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Abstract
As a natural extension of the Four Color Theorem,

Hajós conjectured that graphs containing no K5‐sub-
division are 4‐colorable. Any possible counterexample

to this conjecture with minimum number of vertices

is called a Hajós graph. Previous results show

that Hajós graphs are 4‐connected but not 5‐connected.
A k‐separation in a graph G is a pair G G( , )1 2 of edge‐
disjoint subgraphs of G such that V G G k( ) =1 2∩Þ Þ ,

G G G= 1 2∪ , and G G̸i i3−⊆ for i = 1, 2. In this paper,

we show that Hajós graphs do not admit a 4‐separation
G G( , )1 2 such that V G( ) 61 ≥Þ Þ and G1 can be drawn in

the plane with no edge crossings and all vertices in

V G G( )1 2∩ incident with a common face. This is a step

in our attempt to reduce Hajós' conjecture to the Four

Color Theorem.
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1 | INTRODUCTION

Using Kuratowski's characterization of planar graphs [13], the Four Color Theorem [1-3,17]
can be stated as follows: Graphs containing no K5‐subdivision or K3,3‐subdivision are
4‐colorable. Since K3,3 has chromatic number 2, it is natural to expect that graphs containing no
K5‐subdivision are also 4‐colorable. Indeed, this is part of a more general conjecture made by
Hajós in the 1950s (see [23], although reference [6] is often cited): For any positive integer k,
every graph not containing Kk+1‐subdivision is k‐colorable. It is not hard to prove this con-
jecture for k 3≤ . However, Catlin [4] disproved Hajós' conjecture for k 6≥ . Erdős and
Fajtlowicz [5] then showed that Hajós' conjecture fails for almost all graphs. On the other hand,
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Kühn and Osthus [12] proved that Hajós' conjecture holds for graphs with large girth,
and Thomassen [23] pointed out interesting connections between Hajós' conjecture and
several important problems, including Ramsey numbers, Max‐Cut, and perfect graphs. Hajós'
conjecture remains open for k = 4 and k = 5.

In this paper, we are concerned with Hajós' conjecture for k = 4. We say that a graphG is a
Hajós graph if

(1) G contains no K5‐subdivision,
(2) G is not 4‐colorable, and
(3) subject to (1) and (2), V G( )Þ Þ is minimum.

Thus, if no Hajós graph exists then graphs not containing K5‐subdivisions are 4‐colorable.
Recently, He, Wang, and Yu [7–10] proved that every 5‐connected nonplanar graph con-

tains a K5‐subdivision, establishing a conjecture of Kelmans [11] and, independently, of
Seymour [18] (also see Mader [15]). Therefore, Hajós graphs cannot be 5‐connected. On the
other hand, Yu and Zickfeld [25] proved that Hajós graphs must be 4‐connected, and Sun and
Yu [21] proved that for any 4‐cut T in a Hajós graph G, G T− has exactly 2 components.

The goal of this paper is to prove a result useful for modifying the recent proof of the
Kelmans–Seymour conjecture in [7–10] to make progress on the Hajós conjecture; in particular,
for the class of graphs containing K4

− as a subgraph, where K4
− is the graph obtained from K4 by

removing an edge.
To state our result precisely, we need some notation. Let G1, G2 be two graphs. We use

G G1 2∪ (respectively, G G1 2∩ ) to denote the graph with vertex set V G V G( ) ( )1 2∪ (respectively,
V G V G( ) ( )1 2∩ ) and edge set E G E G( ) ( )1 2∪ (respectively, E G E G( ) ( )1 2∩ ). Let G be a graph and
k a nonnegative integer; then a k‐separation in G is a pair G G( , )1 2 of edge‐disjoint subgraphs
G G,1 2 of G such that G G G= 1 2∪ , V G G k( ) =1 2∩Þ Þ , and G G̸i i3−⊆ for i = 1, 2.

Let G be a graph and S V G( )⊆ . For convenience, we say that G S( , ) is planar if G has a
drawing in a closed disc in the plane with no edge crossings and with vertices in S on the
boundary of the disc. We often assume that we work with such an embedding when we say
G S( , ) is planar. Two elements ofV G E G( ) ( )∪ are said to be cofacial if they are incident with a
common face. Our main result can be stated as follows, it will be used in subsequent work to
derive further useful structure of Hajós graphs.

Theorem 1.1. If G is a Hajós graph and G has a 4‐separation G G( , )1 2 such that
G V G G( , ( ))1 1 2∩ is planar then V G( ) 51 ≤Þ Þ .

To prove Theorem 1.1, we first find a special wheel inside G1, then extend the wheel to
V G G( )1 2∩ by four disjoint paths insideG1, and form a K5‐subdivision with two disjoint paths in
G2. By a wheel we mean a graph which consists of a cycle C, a vertex v not on C (known as the
center of the wheel), and at least three edges from v to a subset of V C( ). The wheels in this
paper are special—they are inside a plane graph consisting of vertices and edges that are
cofacial with a given vertex. For any positive integer k, let k k[ ] {1, …, }≔ .

To effectively describe the process of extending wheel to a K5‐subdivision, we introduce the
following. Let H be a plane graph and T V H( )⊆ such that T 4≥Þ Þ and all vertices in T are
incident with a common face of H . Let w V H S( )∈ ⧹ such that the vertices and edges of H
cofacial with w form a wheel, denoted asW . We say thatW is T ‐good if T V W N w( ) ( )H∩ ⊆ .
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For any S T⊆ with S 4≤Þ Þ , we say thatW is T S( , )‐extendable if H has four paths P P P P, , ,1 2 3 4
from w to T such that

• V P P w( ) = { }i j∩ for all distinct i j, [4]∈ ,
• V P w V W( − ) ( ) = 1i ∩Þ Þ for i [4]∈ , and
• for any s S∈ there exists i [4]∈ such that Pi is from w to s.

Note that each Pi may use more than one vertex from T . When S = ∅ we simply say thatW is
T ‐extendable.

Remark: These concepts about wheel will be applied to separations H L( , ) of a Hajós graph,
where H is a plane graph in which all vertices in T V H L( )≔ ∩ are incident with a common
face of H .

For the proof of Theorem 1.1, we suppose G has a 4‐separation G G( , )1 2 such that
G V G G( , ( ))1 1 2∩ is planar and V G( ) 61 ≥Þ Þ . A result from [24] shows that G1 has a V G G( )1 2∩ ‐
good wheel. However, we need to allow the separation G G( , )1 2 to be a 5‐separation to deal with
issues when such wheels are not V G G( )1 2∩ ‐extendable. Another result from [24] characterizes
all such 5‐separations G G( , )1 2 withG1 containing noV G G( )1 2∩ ‐good wheel. In Sections 2 and 3,
we characterize the situations where good wheels are also extendable. We complete the proof of
Theorem 1.1 in Section 4.

It will be convenient to use a sequence of vertices to represent a path or cycle, with
consecutive vertices representing an edge in the path. Let G be a graph. For v V G( )∈ , we use
N v( )G to denote the neighborhood of v in G. Let T V G( )⊆ . We use G T− to denote the
subgraph of G induced by V G T( )⧹ and write G x− when T x= { }. For any set S of 2‐element
subsets of V G( ), we use G S+ to denote the graph with V G S V G( + ) = ( ) and
E G S E G S( + ) = ( ) ∪ , and write G xy+ if S x y= {{ , }}.

Let C be a cycle in a plane graph, and let u v V C, ( )∈ . If u v= let uCv u= , and if u v≠ let
uCv denote the subpath of C from u to v in clockwise order.

2 | EXTENDING A WHEEL

In [25] it is shown that Hajós graphs are 4‐connected, and in [10] it is shown that Hajós graphs
are not 5‐connected. So we have the following result.

Lemma 2.1. Hajós graphs are 4‐connected but not 5‐connected.

We also need a result from [24] which characterizes the 4‐separations and 5‐separations
G G( , )1 2 with G V G G( , ( ))1 1 2∩ planar such that G1 has no V G G( )1 2∩ ‐good wheel. See Figure 1
for the graph G1, where the solid vertices are in V G V G( ) ( )1 2⧹ .

Lemma 2.2. Let G be a Hajós graph and G G( , )1 2 be a separation in G such that
V G G4 ( ) 51 2≤ ∩ ≤Þ Þ , V G G( )1 2∩ is independent in G1, G V G G( , ( ))1 1 2∩ is planar, and

V G V G( ) ( )1 2⧹ ≠ ∅. Then, one of the following holds:

(i) G1 contains a V G G( )1 2∩ ‐good wheel.
(ii) V G G( ) = 41 2∩Þ Þ and V G( ) = 51Þ Þ .
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(iii) V G G( ) = 51 2∩Þ Þ , G1 is one of the graphs in Figure 1 with V G V G( ) ( )1 2⧹ consisting of
the solid vertices, and if V G( ) = 81Þ Þ then the degree 3 vertex in G1 has degree at least 5
in G.

Let G be a Hajós graph and G G( , )1 2 be a separation inG such that V G G( ) {4, 5}1 2∩ ∈Þ Þ and
G V G G( , ( ))1 1 2∩ is planar, and assumeW is a V G G( )1 2∩ ‐good wheel in G1. We wish to extend
W to a K5‐subdivision by adding two disjoint paths, which must be routed through the non-
planar part G2. The following lemma provides four paths extending one such good wheel to
V G G( )1 2∩ .

Lemma 2.3. Let G be a Hajós graph and let G G( , )1 2 be a separation in G with
V G G( )1 2∩ independent in G1 such that

(i) V G G( ) 51 2∩ ≤Þ Þ , G V G G( , ( ))1 1 2∩ is planar, and G1 has a V G G( )1 2∩ ‐good wheel,
(ii) subject to (i), G1 is minimal, and

(iii) subject to (ii), V G G( )1 2∩ is minimal.

Then any V G G( )1 2∩ ‐good wheel in G1 is V G G( )1 2∩ ‐extendable.

Proof. By our convention,G1 is drawn in a closed disc in the plane with no edge crossing
such that V G G( )1 2∩ is on the boundary of that disc. LetW be a V G G( )1 2∩ ‐good wheel
in G1 with center w, U V W w N w= ( − ) ( )G⧹ , and G G U′ = −1 1 . If G′1 has four disjoint
paths from N w( )G to V G G( )1 2∩ then extending these paths to w (by adding one edge for
each path), we see that W is V G G( )1 2∩ ‐extendable. So we may assume that such four
paths do not exist. Then G′1 has a separation H H( , )1 2 such that V H H( ) 31 2∩ ≤Þ Þ ,
N w w V H( ) { } ( )G 1∪ ⊆ , and V G G V H( ) ( )1 2 2∩ ⊆ . We choose H H( , )1 2 with V H H( )1 2∩Þ Þ
minimum.

We see thatV H H U( )1 2∩ ∪ is a cut inG1 separating H1 fromV G G( )1 2∩ . Thus, by the
planarity of G V G G( , ( ))1 1 2∩ , we can draw a simple closed curve γ in the plane such that
γ G V H H U( )1 1 2∩ ⊆ ∩ ∪ , H1 is inside γ , and H2 is outside γ . We choose such γ that
γ G1∩Þ Þ is minimum.

Note V H H γ( )1 2∩ ⊆ by the minimality of V H H( )1 2∩Þ Þ. Also, γ N w V H H( ) ( )G 1 2∩ ⊆ ∩ .
Moreover, γ U∩ ≠ ∅ as, otherwise, V H H( )1 2∩ would be a cut inG, a contradiction asG is
4‐connected.

For convenience, let N w w w( ) = { , …, }G t1 , and assume that the notation is chosen so
that w w, …, t1 occur onW w− in clockwise order. Moreover, for i t[ ]∈ , letWi denote the
path inW w− from wi to wi+1 in clockwise order, where w w=t+1 1. We claim that

(1) any two vertices of γ U∩ consecutive on γ must be contained in the same Wi , for
some i t[ ]∈ .

FIGURE 1 Obstructions to good wheels inside 5‐separations
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For, otherwise, let u v γ U, ∈ ∩ be consecutive on γ such that u V W( )i∈ and v V W( )j∈ ,
with i j< . Then we see that G has a separation L L( , )1 2 such that V L L u v w( ) = { , , }1 2∩ ,
w V L L( − )i+1 1 2∈ , and G L2 2⊆ . This contradicts the fact that G is 4‐connected.

Let k V H H= ( )1 2∩Þ Þ. Then k 2≥ . For, otherwise, it follows from (1) that γ U Wi∩ ⊆
for some i k[ ]∈ . Choose u v γ U, ∈ ∩ with uWvi maximal. Then u v V H H{ , } ( )1 2∪ ∩ is a
cut in G, a contradiction.

Let V H H v v( ) = { , …, }k1 2 1∩ , where k2 3≤ ≤ , and for i k[ ]∈ , let γi be the open curve
in γ from vi to vi+1 in clockwise order, where v v=k+1 1. We further claim that

(2) there exist unique i k[ ]∈ and unique j t[ ]∈ , for which γ Wi j∩ ≠ ∅.

For, suppose otherwise. First, assume that there exist γi and γl with i l≠ such that for
someWj, γ Wi j∩ ≠ ∅ and γ Wl j∩ ≠ ∅. Without loss of generality, we may assume i = 1
and l = 2. Then, by planarity and by (1), U V H H v( ( ) { })1 2 2∪ ∩ ⧹ is a cut in G1 separating
w N w{ } ( )G∪ from V G G( )1 2∩ ; so G′1 has a separation H H( ′, ′)1 2 such that
V H H V H H v( ′ ′) = ( ) { }1 2 1 2 2∩ ∩ ⧹ , N w w V H( ) { } ( ′)G 1∪ ⊆ , and V G G V H( ) ( ′)1 2 2∩ ⊆ . This
contradicts the choice of H H( , )1 2 that V H H( )1 2∩Þ Þ is minimum.

Hence, by (1), there exist p q≠ and i j≠ such that γ Wp i∩ ≠ ∅ and γ Wq j∩ ≠ ∅.
Without loss of generality, we may further assume that p q= 1, = 2, and i j< . Let
v V W′ ( )i2 ∈ such that v v, ′2 2 are consecutive on γ , and v V W″ ( )j2 ∈ such that v v, ″2 2 are
consecutive on γ . Then, by (1), G has a 4‐separation L L( , )1 2 such that
V L L v v v w( ) = { , ′, ″, }1 2 2 2 2∩ is independent in L1, w w V L{ , …, } ( )i j+1 1⊆ , and G L2 2⊆ . If
V L( ) 61 ≥Þ Þ then, by Lemma 2.2, L1 has a V L L( )1 2∩ ‐good wheel; so L L( , )1 2 contradicts
the choice of G G( , )1 2 . Hence, V L( ) 51 ≤Þ Þ and j i= + 1.

We may assume k = 3. For, suppose k = 2. Let v V W′ ( )i∈ such that v v, ′1 are
consecutive on γ , and let v V W″ ( )i+1∈ such that v v, ″1 are consecutive on γ . By (1),G has
a 4‐separation L L( ′, ′)1 2 such that V L L v v v w( ′ ′) = { , ′, ″, }i1 2 1 +1∩ is independent in L′1,
w N w w V L{ } ( ( ) { }) ( ′)G i+1 1∪ ⧹ ⊆ , and G L′2 2⊆ . Since V L( ′) 61 ≥Þ Þ , it follows from Lemma 2.2
that L′1 contains a V L L( ′ ′)1 2∩ ‐good wheel. So L L( ′, ′)1 2 contradicts the choice of G G( , )1 2 .

Now let v V W′ ( )i1 ∈ such that v v, ′1 1 are consecutive on γ , and let v V W′ ( )i3 +1∈ such
that v v, ′3 3 are consecutive on γ .

Suppose γ U =3 ∩ ∅. Then v w1 1≠ or v w3 3≠ ; otherwise, v v w{ , , }i1 3 +1 would be a 3‐cut
in G. If v w=1 1 then by (1), G has a separation L L( ′, ′)1 2 such that
V L L v v v w( ′ ′) = { , , ′, }i1 2 1 3 3 +1∩ is independent in L′1, w N w w V L{ } ( ( ) { }) ( ′)G i+1 1∪ ⧹ ⊆ , and
G L′2 2⊆ ; so by Lemma 2.2, L′1 has a V L L( ′ ′)1 2∩ ‐good wheel and, hence, L L( ′, ′)1 2
contradicts the choice of G G( , )1 2 . So v w1 1≠ . Similarly, v w3 3≠ . Then by (1), G has a
separation L L( ′, ′)1 2 such that V L L v v v v w( ′ ′) = { , ′, , ′, }i1 2 1 1 3 3 +1∩ is independent in L′1,
w N w w V L{ } ( ( ) { }) ( ′)G i+1 1∪ ⧹ ⊆ , G L′2 2⊆ , and V L V L( ′) ( ′) 41 2⧹ ≥Þ Þ . By the choice of G G( , )1 2 ,
L′1 does not admit a V L L( ′ ′)1 2∩ ‐good wheel. So by Lemma 2.2, V L L( ′ − ′) = 41 2Þ Þ and
L V L L( ′, ( ′ ′))1 1 2∩ is the 9‐vertex graph in Figure 1, which means that the only neighbor of
wi+1 in L′1, namely w, should have degree 6 in L′1 and must be adjacent to v′1 and v′3. But
this is a contradiction as v v N w′, ′ ( )G1 3 ∉ .

So γ U3 ∩ ≠ ∅. But then by (1) and 4‐connectedness of G, there exist l {1, 3}∈ and
vertex v ″l such that v v v′, , ″l l l are consecutive on γ in order listed andG has a 4‐separation
L L( ′, ′)1 2 with V L L w v v v( ′ ′) = { , ′, , ″}l l l1 2∩ independent in L′1, G L′2 2⊆ , and V L( ′) 61 ≥Þ Þ .
Then by Lemma 2.2, L′1 contains a V L L( ′ ′)1 2∩ ‐good wheel. Hence L L( ′, ′)1 2 contradicts the
choice of G G( , )1 2 .
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Thus, by (1) and (2), we may assume that γ W1 1∩ ≠ ∅ and, for i k[ ] {1}∈ ⧹
and j t[ ] {1}∈ ⧹ , γ W =i j∩ ∅. Let v v V W′, ′ ( )1 2 1∈ such that, for i = 1, 2, vi and v ′i are
consecutive on γ . Then G has a separation L L( , )1 2 such that V L L( ) =1 2∩
v i k v v{ : [ ]} { ′, ′}i 1 2∈ ∪ is independent in L1, N w w V L( ) { } ( )G 1∪ ⊆ , and G L2 2⊆ . Note
that w V L V L( ) ( )1 2∈ ⧹ . Also note that v w1 1≠ or v w2 2≠ ; otherwise,V L L( )1 2∩ would be
a 3‐cut inG. If v w=1 1 or v w=2 2 then V L L( ) = 41 2∩Þ Þ and V L V L( ) ( ) 61 2⧹ ≥Þ Þ ; hence, by
Lemma 2.2, L1 has a V L L( )1 2∩ ‐good wheel and, hence, L L( , )1 2 contradicts the choice of
G G( , )1 2 . So v w1 1≠ and v w2 2≠ . Hence V L( ) 91 ≥Þ Þ and w is not adjacent to v v v v{ , , ′, ′}1 2 1 2 .
It follows from Lemma 2.2 that L1 contains a V L L( )1 2∩ ‐good wheel. Hence L L( , )1 2
contradicts the choice of G G( , )1 2 . □

To extend a wheel to a K5‐subdivision, we need the following weaker version of a result of
Seymour [19], with equivalent forms proved in [16, 20, 22]. For a graph G and vertices
v v v, , …, n1 2 of G, we say that G v v v( , , , …, )n1 2 is planar if G can be drawn in a closed disc in the
plane with no edge crossings such that v v v, , …, n1 2 occur on the boundary of the disc in
clockwise order.

Lemma 2.4. Let G be a graph and s s t t V G, , , ( )1 2 1 2 ∈ be distinct such that, for any
S V G( )⊆ with S 3≤Þ Þ , every component of G S− must contain a vertex from s s t t{ , , , }1 2 1 2 .
Then either G contains disjoint paths from s s,1 2 to t t,1 2, respectively, or G s s t t( , , , , )1 2 1 2 is
planar.

The next result shows that in a Hajós graph, we cannot extend a wheel in certain way.

Lemma 2.5. Let G be a Hajós graph. Suppose there exists a 4‐separation G G( , )1 2 in G
such that G V G G( , ( ))1 1 2∩ is planar. IfW is a V G G( )1 2∩ ‐good wheel in G1 thenW is not
V G G( )1 2∩ ‐extendable.

Proof. For, suppose W is V G G( )1 2∩ ‐extendable. Let V G G t t t t( ) = { , , , }1 2 1 2 3 4∩ , and
assume that the notation is chosen so that G t t t t( , , , , )1 1 2 3 4 is planar. Then there exist four
paths P P P P, , ,1 2 3 4 in G1 from w to t t t t, , ,1 2 3 4, respectively, such that V P P w( ) = { }i j∩ for
any distinct i j, [4]∈ and V P W( ) = 2i ∩Þ Þ for i [4]∈ .

If G t t t t( , , , , )2 1 2 3 4 is planar thenG is planar and, hence, 4‐colorable, a contradiction. So
G t t t t( , , , , )2 1 2 3 4 is not planar. Then, by Lemma 2.4, G2 has disjoint paths Q Q,1 2 from t t,1 2
to t t,3 4, respectively. But thenW P P P P Q Q1 2 3 4 1 2∪ ∪ ∪ ∪ ∪ ∪ is a K5‐subdivision in G, a
contradiction. □

3 | EXTENDING PATHS FROM 5 ‐CUTS TO 4 ‐CUTS

The goal of this section is to describe the situations where a good wheel cannot be extended
from a 5‐cut to a 4‐cut in the desired way. We achieve this goal in three steps (formulated as
lemmas), by gradually reducing the number of possibilities. The first lemma has four
possibilities.

Lemma 3.1. Suppose G is a Hajós graph and G G( , )1 2 is a 4‐separation in G such that
G V G G( , ( ))1 1 2∩ is planar and V G( ) 61 ≥Þ Þ , and, subject to this, G1 is minimal. Moreover,
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suppose that G1 has a 5‐separation H L( , ) with V G G V L( ) ( )1 2∩ ⊆ and V H L( )∩
independent in H , such that

(a) V G G V H L( ) ( )1 2∩ ⊈ ∩ and H has a V H L( )∩ ‐good wheel,
(b) subject to (a), SÞ Þ is minimum, where S V H L V G G= ( ) ( )1 2∩ ∩ ∩ , and
(c) subject (b), H is minimal.

Then H has a V H L S( ( ), )∩ ‐extendable wheel, or G1 has a V G G( )1 2∩ ‐extendable wheel,
or, for each V H L( )∩ ‐good wheelW with center w in H , one of the following holds:

(i) There exist s S V W( )∈ ⧹ and a b V W w N w, ( − ) ( )G∈ ⧹ such that N s a b( ) = { , }H and
either a b= or ab E W( )∈ .

(ii) There exist s s S V W, ( )1 2 ∈ ⧹ , a b V W w N w, ( − ) ( )G∈ ⧹ , and separation H H( , )1 2 in H
such that V H H a b w( ) = { , , }1 2∩ , s s V H{ , } ( )1 2 1⊆ , N w V H( ) ( ) = 1G 1∩Þ Þ , and
V H L s s V H( ) { , } ( )1 2 2∩ ⧹ ⊆ .

(iii) S = 3Þ Þ , and there exist s s S,1 2 ∈ , a b V W w N w, ( − ) ( )G∈ ⧹ , and separation H H( , )1 2 in
H such thatV H H a b s s( ) = { , , , }1 2 1 2∩ , S V H( )1⊆ , and w V H L S V H{ } ( ( ) ) ( )2∪ ∩ ⧹ ⊆ .

(iv) There exist a b V W w N w, ( − ) ( )G∈ ⧹ , c V H V W( ) ( )∈ ⧹ , and a separation H H( , )1 2 in
H such that V H H a b c( ) = { , , }1 2∩ , V H V H L( ) ( ) = 21 ∩ ∩Þ Þ , V H V H L S( ) ( )1 ∩ ∩ ⊆ ,
and N w w V H V H( ) { } ( ) ( )G 2 1∪ ⊆ ⧹ .

Proof. Note that S 3≤Þ Þ as V G G V H L( ) ( )1 2∩ ⊈ ∩ . We may assume thatG1 is drawn in a
closed disc in the plane with no edge crossing such thatV G G( )1 2∩ is on the boundary of
that disc. For convenience, let V H L t i( ) = { : [5]}i∩ ∈ such that H t t t t t( , , , , , )1 2 3 4 5 is
planar. Let D denote the outer walk of H . LetW be a V H L( )∩ ‐good wheel in H with
center w, and let F W w= − (which is a cycle).

By Lemma 2.3, W is V H L( )∩ ‐extendable in H . Without loss of generality, assume
that H has four paths P P P P, , ,1 2 3 4 from w to t t t t, , ,1 2 3 4, respectively, such that
V P F( ) = 1i ∩Þ Þ and t V P( )i5 ∉ for i [4]∈ . Moreover, we may assume t S5 ∈ as,
otherwise, these paths show that W is V H L S( ( ), )∩ ‐extendable. Then t V W( )5 ∉ ; for,
if t V W( )5 ∈ then t w E H( )5 ∈ (as W is V H L( )∩ ‐good) which, combined with three of
P P P P{ , , , }1 2 3 4 , shows thatW is V H L S( ( ), )∩ ‐extendable. Let V P F w( ) = { }i i∩ for i [4]∈ .
Since H t t t t t( , , , , , )1 2 3 4 5 is planar, w w w w, , ,1 2 3 4 occur on F in clockwise order.

We choose P P,1 4 so that w Fw4 1 is minimal. Then

N w V w Fw w w( ) ( − { , }) = .G 4 1 1 4∩ ∅

For, suppose not and let w N w V w Fw w w′ ( ) ( − { , })G 4 1 1 4∈ ∩ . Since G is 4‐connected
and H t t t t t( , , , , , )1 2 3 4 5 is planar, H must contain a path P from w′ to
P w w P w w t( − { , }) ( − { , }) { }4 4 1 1 5∪ ∪ and internally disjoint from P P F4 1∪ ∪ . (For, if such
P does not exist then there exist a V w Fw w( ′ − ′)4∈ and b V w Fw w( ′ − ′)1∈ such that
a b w{ , , } is a 3‐cut in H separating w′ from P P t{ }4 1 5∪ ∪ . Thus, a b w{ , , } is a 3‐cut in G, a
contradiction). If P ends at t5 then P and three of P P P P{ , , , }1 2 3 4 show that W is
V H L S( ( ), )∩ ‐extendable. So by symmetry we may assume P ends at P w w− { , }4 4 . Then
replacing P4 with the path in P P w ww( − ) ′4 4∪ ∪ from w to t4, we obtain a contradiction
to the minimality of w Fw4 1.
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Note that H has a path R from t5 to P w Fw P t t( ) { , }4 4 1 1 1 4∪ ∪ ⧹ and internally disjoint
from P P w Fw1 4 4 1∪ ∪ . For otherwise, G has a 4‐separation G G( ′, ′)1 2 such that
V G G t t t t( ′ ′) = { , , , }1 2 1 2 3 4∩ , W G′1⊆ , and G t G+ ′2 5 2⊆ . By the choice of G G( , )1 2 ,
V G( ′) = 51Þ Þ . This implies that w t=i i for i [4]∈ and, hence, t t E H( )1 2 ∈ , a contradiction.

We may assume that H has a path from t5 to P P1 4∪ and internally disjoint from
P P F1 4∪ ∪ . For, suppose not. Then, by planarity, there exist a b V w Fw w w, ( − { , })4 1 1 4∈
(not necessarily distinct) such that w a b w, , ,4 1 occur on F in clockwise order and all paths
in H from t5 to P P w Fw aFb( − )1 4 4 1∪ ∪ must intersect aFb first. We choose a b, so that
aFb is minimal. Since N w V w Fw w w( ) ( − { , }) =G 4 1 1 4∩ ∅, H has a separation H H( , )1 2
such that V H H a b t( ) = { , , }1 2 5∩ , aFb t H+ 5 1⊆ , and bFa t t t t H+ { , , , }1 2 3 4 2⊆ . Thus
V H a b t( ) = { , , }1 5 as G is 4‐connected. Now, by the existence of R, (i) holds with s t5≔ .

Case 1. H has paths from t5 to both P1 and P4 and internally disjoint from P P F1 4∪ ∪ .
Then t t S,1 4 ∈ as otherwise we may reroute P1 or P4 to t5; and the new path, P2 and P3, and
P4 or P1 show thatW is V H L S( ( ), )∩ ‐extendable. So S t t t= { , , }1 4 5 . Let v V G G S( )1 2∈ ∩ ⧹ .

We further choose P P,1 4 so that, subject to the minimality of w Fw4 1, the subgraph K of H
contained in the closed region bounded by P w P w t Dt w Fw( − ) ( − )1 4 4 1 4 1∪ ∪ ∪ is maximal.
Then, every vertex in V P w w t( ) { , , }1 1 1⧹ is cofacial with some vertex in V w Fw w( − )1 2 1
V P w( − )2∪ ; and every vertex in V P w w t( ) { , , }4 4 4⧹ is cofacial with some vertex in

V w Fw w V P w( − ) ( − )3 4 4 3∪ . Let T x V P w Fw t w w x t{ ( ) { , , } : is cofacial with }1 1 4 1 1 4 4≔ ∈ ∪ ⧹
andT x V P w Fw t w w x t{ ( ) { , , } : is cofacial with }4 4 4 1 4 1 1≔ ∈ ∪ ⧹ . Note that t T1 4∉ and t T4 1∉
by the existence of the path R.

We may assume that T =1 ∅ or T =4 ∅. For otherwise, suppose T1 ≠ ∅ and T4 ≠ ∅.
Then let a T1∈ and b T4∈ . Now, by the existence of the path R, the vertices w a b w, , ,4 1
occur on F in clockwise order. Since N w V w Fw w w( ) ( − { , }) =G 4 1 1 4∩ ∅, H has a
separation H H( , )1 2 such that V H H t t a b( ) = { , , , }1 2 1 4∩ , S V H( )1⊆ , and
w V H L S V H{ } ( ( ) ) ( )2∪ ∩ ⧹ ⊆ ; hence, we have (iii) with s t=1 1 and s t=2 4.

We may also assume that if L t− 1 has disjoint paths R R,3 2 from t t,3 2 to t v,4 ,
respectively, then T1 ≠ ∅; for, otherwise, K t− 4 contains a path P from w4 to t5 and
internally disjoint from w Fw P4 1 1∪ , and the paths P P R P R P ww, , ,1 2 2 3 3 4∪ ∪ ∪ show that
W is V G G( )1 2∩ ‐extendable in G1. Similarly, we may assume that if L t− 4 has disjoint
paths Q Q,3 2 from t t,3 2 to v t, 1, respectively, then T4 ≠ ∅.

Hence, since T =1 ∅ or T =4 ∅, R R,2 3 do not exist or Q Q,2 3 do not exist.
Subcase 1.1. Q Q,2 3 or R R,2 3 exist.
Without loss of generality, assume that R R,2 3 exist, and Q Q,2 3 do not exist. Then

T1 ≠ ∅ and T =4 ∅. Since Q Q,2 3 do not exist, v and t Dt1 2 are cofacial in G1. (For,
otherwise, L has a 2‐separation L L( , )1 2 with t V L L( )4 1 2∈ ∩ , t t V L{ , } ( )2 3 1⊆ , and
t v V L{ , } ( )1 2⊆ . Now H L L L G( , )1 2 2∪ ∪ ∪ is a 4‐separation inG, contradicting the choice
of G G( , )1 2 ). Since T =4 ∅, there exists a path P in K t− 1 from w1 to t5 and internally
disjoint from w Fw P4 1 4∪ . We choose P so that the subgraph K′ of K in the closed region
bounded by P P t Dt1 5 1∪ ∪ is maximal.

We may assume that there exists a vertex t V t Dt t V P w Fw w( − ) ( ( − ))1 2 1 1 2 2∈ ∩ ∪ .
For, suppose not. Then let P′2 be a path in P t Dt2 1 2∪ from w2 to t1; now P P P ww, ,3 4 1∪ , and
P ww′2 2∪ show thatW is V H L S( ( ), )∩ ‐extendable.

Suppose t V P( )∈ . Choose t so that t Dt1 is maximal. Then note that t Dt t Pt=1 1 1 (by the
maximality of K ) and, for any vertex t V t Pt* ( )1 1∈ , t T* 1∉ to avoid the 3‐cut t t v{ *, , }4 inG.
Thus, sinceT1 ≠ ∅, it follows from the maximality of K′ that t is cofacial with some vertex
t V w Fw w′ ( − )4 1 1∈ . Choose t′ so that t Fw′ 1 is maximal. Now t w4 4≠ ; otherwise, G has a

492 | XIE ET AL.



4‐separation G G( ′, ′)1 2 such that V G G t t t v( ′ ′) = { , ′, , }1 2 4∩ , G G t′ −1 1 5⊆ , G t G+ ′2 5 2⊆ , and
V G( ′) 61 ≥Þ Þ , contradicting the choice of G G( , )1 2 . Now, since t t, ′ are cofacial and t T* 1∉
for any vertex t V t Pt* ( )1∈ , it follows from planarity that T V w Ft w( ′ − )1 4 4⊆ , and we
choose u T1 1∈ with w Fu4 1 maximal. Thus G1 has a 5‐separation H L( ′, ′) such that
V H L t t v t u( ′ ′) = { ′, , , , }4 1∩ is independent in H′, w w w w V H V L{ , , , } ( ′) ( ′)2 3 4 ⊆ ⧹ , and
L t t L+ { , } ′1 5 ⊆ . Note that V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ (since t t1≠ ). So by the choice
of H L( , ), H′ contains no V H L( ′ ′)∩ ‐good wheel. Hence by Lemma 2.2, H V H L( ′, ( ′ ′))∩
must be the 9‐vertex graph in Figure 1. However, this is impossible as ww E H( ′)4 2 ∉ but
w4 is the unique neighbor of u1 in H L′ − ′.

Thus, t V w Fw w w( ) { , }1 2 1 2∈ ⧹ for all choices of t . Choose t so that w Ft1 is minimal.
Now, V P t Dt t( ) = { }1 1 1∩ and, by the maximality of K , each vertex of P1 is cofacial with
some vertex in V w Ft w( − )1 1 .

Suppose there exists u V P w T( − )1 1 1 1∈ ∩ . Then there exists u V w Ft w′ ( − )1 1 1∈ such
that u ′1 and u1 are cofacial. Choose such u u, ′1 1 that u Pt1 1 1 and u Ft′1 are minimal. Suppose
there exists w N w V u Ft u t′ ( ) ( ′ − { ′, })G 1 1∈ ∩ . Then since G is 4‐connected, it follows from
the choice of u u, ′1 1 that H has a path P′1 from w′ to t1 and internally disjoint from F P∪ .
Now P ww P R P R P ww′ ′, , ,1 2 2 3 3 1∪ ∪ ∪ ∪ show that W is V G G( )1 2∩ ‐extendable. So we
may assume N w V u Ft u t( ) ( ′ − { ′, }) =G 1 1∩ ∅. Then G1 has a 5‐separation H L( ′, ′) such
that V H L t v t u u( ′ ′) = { , , , , ′}4 1 1∩ is independent in H′, w w w w V H V L{ , , , } ( ′) ( ′)1 2 3 ⊆ ⧹ ,
and L t t L+ { , } ′1 5 ⊆ . Note that w w w w E H, ( ′)1 2 1 3 ∉ ; so H V H L( ′, ( ′ ′))∩ cannot be any
graph in Figure 1. Thus, by Lemma 2.2, H′ has a V H L( ′ ′)∩ ‐good wheel. Hence, H L( ′, ′)
contradicts the choice of H L( , ) as V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ.

Thus, we may assume V P w T( − ) =1 1 1∩ ∅. So there exists u V w Fw w T( − )1 4 1 4 1∈ ∩ .
Choose u1 so that u Fw1 1 is minimal.

If t w=4 4 then G has a 4‐separation G G( ′, ′)1 2 such that V G G t v w w( ′ ′) = { , , , }1 2 4∩ ,
G G t′ −1 1 5⊆ , G G′2 2⊆ , and V G( ′) 61 ≥Þ Þ ; which contradicts the choice of G G( , )1 2 . So
t w4 4≠ . Then G1 has a 5‐separation H L( ′, ′) such that V H L t v t u w( ′ ′) = { , , , , }4 1∩ is
independent in H′, w w w V H V L{ , , } ( ′) ( ′)2 3 4 ⊆ ⧹ , and L t t L+ { , } ′1 5 ⊆ . Now H′ has no
V H L( ′ ′)∩ ‐good wheel; otherwise, H L( ′, ′) contradicts the choice of H L( , ) as
V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ. Hence, by Lemma 2.2, H V H L( ′, ( ′ ′)∩ is the 8‐vertex
or 9‐vertex graph in Figure 1. Note that w is adjacent to all of w w w, ,2 3 4. Thus,
H V H L( ′, ( ′ ′)∩ must be the 8‐vertex graph in Figure 1. However, this forces t w=2 2 and
t w=3 3; so t t E W E H( ) ( )2 3 ∈ ⊆ , a contradiction as V H L( )∩ is independent in H .

Subcase 1.2. Neither Q Q,2 3 nor R R,2 3 exist.
Then, by the choice of G G( , )1 2 , we see that t Dt1 2 and v are cofacial, and that t Dt3 4 and v

are cofacial. Moreover, since G is 4‐connected, t t v{ , , }2 3 is not a cut in G. Hence,
V L t t t t t v( ) = { , , , , , }1 2 3 4 5 and, by the choice of G G( , )1 2 , we have vt vt E G, ( )2 3 ∈ .

Suppose there exist a V t Dt V w Fw w( ) ( − )1 2 1 2 2∈ ∩ and b V t Dt V w Fw w( ) ( − )3 4 3 4 3∈ ∩ .
Then G has a 4‐separation G G( ′, ′)1 2 such that V G G a b v w( ′ ′) = { , , , }1 2∩ ,
w w V G V G{ , } ( ′) ( ′)2 3 1 2⊆ ⧹ , and G t t t G+ { , , } ′2 1 4 5 2⊆ . Now G G( ′, ′)1 2 contradicts the choice of
G G( , )1 2 .
So by symmetry, we may assume that t Dt w Fw w( − ) =3 4 3 4 3∩ ∅. Thus, t Dt P3 4 3∪

contains a path P from w3 to t4 and internally disjoint from F . If H has a path Q from w4
to t5 and internally disjoint from P w Fw P3 1 1∪ ∪ then P P P ww Q ww, , ,1 2 3 4∪ ∪ show that
W is V H L S( ( ), )∩ ‐extendable. So assume that Q does not exist. Then there exist
x V P V w Fw w( ) ( − )3 4 3∈ ∪ and y V P V w Fw w( ) ( − )1 4 1 4∈ ∪ such that x and y are
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cofacial. By the choice of P and planarity of H , x V t Dt V P w( ) ( − )3 4 4 4∈ ∩ . Choose x to
minimize xDt4.

First, suppose t Dt w Fw w( − )1 2 1 2 2∩ ≠ ∅ and y V w Fw w( − )4 1 4∈ for all choices of y.
Choose a V t Dt V w Fw w( ) ( − )1 2 1 2 2∈ ∩ such that w Fa1 is minimal, and choose x y, so
that yFw1 is minimal. Then G1 has a 5‐separation H L( ′, ′) such that
V H L a v x y w( ′ ′) = { , , , , }∩ is independent in H′, w w w V H V L{ , , } ( ′) ( ′)2 3 4 ⊆ ⧹ , and
L t t t L+ { , , } ′1 4 5 ⊆ . Since V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ, we see that H′ has no
V H L( ′ ′)∩ ‐good wheel. Hence, by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 8‐vertex or
9‐vertex graph in Figure 1. Since w is adjacent to all of w w w, ,2 3 4, we see that V H( ′) = 8Þ Þ
which forces t w=2 2 and t w=3 3. Hence, t t E W E H( ) ( )2 3 ∈ ⊆ , a contradiction as
V H L( )∩ is independent in H .

Now suppose t Dt w Fw w( − )1 2 1 2 2∩ ≠ ∅ and y V P w( − )1 1∈ for some choice of y.
Choose such y so that yPt1 1 is minimal; so K has a path P5 from y to t5 and internally
disjoint from P P1 4∪ . Let a V t Dt V w Fw w( ) ( − )1 2 1 2 2∈ ∩ such that w Fa1 is minimal. Note
that y V t Dt( )1 2∉ (to avoid the 3‐cut v x y{ , , } in G). So y is not cofacial with P w−2 2 and,
by the maximality of K , there exists y V w Fa w′ ( − )1 1∈ such that y and y′ are cofacial.
We choose y′ so that y Fa′ is minimal. If there exists w N w V y Fa y a′ ( ) ( ′ − { ′, })G∈ ∩ then
by the minimality of yPt1 1 and y Fa′ and by the 4‐connectedness ofG, H has a path Z from
w′ to t1 and internally disjoint from F P5∪ ; now Z ww P P wPy P′, , ,2 4 1 5∪ ∪ show thatW is
V H L S( ( ), )∩ ‐extendable. Hence, we may assume N w V y Fa( ) ( ′ ) =G ∩ ∅. So G1 has a
5‐separation H L( ′, ′) such that V H L a v x y y( ′ ′) = { , , , , ′}∩ is independent in H′,
w w w w w V H V L{ , , , , } ( ′) ( ′)1 2 3 4 ⊆ ⧹ , and L t t t L+ { , , } ′1 4 5 ⊆ . By Lemma 2.2, H′ contains a
V H L( ′ ′)∩ ‐good wheel. Now H L( ′, ′) contradicts the choice of H L( , ), as
V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ.

Hence, we may assume that t Dt w Fw w( − ) =1 2 1 2 2∩ ∅. Then t Dt P1 2 2∪ has a path Q
from w2 to t1 and internally disjoint from F . Similar to the argument for showing the
existence of x and y above, we may assume that there exist p V t Dt V P w( ) ( − )1 2 1 1∈ ∩
and q V P V w Fw w( ) ( − )4 4 1 1∈ ∪ such that p and q are cofacial.

Note that x and p are not cofacial in G1; as otherwise x p v{ , , } would be a 3‐cut in G.
Thus, w y q w, , ,4 1 occur on F in clockwise order, or q V w P x( )4 4∈ and p V w Py( )1 1∈ , or
x V w P q( )4 4∈ and y V w Pp( )1 1∈ . In the later two cases, we see that x y v{ , , } or p q v{ , , } is a
3‐cut in G, a contradiction. Thus, w y q w, , ,4 1 occur on F in clockwise order.

So G1 has a 5‐separation H L( ′, ′) such that V H L p v x y q( ′ ′) = { , , , , }∩ is independent
in H′, w w w w w V H V L{ , , , , } ( ′) ( ′)1 2 3 4 ⊆ ⧹ , and L t t t L+ { , , } ′1 4 5 ⊆ . By Lemma 2.2, H′ has a
V H L( ′ ′)∩ ‐good wheel. If x p t t{ , } { , }1 4≠ then V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ; and
hence H L( ′, ′) contradicts the choice of H L( , ). So x t= 4 and p t= 1; hence (iii) holds.

Case 2. Case 1 does not occur.
We choose P P,1 4, subject to the minimality of w Fw4 1, to maximize the subgraph K of H

contained in the closed region bounded by P w P w t Dt w Fw( − ) ( − )1 4 4 1 4 1∪ ∪ ∪ .
Without loss of generality, we may assume that G1 has no path from t5 to P4 and

internally disjoint from P P w Fw4 1 4 1∪ ∪ , but G1 has a path P′5 from t5 to P1 and internally
disjoint from P P w Fw4 1 4 1∪ ∪ . Then t Dt w Fw w P(( − ) )4 5 4 1 4 1∩ ∪ ≠ ∅. Moreover, we may
assume t S1 ∈ ; as otherwise we could reroute P1 to end at t5 which, along with P P P, ,2 3 4,
shows thatW is V H L S( ( ), )∩ ‐extendable.

Subcase 2.1. t Dt w Fw w( − ) =4 5 4 1 4∩ ∅ and t Dt w Fw w( − ) =1 2 1 2 2∩ ∅.
Then there exists a V t Dt V P w( ) ( − )4 5 1 1∈ ∩ , and we choose such a with t Pa1 1 minimal.

Note t a1 ≠ by the existence of R. Let b V t Dt V P w( ) ( − )1 2 1 1∈ ∩ with t Pb1 1 maximal. By
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the maximality of K , t Db t Pb=1 1 1 . If a V t Pb( )1 1∈ then G has a 4‐separation G G( ′, ′)1 2 such
that V G G a t t t( ′ ′) = { , , , }1 2 2 3 4∩ , w w V G V G{ , } ( ′) ( ′)1 1 2⊆ ⧹ , and G t t G+ { , } ′2 1 5 2⊆ , which
contradicts the choice of G G( , )1 2 .

Hence, a V bPw b w( ) { , }1 1 1∈ ⧹ . Let P wPa aDt5 1 5≔ ∪ . We consider the paths P P P P, , ,2 3 4 5.
By the minimality of t Pa1 1 , we see that t Pa1 1 is a path from t1 to P5 and internally disjoint
from P P F5 2∪ ∪ . Since t Dt w Fw w( − ) =1 2 1 2 2∩ ∅, t Dt1 2 contains a path from t1 to P2 and
internally disjoint from P P F5 2∪ ∪ . Hence, we are back to Case 1 (with t t t t t, , , ,5 1 2 3 4 as
t t t t t, , , ,4 5 1 2 3, respectively).

Subcase 2.2. Either t Dt w Fw w( − )4 5 4 1 4∩ ≠ ∅ or t Dt w Fw w( − )1 2 1 2 2∩ ≠ ∅.
First, we may assume that t Dt w Fw w( − )4 5 4 1 4∩ ≠ ∅. For, if not, then there exists

a V P w V t Dt( − ) ( )1 1 4 5∈ ∩ and choose a so that t Pa1 1 is minimal. Moreover,
t Dt w Fw w( − )1 2 1 2 2∩ ≠ ∅; so H has no path from t1 to P2 and internally disjoint
from F . Note that t a1 ≠ by the existence of R. Let P wPa aDt5 1 5≔ ∪ . Now consider
the paths P P P P, , ,2 3 4 5. We see that t Pa1 1 is a path from t1 to P5 and internally disjoint
from P P F5 2∪ ∪ . Hence, since t Dt w Fw w( − )1 2 1 2 2∩ ≠ ∅, we could take the mirror
image of G1 and view t t t t t, , , ,2 1 5 4 3 as t t t t t, , , ,4 5 1 2 3, respectively; and, thus, may assume
t Dt w Fw w( − )4 5 4 1 4∩ ≠ ∅.

Then t Dt w Fw w( − ) =1 2 1 2 2∩ ∅, and we let a V t Dt V w Fw w( ) ( − )4 5 4 1 4∈ ∩ with w Fa4
minimal. Let t V t Dt P( )1 2 1∈ ∩ with t Dt1 maximal. Then t w1≠ and, by the maximality of
K , t Dt t Pt=1 1 1 .

Note that t Dt t Dt =4 5 1 2∩ ∅. For, otherwise, let p V t Dt V t Dt( ) ( )4 5 1 2∈ ∩ . Then G has a
4‐separation G G( ′, ′)1 2 with V G G p t t t( ′ ′) = { , , , }1 2 2 3 4∩ , w w V G G, ( ′ − ′)1 1 2∈ , and
G t t G+ { , } ′2 1 5 2⊆ . Clearly, G G( ′, ′)1 2 contradicts the choice of G G( , )1 2 .

If there exist c V t Dt( )1∈ and b V aFw w( − )1 1∈ such that b and c are cofacial, then
(iv) holds. So assume such b c, do not exist. Then K contains a path P from w1 to t5 and
internally disjoint from F t Dt1 2∪ . By the existence of a path in P1 from t1 to P and the
path t Dt1 2, we are back to Case 1 (with t t t t t, , , ,5 1 2 3 4 playing the roles of t t t t t, , , ,4 5 1 2 3,
respectively).

Subcase 2.3. t Dt w Fw w( − )4 5 4 1 4∩ ≠ ∅ and t Dt w Fw w( − )1 2 1 2 2∩ ≠ ∅.
Let a V t Dt V w Fw w( ) ( − )4 5 4 1 4∈ ∩ and b V t Dt V w Fw w( ) ( − )1 2 1 2 2∈ ∩ , and we choose

a b, to minimize aFb. Consider the separation H H( , )1 2 in G1 such that
V H H a b w( ) = { , , }1 2∩ , V H t i t t S( ) { : [5]} = { , }i1 1 5∩ ∈ ⊆ , and bFa t t t H+ { , , }2 3 4 2⊆ .

(1) N w V aFb( ) ( ) 2G ∩ ≥Þ Þ .

For, suppose N w V aFb( ) ( ) = 1G ∩Þ Þ . If w a b{ , }1 ∉ then we have (ii). Since in this proof of
(1) we do not make use of the minimality of w Fw4 1, we may use the symmetry between t1
and t5 and assume w b=1 . Consider the 5‐separation H L( ′, ′) in G1 such that
V H L a b t t t( ′ ′) = { , , , , }2 3 4∩ is independent in H′, bFa w H+ ′⊆ , and L H L′1∪ ⊆ . By
the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. So by Lemma 2.2,
H V H L( ′, ( ′ ′))∩ is one of the graphs in Figure 1.
Suppose w t3 3≠ . Then w t4 4≠ to avoid the 4‐separation G G( ′, ′)1 2 with

V G G b t t w( ′ ′) = { , , , }1 2 2 3 4∩ , w w V G G{ , } ( ′ − ′)3 1 2⊆ , and G t t G+ { , } ′2 1 5 2⊆ . So
ww ww H L′ − ′3 4 ⊆ , and H V H L( ′, ( ′ ′))∩ must be the 9‐vertex graph in Figure 1.
However, this is impossible, as w b E H( ′)4 ∉ and one of the following holds: w4 is the
unique neighbor of a in H L′ − ′, or w is the unique neighbor of b in H L′ − ′.
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Therefore, w t=3 3. Then t w2 2≠ ; for, otherwise, w Fw t t E H= ( )2 3 2 3 ∈ as G is
4‐connected, a contradiction. Similarly, t w4 4≠ . Thus, w ww H L′ − ′2 4 ⊆ . So by
Lemma 2.2, H V H L( ′, ( ′ ′))∩ must be the 8‐vertex or 9‐vertex graph in Figure 1. But
this is not possible, as w b E H( ′)4 ∉ and one of the following holds: w4 is the unique
neighbor of a in H L′ − ′, or w is the unique neighbor of b in H L′ − ′.

We may assume t w1 1≠ ; since otherwise b t= 1 by the minimality of aFb, and we
would have N w V aFb( ) ( ) = 1G ∩Þ Þ , contradicting (1). We may also assume

(2) N w V aFb a b( ) ( ) { , }G ∩ ≠ .

For, otherwise, a b N w, ( )G∈ (so w a=1 ) and G has a 4‐separation G G( ′, ′)1 2 such that
V G G a b t t( ′ ′) = { , , , }1 2 1 5∩ , aFb G′1⊆ , and G bFa w G+ ′2 2∪ ⊆ . Hence, by the choice of
G G( , )1 2 , V G( ′) 51 ≤Þ Þ .
If V G( ′) = 41Þ Þ then P wat=1 1; so bt E G( )1 ∈ (by the minimality of aFb) and at E G( )5 ∈

(by the path R), and, hence, wat wbt,5 1 and two of P P P, ,2 3 4 show thatW is V H L S( ( ), )∩ ‐
extendable.

Hence, we may assume V G( ′) = 51Þ Þ and let u V G V G( ′) ( ′)1 2∈ ⧹ . Then
N u a b t t( ) = { , , , }G 1 5 . Since a w= 1, u V W( )∉ and P waut=1 1. If t a E G( )5 ∈ then
wat wbut,5 1, and two of P P P, ,2 3 4 show thatW is V H L S( ( ), )∩ ‐extendable. If t b E G( )1 ∈
then waut wbt,5 1, and two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐extendable. So
assume t a t b E G, ( )5 1 ∉ . Then G has a 4‐separation G G( ″, ″)1 2 such that
V G G t t t u( ″ ″) = { , , , }1 2 2 3 4∩ , a b w V G V G{ , , } ( ″) ( ″)1 2⊆ ⧹ , and G t t G+ { , } ′2 1 5 2⊆ . Hence,
G G( ″, ″)1 2 contradicts the choice of G G( , )1 2 .
Now consider the 5‐separation H L( ′, ′) in G1 with V H L a b w t t( ′ ′) = { , , , , }1 5∩ ,

bFa L′⊆ , and aFb t t H+ { , } ′1 5 ⊆ . Note that V H L V G G S( ′ ′) ( )1 2∩ ∩ ∩ ≤Þ Þ Þ Þ and
H H′ ⊆ but H H′ ≠ ; so by the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel.
Thus, since N w V aFb a b( ) ( ) { , }G ∩ ≠ , H V H L( ′, ( ′ ′))∩ is one of the graphs in Figure 1.
Recall that t t E H( )5 1 ∉ as V H L( )∩ is independent in H .

First, suppose V H( ′) = 6Þ Þ and let u V H V L( ′) ( ′)∈ ⧹ . Then by (1) and (2), aFb aub=
and u N w( )G∈ . By the minimality of aFb, t b E G( )1 ∈ . If u w= 1 then t u E G( )5 ∈
(because of R) and wb E G( )∈ ; so wut wbt,5 1 and two of P P P, ,2 3 4 show that W is
V H L S( ( ), )∩ ‐extendable. Hence, we may assume a w= 1. Then at at E G, ( )5 1 ∈
(because of P1 and R) and, hence, ut E G( )1 ∈ (because the degree of u1 is at least 4
as G is 4‐connected); so wat wut,5 1 and two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐
extendable.

Now assume V H( ′) = 7Þ Þ . First, suppose V aFb( ) 4≥Þ Þ and let aFb auvb= . If P wat=1 1
thenG has a separation G G( ′, ′)1 2 such that V G G a t b w( ′ ′) = { , , , }1 2 1∩ , u v V G G{ , } ( ′ − ′)1 2⊆ ,
and G t G+2 5 1⊆ ; and G G( ′, ′)1 2 contradicts the choice of G G( , )1 2 . If P wvt=1 1 then
wa wu E H, ( )∉ ; so ut ut E H, ( )1 5 ∈ , contradicting the existence of the path P′5. So
P wut=1 1 then t u E H( )5 ∈ (by P′5) and vw vt E H, ( )1 ∈ (by 4‐connectedness of G); so
wut wvt,5 1 and two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐extendable. So we may
assume V aFb( ) = 3Þ Þ and let aFb aub= and v V H V L u( ′) ( ( ′) { })∈ ⧹ ∪ . Then wu E G( )∈
by (1) and (2). If t u E G( )5 ∈ then N v b t t u( ) = { , , , }G 1 5 and t a E G( )5 ∈ (by the minimality
of aFb); now wat wuvt,5 1 (when wa E G( )∈ ) or wut wbvt,5 1 (when wb E G( )∈ ), and two of
P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐extendable. So assume t u E G( )5 ∉ . By the same
argument, we may assume t u E G( )1 ∉ . Then t v t v E G, ( )1 5 ∈ . Note that t b E G( )1 ∈ or
t a E G( )5 ∈ ; otherwise, H t t G L t vt( − { , }, )1 5 2 1 5∪ ∪ is a 4‐separation inG contradicting the
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choice of G G( , )1 2 . So by symmetry, we may assume t a E G( )5 ∈ . If wa E G( )∈
then wat wuvt,5 1, and two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐extendable. So
assume wa W G( )∉ ; hence, wb E G( )∈ by (1). If t b E G( )1 ∈ then wbt wuvt,1 5, and two
of P P P, ,2 3 4 show thatW is V H L S( ( ), )∩ ‐extendable. So assume t b E G( )1 ∉ . Now G1 has
a 5‐separation H L( *, *) such that H H t t v* = ( − ) −1 5 and L L t vt* = 1 5∪ . Note that
V H L( * *)∩ is independent in H* andW is V H L( * *)∩ ‐good. So H L( *, *) contradicts the
choice of H L( , ) as V H L V G G S( * *) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ.

Suppose V H( ′) = 8Þ Þ and let H L xyz′ − ′ = . Recall that w a w b w, , , ,4 1 2 occur on F in
clockwise order. Note that exactly one vertex in V H L( ′ ′)∩ is adjacent to all of x y z{ , , },
and call that vertex t . If t w= then we may let aFb axyzb= ; we see that wxt wzt,5 1 and
two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐extendable. If t t= 5 then we may let
aFb axyb= ; we see that wxt wyzt,5 1, and two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐
extendable. Similarly, if t t= 1 then W is V H L S( ( ), )∩ ‐extendable. Now assume t a= ;
the argument for t b= is symmetric. Then we may let aFb axb= . If wa E H( )∈ then
wazt wxyt,5 1, and two of P P P, ,2 3 4 show that W is V H L S( ( ), )∩ ‐extendable. So assume
wa E H( )∉ . Then wb E H( )∈ by (1). If t b E H( )1 ∈ then wxyt wbt,5 1, and two of P P P, ,2 3 4
show that W is V H L S( ( ), )∩ ‐extendable. So t b E H( )1 ∉ . Let H H t t z* = ( − ) −5 1 and
L L t zt* = 1 5∪ . Note thatV H L( * *)∩ is independent in H* andW isV H L( * *)∩ ‐good. So
H L( *, *) contradicts the choice of H L( , ) as V H L V G G S( * *) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ.
Finally, assume V H( ′) = 9Þ Þ . Let V H L u x y z( ′ − ′) = { , , , } such that xz E H( )∉ , and u

is the unique neighbor of some vertex t V H L( ′ ′)∈ ∩ . If t w= then we see that
aFb aub= and let ax zb E H, ( )∈ ; now waxt wuyt,5 1 (when wa E H( )∈ ) or wuxt wbzt,5 1
(when wb E H( )∈ ), and two of P P P, ,2 3 4 show thatW is V H L S( ( ), )∩ ‐extendable. If t a=
then we may let aFb auxb= ; then wut wxyzt,5 1, and two of P P P, ,2 3 4 show that W is
V H L S( ( ), )∩ ‐extendable. If t b= then may let aFb axub= ; then wxyt wut,5 1, and two of
P P P, ,2 3 4 show thatW is V H L S( ( ), )∩ ‐extendable. If t t= 5 then we may let aFb axyb= ;
now wxut wyzt,5 1, and two of P P P, ,2 3 4 show thatW is V H L S( ( ), )∩ ‐extendable. If t t= 1
then we may let aFb ayxb= ; now wyzt wxut,5 1, and two of P P P, ,2 3 4 show that W is
V H L S( ( ), )∩ ‐extendable. □

Next, we eliminate the possibility (iv) of Lemma 3.2 by working with more than one wheel.

Lemma 3.2. With the same assumptions of Lemma 3.1, H has a V H L S( ( ), )∩ ‐
extendable wheel, or G1 has a V G G( )1 2∩ ‐extendable wheel, or (i) or (ii) or (iii) of
Lemma 3.1 holds for any w V H L( − )∈ and for any V H L( )∩ ‐good wheelW in H with
center w.

Proof. Suppose (iv) of Lemma 3.1 holds for some V H L( )∩ ‐good wheelW with center
w. Then there exist a b V W w N w, ( − ) ( )G∈ ⧹ , c V H V W( ) ( )∈ ⧹ , and separation H H( , )1 2
in H such that V H H a b c( ) = { , , }1 2∩ , V H V H L( ) ( ) = 21 ∩ ∩Þ Þ , V H V H L S( ) ( )1 ∩ ∩ ⊆ ,
and N w w V H( ( ) { }) ( ) =G 1∪ ∩ ∅. Let G1 be drawn in a closed disc in the plane with no
edge crossings such that V G G( )1 2∩ is contained in the boundary of that disc. Let
V H L t i( ) = { : [5]}i∩ ∈ and we may assume that H t t t t t( , , , , , )1 2 3 4 5 is planar. Recall from
the assumptions in Lemma 3.1 that H L( , ) is chosen to minimize SÞ Þ, where
S V G G V H L( ) ( )1 2≔ ∩ ∩ ∩ . Without loss of generality, we may assume that
V H V H L t t( ) ( ) = { , }1 1 5∩ ∩ . So t t S,1 5 ∈ .
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By Lemma 2.3,W is V H L( )∩ ‐extendable in H . So there are four paths P i, [4]i ∈ , in
H from w to t i{ : [5]}i ∈ , such that V P P w( ) = { }i j∩ for i j≠ , V P W( ) = 2i ∩Þ Þ for i [4]∈ ,
V P t j( ) { : [5]} = 1i j∩ ∈Þ Þ for i [4]∈ . Without loss of generality, we may assume that
t V P( )i i∈ for i [4]∈ . Note that P P P, ,2 3 4 are disjoint from H1, and we may assume by
planarity that P H cPt=1 1 1 1∩ . We further choose a b c, , so that aFb and cPt1 1 are minimal.

Now t S3 ∉ . For, suppose t S3 ∈ . Then, t3 is cofacial with t1 or t5. If t3 is cofacial with t5
then G has a 4‐separation G G( ′, ′)1 2 such that V G G t t t t( ′ ′) = { , , , }1 2 1 2 3 5∩ , W G′1⊆ , and
G t G+ ′2 2 2⊆ ; which contradicts the choice of G G( , )1 2 . We derive a similar contradiction if
t3 is cofacial with t1, using the cut t t t t{ , , , }1 3 4 5 .

Let F W w= − and let D denote the outer walk of H . We choose P P P P, , ,1 2 3 4 so that
the following are satisfied in the order listed: w Fw4 1 is minimal, w Fw3 2 is minimal, and
the subgraph K of H contained inside the region bounded by P t Dt P4 4 1 1∪ ∪ is minimal.
Then every vertex of P4 is cofacial with a vertex in w Fa w−4 4, every vertex of P1 is cofacial
with a vertex in bFw w−1 1, and

(1) N w V w Fw w w w w( ) ( ) = { , , , }G 3 2 1 2 3 4∩ .

For, suppose (1) fails and let w N w V w Fw w w w w′ ( ) ( ) { , , , }G 3 2 1 2 3 4∈ ∩ ⧹ . First, assume
w V w Fw w w′ ( ) { , }4 1 1 4∈ ⧹ . If w V w Fa w′ ( − )4 4∈ then since G is 4‐connected, K has a path
P from w′ to P4 and internally disjoint from P F4 ∪ . Hence, we can replace P4 by a path in
P P w w( − { , })4 4∪ from w to t4, contradicting the minimality of K . We get the same
contradiction if w V bFw w′ ( − )1 1∈ .

Now assume w V w Fw w w′ ( ) { , }3 4 3 4∈ ⧹ . Consider the subgraph J of H contained in the
closed region bounded by P t Dt P3 3 4 4∪ ∪ . By the minimality of w Fw3 2, J has no path from
w′ to t3 and internally disjoint from F P4∪ . Thus, there exist x V w Fw w( ′ − ′)3∈ and
y V w Fw w V P( ′ − ′) ( )4 4∈ ∪ such that x y, are cofacial. Since G is 4‐connected,
y V P w( − )4 4∈ . Note that y is cofacial with some vertex on w Fa w−4 4, say z. Then G
has a 4‐separation G G( ′, ′)1 2 such that V G G w x y z( ′ ′) = { , , , }1 2∩ , w Fw G G′ ′ − ′4 1 2⊆ , and
G t t t t G+ { , , , } ′2 1 2 3 5 2⊆ . However, G G( ′, ′)1 2 contradicts the choice of G G( , )1 2 .

Similarly, if w V w Fw w w′ ( ) { , }1 2 1 2∈ ⧹ then we derive a contradiction.

(2) w ti i≠ for i {2, 3, 4}∈ .

First, w t3 3≠ . For, suppose w t=3 3. Then w t2 2≠ as, otherwise, since G is 4‐connected,
w Fw t t E W E H= ( ) ( )2 3 2 3 ∈ ⊆ , a contradiction. Now by (1), G1 has a 5‐separation H L( ′, ′)
such that V H L b c t w w( ′ ′) = { , , , , }2 3 4∩ is independent in H′, ww w w H L′ − ′1 2 ⊆ , and
L t t t L+ { , , } ′1 4 5 ⊆ . By the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. So by
Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 9‐vertex graph in Figure 1. This is not possible, as w is
the unique neighbor of w4 in H L′ − ′ and wb E H( ′)∉ .

Next, w t4 4≠ . For, suppose w t=4 4. Then by (1), G1 has a 5‐separation H L( ′, ′) such
that V H L b c t t w( ′ ′) = { , , , , }2 3 4∩ is independent in H′, w ww H L′ − ′1 3 ⊆ , and
L t t L+ { , } ′1 5 ⊆ . By the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. So by
Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 8‐vertex or 9‐vertex graph in Figure 1. Now
V H( ′) = 9Þ Þ ; as otherwise w t=2 2 is adjacent to all vertices in H L′ − ′, which implies
bw E H( ′)∈ , a contradiction. Let v V H L w w w( ′ − ′) { , , }1 3∈ ⧹ . Since w w E H( )1 3 ∉ , w and
v both have degree 3 in H L′ − ′. Therefore, v w= 2 is the unique neighbor of t2 in
H L′ − ′, which implies wb E H( )∈ , a contradiction.
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Now w t2 2≠ . For, suppose w t=2 2. Then G1 has a 5‐separation H L( ′, ′) such that
V H L a w w t t( ′ ′) = { , , , , }1 2 3 4∩ is independent in H′, ww ww H L′ − ′3 4 ⊆ , and
L t t L+ { , } ′1 5 ⊆ . By the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. So by
Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 9‐vertex graph in Figure 1. Since w is the unique
neighbor of w1 in H L′ − ′, wa E H( ′)∈ , a contradiction.

(3) a b≠ .

For, if a b= then G1 has a 5‐separation H L( ′, ′) such that V H L a c t t t( ′ ′) = { , , , , }2 3 4∩ is
independent in H′, V H L( ′ − ′) 5≥Þ Þ (by (2)), and L t t L+ { , } ′1 5 ⊆ . So by Lemma 2.2, H′
has a V H L( ′ ′)∩ ‐good wheel. Now H L( ′, ′) contradicts the choice of H L( , ), as
V H L V G G S( ′ ′) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ.

We may assume w Fw w t Dt( − ) =1 2 2 1 2∩ ∅. For, suppose not. Let b V′ ∈
w Fw w V t Dt( − ) ( )1 2 2 1 2∩ with b Fw′ 2 minimal. If b w′ 1≠ then, by (1), (ii) of Lemma 3.1
holds, with t t{ , }1 5 and a b{ , ′} as s s{ , }1 2 and a b{ , }, respectively, in (ii) of Lemma 3.1. So
b w′ = 1. Then G has a 4‐separation G G( ′, ′)1 2 such that V G G a t t w( ′ ′) = { , , , }1 2 1 5 1∩ ,
b V G G( ′ − ′)1 2∈ , and G t i G+ { : [5]} ′i2 2∈ ⊆ . Now V G V G b( ′) ( ′) = { }1 2⧹ as otherwise
G G( ′, ′)1 2 contradicts the choice of G G( , )1 2 . But then we see that N t a b( ) { , }H 5 ⊆ ; so (i) of
Lemma 3.1 holds.

We wish to consider the wheelW2 consisting of those vertices and edges of H cofacial
with w2.

(4) w2 and t1 are not cofacial in H , and w t,2 3 are not cofacial in H .

First, suppose w2 and t3 are cofacial. Then G1 has a 5‐separation H L( ′, ′) such that
V H L a w w t t( ′ ′) = { , , , , }1 2 3 4∩ is independent in H′, ww ww H L′ − ′3 4 ⊆ , and
L t t t L+ { , , } ′1 2 5 ⊆ . By the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. So by
Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 9‐vertex graph in Figure 1. This is impossible, as w is
the unique neighbor of w1 in H L′ − ′ and wa E H( ′)∉ .

Now assume that w t,2 1 are cofacial. Then c w, 2 are cofacial as c V t Dt( )1 2∈ . SoG has a
4‐separation G G( ′, ′)1 2 such that V G G b c w w( ′ ′) = { , , , }1 2 2∩ , w V G G( ′ − ′)1 1 2∈ , and
G t i G+ { : [5]} ′i2 2∈ ⊆ . By the choice of G G( , )1 2 , V G( ′) = 51Þ Þ .

Suppose c t= 1. Then G has a 4‐separation G G( ″, ″)1 2 such that V G G( ″ ″) =1 2∩
a w t t{ , , , }1 1 5 , b V G G( ″ − ″)1 2∈ , and G t t t G+ { , , } ″2 2 3 4 2⊆ . By the choice of G G( , )1 2 ,
V G( ″) = 51Þ Þ ; so N b a w t t( ) = { , , , }G 1 1 5 and, hence, N t a b( ) = { , }H 5 and (i) of Lemma 3.1
holds.

Therefore, we may assume c t1≠ . Now consider the 5‐separation H L( ′, ′) in G1 such
that V H L a t t w w( ′ ′) = { , , , , }5 1 2∩ is independent in H′, bw c H L′ − ′1 ⊆ (by (3)), and
L t t t L+ { , , } ′2 3 4 ⊆ . By the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. So by
Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 8‐vertex or 9‐vertex graph in Figure 1. This is
impossible as w1 is the unique neighbor of w in H L′ − ′ and w a E H( ′)1 ∉ .

Suppose w t E H( )2 2 ∈ or w2 and t2 are not cofacial. Then W2 is V H L( )∩ ‐good. By
Lemma 3.1, we may assume that (i) or (ii) or (iii) or (iv) of Lemma 3.1 holds forW2 (with
t2 as s). By the separation H H( , )1 2 we see that only (i) of Lemma 3.1 can hold for W2.
Hence, there exists t t V W′, ″ ( )2 2 2∈ such that N t t t( ) = { ′, ″}H 2 2 2 and N w V t F t( ) ( ′ ″) =G 2 2 2 2∩ ∅,
where F W w= −2 2 2 and t t t′, , ″2 2 2 occur on F2 in clockwise order.

We define t t t′ = ″ =2 2 2 when w t E H( )2 2 ∉ and w2 and t2 are cofacial. Then
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(5) w1 and t′2 are not cofacial in H .

For, suppose they are. Then, since w t E H′ ( )2 2 ∉ , it follows from (1) that, to avoid the cut
w w t{ , , ″}1 2 2 in G, w1 and t″2 must be cofacial in G1 and w Fw w w=1 2 1 2. Thus, G1 has a
5‐separation H L( ′, ′) such that V H L a w t t t( ′ ′) = { , , ″, , }1 2 3 4∩ is independent in H′,
w w w w V H L{ , , , } ( ′ − ′)2 3 4 ⊆ , and L t t L+ { , } ′1 5 ⊆ . By the choice of H L( , ), H′ has no
V H L( ′ ′)∩ ‐good wheel. So by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 9‐vertex graph in
Figure 1. But this is impossible as w is the unique neighbor of w1 in H L′ − ′ and
wa E H( ′)∉ .

Consider the 5‐separation H L( ′, ′) in G1 such that V H L b c t w w( ′ ′) = { , , ′, , }2 2∩ is
independent in H′, w V H L( ′ − ′)1 ∈ , and L t i L+ { : [5]} ′i ∈ ⊆ . By the choice of H L( , ),
H′ has no V H L( ′ ′)∩ ‐good wheel. So by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is one of the
graphs in Figure 1. By (5), V H( ′) 7≥Þ Þ .

(6) If V H( ′) 8≥Þ Þ then bFw bw w=2 1 2; H1 has a pathQ from b to t5 and internally disjoint
from aFb cPt1 1∪ ; and P t Dt w Fw w( − )3 3 4 3 4 4∪ ∪ has a path R from w3 to t4.

Note that w1 is the unique neighbor of w in H L′ − ′; so if V H( ′) 8≥Þ Þ then bFw bw w=2 1 2.
Also note that, by the choice of b c{ , }, H1 has a path Q from b to t5 and internally disjoint
from aFb cPt1 1∪ .

Moreover, P t t Dt w Fw w( − ) ( − )3 3 3 4 3 4 4∪ ∪ has a path R from w3 to t4. For, otherwise,
w V t Dt( )4 3 4∈ . Hence H has a separation H L( ″, ″) such that V H L b c t t w( ″ ″) = { , , , , }2 3 4∩
is independent in H″, w w w w V H L{ , , , } ( ″ − ″)1 2 3 ⊆ , and L t t L′ + { , } ″1 5 ⊆ . Since
V H L V G G S( ″ ″) ( ) <1 2∩ ∩ ∩Þ Þ Þ Þ, we see from the choice of H L( , ) that H″ has no
V H L( ″ ″)∩ ‐good wheel. Then H V H L( ″, ( ″ ″)∩ is the 9‐vertex graph in Figure 1.
However, this is not possible, as w1 is the unique neighbor of b in H L″ − ″
and w w E G( )1 4 ∉ .

(7) We may assume V H( ′) = 7Þ Þ .

First, suppose V H( ′) = 9Þ Þ . Note that w has a unique neighbor in H L′ − ′, namely w1.
Hence, H w w c t′ − { , , , ′}1 2 has a path bv v v w1 2 3 2 such that v N w( )i G 1∈ for i [3]∈ ,
v v N c, ( )G1 2 ∈ , and v v N t, ( ′)G2 3 2∈ . Since t S3 ∉ , we see that W1, the wheel consisting of
vertices and edges of H cofacial with w1, is V H L S( ( ), )∩ ‐extendable, using the paths
w b Q1 ∪ , w vc cPt1 1 1∪ , w v t t′1 2 2 2, and w ww R1 3 ∪ (where Q and R are from (6)).

Now suppose V H( ′) = 8Þ Þ . Then H w w c t′ − { , , , ′}1 2 has a path bv w1 2 such that
v N w( )G1 1∈ , H L′ − ′ is a path w v v1 1 2, and either v N b N c( ) ( )G G2 ∈ ∩ and v v N t, ( ′)G1 2 2∈ , or
v N w N t( ) ( ′)G G2 2 2∈ ∩ and v v N c, ( )G1 2 ∈ . Again, since t S3 ∉ and because of Q and R, we
see thatW1 is V H L S( ( ), )∩ ‐extendable.

Thus, let V H L w v( ′ − ′) = { , }1 . Suppose v V w Pc( )1 1∉ . Then N v c t w w( ) = { , ′, , }G 2 2 1 .
Since G is 4‐connected, it follows from the choice of b c{ , } that H1 has a pathQ′ from b to
t5 internally disjoint from aFb W cPt1 1 1∪ ∪ . Now, since t S3 ∉ and because ofQ′ and R, we
see thatW1 is V H L S( ( ), )∩ ‐extendable.

Hence, we may assume v V w Pc( )1 1∈ . Then vw E H( )2 ∈ , since w t, ′1 2 are not cofacial.
Note that t v E H′ ( )2 ∈ . If bv E H( )∈ then, since t S2 ∉ and because ofQ R, , we see thatW1
is V H L S( ( ), )∩ ‐extendable. So bv E H( )∉ . If ct E H′ ( )2 ∈ then let Wv denote the wheel
consisting of vertices and edges of H cofacial with v; then by the choice of b c{ , }, H1 has a
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pathQ′ from b to t5 internally disjoint from aFb W cPtv 1 1∪ ∪ , and, hence, since t S3 ∉ and
because of R,Wv is V H L S( ( ), )∩ ‐extendable. So assume ct E H′ ( )2 ∉ .

We may assume c t1≠ . For, if c t= 1 then G has a 4‐separation G G( ′, ′)1 2 such that
V G G a w c t( ′ ′) = { , , , }1 2 1 5∩ , b V G G( ′ − ′)1 2∈ , and G t t t G+ { , , } ′2 2 3 4 2⊆ . By the choice of
G G( , )1 2 , we see that V G( ′) = 51Þ Þ and N b a t t w( ) = { , , , }G 5 1 1 , which implies that (i) of
Lemma 3.1 holds forW .

Then G1 has a 5‐separation H L( ″, ″) such that V H L a t t v w( ″ ″) = { , , , , }5 1 1∩ is
independent in H″, b c V H L{ , } ( ″ − ″)⊆ , and L t t t L+ { , , } ″2 3 4 ⊆ . By the choice of
H L( , ), H″ has no V H L( ″ ″)∩ ‐good wheel. So by Lemma 2.2, H V H L( ″, ( ″ ″))∩ is one of
the graphs in Figure 1. Since b is the unique neighbor of w1 in H L″ − ″ and c is the
unique neighbor of v in H L″ − ″, V H( ″) = 7Þ Þ . If t b E H( )1 ∈ then N t a b( ) { , }H 5 ⊆ and
(i) of Lemma 3.1 holds. So assume t b E H( )1 ∉ . Then N b a t c w( ) = { , , , }G 5 1 and
N c b t t v( ) = { , , , }G 1 5 . Thus, H t t c L t ct(( − ) − , )1 5 5 1∪ is a 5‐separation in G1 that
contradicts the choice of H L( , ). □

We further eliminate possibilities (i) and (iii) of Lemma 3.1.

Lemma 3.3. With the same assumptions of Lemma 3.1, H has a V H L S( ( ), )∩ ‐
extendable wheel, or G1 has a V G G( )1 2∩ ‐extendable wheel, or (ii) of Lemma 3.1 holds for
any w V H L( − )∈ and for any V H L( )∩ ‐good wheelW in H with center w.

Proof. By Lemma 3.2, we may assume that (i) or (iii) of Lemma 3.1 holds for some
V H L( )∩ ‐good wheel W . Let w be the center of W , and let F W w= − . Let
V H L t t t t t( ) = { , , , , }1 2 3 4 5∩ . We may assume that G1 is drawn in a closed disc in the
plane with no edge crossings such that the vertices in V G G( )1 2∩ occur on the boundary
of that disc. Further, we may assume that H t t t t t( , , , , , )1 2 3 4 5 is planar.

By Lemma 2.3,W is V H L( )∩ ‐extendable. So let P P P P, , ,1 2 3 4 be paths in H from w to
t t t t, , ,1 2 3 4, respectively, such that V P P w( ) = { }i j∩ for distinct i j, [4]∈ , and
V P V W( ) ( ) = 2i ∩Þ Þ for i [4]∈ . Let V P V F w( ) ( ) = { }i i∩ for i [4]∈ .

Since (i) or (iii) of Lemma 3.1 holds for W , we may assume that there exist
a b V w Fw, ( )4 1∈ and separation H H( , )1 2 in H , such that w a b w, , ,4 1 occur on F in
clockwise order, N w V aFb( ) ( ) =G ∩ ∅, V H H a b t t( ) = { , , , }1 2 1 4∩ , aFb t H+ 5 1⊆ , and
bFa w t t H+ { , , }2 3 2⊆ . Moreover, t S5 ∈ ; and t t S,1 4 ∈ , or H1 consists of the triangle abt a5
(or the edge t a t b=5 5 ) and two isolated vertices t1 and t4.

We choose a b, so that aFb is minimal. We further choose P P P P, , ,1 2 3 4 to minimize
w Fw4 1 and then w Fw3 2. By the same argument in the proof of Lemma 3.2, we have

(1) N w V w Fw w w w w( ) ( ) = { , , , }G 3 2 1 2 3 4∩ .

Note that w t2 2≠ or w t3 3≠ . Since, otherwise, w Fw t t E H= ( )2 3 2 3 ∈ (as G is
4‐connected), contradicting the fact that V H L( )∩ is independent in H . We claim that

(2) w t,1 2 are not cofacial in H and that w t,4 3 are not cofacial in H .

For, suppose otherwise and assume by symmetry that w1 and t2 are cofacial in H . Then
w t4 4≠ , to avoid the 4‐separation G G( ′, ′)1 2 in G such that V G G t t w w( ′ ′) = { , , , }1 2 2 3 4 1∩ ,
w w V G G{ , } ( ′ − ′)2 1 2⊆ or w w V G G{ , } ( ′ − ′)3 1 2⊆ , and G t G+ ′2 5 2⊆ .
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Suppose w t=3 3. Then w t2 2≠ and G has a 4‐separation G G( ′, ′)1 2 such that
V G G w t w w( ′ ′) = { , , , }1 2 1 2 3 4∩ , w w V G G{ , } ( ′ − ′)2 1 2⊆ , and G t G+ ′2 5 2⊆ . Now G G( ′, ′)1 2
contradicts the choice of G G( , )1 2 .

So w t3 3≠ . Then G1 has a 5‐separation H L( ′, ′) such that V H L a w t t t( ′ ′) = { , , , , }1 2 3 4∩
is independent in H′, ww ww H L′ − ′3 4 ⊆ , and L b t t L+ { , , } ′1 5 ⊆ . By the choice of H L( , ),
H′ does not contain any V H L( ′ ′)∩ ‐good wheel. So by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is
the 9‐vertex graph in Figure 1. This is impossible because one of the following holds: w4 is
the unique neighbor of a in H L′ − ′ but w w E H( ′)1 4 ∉ , or w is the unique neighbor of w1
in H L′ − ′ and aw E H( ′)∉ .

Thus, w t1 1≠ (as t t,1 2 are cofacial in H), w t2 2≠ (as w w,1 2 are cofacial in H), w t3 3≠
(as w w,3 4 are cofacial in H), and w t4 4≠ (as t t,4 3 are cofacial in H). Moreover,

(3) a b≠ .

For, suppose a b= . Then G1 has a 5‐separation H L( ′, ′) such that
V H L b t t t t( ′ ′) = { , , , , }1 2 3 4∩ is independent in H′, w w w w w V H L{ , , , , } ( ′ − ′)1 2 3 4 ⊆ ,
L t L+ ′5 ⊆ . Hence, by Lemma 2.2, H′ has a V H L( ′ ′)∩ ‐good wheel. Now H L( ′, ′)
contradicts the choice of H L( , ).

(4) t5 is not cofacial in H with w1 or w4.

For, otherwise, assume by symmetry that w1 and t5 are cofacial. Then G has a 4‐
separation G G( ′, ′)1 2 such that V G G a t t w( ′ ′) = { , , , }1 2 4 5 1∩ , b V G G( ′ − ′)1 2∈ , and
w Fa G G′1 2 2∪ ⊆ . Hence, by the choice of G G( , )1 2 , V G( ′) = 51Þ Þ and N b a t t w( ) = { , , , }G 4 5 1 .
Therefore, we could have chosen a b= , contradicting (3) and the minimality of aFb.

(5) w t,2 3 are not cofacial in H and that w t,3 2 are not cofacial in H .

For, suppose this is false and assume by symmetry that w2 and t3 are cofacial in H . Then
G1 has a 5‐separation H L( ′, ′) such that V H L a w w t t( ′ ′) = { , , , , }1 2 3 4∩ is independent in
H′, ww ww H L′ − ′3 4 ⊆ , and L t t t L+ { , , } ′1 2 5 ⊆ . By the choice of H L( , ), H′ does not
contain any V H L( ′ ′)∩ ‐good wheel. So H V H L( ′, ( ′ ′))∩ must be the 9‐vertex graph in
Figure 1. However, this is not possible, because w is the unique neighbor of w1 in H L′ − ′
and aw E H( ′)∉ .

Suppose t t S{ , }2 3 ⊆ . Then G has a separation G G( ′, ′)1 2 such that V G G S t( ′ ′) = { }1 2 4∩ ∪
or V G G S t( ′ ′) = { }1 2 1∩ ∪ , H G′1⊆ , and G t G+ ′2 1 2⊆ or G t G+ ′2 4 2⊆ . However, G G( ′, ′)1 2
contradicts the choice of G G( , )1 2 . Thus, we may assume by symmetry that

(6) t S2 ∉ .

We will consider wheelsWi (for i [2]∈ ) consisting of the vertices and edges of H that
are cofacial with wi.

(7) H2 has disjoint paths P Q, from w w,2 3 to t t,3 4, respectively, and internally disjoint
from w Fa bFw P4 2 1∪ ∪ ; and H1 has a path R from b to t5 and internally disjoint from
W t+1 4.
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First, suppose P Q, do not exist. Then there exist v V P t w( ) { , }3 3 3 3∈ ⧹ and separation
G G( ′, ′)1 2 in G such that V G G w w v w( ′ ′) = { , , , }1 2 1 2 3 4∩ , w w V G G{ , } ( ′ − ′)3 1 2⊆ , and
G L G′2 2∪ ⊆ . Now G G( ′, ′)1 2 contradicts the choice of G G( , )1 2 .

Now assume that the path R does not exist. Then H1 has a 2‐cut p q{ , } separating b
from t5 such that p V W b t( − ) { }1 1∈ ∪ and q V aFb b t( − ) { }4∈ ∪ .

If p t= 1 then q t= 4 by the minimality of aFb. SoG has a separation G G( ′, ′)1 2 such that
V G G t t t t( ′ ′) = { , , , }1 2 1 2 3 4∩ , G G t′ −1 1 5⊆ , and G t G+ ′2 5 2⊆ . Now G G( ′, ′)1 2 contradicts the
choice of G G( , )1 2 .

Hence, p V W b( − )1∈ . Then q V aFb b( − )∉ to avoid the 3‐cut p q w{ , , }1 in G. So
q t= 4. Now G1 has a 5‐separation H L( ′, ′) such that V H L p t t t t( ′ ′) = { , , , , }1 2 3 4∩ is
independent in H′, w w w w w V H L{ , , , , } ( ′ − ′)1 2 3 4 ⊆ , and L t L+ ′5 ⊆ . By Lemma 2.2, H′
has a V H L( ′ ′)∩ ‐good wheel. So H L( ′, ′) contradicts the choice of H L( , ).

(8) We may assume that w2 and t1 are not cofacial in H .

For, otherwise, G has a 4‐separation G G( ′, ′)1 2 such that V G G b t w w( ′ ′) = { , , , }1 2 1 2∩ ,
w V G G( ′ − ′)1 1 2∈ , and G t t t t G+ { , , , } ′2 2 3 4 5 2⊆ . Hence, V G G w( ′ − ′) = { }1 2 1 by the choice of
G G( , )1 2 . Since w1 and t2 are not cofacial in H , w t E H( )2 1 ∈ . Now the paths
w t R w b P w w Q w ww, , ,1 1 1 1 2 1 3∪ ∪ ∪ show thatW1 is V H L S( ( ), )∩ ‐extendable.

Then w t E H( )2 2 ∉ and w2 and t2 are cofacial. For, otherwise, W2 is a V H L( )∩ ‐good
wheel in H . So by Lemma 3.2, (i) or (ii) or (iii) of Lemma 3.1 occurs for W2. Note that
w W2∈ and W2 is disjoint from w Fw w w− { , }3 1 1 3 . Thus, there do not exist vertices
a b V W w, ( − )2 2∈ such that in H , a b w{ , , } separates two vertices in t t t t t{ , , , , }1 2 3 4 5 from
the other three. So (ii) and (iii) of Lemma 3.1 do not occur for W2. Moreover, if (i) of
Lemma 3.1 occurs forW2 then t S2 ∈ , contradicting (6).

Hence, G1 has a 5‐separation H L( ′, ′) such that V H L b t t w w( ′ ′) = { , , , , }1 2 2∩ is
independent in H′, w V H L( ′ − ′)1 ∈ , and L t t t L+ { , , } ′3 4 5 ⊆ . By the choice of H L( , ), H′
does not contain any V H L( ′ ′)∩ ‐good wheel. Hence by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is
one of the graphs in Figure 1. Note that V H( ′) 7≥Þ Þ by (2). We may assume that

(9) V H( ′) = 7Þ Þ and N t t t w w( ) = { , , , }G 1 2 2 1 with t V H L w( ′ − ′) { }∈ ⧹ .

First, we may assume V H( ′) = 7Þ Þ . For, suppose V H( ′) 8≥Þ Þ . Then, since w1 is the only
neighbor of w in H L′ − ′, we see, by checking the 8‐vertex and 9‐vertex graph in Figure 1,
that bFw bw w=2 1 2,W1 is defined, and P1 can be chosen so thatW w−1 1 intersects P w−1
just once. So the paths w Pt R w b P w w Q w ww, , ,1 1 1 1 1 2 1 3∪ ∪ ∪ show that W1 is
V H L S( ( ), )∩ ‐extendable.
Now let t V H L w( ′ − ′) { }∈ ⧹ . We may assume N t t t w w( ) = { , , , }G 1 2 2 1 . This is clear if

P ww t=1 1 1. So assume P ww tt=1 1 1. Then tw E H( ′)2 ∈ by (2). If tb E H( ′)∈ then W1 is a
V H L( )∩ ‐good wheel, and P w R w b P w w Q w ww− , , ,1 1 1 2 1 3∪ ∪ ∪ show that W1 is
V H L S( ( ), )∩ ‐extendable. So assume tb E H( ′)∉ . Hence, N t t t w w( ) = { , , , }G 1 2 2 1 .

(10) t b E H( )1 ∈ .

For, suppose t b E H( )1 ∉ . Consider the 5‐separation H L( ″, ″) in G1 such that
V H L a t t t w( ″ ″) = { , , , , }4 5 1 1∩ is independent in H″, b V H L( ″ − ″)∈ , V H L( ″ − ″) 2≥Þ Þ
(because of R andW1), and L t t L+ { , } ″2 3 ⊆ . By the choice of H L( , ) and by Lemma 2.2,
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H V H L( ″, ( ″ ″))∩ is one of the graphs in Figure 1. Note that b is the only neighbor of w1
in V H L( ″ − ″). Since t b E H( )1 ∉ , V H( ″) = 7Þ Þ . Because of R andW1, we see that R bt= 5
and, hence, b t t{ , , }1 5 is a 3‐cut in G, a contradiction.

Suppose P ww t=1 1 1. If w Fw w w=1 2 1 2 then w t R w b P w w Q w ww, , ,1 1 1 1 2 1 3∪ ∪ ∪ show
thatW1 is V H L S( ( ), )∩ ‐extendable. So assume w Fw w tw=1 2 1 2. If there are disjoint paths
P Q′, ′ in H from t w,2 3 to t t,3 4, respectively, and internally disjoint from w Fa bFw P4 2 1∪ ∪ ,
then w t R w b P w tt Q w ww, , ′ , ′1 1 1 1 2 1 3∪ ∪ ∪ show that W1 is V H L S( ( ), )∩ ‐extendable.
Hence, we may assume that P Q′, ′ do not exist. Then there exist v V P t w( ) { , }3 3 3 3∈ ⧹ and
separation H L( ″, ″) in H such that V H L w w t t v( ″ ″) = { , , , , }4 1 2 3∩ is independent in H″,
ww w w H L″ − ″2 3 ⊆ , and L t t L′ + { , } ″1 5 ⊆ . By the choice of H L( , ), H″ does not contain any
V H L( ″ ″)∩ ‐good wheel. Hence by Lemma 2.2, H V H L( ″, ( ″ ″))∩ is one of the graphs in
Figure 1. But this is not possible as w is the unique neighbor of w1 in H L″ − ″ and
wt E H( ″)∉ .

Therefore, P ww tt=1 1 1. Let G G t w t w′ − { , } +1 1≔ , which does not contain a
K5‐subdivision as t w1 can be replaced by t tw w1 1 . So G′ admits a 4‐coloring, say σ . We
now have a contradiction by extending σ to a 4‐coloring of G as follows: If σ t σ w( ) = ( )1 2
then greedily color w t,1 in order; if σ t σ w( ) ( )1 2≠ then assign σ t( )1 to w1 and greedily
color t . □

4 | PROOF OF THEOREM 1.1

Suppose that G is a Hajós graph and that G has a 4‐separation G G( , )1 2 such that
G V G G( , ( ))1 1 2∩ is planar and V G( ) 61 ≥Þ Þ , and choose such G G( , )1 2 thatG1 is minimal. Further,
we assume that G1 is drawn in a closed disc in the plane with no edge crossings such that
V G G( )1 2∩ is contained in the boundary of that disc.

By Lemma 2.2, G1 has a V G G( )1 2∩ ‐good wheel. Moreover, by Lemma 2.5, any V G G( )1 2∩ ‐
good wheel in G1 is not V G G( )1 2∩ ‐extendable. Hence, by Lemma 2.3, there exists a 5‐
separation H L( , ) in G1 such that V H L( )∩ is independent in H , V G G V L( ) ( )1 2∩ ⊆ ,
V G G V H L( ) ( )1 2∩ ⊈ ∩ , and H has a V H L( )∩ ‐good wheel. Let S V H L V G G= ( ) ( )1 2∩ ∩ ∩ .
We further choose H L( , ) such that

(1) SÞ Þ is minimum and, subject to this, H is minimal.

Then by Lemma 2.3,

(2) any V H L( )∩ ‐good wheel in H is V H L( )∩ ‐extendable.

Let V H L t t t t t( ) = { , , , , }1 2 3 4 5∩ such that H t t t t t( , , , , , )1 2 3 4 5 is planar. Note that

(3) the vertices in S must occur consecutively in the cyclic ordering t t t t t, , , ,1 2 3 4 5.

For, suppose not. Then, without loss of generality, assume that t t S,1 3 ∈ but t t S,2 5 ∉ . Let
V G G t t x y( ) = { , , , }1 2 1 3∩ .

If G t x t y( , , , , )1 1 3 is planar then there exists a 4‐separation G G( ′, ′)1 2 in G such that
V G G t t t y( ′ ′) = { , , , }1 2 1 2 3∩ , H G′1⊆ , x V G( ′)1∉ , and G G′2 2⊆ ; which contradicts the choice of
G G( , )1 2 . Similarly, if G t y t x( , , , , )1 1 3 is planar we obtain a contradiction.
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If G t x y t( , , , , )1 1 3 or G t y x t( , , , , )1 1 3 is planar then t t t{ , , }1 2 3 would be a 3‐cut in G.
So assume G t t x y( , , , , )1 3 is planar (by renaming x y, if necessary). ThenG has a 4‐separation

G G( ′, ′)1 2 such that V G G t t t t( ′ ′) = { , , , }1 2 1 3 4 5∩ , H G′1⊆ , x y V G{ , } ( ′)1⊈ , and G G′2 2⊆ , which
contradicts the choice of G G( , )1 2 .

We claim that

(4) no V H L( )∩ ‐good wheel in H is V H L S( ( ), )∩ ‐extendable.

For, supposeW is a V H L( )∩ ‐good wheel in H that is also V H L S( ( ), )∩ ‐extendable. Let w be
the center ofW and assume that H has four paths P P P P, , ,1 2 3 4 from w to t t t t, , ,1 2 3 4, respectively,
such that V P P w( ) = { }i j∩ for distinct i j, [4]∈ , V P V W( ) ( ) = 2i ∩Þ Þ for i [4]∈ , and
S t t t t{ , , , }1 2 3 4⊆ .

Let k S= 4 − Þ Þ. Since W is not V G G( )1 2∩ ‐extendable, L S t− ( { })5∪ does not contain k
disjoint paths from t i S{ : [4]}i ∈ ⧹ to V G G S( )1 2∩ ⧹ . Thus, L S t− ( { })5∪ has a cut T of size at
most k − 1 separating t i S{ : [4]}i ∈ ⧹ from V G G S( )1 2∩ ⧹ . Hence T S t{ }5∪ ∪ is a cut in G, and
T S t{ } = 45∪ ∪Þ Þ since G is 4‐connected. Thus, G has a 4‐separation G G( ′, ′)1 2 such that
V G G T S t( ′ ′) = { }1 2 5∩ ∪ ∪ , H G′1⊆ , G′1 is a proper subgraph of G1, and G G′2 2⊆ . Note that
V G( ′) 61 ≥Þ Þ becauseW H G′1⊆ ⊆ andV H L( )∩ is independent in H ; so G G( ′, ′)1 2 contradicts the
choice of G G( , )1 2 .

Thus, by (4) and Lemma 3.3,

(5) for any V H L( )∩ ‐good wheelW in H (with center w, say), (ii) of Lemma 3.1 holds.

By (2) (and without loss of generality), let P P P P, , ,1 2 3 4 be paths in H from w to t t t t, , ,1 2 3 4,
respectively, such thatV P P w( ) = { }i j∩ for distinct i j, [4]∈ , and V P V W( ) ( ) = 2i ∩Þ Þ for i [4]∈ .
Let F W w= − (which is a cycle) and let V P V F w( ) ( ) = { }i i∩ for i [4]∈ . By (4), t S5 ∈ .

By (5), there exist s s S V W, ( )1 2 ∈ ⧹ , a b V W w N w, ( − ) ( )G∈ ⧹ , and a separation H H( , )1 2 in H
such that V aFb N w( ) ( ) = 1G∩Þ Þ , V H H a b w( ) = { , , }1 2∩ , V aFb s s V H( ) { , } ( )1 2 1∪ ⊆ , and
V H L s s V H( ) { , } ( )1 2 2∩ ⧹ ⊆ . Without loss of generality, we may assume that s t s t= , =1 1 2 5,
aFb w Fw4 2⊆ , and w V aFb( )1 ∈ . We choose Pi , i [4]∈ , to minimize w Fw4 2. Then it is easy to
see that

(6) N w V w Fw w w w( ) ( ) = { , , }G 4 2 1 2 4∩ .

We claim that

(7) w ti i≠ for i = 2, 3, 4.

First, we show w t2 2≠ and w t4 4≠ . For, suppose the contrary and, by symmetry, assume
w t=2 2. Then w t3 3≠ as otherwise w Fw w w=2 3 2 3 (since G is 4‐connected); so t t E H( )2 3 ∈ ,
contradicting the fact thatW H⊆ and V H L( )∩ is independent in H . So w t4 4≠ to avoid the 4‐
separation G G( ′, ′)1 2 with V G G w w t w( ′ ′) = { , , , }1 2 1 2 3 4∩ , w w V G G{ , } ( ′ − ′)3 1 2⊆ , and G G′2 2⊆ . Now
G1 has a 5‐separation H L( ′, ′) such that V H L a w w t t( ′ ′) = { , , , , }1 2 3 4∩ is independent in H′,
ww ww H L′ − ′3 4 ⊆ , and L H L′1∪ ⊆ . By the choice of H L( , ), H′ does not have anyV H L( ′ ′)∩ ‐
good wheel. Hence, by Lemma 2.2, H V H L( ′, ( ′ ′))∩ must be the 9‐vertex graph in Figure 1.
However, this is not possible, as w is the only neighbor of w1 in H L′ − ′ and wa E H( )∉ .
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Now suppose w t=3 3. Then G has a 4‐separation G G( ′, ′)1 2 such that V G G( ′ ′) =1 2∩
b t w w{ , , , }2 3 , w V G G( ′ − ′)2 1 2∈ , and G w Fw G′2 3 1 2∪ ⊆ . Hence, by the choice of G G( , )1 2 , we have
V G( ′) = 51Þ Þ . So N w b t w w( ) = { , , , }G 2 2 3 and b has degree at most 2 in H2. Similarly, by con-
sidering the 4‐cut a t w w{ , , , }4 3 , we have N w a t w w( ) = { , , , }G 4 4 3 and a has degree at most 2 in H2.
Thus, since G is 4‐connected, a b, each have degree at least 2 in H1.

Now consider the 5‐separation H L( ′, ′) in G1 such that V H L a w b t t( ′ ′) = { , , , , }1 5∩ is in-
dependent in H′, w V H L( ′ − ′)1 ∈ , and H L L′2 ∪ ⊆ . By the choice of H L( , ), H′ does not
contain any V H L( ′ ′)∩ ‐good wheel. So by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is one of the graphs in
Figure 1. Note that w1 is the only neighbor of w in H L′ − ′. So aw bw E H, ( )1 1 ∈ as a and b each
have degree at least 2 in H′. Note that H H at bt′ − { , }1 5 1⊆ .

We may assume that a or b has degree exactly 2 in H1. For, otherwise, by checking the
graphs in Figure 1, we see that V H( ′) = 8Þ Þ or V H( ′) = 9Þ Þ , and H1 contains a wheel W ′ with
center w′ such that N w V W w( ′) = ( ′ − ′)G and V W( ′) {4, 5}∈Þ Þ . If V W( ′) = 4Þ Þ then, since G is
4‐connected,G w− ′1 has four disjoint paths fromV W( ′) toV G G( )1 2∩ ; which shows thatW ′ is
V H L S( ( ), )∩ ‐extendable, contradicting (4). So V W( ′) = 5Þ Þ . Then, by the choice of H L( , ),
H w− has 5 disjoint paths from V W( ′) to V H L( )∩ ; which, again, shows that W ′ is
V H L S( ( ), )∩ ‐extendable, contradicting (4).

Thus, we may assume by symmetry that a has degree exactly 2 in H1. Then a has degree 4 in
G and at E G( )4 ∈ . Let σ be a 4‐coloring of G a w w w− { , , , }2 4 . If σ w σ t( ) = ( )1 4 then by greedily
coloring w w w a, , ,2 4 in order we obtain a 4‐coloring of G, a contradiction. If σ w σ t( ) = ( )1 3 then
by greedily coloring a w w w, , ,4 2 in order we obtain a 4‐coloring of G, a contradiction. So
σ w σ t σ t( ) { ( ), ( )}1 3 4∉ . Then assigning σ w( )1 to w4 and greedily coloring w w a, ,2 in order, we
obtain a 4‐coloring of G, a contradiction.

(8) w w V D, ( )2 4 ∉ , where D denotes the outer walk of H .

First, w V t Dt( )2 2 3∉ and w V t Dt( )4 3 4∉ . For, suppose not and assume by symmetry that
w V t Dt( )4 3 4∈ . Then G1 has a 5‐separation H L( ′, ′) such that V H L b t t w w( ′ ′) = { , , , , }2 3 4 1∩ is
independent in H′, ww w w H L′ − ′2 3 ⊆ , bFw w H+ ′4 ⊆ , and L t t L+ { , } ′1 5 ⊆ . By the choice
of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. Hence, by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the
9‐vertex graph in Figure 1. However, this is impossible since w is the only neighbor of w1 in H′
and wb E H( ′)∉ .

Now suppose (8) fails. Then we may assume by symmetry that w V D( )4 ∈ . So w V t Dt( )4 4 5∈ .
Then w Fa w a=4 4 (by (6) and 4‐connectedness ofG) andG1 has a 5‐separation H L( ′, ′) such that
V H L b t t w w( ′ ′) = { , , , , }1 5 4∩ is independent in H′, aFw V H V L( ′) ( ′)1 ⊆ ⧹ , and
bFw t t t L+ { , , } ′4 2 3 4 ⊆ . By the choice of H L( , ), H′ has no V H L( ′ ′)∩ ‐good wheel. Hence, since
w4 and w each have exactly one neighbor in V H V L( ′) ( ′)⧹ , it follows from Lemma 2.2 that
V H V L a w( ′) ( ′) = { , }1⧹ . SinceG is 4‐connected, N a t t w w( ) = { , , , }G 1 5 1 4 and N w a b t w( ) = { , , , }G 1 1 .
However,G1 now has a 5‐separation H L( ″, ″) such that H H t at″ = ( − ) −5 1 and L L t at″ = 1 5∪ .
Note that w w w w w V H V L{ , , , , } ( ″) ( ″)1 2 3 4 ⊆ ⧹ ; so by Lemma 2.2, H L( ″, ″) has aV H L( ″ ″)∩ ‐good
wheel, contradicting the choice of H L( , ).

(9) w t,2 3 are not cofacial, and w t,4 3 are not cofacial.

Otherwise, suppose by symmetry that w t,2 3 are cofacial. Then G1 has a 5‐separation H L( ′, ′)
such that V H L a w w t t( ′ ′) = { , , , , }1 2 3 4∩ is independent in H′, ww ww H L′ − ′3 4 ⊆ , and
L b t t L+ { , , } ′1 5 ⊆ . By the choice of H L( , ), H′ does not contain any V H L( ′ ′)∩ ‐good wheel. So
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by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 9‐vertex graph in Figure 1. But this is not possible as w is
the only neighbor of w1 in H L′ − ′ and wa E H( ′)∉ .

For i = 2, 4, let Wi denote the wheel consisting of all vertices and edges of H that are
cofacial with wi. Then

(10) for each i {2, 4}∈ ,Wi is not a V H L( )∩ ‐good wheel in H .

For, suppose W2 is a V H L( )∩ ‐good wheel in H . Since W w Fw w w( − { , }) =2 3 1 1 3∩ ∅ and
t t S,1 5 ∈ , it follows from (3) that (ii) of Lemma 3.1 does not hold forW2, contradicting (5).

Thus, by (7)–(10), w t w t E H, ( )2 2 4 4 ∉ , w2 and t2 are cofacial in H , and w4 and t4 are cofacial in
H . Since G is 4‐connected, b t w{ , , }2 2 and a t w{ , , }4 4 are not cuts in G. So by (8), N a t w( ) = { , }H 4 42

and N b t w( ) = { , }H 2 22
.

We claim that there exists some i {2, 3, 4}∈ such that w t, i3 are cofacial and w t E G( )i3 ∉ .
For, otherwise, W3 is a V H L( )∩ ‐good in H . Since W3 is disjoint from w Fw w w− { , }4 2 2 4 , it
follows from (3) that (ii) of Lemma 3.1 does not hold forW3, contradicting (5).

First, suppose i {2, 4}∈ and, by symmetry, assume w t,3 4 are cofacial and w t E G( )3 4 ∉ . Then
G has a 4‐separation G G( ′, ′)1 2 such that V G G a t w w( ′ ′) = { , , , }1 2 4 3∩ , w V G G( ′ − ′)4 1 2∈ , and
G aFw G′2 3 2∪ ⊆ . Since w t E G( )4 4 ∉ , V G G( ′ − ′) 21 2 ≥Þ Þ . Hence G G( ′, ′)1 2 contradicts the choice of
G G( , )1 2 .

Thus, w t,3 3 are cofacial and w t E G( )3 3 ∉ . By symmetry, we may assume that P w−3 and w4
are on the same side of the face which is incident with both t3 and w3. Now G1 has a 5‐
separation H L( ′, ′) such that V H L a t t w w( ′ ′) = { , , , , }4 3 3∩ is independent in H′,
P w P w H( − ) ( − ) ′3 4∪ ⊆ , and aFw t t t L+ { , , } ′3 1 2 5 ⊆ . Moreover, V H L( ′ − ′) 3≥Þ Þ since
P w P w( − ) ( − ) =3 4∩ ∅, w Pt w t3 3 3 3 3≠ , and w P t w t4 4 4 4 4≠ . By the choice of H L( , ), H′ has no
V H L( ′ ′)∩ ‐good wheel. Therefore, by Lemma 2.2, H V H L( ′, ( ′ ′))∩ is the 8‐vertex graph or 9‐
vertex graph in Figure 1. This is impossible, as w4 is the only neighbor of a in H L′ − ′ and
w t E H( )4 4 ∉ , a contradiction [14].
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