N L,)-good wheel. Hence (L,, L,)
contradicts the choice of (G, G,). O

To extend a wheel to a Ks-subdivision, we need the following weaker version of a result of
Seymour [19], with equivalent forms proved in [16, 20, 22]. For a graph G and vertices
Vg, Vg, -..p V), Of G, We say that (G, vy, v,, ..., 1)) is planar if G can be drawn in a closed disc in the
plane with no edge crossings such that v, v,, ..., v, occur on the boundary of the disc in
clockwise order.

Lemma 2.4. Let G be a graph and s, s,, t;, t, € V(G) be distinct such that, for any
S C V(G) with I1S| < 3, every component of G — S must contain a vertex from {s;, s,, t;, t,}.
Then either G contains disjoint paths from s;, S, to t;, t,, respectively, or (G, Sy, S5, t;, t,) 1S
planar.

The next result shows that in a Hajos graph, we cannot extend a wheel in certain way.

Lemma 2.5. Let G be a Hajos graph. Suppose there exists a 4-separation (G,, G,) in G
such that (G, V(G, N G,)) is planar. If W is a V(G, N G,)-good wheel in G, then W is not
V (G, N G,)-extendable.

Proof. For, suppose W is V(G n G,)-extendable. Let V(G, N G,) = {t;, t,, 5, t,}, and
assume that the notation is chosen so that (G, t,, t,, t5, t,) is planar. Then there exist four
paths B, B, B, P, in G, from w to ¢, t,, t5, t,, respectively, such that V(B n Pj) = {w} for
any distinct i,j € [4] and V(B n W)l = 2 for i € [4].

If (G,, t;, ty, L3, t,) is planar then G is planar and, hence, 4-colorable, a contradiction. So
(G, t, t,, t3, t,) is not planar. Then, by Lemma 2.4, G, has disjoint paths Q,, Q, from ¢, t,
to t3, t,, respectively. But then WU B U B U B, U P, U Q; U Q, is a Ks-subdivision in G, a
contradiction. O

3 | EXTENDING PATHS FROM 5-CUTS TO 4-CUTS

The goal of this section is to describe the situations where a good wheel cannot be extended
from a 5-cut to a 4-cut in the desired way. We achieve this goal in three steps (formulated as
lemmas), by gradually reducing the number of possibilities. The first lemma has four
possibilities.

Lemma 3.1. Suppose G is a Hajés graph and (G,, G,) is a 4-separation in G such that
(G, V(G; n Gy)) is planar and IV (G,)! > 6, and, subject to this, G, is minimal. Moreover,
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suppose that G, has a 5-separation (H,L) with V(G, N G,) C V(L) and V(HN L)
independent in H, such that

(@) V(G,n G)LV(H N L) and H has a V(H n L)-good wheel,
(b) subject to (a), IS| is minimum, where S = V(HN L) N V(G, n G,), and
(c) subject (b), H is minimal.

Then H has a (V(H n L), S)-extendable wheel, or G, has a V(G, n G,)-extendable wheel,
or, for each V(H N L)-good wheel W with center w in H, one of the following holds:

(i) There exist s € S\V(W) and a,b € V(W — w)\N;(w) such that Ny(s) = {a, b} and
either a = b or ab € E(W).

(ii) There exist s, s, € S\V(W), a,b € V(W — w)\N;(w), and separation (H,, H,) in H
such that V(H, N H,) ={a,b,w}, {s,s8} CVH), INNwW)NnVH) =1 and
V(H n L)\{s,, 5,} C V(H,).

(iii) 1Sl = 3, and there exist s,, s, € S, a, b € V(W — w)\N;(w), and separation (H,, H,) in
H such that V(H, N Hy)) = {a, b, s, 5,}, S C V(H,), and {w} U (V(H n L)\S) C V(H)).

(iv) There exista,b € V(W — w)\N;(w), c € V(H)\V(W), and a separation (H,, H,) in
H such thatV(Hyn Hy) ={a,b,c}, IVH)NVHNL) =2, VH)NVHNL)CS,
and Ny(w) U {w} C V(Hy\V(H).

Proof. Note thatlS| < 3 as V(G, N G,)ZV(H n L). We may assume that G, is drawn in a
closed disc in the plane with no edge crossing such that V(G; n G,) is on the boundary of
that disc. For convenience, let V(H N L) = {t; : i € [5]} such that (H, t;, t,, t5, £, t5) is
planar. Let D denote the outer walk of H. Let W be a V(H N L)-good wheel in H with
center w, and let F = W — w (which is a cycle).

By Lemma 2.3, W is V(H n L)-extendable in H. Without loss of generality, assume
that H has four paths B,P,RB,B from w to t,t,, t;, t,, respectively, such that
IW(ENF)=1 and t;¢& V(P) for i€ [4]. Moreover, we may assume f; € S as,
otherwise, these paths show that W is (V(H n L), S)-extendable. Then t; ¢ V(W); for,
ift; € V(W) then t;w € E(H) (as W is V(H n L)-good) which, combined with three of
{P, B, P, B}, shows that W is (V(H n L), S)-extendable. Let V(P n F) = {w,} for i € [4].
Since (H, t,, t,, L3, ty, t5) is planar, wy, w,, ws, wy occur on F in clockwise order.

We choose B, B, so that w,Fw, is minimal. Then

N;(w) N V(wyFw; — {w, wmy}) = @.

For, suppose not and let w' € Ny(w) n V(w,Fw; — {w;, wy}). Since G is 4-connected
and (H,t,t, t;, 4, ts) is planar, H must contain a path P from w' to
(B, — fw,m}) U (B — {w, w}) U {t;} and internally disjoint from B, U B U F. (For, if such
P does not exist then there exist a € V(wyFw' — w’) and b € V(w'Fw; — w’) such that
{a, b, w} is a 3-cut in H separating w’ from P, U B U {t;}. Thus, {a, b, w} is a 3-cut in G, a
contradiction). If P ends at t; then P and three of {B, P, P, B} show that W is
(V(H n L), S)-extendable. So by symmetry we may assume P ends at P, — {w, wy}. Then
replacing P, with the path in P U (B, — w,) U ww’ from w to t,, we obtain a contradiction
to the minimality of wyFw;,.
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Note that H has a path R from ¢ to (P, U w,Fw, U B)\{t,, t,} and internally disjoint
from B U P, UwFw,. For otherwise, G has a 4-separation (Gj,G,;) such that
V(GI NGy ={t, ty, t3, 8}, WC G|, and G, + t;C G,. By the choice of (G, G,),
IV(G))! = 5. This implies that w; = ¢, for i € [4] and, hence, t;t, € E(H), a contradiction.

We may assume that H has a path from t; to B, U P, and internally disjoint from
P U B, UF. For, suppose not. Then, by planarity, there exist a, b € V(w,Fw; — {w;, wy})
(not necessarily distinct) such that w,, a, b, w; occur on F in clockwise order and all paths
in H from t; to B U P, U (w,Fw, — aFb) must intersect aFb first. We choose a, b so that
aFb is minimal. Since Ny(w) N V(wFw; — {w;, wy}) = @, H has a separation (H,, H,)
such that V(H, n H,) ={a, b, s}, aFb + t; C H;, and bFa + {t;, t,, t;, t,} C H,. Thus
V(H,) = {a, b, t;} as G is 4-connected. Now, by the existence of R, (i) holds with s := .

Case 1. H has paths from ¢; to both B, and P, and internally disjoint from B U P, U F.
Thent,, t, € S as otherwise we may reroute B, or P, to t;; and the new path, P, and B, and
P, or B show that W is (V(H n L), S)-extendable. So S = {,, t,, ts}. Let v € V(G N Gy)\ S.

We further choose B, P, so that, subject to the minimality of wyFw,, the subgraph K of H
contained in the closed region bounded by (B — w) U (P, — w) U t,Dt; U w,Fw, is maximal.
Then, every vertex in V(B)\{w,w,, t;} is cofacial with some vertex in V(w,Fw, — w,)
UV(P, — w); and every vertex in V(B)\{w,w,, t,} is cofacial with some vertex in
V(w,Fwy — wy) U V(B — w). Let T == {x € V(B U wyFw,)\{t;, w, wy} : xis cofacial with,}
and T} == {x € V(P, U wFw)\{,, w, w} : xis cofacial witht,}. Note thatt, ¢ T, and ¢, & T
by the existence of the path R.

We may assume that T, = @ or T, = @. For otherwise, suppose I, # @ and T, # @.
Then let a € T, and b € T,. Now, by the existence of the path R, the vertices wy, a, b, w;
occur on F in clockwise order. Since N;(w)n V(wFw, — {w;,w,}) = @, H has a
separation (H, H,) such that V(H, nH,)={t,t,a,b}, SCV(H), and
{w} U (V(H n L)\S) C V(H,); hence, we have (iii) with 5, = ¢, and s, = t,.

We may also assume that if L — ¢, has disjoint paths R;, R, from £, ¢, to &, v,
respectively, then T, # @; for, otherwise, K — t, contains a path P from wy to t; and
internally disjoint from wyFw, U B, and the paths B, B, U R,, B U R;, P U ww), show that
W is V(G, n G,)-extendable in G,. Similarly, we may assume that if L — ¢, has disjoint
paths Q,, Q, from £, £, to v, t;, respectively, then T, # @.

Hence, since I, = @ or T, = &, R,, R; do not exist or Q,, Q; do not exist.

Subcase 1.1. Q,, Q; or R,, R, exist.

Without loss of generality, assume that R,, R; exist, and Q,, Q; do not exist. Then
T, # @ and T, = @. Since Q,, Q; do not exist, v and t,Dt, are cofacial in G,. (For,
otherwise, L has a 2-separation (L;,L,) with t, € V(L, n L), {t,, t;} € V(L;), and
{t;,, v} C V(L,). Now (H U L, L, U L U G,) is a 4-separation in G, contradicting the choice
of (G,, G,)). Since T, = @, there exists a path P in K — ¢, from w; to t; and internally
disjoint from w,Fw, U B,. We choose P so that the subgraph K’ of K in the closed region
bounded by B U P U t;Dt; is maximal.

We may assume that there exists a vertex t € V(t,Dt, — t;) N V(P U (w,Fw, — w,)).
For, suppose not. Then let P; be a path in P, U t,Dt, from w, to ¢;; now B, P,, P U ww,, and
P; U ww, show that W is (V(H n L), S)-extendable.

Suppose t € V(P). Choose ¢ so that t,Dt is maximal. Then note that t,Dt = t,Bt (by the
maximality of K) and, for any vertex t* € V(t,Bt), t* & T, to avoid the 3-cut {t*, t,, v} in G.
Thus, since T, # @, it follows from the maximality of K’ that ¢ is cofacial with some vertex
t'" € V(wFw; — w,). Choose t’ so that t'Fw, is maximal. Now ¢, # wy,; otherwise, G has a
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4-separation (G;, G,) such that V(G/ n G;) = {t,t', t,,v}, G| C G, — t5, G, + t; C G,, and
IV(G))! > 6, contradicting the choice of (G,, G,). Now, since t, t' are cofacial and t* ¢ T,
for any vertex t* € V(t,Pt), it follows from planarity that T, C V(w,Ft’ — wy), and we
choose u, € T, with w,Fu, maximal. Thus G, has a 5-separation (H’,L’) such that
V(H' nL) ={t',t,v, 1, u} is independent in H’', {w, w,, ws, wy} C V(H")\V(L’), and
L + {t;, t} C L'. Note thatIV(H' n L") N V(G, N G,)I < ISI(since ¢ # t;). So by the choice
of (H, L), H' contains no V(H' n L")-good wheel. Hence by Lemma 2.2, (H’, V(H' N L))
must be the 9-vertex graph in Figure 1. However, this is impossible as ww, ¢ E(H’) but
wy is the unique neighbor of u, in H" — L'

Thus, t € V(w,Fw,)\{w,, w,} for all choices of t. Choose ¢ so that wFt is minimal.
Now, V(B n t;Dt) = {t;} and, by the maximality of K, each vertex of B is cofacial with
some vertex in V(w,Ft — w,).

Suppose there exists u; € V(B — w;) N T,. Then there exists u; € V(w,Ft — w;) such
that u; and u, are cofacial. Choose such u,, u; that u,Bt; and u,Ft are minimal. Suppose
there exists w’ € N;(w) N V(u,Ft — {u], t}). Then since G is 4-connected, it follows from
the choice of u;, u; that H has a path P/ from w’ to ¢, and internally disjoint from F U P.
Now P/ Uww’, B, U R,, B U R;, P U ww, show that W is V(G n G,)-extendable. So we
may assume Ny;(w) N V(u{Ft — {u{, t}) = @. Then G, has a 5-separation (H’, L’) such
that V(H' N L') = {t, v, t,, uy, uy} is independent in H’, {w, w;, w,, w;} C V(H")\V(L"),
and L + {t;, t;} C L’. Note that ww,, wyw; & E(H"); so (H', V(H' n L’)) cannot be any
graph in Figure 1. Thus, by Lemma 2.2, H has a V(H' n L’)-good wheel. Hence, (H’, L")
contradicts the choice of (H, L) as IV(H' n L") n V(G, N G)I < IS

Thus, we may assume V(B — w;) N T; = @. So there exists u; € V(w,Fw; — w,) N T,.
Choose u, so that uFw, is minimal.

If t, =w, then G has a 4-separation (G|, G,) such that V(G/ n G;) = {t, v, wy, w},
G/ C G —t, G, C G,, and IV(G))I > 6; which contradicts the choice of (G, G,). So
t, #w,. Then G, has a 5-separation (H’,L’) such that V(H' nL') = {t,v, t,, u;, w} is
independent in H', {w,, wy, w}} C V(H")\V(L'), and L + {t;, ts} C L’. Now H’ has no
V(H' n L')-good wheel; otherwise, (H'’,L’) contradicts the choice of (H,L) as
IV(H' n L") n V(G n Gy < ISI. Hence, by Lemma 2.2, (H', V(H' n L’) is the 8-vertex
or 9-vertex graph in Figure 1. Note that w is adjacent to all of w,, w;, wy. Thus,
(H', V(H' n L") must be the 8-vertex graph in Figure 1. However, this forces t, = w, and
t; = ws; so tt; € E(W) C E(H), a contradiction as V(H n L) is independent in H.

Subcase 1.2. Neither Q,, Q; nor R,, R; exist.

Then, by the choice of (G;, G,), we see that t,Dt, and v are cofacial, and that t;Dt, and v
are cofacial. Moreover, since G is 4-connected, {t,,t;,v} is not a cut in G. Hence,
V(L) = {t}, t,, t5, 14, ts, v} and, by the choice of (G,, G,), we have vt,, vt; € E(G).

Suppose there exist a € V(¢,Dt,) N V(w,Fw, — w,) and b € V(t;Dt,) N V(wsFuwy, — wy).
Then G has a 4-separation (G,G,) such that V(G| Nn G;)={a,b,v,w}
{wy, w3} € V(G)\V(G,), and G, + {t;, 14, ts} € G,. Now (Gj, G,) contradicts the choice of
(G, G,).

So by symmetry, we may assume that t;Dt, N (wsFw, — w;) = @. Thus, ;Dt, U By
contains a path P from w; to ¢, and internally disjoint from F. If H has a path Q from w,
to t5 and internally disjoint from P U w;Fw; U B then B, B, P U ww;, Q U wwy, show that
W is (V(H n L), S)-extendable. So assume that Q does not exist. Then there exist
x€V(P)UV(wFw, —w,) and y € V(B) U V(w,Fw, —w,) such that x and y are
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cofacial. By the choice of P and planarity of H, x € V(¢;,Dt,) n V(P, — wy). Choose x to
minimize xDt,.

First, suppose t,Dt, N (W, Fw, — w,) # @ and y € V(w,Fw; — wy) for all choices of y.
Choose a € V(;Dt,) N V(w,Fw, — w,) such that w,Fa is minimal, and choose x,y so
that yFw, is minimal. Then G, has a 5-separation (H’,L’) such that
V(H' nL')={a,v,x,y,w} is independent in H’', {w,, ws,w} C V(H)\V(L'), and
L+{t,t,t}CL. Since IVH' NnL)NnV(G, N Gy) <ISl, we see that H' has no
V(H' n L’)-good wheel. Hence, by Lemma 2.2, (H',V(H' nL")) is the 8-vertex or
9-vertex graph in Figure 1. Since w is adjacent to all of w,, w;, w,, we see that|V(H’)l = 8
which forces t, =w, and t; = w;. Hence, t,t; € E(W) C E(H), a contradiction as
V(H n L) is independent in H.

Now suppose t,Dt, N (w,Fw, — w,) # @ and y € V(B — w,) for some choice of y.
Choose such y so that yBt; is minimal; so K has a path P, from y to 5 and internally
disjoint from B U P,. Leta € V(t,Dt,) N V(w,Fw, — w,) such that w;Fa is minimal. Note
that y ¢ V(¢,Dt,) (to avoid the 3-cut {v, x, ¥} in G). So y is not cofacial with P, — w, and,
by the maximality of K, there exists ' € V(w,Fa — w,) such that y and y’ are cofacial.
We choose )’ so that y’Fa is minimal. If there exists w’ € N;(w) N V(y'Fa — {y’, a}) then
by the minimality of yB¢, and y’Fa and by the 4-connectedness of G, H has a path Z from
w’ to t; and internally disjoint from F U P; now Z U ww’, B, B,, wBy U P, show that W is
(V(H n L), S)-extendable. Hence, we may assume N;(w) N V(y'Fa) = @. So G, has a
5-separation (H’,L’) such that V(H' nL’)={a,v,x,y,y’} is independent in H’,
{w, w, wy, wy, wy} C V(H)\V(L'), and L + {t}, 4, &5} € L'. By Lemma 2.2, H' contains a
V(H' n L')-good wheel. Now (H’,L’) contradicts the choice of (H,L), as
IWVH' NnL) N V(G NGl < ISL.

Hence, we may assume that t,Dt, N (w;Fw, — w,) = @. Then t,Dt, U P, has a path Q
from w, to f; and internally disjoint from F. Similar to the argument for showing the
existence of x and y above, we may assume that there exist p € V(¢,Dt,) N V(B — w,)
and q € V(B) U V(wFw; — w,) such that p and q are cofacial.

Note that x and p are not cofacial in G;; as otherwise {x, p, v} would be a 3-cut in G.
Thus, wy, y, g, w; occur on F in clockwise order, or ¢ € V(wyPx) and p € V(w,By), or
x € V(wP,q) and y € V(w,Bp). In the later two cases, we see that {x, y, v} or {p, g, v} is a
3-cut in G, a contradiction. Thus, wy, ¥, ¢, w; occur on F in clockwise order.

So G, has a 5-separation (H', L’) such that V(H' n L") = {p, v, x,, q} is independent
in H', {w, wy, w,, ws, w,} € V(H')\V(L'), and L + {t,, t,, ts} C L'. By Lemma 2.2, H' has a
V(H' n L')-good wheel. If {x,p}+#{t,t,} then IVH nL)n V(G n Gy <ISl; and
hence (H’, L") contradicts the choice of (H, L). So x = t, and p = t;; hence (iii) holds.

Case 2. Case 1 does not occur.

We choose B, P,, subject to the minimality of w,Fw,, to maximize the subgraph K of H
contained in the closed region bounded by (F, — w) U (B, — w) U t,Dt; U w,Fw;,.

Without loss of generality, we may assume that G, has no path from ¢ to P, and
internally disjoint from B, U B U wyFw,, but G, has a path P; from ¢, to B, and internally
disjoint from P, U B U wyFw;. Then t,Dt; N (W,Fw,; — w,) U B) # @. Moreover, we may
assume f; € S; as otherwise we could reroute F to end at f; which, along with B, B, B,
shows that W is (V(H N L), S)-extendable.

Subcase 2.1. t,Dt; N (WFw;, — wy) = @ and t,Dt, N (W, Fw, — w,) = @.

Then there exists a € V(¢,Dt;) N V(B — w,), and we choose such a with t,Ba minimal.
Note t; # a by the existence of R. Let b € V(t;Dt,) N V(B — w;) with t;Bb maximal. By
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the maximality of K, ;Db = t,Bb. If a € V(¢,Bb) then G has a 4-separation (G;, G,) such
that V(G/ N G,) ={a, t,, t3, 44}, {w,w;} C V(G)\V(G,), and G, + {t;, 5} € G,, which
contradicts the choice of (G, G,).

Hence, a € V(bRw))\{b, w;}. Let B, :== wRa U aDts. We consider the paths B, B, P, P..
By the minimality of t;Ra, we see that t;Ra is a path from ¢, to B, and internally disjoint
from P, U P, U F. Since t,Dt, n (w,Fw, — w,) = @, t,Dt, contains a path from ¢, to P, and
internally disjoint from P, U B, U F. Hence, we are back to Case 1 (with t, t;, t,, t5, , as
ty, ts, 1y, by, b5, TESpECtively).

Subcase 2.2. Either t,Dt; N (WFw, — wy) # @ or t;,Dt, N (W, Fw, — w,) # @.

First, we may assume that £,Dt; N (wFw;, — wy) # @. For, if not, then there exists
ae V(@B —-w)NnV(Dt;) and choose a so that fFa is minimal. Moreover,
t,Dt, N (W, Fw, —w,) # @; so H has no path from ¢, to P, and internally disjoint
from F. Note that t;, # a by the existence of R. Let R := wRBa U aDt;. Now consider
the paths P, B, B, P,. We see that t,Fa is a path from ¢, to P, and internally disjoint
from P, U B, U F. Hence, since t,Dt, N (w,Fw, — w,) # @, we could take the mirror
image of G, and view t,, t;, ts, t,, t; @S &y, Ls, 1, L5, 5, Tespectively; and, thus, may assume
t,Dt; N (wFw; — wy) # @.

Then t,Dt, N (w,Fw, — w,) = @, and we let a € V(t,Dt;) N V(w,Fw, — wy,) with wyFa
minimal. Let ¢t € V(t,Dt, N B) with ;Dt maximal. Then ¢ # w; and, by the maximality of
K, ,Dt = t,Bt.

Note that t,Dt; N t,Dt, = @. For, otherwise, let p € V(t,Dt;) n V(t,Dt,). Then G has a
4-separation (G|, G,) with V(G| N G,) =1{p,tyt5t}, w,w, € V(G — G;), and
G, + {t;, ts} € G;. Clearly, (G|, G,) contradicts the choice of (G;, G,).

If there exist c € V(t,Dt) and b € V(aFw; — w;) such that b and c are cofacial, then
(iv) holds. So assume such b, ¢ do not exist. Then K contains a path P from w;, to t; and
internally disjoint from F U t,Dt,. By the existence of a path in P, from ¢, to P and the
path t,Dt,, we are back to Case 1 (with &, t;, t,, t5, t, playing the roles of ¢, t, t;, t5, L,
respectively).

Subcase 2.3. t,Dt; N (WFw; — wy) # @ and t;Dt, N (W, Fw, — w,) # @.

Leta € V(t,Dt;) N V(wFw, — wy) and b € V(t,Dt,) N V(w,Fw, — w,), and we choose
a,b to minimize aFb. Consider the separation (H;,H,) in G, such that
V(H NnH,) ={a,bw},, V(H)N{t:ie[5]} ={t,t} CS, and bFa + {t,, t;, t,} C H,.

(1) INg;(w) n V(aFb)l > 2.

For, suppose IN;(w) N V(aFb)l = 1. If w; ¢ {a, b} then we have (ii). Since in this proof of
(1) we do not make use of the minimality of w,Fw,, we may use the symmetry between ¢,
and t; and assume w; =b. Consider the 5-separation (H’,L’) in G; such that
V(H' nL") ={a,b,t,t,t,} is independent in H’, bFa + w C H', and L U H; C L'. By
the choice of (H,L), H' has no V(H' nL’)-good wheel. So by Lemma 2.2,
(H',V(H' n L") is one of the graphs in Figure 1.

Suppose w; #t;. Then wy,#¢t to avoid the 4-separation (Gj,G;) with
V(GiNGy) =1{b t)t, W}, wWw}CV(G —G;), and G,+{t}CG,. So
wwww C H — L', and (H',V(H' N L')) must be the 9-vertex graph in Figure I.
However, this is impossible, as w,b ¢ E(H') and one of the following holds: wy is the
unique neighbor of a in H' — L', or w is the unique neighbor of b in H" — L’.
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Therefore, w; = t;. Then t, # w,; for, otherwise, w,Fw; =t,t;€ E(H) as G is
4-connected, a contradiction. Similarly, ¢, #w,. Thus, w,ww, C H' — L'. So by
Lemma 2.2, (H', V(H' n L')) must be the 8-vertex or 9-vertex graph in Figure 1. But
this is not possible, as w,b ¢ E(H’) and one of the following holds: w), is the unique
neighbor of a in H' — L', or w is the unique neighbor of b in H’ — L'.

We may assume t; # w;; since otherwise b = t; by the minimality of aFb, and we
would have IN;(w) N V(aFb)! = 1, contradicting (1). We may also assume

(2) Ny(w) N V(aFb) # {a, b}.

For, otherwise, a,b € N;(w) (so w; = a) and G has a 4-separation (G{, G,) such that
V(G n Gy ={a,b, t,,t}, aFb C G/, and G, U bFa + w C G,. Hence, by the choice of
(G, Gy, V(G £ 5.

IfIV(G))l = 4 then B = wat,; so bt; € E(G) (by the minimality of aFb) and at; € E(G)
(by the path R), and, hence, wat, wbt, and two of B, B, B, show that W is (V(H n L), S)-
extendable.

Hence, we may assume IV(G)l=5 and let u€ V(G)\V(Gy). Then
N;(uw)={a,b,t;,t}. Since a=w;, u ¢ V(W) and P, =waut;. If tsa € E(G) then
wats, wbut,, and two of B, B, P, show that W is (V(H n L), S)-extendable. If t;b € E(G)
then waut,, wbt;, and two of B, B, P, show that W is (V(H n L), S)-extendable. So
assume t@a,tb € E(G). Then G has a 4-separation (G;,Gy) such that
V(G n Gy) = {ty, t5, t,, u}, {a,b,w}C V(G\V(G;)), and G, + {t,, s} C G;. Hence,
(G, Gy) contradicts the choice of (G, G,).

Now consider the 5-separation (H’,L’) in G, with V(H' n L) ={a,b,w,t,t},
bFa C L', and aFb + {t,t} C H'. Note that IV(H'nL)N V(G NG, <IS and
H' C H but H' # H; so by the choice of (H,L), H' has no V(H' n L’)-good wheel.
Thus, since N;(w) N V(aFb) # {a, b}, (H', V(H' n L")) is one of the graphs in Figure 1.
Recall that tt; & E(H) as V(H n L) is independent in H.

First, suppose IV(H')l = 6 and letu € V(H')\V(L’). Then by (1) and (2), aFb = aub
and u € Ny(w). By the minimality of aFb, t;b € E(G). If u = w, then tu € E(G)
(because of R) and wb € E(G); so wut;, wbt; and two of B, B, B, show that W is
(V(H n L), S)-extendable. Hence, we may assume a = w,;. Then at, at; € E(G)
(because of B, and R) and, hence, ut, € E(G) (because the degree of u, is at least 4
as G is 4-connected); so wats, wut; and two of B, B, P, show that W is (V(H n L), S)-
extendable.

Now assume |V (H")l = 7. First, suppose |V (aFb)l > 4 and let aFb = auvb. If P, = wat,
then G has a separation (GJ, G,) such that V(G| n G,) = {a, t;, b, w}, {u, v} C V(G| — Gy),
and G, + t; C G;; and (G|, G,) contradicts the choice of (G}, G,). If P, = wvt; then
wa, wu & E(H); so ut,, ut; € E(H), contradicting the existence of the path P:. So
P, = wut, then tu € E(H) (by P;) and ww, vt; € E(H) (by 4-connectedness of G); so
wuts, wot; and two of B, B, P, show that W is (V(H n L), S)-extendable. So we may
assume |V (aFb)l = 3 and let aFb = aub and v € V(H")\(V(L") U {u}). Then wu € E(G)
by (1) and (2). If t;u € E(G) then N;(v) = {b, t;, t;, u} and t,a € E(G) (by the minimality
of aFb); now wats, wuvt; (when wa € E(G)) or wuts, wbvt; (when wb € E(G)), and two of
P, B, P, show that W is (V(H n L), S)-extendable. So assume tu ¢ E(G). By the same
argument, we may assume tju ¢ E(G). Then t, tv € E(G). Note that t;,b € E(G) or
ta € E(G); otherwise, (H — {t, 5}, G, U L U tvts) is a 4-separation in G contradicting the
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choice of (G, G,). So by symmetry, we may assume t.a € E(G). If wa € E(G)
then wat;, wuvt;, and two of P, B, B, show that W is (V(H n L), S)-extendable. So
assume wa ¢ W(G); hence, wb € E(G) by (1). If ;b € E(G) then wbt,, wuvts, and two
of B, B, P, show that W is (V(H n L), S)-extendable. So assume ;b ¢ E(G). Now G; has
a S-separation (H*,L*) such that H* = (H — t;) — t and L* = L U tjut;. Note that
V(H* n L¥) is independent in H* and W is V(H* n L*)-good. So (H*, L*) contradicts the
choice of (H, L) asIV(H* n L*) n V(G, N G,)I < ISI.

Suppose I[V(H")l = 8 and let H' — L’ = xyz. Recall that wy, a, w;, b, w, occur on F in
clockwise order. Note that exactly one vertex in V(H' N L’) is adjacent to all of {x, y, z},
and call that vertex t. If t = w then we may let aFb = axyzb; we see that wxt, wzt; and
two of B, B, B, show that W is (V(H n L), S)-extendable. If t = t; then we may let
aFb = axyb; we see that wxt;, wyzt;, and two of B, B, B, show that W is (V(H n L), S)-
extendable. Similarly, if t = t; then W is (V(H n L), S)-extendable. Now assume ¢ = a;
the argument for ¢t = b is symmetric. Then we may let aFb = axb. If wa € E(H) then
wagzts, wxyt;, and two of B, B, P, show that W is (V(H n L), S)-extendable. So assume
wa & E(H). Then wb € E(H) by (1). If ;b € E(H) then wxyts, wbt;, and two of B, B, P,
show that W is (V(H n L), S)-extendable. So t;b ¢ E(H). Let H* = (H — t5) — t,z and
L* = L U tzts. Note that V(H* N L*) is independent in H* and W is V(H* n L*)-good. So
(H*, L*) contradicts the choice of (H, L) as [V(H* n L*) n V(G, n G,)I < ISI.

Finally, assume IV (H')l = 9. Let V(H' — L") = {u, x, y, 2} such that xz ¢ E(H), and u
is the unique neighbor of some vertex t € V(H' nL’). If t =w then we see that
aFb = aub and let ax, zb € E(H); now waxts, wuyt, (when wa € E(H)) or wuxts, whzt;
(when wb € E(H)), and two of B, B, P, show that W is (V(H n L), S)-extendable. If t = a
then we may let aFb = auxb; then wuts, wxyzt;, and two of B, B, P, show that W is
(V(H n L), S)-extendable. If t = b then may let aFb = axub; then wxyt;, wut,, and two of
P, B, B, show that W is (V(H n L), S)-extendable. If t = t; then we may let aFb = axyb;
now wxuts, wyzt;, and two of B, B, P, show that W is (V(H n L), S)-extendable. If t = ¢,
then we may let aFb = ayxb; now wyzt,, wxut,, and two of B, B, P, show that W is
(V(H n L), S)-extendable. O

Next, we eliminate the possibility (iv) of Lemma 3.2 by working with more than one wheel.

Lemma 3.2. With the same assumptions of Lemma 3.1, H has a (V(HnN L), S)-
extendable wheel, or G, has a V(G, N G,)-extendable wheel, or (i) or (ii) or (iii) of
Lemma 3.1 holds for any w € V(H — L) and for any V(H N L)-good wheel W in H with
center w.

Proof. Suppose (iv) of Lemma 3.1 holds for some V(H n L)-good wheel W with center
w. Then there exist a, b € V(W — w)\N;(w), ¢ € V(H)\V(W), and separation (H,, H,)
in H such that V(H, n H,) = {a, b, c}, VIH)NVHNL) =2, VH)NV(HNL) CS,
and (N;(w) U {w}) n V(H,) = @. Let G, be drawn in a closed disc in the plane with no
edge crossings such that V(G, n G,) is contained in the boundary of that disc. Let
V(Hn L) ={t; : i € [5]} and we may assume that (H, t,, t,, t5, t,, ts) is planar. Recall from
the assumptions in Lemma 3.1 that (H,L) is chosen to minimize ISl, where
S:=V(G,NnG)NV(HNL). Without loss of generality, we may assume that
VIH)NVHNL) ={t,t}. Sot, t; € S.
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By Lemma 2.3, W is V(H N L)-extendable in H. So there are four paths P, i € [4], in
H from w to {t; : i € [5]}, such that V(B n P) = {w} fori # j,IV(B) n Wl =2 fori € [4],
WE)N{t;:j €[5} =1 for i € [4]. Without loss of generality, we may assume that
t; € V(R) for i € [4]. Note that P, B, P, are disjoint from H,, and we may assume by
planarity that B n H, = cBt,. We further choose a, b, c so that aFb and cBt, are minimal.

Now t; ¢ S. For, suppose t; € S. Then, t, is cofacial with ¢, or t;. If ¢; is cofacial with ¢;
then G has a 4-separation (GJ, G;) such that V(G; N G;) = {t;, t,, 5, ts}, W C G/, and
G, + t, € G,; which contradicts the choice of (G, G,). We derive a similar contradiction if
t; is cofacial with ¢, using the cut {t, t;, t,, t5}.

Let F = W — w and let D denote the outer walk of H. We choose B, P, B, B, so that
the following are satisfied in the order listed: w,Fw, is minimal, w;Fw, is minimal, and
the subgraph K of H contained inside the region bounded by P, U t,Dt; U B is minimal.
Then every vertex of P, is cofacial with a vertex in w,Fa — wy, every vertex of B is cofacial
with a vertex in bFw; — w;, and

(1) N;(w) n V(w;Fw,) = {wy, w,, wy, wy}.

For, suppose (1) fails and let w" € Ny(w) N V(w;Fw,)\{w;, w,, ws, wy}. First, assume
w' € V(wFw)\{w;, w}. If w" € V(wyFa — w,) then since G is 4-connected, K has a path
P from w’ to P, and internally disjoint from P, U F. Hence, we can replace P, by a path in
Pu (B — {w,w}) from w to t,, contradicting the minimality of K. We get the same
contradiction if w’ € V(bFw; — w,).

Now assume w’ € V(w;Fwy)\ {w;, wy}. Consider the subgraph J of H contained in the
closed region bounded by P, U t;Dt, U P,. By the minimality of w;Fw,, J has no path from
w’ to t; and internally disjoint from F U P,. Thus, there exist x € V(w,Fw’ — w’) and
yeVwFw, —w)UV() such that x,y are cofacial. Since G is 4-connected,
y € V(B, — wy). Note that y is cofacial with some vertex on w,Fa — w), say z. Then G
has a 4-separation (Gj, G;) such that V(G| n G;) = {w,x,y,z}, wFw, C G/ — G;, and
G, + {t;, t,, 3, ts} C G;. However, (G, G,) contradicts the choice of (G, G,).

Similarly, if w" € V(w,Fw,)\{w;, w,} then we derive a contradiction.

(2) w; # ¢ fori € {2, 3, 4}.

First, w, # t;. For, suppose w; = t;. Then w, # t, as, otherwise, since G is 4-connected,
wyFw; = t,t; € E(W) C E(H), a contradiction. Now by (1), G, has a 5-separation (H’, L")
such that V(H' n L") = {b, c, t,, w;, W} is independent in H’, ww,w,w C H' — L', and
L+ {t;,t,,t} C L'. By the choice of (H, L), H' has no V(H' n L’)-good wheel. So by
Lemma 2.2,(H', V(H' n L)) is the 9-vertex graph in Figure 1. This is not possible, as w is
the unique neighbor of w, in H' — L’ and wb ¢ E(H').

Next, wy # t,. For, suppose wy, = t,. Then by (1), G, has a 5-separation (H', L") such
that V(H' nL') ={b,c, t, t;,;w,} is independent in H’, www;C H' — L', and
L + {t;,t;} C L'. By the choice of (H,L), H' has no V(H' n L')-good wheel. So by
Lemma 2.2, (H',V(H' nL")) is the 8-vertex or 9-vertex graph in Figure 1. Now
IV(H")I = 9; as otherwise w, = ¢, is adjacent to all vertices in H' — L', which implies
bw € E(H'), a contradiction. Let v € V(H' — L")\ {w, w;, ws}. Since wyw; & E(H), w and
v both have degree 3 in H’ — L’. Therefore, v = w, is the unique neighbor of ¢, in
H' — L’, which implies wb € E(H), a contradiction.
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Now w, # t,. For, suppose w, = t,. Then G, has a 5-separation (H’,L’) such that
V(H' NnL") ={a,w;,w,, t5,t,} is independent in H’, wwwwCH — L', and
L + {t;,t;} C L'. By the choice of (H,L), H' has no V(H' n L')-good wheel. So by
Lemma 2.2, (H', V(H' n L")) is the 9-vertex graph in Figure 1. Since w is the unique
neighbor of w; in H' — L', wa € E(H’), a contradiction.

(3) a#b.

For, if a = b then G, has a 5-separation (H’, L") such that V(H' N L") = {a, ¢, t,, t5, ,} is
independent in H', IV(H' — L")l > 5 (by (2)), and L + {t;, t;} C L’. So by Lemma 2.2, H’
has a V(H' n L’)-good wheel. Now (H',L’) contradicts the choice of (H,L), as
IWVH' NnL) N V(G NGl < ISL.

We may assume (W, Fw, —w,) N Dt, =@. For, suppose not. Let b' €V
(w,Fw, — w,) N V(¢,Dt,) with b’Fw, minimal. If b’ # w, then, by (1), (ii) of Lemma 3.1
holds, with {t,, t;} and {a, b} as {s, s,} and {a, b}, respectively, in (ii) of Lemma 3.1. So
b’ =w,. Then G has a 4-separation (Gj,G;) such that V(G| n G,) ={a, t;, t;, W},
be V(G -Gy, and G, + {t;:i€[5]} € G,. Now V(G)\V(G,) = {b} as otherwise
(G{, G;) contradicts the choice of (G,, G,). But then we see that Ny(t;) C {a, b}; so (i) of
Lemma 3.1 holds.

We wish to consider the wheel W, consisting of those vertices and edges of H cofacial
with w,.

(4) w, and t; are not cofacial in H, and w,, t; are not cofacial in H.

First, suppose w, and t; are cofacial. Then G, has a 5-separation (H’,L’) such that
V(H' NnL") ={a,w,w,t;, t,} is independent in H’, wwww C H' — L', and
L + {t;, t,, ts} C L'. By the choice of (H,L), H' has no V(H' n L')-good wheel. So by
Lemma 2.2, (H', V(H' n L")) is the 9-vertex graph in Figure 1. This is impossible, as w is
the unique neighbor of w, in H' — L' and wa ¢ E(H’).

Now assume that w,, t; are cofacial. Then c, w, are cofacial as ¢ € V(t,Dt,). So G has a
4-separation (G, G;) such that V(G| n G;) ={b,c,w,,w}, w, € V(G| — G;), and
G, + {t;: i € [5]} C G,. By the choice of (G,, G,), IV(G)l = 5.

Suppose ¢ =t. Then G has a 4-separation (G/,G;) such that V(G n G;) =
fa,w, t,t}, be V(G — G)), and G, + {t,, t;, 4,} C G). By the choice of (G, G,),
IV(G/)l = 5; so Ny(b) = {a, w,, t;, t} and, hence, Ny(t;) = {a, b} and (i) of Lemma 3.1
holds.

Therefore, we may assume c # t;. Now consider the 5-separation (H’, L’) in G, such
that V(H' n L’) = {a, t5, t;, w,, w} is independent in H’, bw,c C H' — L’ (by (3)), and
L+ {t,, t;,4,} C L'. By the choice of (H,L), H' has no V(H' n L')-good wheel. So by
Lemma 2.2, (H',V(H' n L") is the 8-vertex or 9-vertex graph in Figure 1. This is
impossible as w; is the unique neighbor of w in H' — L’ and w,a &€ E(H").

Suppose w,t, € E(H) or w, and ¢, are not cofacial. Then W, is V(H n L)-good. By
Lemma 3.1, we may assume that (i) or (ii) or (iii) or (iv) of Lemma 3.1 holds for W, (with
t, as s). By the separation (H,, H,) we see that only (i) of Lemma 3.1 can hold for W,.
Hence, there exists 4, t§ € V(W) such that Ny(t,) = {t5, t4} and Ny(w,) N V(t5F,t%) = @,
where F, = W, — w, and t}, t,, t4 occur on F, in clockwise order.

We define t; = t§ = t, when w,t, ¢ E(H) and w, and ¢, are cofacial. Then
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(5) w; and t} are not cofacial in H.

For, suppose they are. Then, since w,t}, & E(H), it follows from (1) that, to avoid the cut
fw;, w,, t4} in G, wy; and t§ must be cofacial in G, and w,Fw, = w,w,. Thus, G, has a
5-separation (H',L’) such that V(H' N L") ={a, w4 t;, t,} is independent in H’,
fw,w,,w,,w} CV(H' — L"), and L + {t;,t;} C L. By the choice of (H,L), H' has no
V(H' N L")-good wheel. So by Lemma 2.2, (H',V(H' N L")) is the 9-vertex graph in
Figure 1. But this is impossible as w is the unique neighbor of w, in H' — L' and
wa & E(H').

Consider the 5-separation (H',L’) in G; such that V(H' n L") = {b, c, t5, w,, w} is
independent in H', w; € V(H' — L’),and L + {t; : i € [5]} C L’. By the choice of (H, L),
H’ has no V(H' n L')-good wheel. So by Lemma 2.2, (H’, V(H' n L)) is one of the
graphs in Figure 1. By (5), IV(H")l > 7.

(6) IfIV(H')I > 8 then bFw, = bw,w,; H, has a path Q from b to t; and internally disjoint
from aFb U cBt;; and B U t;Dt, U (w;Fwy, — wy) has a path R from w; to t,.

Note that w, is the unique neighbor of w in H' — L'; so if [V(H")l > 8 then bFw, = bw,w,.
Also note that, by the choice of {b, c}, H; has a path Q from b to t; and internally disjoint
from aFb U cBt;.

Moreover, (P, — t;) U t;Dt, U (w;Fwy, — wy) has a path R from wj to ¢,. For, otherwise,
wy, € V(t,Dt,). Hence H has a separation (H”, L") such that V(H” n L") = {b, c, t,, t;, wmy}
is independent in H”, {w,w;, wy, wy} C V(H” — L"), and L'+ {t;,t} C L". Since
IWVH" nL") n V(G N Gyl < 1ISl, we see from the choice of (H,L) that H” has no
V(H" n L")-good wheel. Then (H”,V(H” N L") is the 9-vertex graph in Figure 1.
However, this is not possible, as w; is the unique neighbor of b in H” — L”
and ww, ¢ E(G).

(7) We may assume I[V(H')l = 7.

First, suppose I[V(H’)l = 9. Note that w has a unique neighbor in H' — L’, namely w;.
Hence, H' — {w,wy,c, t}} has a path bvy,y,w, such that v, € Ny(w;) for i e [3],
v, ¥, € Ny(c), and v,, v; € Ny(t5). Since t; ¢ S, we see that W], the wheel consisting of
vertices and edges of H cofacial with w;, is (V(H n L), S)-extendable, using the paths
w;b U Q, wyve U cBt;, w,tit,, and wyww,; U R (where Q and R are from (6)).

Now suppose |V(H')l =8. Then H' — {w,wy,c, t}} has a path bvyw, such that
v; € Ny(wy), H' — L' is a path wvv,, and either v, € N;(b) N Ny(c) and vy, v, € Ng(t3), or
v, € N;(w,) N Ny(t5) and vy, v, € Ny(c). Again, since t; ¢ S and because of Q and R, we
see that W] is (V(H n L), S)-extendable.

Thus, let V(H' — L’) = {w;, v}. Suppose v ¢ V(w,Pc). Then N;(v) = {c, t5, w,, w,}.
Since G is 4-connected, it follows from the choice of {b, c} that H, has a path Q" from b to
ts internally disjoint from aFb U W, U cBt,. Now, since t; ¢ S and because of Q" and R, we
see that W] is (V(H n L), S)-extendable.

Hence, we may assume v € V(w,Pc). Then vw, € E(H), since w,, t} are not cofacial.
Note that t;v € E(H). If bv € E(H) then, since t, ¢ S and because of Q, R, we see that W]
is (V(H n L), S)-extendable. So bv ¢ E(H). If ct; € E(H) then let W, denote the wheel
consisting of vertices and edges of H cofacial with v; then by the choice of {b, c}, H, has a
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path Q' from b to t; internally disjoint from aFb U W, U cBt,, and, hence, since t; ¢ S and
because of R, W, is (V(H n L), S)-extendable. So assume ct; & E(H).

We may assume c # t;. For, if ¢ = t; then G has a 4-separation (G|, G,) such that
V(G n Gy) ={a,wy,c, t}, b€ V(G — G;), and G, + {t,, t;, t,} C G,. By the choice of
(G, G,), we see that IV(G))l = 5 and Ny(b) = {a, ts, t;, w;}, which implies that (i) of
Lemma 3.1 holds for W.

Then G; has a 5-separation (H”,L”) such that V(H" n L") ={a, t, t;, v, w;} is
independent in H”, {b,c} C V(H” — L"), and L + {t,,t;,t,} C L”. By the choice of
(H, L), H” has no V(H"” n L")-good wheel. So by Lemma 2.2, (H”, V(H” n L")) is one of
the graphs in Figure 1. Since b is the unique neighbor of w; in H” — L” and c is the
unique neighbor of v in H” — L”, IV(H")l = 7. If t;b € E(H) then Ny(t;) C {a, b} and
(i) of Lemma 3.1 holds. So assume tb ¢ E(H). Then Ni(b) ={a,ts c,w;} and
Ng(e) =1{b, t;,t5,v}. Thus, ((H—t) —te, L Utct;) is a S-separation in G; that
contradicts the choice of (H, L). O

We further eliminate possibilities (i) and (iii) of Lemma 3.1.

Lemma 3.3. With the same assumptions of Lemma 3.1, H has a (V(Hn L), S)-
extendable wheel, or G, has a V(G; N G,)-extendable wheel, or (ii) of Lemma 3.1 holds for
any w € V(H — L) and for any V(H n L)-good wheel W in H with center w.

Proof. By Lemma 3.2, we may assume that (i) or (iii) of Lemma 3.1 holds for some
V(H n L)-good wheel W. Let w be the center of W, and let F=W — w. Let
V(HN L) ={t, t,, t5, t,, ts}. We may assume that G, is drawn in a closed disc in the
plane with no edge crossings such that the vertices in V(G; N G,) occur on the boundary
of that disc. Further, we may assume that (H, t,, t,, t5, &, t5) is planar.

By Lemma 2.3, W is V(H n L)-extendable. So let B, B, B, B, be paths in H from w to
t, b, ty, by, respectively, such that V(BN Pj) ={w} for distinct i,j € [4], and
IV(R) N V(W) =2 fori € [4]. Let V(B) N V(F) = {w} fori € [4].

Since (i) or (iii) of Lemma 3.1 holds for W, we may assume that there exist
a,b € V(mFw,) and separation (H,, H,) in H, such that wj, a, b, w; occur on F in
clockwise order, N;(w) n V(aFb) =@, V(H,n H,) ={a, b, t;, ,}, aFb + t. C H;, and
bFa + {w, t,, t;} C H,. Moreover, t; € S; and t;, t, € S, or H, consists of the triangle abtsa
(or the edge ta = tsb) and two isolated vertices ¢, and ¢,.

We choose a, b so that aFb is minimal. We further choose B, P, B, P, to minimize
wyFw; and then w;Fw,. By the same argument in the proof of Lemma 3.2, we have

(1) New) N V(wsFw,) = {wy, wy, wy, wy}.

Note that w, #t, or w;+#t;. Since, otherwise, w,Fw; = t,t; € E(H) (as G is
4-connected), contradicting the fact that V(H n L) is independent in H. We claim that

(2) wy, t, are not cofacial in H and that w,, t; are not cofacial in H.
For, suppose otherwise and assume by symmetry that w, and ¢, are cofacial in H. Then

wy, # t,, to avoid the 4-separation (Gj, G,) in G such that V(G/ n G;) = {t,, t5, w,, wy},
fw,w,} C V(G — Gy) or {w,w;} C V(G| — G;), and G, + t; C G,.
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Suppose w; =t;. Then w,# ¢, and G has a 4-separation (G{,G,) such that
V(G| N Gy) = {wy, t,, wy, Wy}, fw,wy} C V(G — G,), and G, + t; C G;,. Now (G, G;)
contradicts the choice of (G, G,).

So wy # t;. Then G, has a 5-separation (H', L") such that V(H' n L") = {a, wy, t,, 5, t,}
is independent in H', wwywyw C H' — L', and L + {b, t;, t;} C L’. By the choice of (H, L),
H'’ does not contain any V(H' n L’)-good wheel. So by Lemma 2.2, (H', V(H' n L")) is
the 9-vertex graph in Figure 1. This is impossible because one of the following holds: w is
the unique neighbor of a in H" — L’ but wywy, ¢ E(H’), or w is the unique neighbor of w,
in H — L' and aw & E(H').

Thus, w; # t; (as t, t, are cofacial in H), w, # t, (as w;, w, are cofacial in H), w; # t;
(as wy, wy are cofacial in H), and wy, # t, (as t,, t; are cofacial in H). Moreover,

(3) a#b.

For, suppose a=b. Then G, has a 5-separation (H'’,L’) such that
V(H' NnL") =1{b, t},t,, t;, t,} is independent in H’, {w,w;, w, wy,w} C V(H' — L"),
L +t; CL'. Hence, by Lemma 2.2, H' has a V(H' n L")-good wheel. Now (H’,L’)
contradicts the choice of (H, L).

(4) t5is not cofacial in H with w; or w.

For, otherwise, assume by symmetry that w; and t; are cofacial. Then G has a 4-
separation (Gj, G;) such that V(G/nG,) ={a,t,t;, w}, beV(G —G,), and
w,Fa U G, C G,. Hence, by the choice of (G}, G,), IV(G)l = 5 and N;(b) = {a, t,, t;, w;}.
Therefore, we could have chosen a = b, contradicting (3) and the minimality of aFb.

(5) w,, t; are not cofacial in H and that w;, t, are not cofacial in H.

For, suppose this is false and assume by symmetry that w, and ¢, are cofacial in H. Then
G, has a 5-separation (H’, L’) such that V(H' n L’) = {a, wy, w,, t;, t,} is independent in
H', woww C H' — L', and L + {t;, t,, t;} C L'. By the choice of (H, L), H' does not
contain any V(H' n L')-good wheel. So (H', V(H' n L")) must be the 9-vertex graph in
Figure 1. However, this is not possible, because w is the unique neighbor of w, in H' — L’
and aw ¢ E(H’).

Suppose {t,, t;} C S. Then G has a separation (G/, G;) such that V(G/ n G;) = S U {t,}
or V(GiNnGy) =Su i}, HC G/, and G, + t, C G, or G, + t, C G,. However, (G/, G,)
contradicts the choice of (G, G,). Thus, we may assume by symmetry that

6) t, & S.

We will consider wheels W, (for i € [2]) consisting of the vertices and edges of H that
are cofacial with w,.

(7) H, has disjoint paths P, Q from w,, w; to t;, t,, respectively, and internally disjoint
from wyFa U bFw, U B; and H, has a path R from b to 5 and internally disjoint from
Wi + t,.
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First, suppose P, Q do not exist. Then there exist v; € V(B)\{t;, w;} and separation
(G, Gy) in G such that V(G/ n G;) = {w, w,, vy, w}, {w,wy} C V(G — G;), and
G, U L C G,. Now (Gj, G,) contradicts the choice of (G, G,).

Now assume that the path R does not exist. Then H, has a 2-cut {p, q} separating b
from t; such that p € V(W, — b) U {;} and q € V(aFb — b) U {t,}.

If p = t, then g = t, by the minimality of aFb. So G has a separation (G], G,) such that
V(G| N Gy) = {t, ty, ts, ty}, G| € G, — &5, and G, + t; C G,. Now (G, G,) contradicts the
choice of (G, G,).

Hence, p € V(W, — b). Then q ¢ V(aFb — b) to avoid the 3-cut {p, g, w;} in G. So
q =t,. Now G; has a 5-separation (H’,L’) such that V(H' N L") ={p, t;, t,, t5, t,} is
independent in H', {w, w;, wy, wy, wy} C V(H' — L’), and L + t; C L'. By Lemma 2.2, H’
has a V(H' n L")-good wheel. So (H’, L") contradicts the choice of (H, L).

(8) We may assume that w, and t; are not cofacial in H.

For, otherwise, G has a 4-separation (G, G,) such that V(G| n G,) = {b, t;, w,, w},
w; € V(G{ — G,), and G, + {t,, L5, t4, ts} C G,. Hence, V(G| — G,) = {w,} by the choice of
(G, G,). Since w; and t, are not cofacial in H, w,t; € E(H). Now the paths
wt;, R U wyb, P U ww,, Q U wyww, show that W] is (V(H n L), S)-extendable.

Then wyt, € E(H) and w, and t, are cofacial. For, otherwise, W, is a V(H N L)-good
wheel in H. So by Lemma 3.2, (i) or (ii) or (iii) of Lemma 3.1 occurs for W,. Note that
we W, and W, is disjoint from w;Fw; — {w;, wy}. Thus, there do not exist vertices
a,b € V(W, — w,) such that in H, {a, b, w} separates two vertices in {t,, t,, t;, t,, ts} from
the other three. So (ii) and (iii) of Lemma 3.1 do not occur for W,. Moreover, if (i) of
Lemma 3.1 occurs for W, then t, € S, contradicting (6).

Hence, G, has a 5-separation (H’,L’) such that V(H' n L") ={b, t;, t,, w,, w} is
independent in H', w; € V(H’ — L’), and L + {t;, t,, t;} C L’. By the choice of (H, L), H’
does not contain any V(H’ n L')-good wheel. Hence by Lemma 2.2, (H’, V(H' n L")) is
one of the graphs in Figure 1. Note that [V(H")l > 7 by (2). We may assume that

(9) IWH)I =7 and N;(t) = {t;, t), w,, w;} with t € V(H' — L")\ {w}.

First, we may assume |V(H')l = 7. For, suppose |[V(H’)| > 8. Then, since w, is the only
neighbor of w in H' — L', we see, by checking the 8-vertex and 9-vertex graph in Figure 1,
that bFw, = bw,w,, W] is defined, and P, can be chosen so that W, — w, intersects B — w
just once. So the paths wBt;,RUwb, PUww, QU www, show that W, is
(V(H n L), S)-extendable.

Now let t € V(H' — L")\{w}. We may assume N(t) = {t;, t,, w,, w }. This is clear if
B = ww,t;. So assume P, = ww;tt,. Then tw, € E(H’) by (2). If tb € E(H') then W is a
V(H n L)-good wheel, and B —w,R U w;b, P Uww,, QU www, show that W, is
(V(H n L), S)-extendable. So assume tb ¢ E(H’). Hence, N;(t) = {t;, t, w,, w}.

(10) t,b € E(H).
For, suppose tb ¢ E(H). Consider the 5-separation (H”,L”) in G, such that

V(H" n L") = {a, t4, ts, t;, w,} is independent in H", b € V(H" — L"), IV(H" — L")l > 2
(because of R and W), and L + {t,, t;} C L”. By the choice of (H, L) and by Lemma 2.2,



504 XIE ET AL.
—I—Wl LEY

(H”, V(H"” n L")) is one of the graphs in Figure 1. Note that b is the only neighbor of w,
in V(H” — L"). Since t;b ¢ E(H), |V(H")l = 7. Because of R and W], we see that R = bt
and, hence, {b, t;, ts} is a 3-cut in G, a contradiction.

Suppose B, = wwyt;. If wFw, = w,w, then wit;, R U w;b, P U ww,, Q U www; show
that W, is (V(H n L), S)-extendable. So assume w;Fw, = w;tw,. If there are disjoint paths
P’, Q' in H from t,, w; to 5, t,, respectively, and internally disjoint from w,Fa U bFw, U B,
then w;t;, R Uwb, P" Uwtt,, Q" Uwww; show that W] is (V(H n L), S)-extendable.
Hence, we may assume that P’, Q" do not exist. Then there exist v; € V/(B)\{t;, w;} and
separation (H”, L") in H such that V(H” n L") = {w,, wy, t, t,, v} is independent in H”,
ww,ww C H” — L",and L’ + {t;, t;} C L". By the choice of (H, L), H” does not contain any
V(H" n L")-good wheel. Hence by Lemma 2.2, (H”, V(H” n L")) is one of the graphs in
Figure 1. But this is not possible as w is the unique neighbor of w; in H” — L” and
wt & E(H").

Therefore, B = ww,tt;. Let G':=G — {t,w;} + ,w, which does not contain a
K;-subdivision as t;w can be replaced by t;fw,w. So G’ admits a 4-coloring, say o. We
now have a contradiction by extending o to a 4-coloring of G as follows: If o(t,) = a(w,)
then greedily color wy, t in order; if o(t;) # o(w,) then assign o(t;) to w; and greedily
color ¢. O

4 | PROOF OF THEOREM 1.1

Suppose that G is a Haj6s graph and that G has a 4-separation (G;, G,) such that
(G, V(G; n G,)) is planar and IV(G,)! > 6, and choose such (G,, G,) that G, is minimal. Further,
we assume that G, is drawn in a closed disc in the plane with no edge crossings such that
V(G, N G,) is contained in the boundary of that disc.

By Lemma 2.2, G, has a V(G, n G,)-good wheel. Moreover, by Lemma 2.5, any V(G, n G,)-
good wheel in G; is not V(G; n G,)-extendable. Hence, by Lemma 2.3, there exists a 5-
separation (H,L) in G; such that V(Hn L) is independent in H, V(G, N G,) C V(L),
V(G N G)EV(HN L), and H has a V(H n L)-good wheel. Let S = V(H N L) N V(G, N Gy).
We further choose (H, L) such that

(1) 1SI'is minimum and, subject to this, H is minimal.
Then by Lemma 2.3,
(2) any V(H n L)-good wheel in H is V(H n L)-extendable.
Let V(H N L) = {t;, t,, t5, t,, ts} such that (H, t;, t,, t3, t,, t5) is planar. Note that
(3) the vertices in S must occur consecutively in the cyclic ordering t;, t,, t5, £y, ts.
For, suppose not. Then, without loss of generality, assume that t;,¢; € S but t,,t; & S. Let
V(G N Gy ={t, t;,x, y}.
If (G, t,x,t;,y) is planar then there exists a 4-separation (Gj, G;) in G such that

V(G N Gy) ={t), t,, t3, ¥}, HC G|, x & V(G,), and G, C G,; which contradicts the choice of
(Gy, G,). Similarly, if (G, t;, y, t;, x) is planar we obtain a contradiction.
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If (G, t;, x, ¥, t5) or (Gy, t1, ¥, X, t;) is planar then {t;, t,, t;} would be a 3-cut in G.

So assume (G, t,, t5, x, y) is planar (by renaming x, y if necessary). Then G has a 4-separation
(G|, G;) such that V(G| N G,y) ={t, t;, b, ts}, H C G, {x,¥}€V(G/), and G, C G,, which
contradicts the choice of (G, G,).

We claim that

(4) no V(H n L)-good wheel in H is (V(H n L), S)-extendable.

For, suppose W is a V(H N L)-good wheel in H that is also (V(H N L), S)-extendable. Let w be
the center of W and assume that H has four paths B, P, B, P, from w to t,, t,, L, t,, respectively,
such that V(B n P)={w} for distinct i,j € [4], VEB)NV(W) =2 for i€ [4], and
S C{ty, by, by, 1y}

Let k = 4 — ISI. Since W is not V(G, n G,)-extendable, L — (S U {t;}) does not contain k
disjoint paths from {t; : i € [4]}\ S to V(G, n G,)\S. Thus, L — (S U {t5}) has a cut T of size at
most k — 1 separating {t; : i € [4]}\S from V(G, N G,)\S. Hence T U S U {5} is a cut in G, and
ITUSU{t}l =4 since G is 4-connected. Thus, G has a 4-separation (G;, G,) such that
V(GInG)=TuSuU{t), HC G/, G/ is a proper subgraph of G,, and G, C G,. Note that
IV(G))I > 6 because W C H C G, and V(H n L) is independent in H; so (G|, G,) contradicts the
choice of (G,, G,).

Thus, by (4) and Lemma 3.3,

(5) for any V(H n L)-good wheel W in H (with center w, say), (ii) of Lemma 3.1 holds.

By (2) (and without loss of generality), let B, B, B, P, be paths in H from w to t;, t,, t5, &,
respectively, such that V(P n P,) = {w} for distinct i, j € [4], and IV(R) n V(W)I = 2 fori € [4].
Let F = W — w (which is a cycle) and let V(B) n V(F) = {w;} fori € [4]. By (4), t; € S.

By (5), there exist s;, s, € S\V(W), a,b € V(W — w)\N;(w), and a separation (H,, H,) in H
such that [V(aFb) n Ny(w)l =1, V(H, n H,) ={a,b,w}, V(aFb)U {s},s,} C V(H,), and
V(H n L)\{s,, s,} € V(H,). Without loss of generality, we may assume that s, = f;, s, = fs,
aFb C w,Fw,, and w, € V(aFb). We choose B, i € [4], to minimize w,Fw,. Then it is easy to
see that

(6) No(w) N VmFw,) = {wy, wy, wy}.
We claim that
(7) w; #t;, fori=2,3,4.

First, we show w, # t, and wy # t,. For, suppose the contrary and, by symmetry, assume
w, = t,. Then w; # t; as otherwise w,Fw; = w,w; (since G is 4-connected); so t,t; € E(H),
contradicting the fact that W € H and V(H n L) is independent in H. So w, # ¢, to avoid the 4-
separation (Gy, G,) with V(G| N G;) = {wy, w,, t5, Wy}, {w, w3} C V(G/ — G,), and G, C G,. Now
G, has a 5-separation (H’,L’) such that V(H' n L") = {a, w;, w,, t5, t,} is independent in H’,
wwww C H' — L’,and L U H; C L’. By the choice of (H, L), H' does not have any V(H' n L')-
good wheel. Hence, by Lemma 2.2, (H', V(H' n L’)) must be the 9-vertex graph in Figure 1.
However, this is not possible, as w is the only neighbor of w, in H' — L’ and wa ¢ E(H).
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Now suppose w; =t;. Then G has a 4-separation (Gj, G,) such that V(G/ n G;) =
{b, t,, wy, w}, w, € V(G| — G,), and G, U w;Fw, C G,. Hence, by the choice of (G;, G,), we have
IV(G))l = 5. So N;(w,) = {b, t,, w;, w} and b has degree at most 2 in H,. Similarly, by con-
sidering the 4-cut {a, t,, w, w;}, we have N;(w,) = {a, t,, w;, w} and a has degree at most 2 in H,.
Thus, since G is 4-connected, a, b each have degree at least 2 in H,.

Now consider the 5-separation (H’,L’) in G, such that V(H' n L") = {a,w, b, t;, t5} is in-
dependent in H', w; € V(H' — L), and H, UL C L'. By the choice of (H, L), H' does not
contain any V(H’ N L’)-good wheel. So by Lemma 2.2, (H', V(H' n L")) is one of the graphs in
Figure 1. Note that w; is the only neighbor of w in H' — L’. So aw,, bw; € E(H) as a and b each
have degree at least 2 in H'. Note that H' C H, — {at,, bt,}.

We may assume that a or b has degree exactly 2 in H,. For, otherwise, by checking the
graphs in Figure 1, we see that [V(H")l = 8 or IV(H')l =9, and H, contains a wheel W’ with
center w’ such that N;(w’) = V(W' — w’) and [IV(W')l € {4, 5}. If IV(W’)| = 4 then, since G is
4-connected, G, — w’ has four disjoint paths from V(W) to V(G; n G,); which shows that W' is
(V(H n L), S)-extendable, contradicting (4). So IV(W’)l = 5. Then, by the choice of (H, L),
H —w has 5 disjoint paths from V(W’) to V(H n L); which, again, shows that W’ is
(V(H n L), S)-extendable, contradicting (4).

Thus, we may assume by symmetry that a has degree exactly 2 in H;. Then a has degree 4 in
G and at, € E(G). Let o be a 4-coloring of G — {a, w, w,, w,}. If o(w;) = o(t,) then by greedily
coloring w,, w, w, a in order we obtain a 4-coloring of G, a contradiction. If o(w,) = o(¢;) then
by greedily coloring a, wy, w,, w in order we obtain a 4-coloring of G, a contradiction. So
o(w,) & {o(t;), o(t,)}. Then assigning o(w;) to w, and greedily coloring w,, w, a in order, we
obtain a 4-coloring of G, a contradiction.

(8) w,,wy ¢ V(D), where D denotes the outer walk of H.

First, w, & V(t,Dt;) and w, ¢ V(t;Dt,). For, suppose not and assume by symmetry that
wy, € V(t;Dt,). Then G, has a 5-separation (H’, L") such that V(H' n L") = {b, t,, t;, wy, w} is
independent in H', ww,w,w C H' — L', bFwy, + w C H’, and L + {t;, t;} C L'. By the choice
of (H,L), H has no V(H' n L')-good wheel. Hence, by Lemma 2.2, (H’, V(H' N L)) is the
9-vertex graph in Figure 1. However, this is impossible since w is the only neighbor of w; in H’
and wb ¢ E(H').

Now suppose (8) fails. Then we may assume by symmetry that wy, € V(D). Sow, € V(t,Dt;).
Then wyFa = wya (by (6) and 4-connectedness of G) and G, has a 5-separation (H', L’) such that
V(H' nL")=1{b, t;,t;, w, w} is independent in H', aFw, CV(H)\V(L), and
bFw, + {t,, t;, t,} C L’. By the choice of (H, L), H' has no V(H' n L’)-good wheel. Hence, since
w, and w each have exactly one neighbor in V(H")\V(L'), it follows from Lemma 2.2 that
V(H")\V(L') = {a, w;}. Since G is 4-connected, N;(a) = {t;, ts, w;, wy} and Ny(w,) = {a, b, t;, w}.
However, G, now has a 5-separation (H”, L") such that H” = (H — t;) — at; and L” = L U tat;.
Note that {w, wy, w,, wy, wy} € V(H")\V(L"); so by Lemma 2.2, (H”, L") has a V(H" n L")-good
wheel, contradicting the choice of (H, L).

(9) w,, t; are not cofacial, and wy, t; are not cofacial.
Otherwise, suppose by symmetry that w,, t; are cofacial. Then G, has a 5-separation (H', L’)

such that V(H' n L) ={a,w;, w,, 5, t,} is independent in H’, wwww C H' — L', and
L + {b, t;, ts;} C L'. By the choice of (H, L), H' does not contain any V(H’ n L")-good wheel. So
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by Lemma 2.2, (H', V(H’ n L)) is the 9-vertex graph in Figure 1. But this is not possible as w is
the only neighbor of w, in H' — L' and wa ¢ E(H").

For i = 2,4, let W, denote the wheel consisting of all vertices and edges of H that are
cofacial with w;. Then

(10) for eachi € {2,4}, W, is not a V(H n L)-good wheel in H.

For, suppose W, is a V(H n L)-good wheel in H. Since W, N (wy;Fw, — {w;, w;}) = @ and
t, t; € S, it follows from (3) that (ii) of Lemma 3.1 does not hold for W,, contradicting (5).

Thus, by (7)-(10), w,t,, wyt, & E(H), w, and t, are cofacial in H, and w, and ¢, are cofacial in
H. Since G is 4-connected, {b, t,, w,} and {a, £, wy} are not cuts in G. So by (8), Ny (a) = {t;, wy}
and NHz(b) = {t,, w,}.

We claim that there exists some i € {2, 3, 4} such that w;, t; are cofacial and wyt; ¢ E(G).
For, otherwise, W; is a V(H n L)-good in H. Since W; is disjoint from wFw, — {w,, w,}, it
follows from (3) that (ii) of Lemma 3.1 does not hold for Wj, contradicting (5).

First, suppose i € {2, 4} and, by symmetry, assume w;, ¢, are cofacial and wst, ¢ E(G). Then
G has a 4-separation (Gj, G;) such that V(G/ n G,) = {a, t,, wy, w}, w, € V(G| — G,), and
G, U aFw; C Gj. Since wyt, ¢ E(G), V(G| — G;)| > 2. Hence (G|, G,) contradicts the choice of
(G, Gy).

Thus, ws, t; are cofacial and wit; ¢ E(G). By symmetry, we may assume that P, — w and w,
are on the same side of the face which is incident with both f; and w;. Now G, has a 5-
separation (H',L’) such that V(H'nL’)={a,t,t;,w;,w} is independent in H’,
(B-—w)u(R,—w)CH', and aFw,;+ {t},t,,t;} C L. Moreover, IV(H' — L)l >3 since
(B, —w) N (B, —w) =@, wBt; # wyt;, and wPt, # wyt,. By the choice of (H, L), H' has no
V(H' n L")-good wheel. Therefore, by Lemma 2.2, (H’, V(H' n L)) is the 8-vertex graph or 9-
vertex graph in Figure 1. This is impossible, as wy is the only neighbor of @ in H' — L' and
wyt, € E(H), a contradiction [14].
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