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Abstract

Scott asked the question of determining cy such that if D is
a digraph with m arcs and minimum outdegree d > 2
then V(D) has a partition V4, V5, such that min
{e(n, V), e(Vz, W)} >
tively, e(V3, 1)) is the number of arcs from V; to V; (re-

cgm, where e(V4, V;) (respec-

spectively, from V5 to ;). Lee, Loh, and Sudakov showed
that ¢; = 1/6 + 0(1) and c3=1/5+ 0(1), and con-
2(2d y + o(1) ford >
we showcy = 3/14 + o (1) and prove some partial results
ford > 5

jectured thatcy = 4. In this paper,
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1 | INTRODUCTION

Judicious partitioning problems concern partitions of graphs and hypergraphs that provide
bounds for several parameters simultaneously, while classical partitioning problems seek for
partitions that optimize a single parameter. For a graph G and A, B C V (G), we use e(A4, B) to
denote the number of edges in G between A and B, and we write e(A) = e(A, A). An example
of a classical partitioning result is Edwards' theorem [4,5] that if G is a graph with m edges then

V(G) has a partition V;, V5 such that e(V4, V5) > m/2 + ({2m + 1/4 — 1/2)/4, and the
inequality is tight for complete graphs of odd order. Bollobas and Scott [2] proved the following
judicious version of Edwards' result: The vertex set of any m-edge graph has a bipartition

V., V, such that e(V, V) >m/2 + ((2m + 1/4 —1/2)/4 and max{e(1}),e(Vz)} < m/
4 + ((2m + 1/4 — 1/2)/8, and both bounds are tight for complete graphs of odd order.

Bollobas and Scott [3,16] initiated a systematic study of judicious partitioning problems, which
has lead to a large amount of research in this area, see, for instance [7,10,11,13,13-15,17,17-20].

| © 2021 Wiley Periodicals LLC wileyonlinelibrary.com/journal/jgt J Graph Theory. 2021;98:604-622.
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Partitioning problems concerning digraphs (i.e., directed graphs) may be more difficult. For
a digraph D and A, B C V (D), we use e(A, B) to denote the number of arcs in D directed from
A to B and write e(A) := e(A, A). Edwards' result above implies that every digraph D with m
arcs has a vertex partition V4, V5 such that e(V}, V5) > m/4 + (2m + 1/4 — 1/2)/8, and the
bound is tight for complete graphs of odd order with an Eulerian orientation. On the other
hand, Alon et al. [1] constructed digraphs whose maximum directed cut is m/4 + O(m*/5).

A natural judicious version of Edwards' result is to bound both e(V4, V5) and e(V5, V7). Indeed,
Scott [16] asked the following question for digraphs without loops or parallel arcs in the same
direction. (Throughout this paper, all digraphs have no loops or parallel arcs in the same direction.)
Note that the outdegree of a vertex in a digraph is the number of arcs directed away from that vertex.

Problem 1.1 (Scott [16]). What is the maximum constant ¢4 such that every digraph D
with m arcs and minimum outdegree d > 2 admits a bipartition V(D) = VU V;
such that

minfe(V}, V5), e(Vo, W)} > cgm?

The reason for the requirement d > 2 in Problem 1.1 is the following: Take the star K; ,_; with
n > 4, and add a single edge between two vertices of degree 1. Orient the unique triangle so that it
becomes a directed cycle, and orient all other edges so that they are directed towards the unique
vertex of degree n — 1. This digraph has minimum outdegree 1, and e (¥}, V5) < 1 for any bipartition
W, V; of its vertex set with V4 containing the unique vertex of degree n — 1. Thus, ¢; = 0.

Lee et al. [11] proved thatc, = 1/6 + o(1) and ¢3 = 1/5 + 0(1), and they made the following
conjecture for d > 4.

Conjecture 1.2 (Lee et al. [11]). Let d be an integer satisfying d > 4. Every digraph D with
m arcs and minimum outdegree at least d admits a bipartition V(D) = V; U V; with

d—-1

minf{e(V;, V5), e(Vo, )} > [m

+ o(l)]m.

d—1
2(2d—1)
[11] using copies of K47 and one copy of Ky4.1. Lee et al. [11] also noted that their tools for

d = 2, 3 appear to be insufficient for d > 4. Hence, much effort has been devoted to studying
variations of this problem, for instance, by considering minimum total degree conditions, see
[6-9]. In this paper, we show that Conjecture 1.2 holds under certain natural conditions. In
particular, we prove Conjecture 1.2 for d = 4.

The main term in Conjecture 1.2 is best possible, because of examples constructed in

Theorem 1.3. Every digraph D with m arcs and minimum outdegree at least 4 admits a
bipartition V (D) = V; U V; with

minfe(W;, V2), e(V2, W)} = (3/14 + o(1))m.

In Section 2, we set up notation and list previous results needed in our proof of Theorem 1.3. In
Section 3, we describe and discuss our approach for all d and obtain information in terms of “huge”
vertices, vertices whose indegree and outdegree have a large gap. In Section 4, we show that Con-
jecture 1.2 holds under some additional conditions on the number of huge vertices. We complete the
proof of Theorem 1.3 in Section 5 and offer some concluding remarks in Section 6.
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2 | NOTATION AND LEMMAS

We start with notation and terminology that will be used in this paper. Let D be a digraph. For
x € V(D),letNp(x) ={y:xy € E(D)} and N;(x) = {y : yx € E(D)}. Then dj}(x) := IN}(x)l and
dp(x) := INp(x)l are the the outdegree and indegree of x, respectively. The degree of
x € V(D) is defined as dp(x) = dff(x) + dp(x). We use A(D) = max{dp(x):x € V(D)} to
denote the maximum degree of D. For any X C V (D), the subgraph of D induced by X is denoted
by D[X]. We will often omit the subscript D in the above notation when there is no danger of
confusion. It will be convenient to write [k] for {1, ..., k}, where k is any positive integer.

Lee et al. [11] proved that certain partial partitions of a digraph may be extended to a good
partition of the entire digraph.

Lemma 2.1 (Lee et al. [11]). Let D be a digraph with m arcs. Let p be a real satisfying
p € [0, 1], and let € > 0. Suppose that a subset X C V and its partition X = X; U X, are
given, and let Y = V\X. Further suppose that maxyeyd(y) < €m/4. Then there exists a
bipartition V(D) = V; U V5 with X; C V; fori € [2] such that

e, Vo)) 2 eX, X))+ (1 —p)-e(X,Y)+p-e(Y,X) + p(A —p)-e(Y) —em,

e(, ) 2 e(X, X)) +p-e(X,Y)+ (1 —p)-e(Y,X) + p(a — p)-e(Y) —em.
By applying Lemma 2.1 with p = 1/2 and X; = X; = @ and by noting that dp (v) < 2|V (D)|,

we obtain the following.

Corollary 2.2 (Lee et al. [11]). Let D be a digraph with n vertices and m arcs. For any
€>0, if m>8n/e or A(D) < e2m/4, then D admits a bipartition V(D) = VU V;
with min{e(V}, V3), e(Va, )} > m/4 — em.

From Corollary 2.2 we see that if the maximum degree of a digraph D is not too large, then
V(D) admits a partition Vj, V; such that both e (14, V5) and e (15, V1) are close to m/4. We will see
that the vertices causing problems for obtaining the desired partition in Conjecture 1.2 are
those whose outdegree and indegree differ significantly. Hence, for x € V (D), let

st(x) == dt(x) — d(x), s (x) :==d (x) — d*(x), and s(x):=max{st(x),s (x)}.

Note that d(x) — s(x) is an even integer, and we often write

2b= ) (d(x) — s(x)).

xeX

To study those vertices x with large s(x), we need the concept of the gap of a partition. Let
D be a digraph and let X, Y be a partition of V (D). For each partition X;, X; of X, the gap of
X1, X, is defined as

0(X, %) = (e(X,Y) + e(Y, X)) — (e(X%, Y) + e(Y, X).

The huge vertices of D with respect to the partition X, Y are the vertices x such that

s(x) > minf{lo (X3, X))l : X3, X,  is a partition of X}.
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Let D be a digraph, X, Y a partition of V (D), and X;, X; a partition of X. For convenience,
let my (X1, X5) = e(X1, Y) + e(Y, X3) and my (X1, X5) = e(X, Y) + e(Y, Xp); so

0(X1, Xo) = myp (X, Xo) — mp(Xa, X).

Note that
e(AXI’ )(2) = (e()(l’ Y) - e(Y’ )(1)) - (e()(Z’ Y) - E(Y, )(2))

Thus, if e(X) = 0 then

xeX; xeX;

0(X%, %) = [ 2 S*(x)] - [ )y S*(x)] ()

For any x € X, we say that x is

(X1, Xo)-forward if x € X; and s*(x) > 0, or x € X; and s~(x) > 0, and
(X1, X5)-backward if x € X; and s~(x) > 0, or x € X; and s*(x) > 0.

Let Xy := {x € X : xis (Xj, Xo)-forward} and X} := {x € X : x is (X, X;)-backward}. By (1), if
e(X) = 0 then
08X, X) = ) s(x)— ) s(). (2)

)CEXf xeXp

We will need the following result from [9].

Lemma 2.3 (Hou et al. [9]). Let D be a digraph and V(D) = X U Y be a partition of D
with e(X) = 0. Let X = X; U X, be a partition of X that minimizes 10(Xy, X;)l among all
partitions of X. Then

(1) 16(X, %) < 1Y, and
(2) g= Z{veX:s(v)<I6(Xl,Xz)l}S(v) <Y =16(X, X)l

3 | PROPERTIES OF PARTITIONS WITH MINIMUM GAP

In this section, we explore the probabilistic approach used by Lee et al. [10,11]. In particular,
we investigate digraph partitions whose gaps have minimum absolute value. We will prove
several properties about gaps and huge vertices, by considering various ways to partition the set
of huge vertices. Those properties may be useful for the eventual resolution of Conjecture 1.2.

Lemma 3.1. Let D be a digraph with m arcs and minimum outdegreed > 4, and let X, Y be
a partition of V(D) with e(X) = 0. Let 6 = min{l6(X;, X5) : X1, X, isa partitionof X]},
andlet X' = {x € X : 5(x) > 6}. Let € > 0 such that maxycyd (y) < e’m/4. Then there exists
a partition V4, V5 of V(D) such that min{e(V;, V3), e(V5, )} > (2(‘21(1__11) —¢|m, or the

following statements hold:

1) 6>m/(2d — 1),
(2) 1X' is an odd integer;



608 LIU axp YU
—LWI LEY

(3) letting g = ZXGX\X,s(x) and X' ={vy, ..., Var41} such that s(v)) =2 s(y) > ---=s
(Vais1) we have Y250 () — 25 s(y) > g + 6.

Proof. Suppose, for any partition W,V, of V(D), minfe(V}, V3),e(V5, )} <

(2(‘;;_11) —s)m. We show that (1), (2), and (3) hold. First, we prove (1). Let

m=eX,Y)+ e(Y,X)and m, = e(Y). Thus,m = my; + my, ase(X) = 0. Let (X3, X;) be
a partition of X such that 8(X;, X;) = 6. Applying Lemma 2.1 with p = 1/2, there is a
bipartition V4, V5 of V(D) such that X; C V; for i € [2], and

min{e (¥, 13), e(V3, )}

> Zminfe(X, V) + e(¥, %), (%, V) + e(v, X} + £ —am
=0 m g,
4 4
m-—20
=—— —e&m.
4

If 6<m/(2d —1) then (im —6)/4 > (d — 1)m/(2(2d — 1)); so min{e(V;, V5), e(V5,

Wi > (2(2d ! D s)m, a contradiction. Thus, 6 > m/(2d — 1), and (1) holds.

Let X = {vy, ..., vix|} such that s(v;) > s(v;) ... > s(vx). To prove (2), let us assume
IX’l = 2k for some nonnegative integer k. Then X’ = {vy, ..., .

First, suppose k = 0. Then s(v;) < 6 by the definition of X’. Let X;*, X; be the
partition of X such that vy, vs, ..., V5, are (X}, X5)-forward, where p = [1X1/2], and all
other vertices are (X;", X;)-backward. If IX| is even then, by (2),

o)

p—1
=5 — D, (s(Wa) = s(2i11)) — six)) < s(y) < 6,
i=1

a contradiction. If IXI is odd then, by (2),

‘e (7. x3)

p—1
=s() — D, (s(a) — s(Wa41)) < s(vy) < 6,
i=1

a contradiction.

Now suppose k > 0. Then s(vy) > 6. Let X{*, X5 be the partition of X such that
V1, V3, ...y Va1 are (X7, X5)-forward, and all other vertices in X are (Xj*, XJ)-backward.

Then by (2), 18(X;, X)) = 13X, s(ai_1) — (ZX,5(v) + )l Note that

ZS(VZL D - [ZS(VZJ + g] =s() - Z (sa) = s(Wai41)) — s(Var) —

i=1 i=1
<s() — S(Vzk)
<Yl -6,
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and, since g < 1Yl — 6 (by Lemma 2.3),

k k k
[ZS(Vzi) + g] = Ds(a-) = DL (o) — s(a1) + g < g < 1Y = 6.
i=1 i=1 i=1

Hence, 16(X;", X;)I < 1Yl — 6. Because 6 > m/(2d — 1) (by 1) and m > dIV (D), we see
that 6 > IV (D)I/2 > 1Y1/2. Thus, 10(X;", X;) < 1Yl — 0 < 6, a contradiction. Thus, 1X’|

must be odd, and we have (2).
By (2), let X’ := {vy, ..., Var41} for some k > 0. Recall that d (x) — s(x) is an even integer
for all x € X, and we write 2b = 3, (d(x) — 5(x)). To prove (3), we consider the partition

X, X3 of X such that {vy, vs, ..., var_1} U (X\X") is the set of (X}, X; )-forward vertices, and
{V2, V4, oy Vo, Vo) i the set of (X, X7)backward vertices. Then m; (X!, X;) =

Z’;Zl s(vyj—1) + g + b and mp (X, XJ) = 2’;:1 $(vy) + $(ak41) + b. Note that

0 (. 8) = my (x4, 2) = mu (3, X3)

k k
= ZS(VZj—l) +8 - ZS(VZj) = s(Vaks1)
j=1 j=1
k-1
=(s) = sa) — s(a41)) + Z (s(yie1) —s(vy)) + g
j=1

<Ss(Wy) — S(ok) — S(op41) + 1Y — 6 (since g< 1Yl —6 byLemma 23)
<s(v) +1Y1 — 36
<2V(D)l — 36
<6 (as O6>1V(D)/2 because m >dlV(D)l andby (1)).
Thus, since Im; (X!, X3) — mp (X!, X))l = 16(X], X3)I > 6, we have
k k
my (X, X3) = my (X1, %) = X sy) + s Qo) = Ys(yo) — g > 6.

Jj=1 J=1

Now exchange the sides for v, and v,_;, and consider the partition XZ, X7 of X such
that X7 = (X\fva-1})) U s} and X7 = (CQ\[v2}) U fvyi}. Then my(X7,X5) =
mp (X!, X3) — s(Wa—1) + s(v2) and my X2, X3) =my (X7, X3) — s(v2) + s(vak—1). Hence,

my (32, 52) = my (32, X3) = (o (x4, X2) = my (X5, X)) = 2050 = s,
which implies that
mb(Xf,Xzz) - mf(xf,xg) >0 —2(1Y1 — 6) > 6 — 20 = —6.
Therefore, since Imy (X2, X3) — mp (X2, X)) = 10(X7, X5)| > 6, we see that

mb(Xf,Xzz) - mf(Xf,Xzz) > 0.
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Repeating the same argument by exchanging the sides for v,—_;+1 and vy;, one step at
a time in the orderi = 2, ..., |[k/2], we arrive at the partition X; Lie/2] , X5 Lk/21 of X, such that
vy, Vo, e, e} U (X\X) is the set of (XIWZJ, XLk/zJ) forward vertices, {Vii1, Vg2, ovr Vakg1} 1S
the set of (XlLk/ ZJ, XZW 2J)-backward vertices, and

my (X372 XY =y (X X > e,

On the other hand, we have, by (2), that

2k+1 k
o (X720, XY — (72 020 = S )~ S5 — g
j=k+1 j=1
Hence, (3) holds. O

Lemma 3.2. Let D be a digraph with m arcs and minimum outdegreed > 4, and let X, Y be
a partition of V(D) with e(X) = 0. Let © = min{l0 (X}, X5) : X3, X; is a partition of X},

=fxeX:s(x)>06}, g= ZXGX\X,s(x), and 2b =3 _(d(x) — s(x)). Let € > 0 and
assume that maxyeyd () < €2m/4. Then there exists a partition Vi, V5 of V(D) such that
min{e(V;, V5), e(V5, 1)} > (% — g)m; or IX'l'is odd and if we let X' = {vy, ..., Vaks1}
such that s(v1) > s(v2) = = s(a41) and write A; = s(v) for j € [2k + 1] then

@) d(EZ_ A +8) - (d- DXL A +b+e(Y)/2<0,

() b> TEHASEI N — A(SEIA + Ay + Dgd) + (d = Dg + e (),

(3) b< 72(”‘“("“>|V(D)l 4 LM (SR 4 Agy + Aggyy) — EEHELR

3d—-1 3d—-1
d(d— @d-12
3d— g— 2d(3d 1) e(Y), and

+

(4) whend =4 andk = 1, 2A; + 2A3 — 3A; — 3g — b + 3e(Y) /14 < 0, or both 6A; — 3A, —
3A0;+ 28 — b+ 3e(Y)/14 < 0 and 6A; — 3A; — 3A, — 3g + b/3 + 3e(Y)/14 < 0.

Proof. For convenience, we introduce two functions which we will use to compare

min{e(V;, V5), e(V5, V1)} with (

2 ) - s)m for any partition V;, V5 of V(D). For any

partition X, X, of X, let z(X,X%)=e(X,Y) and z'(X, %) =e(Y,X,); so
mf()(l’XZ) = z()(laXZ) + z,()(l’ )(2) Let m := e(X’ Y) + e(Y9 X)! my := e(Y)’ and
2k+1
(P, X%, %) =(d—1) ), A+ (d—-1g+(d-2)b
j=1

- (2Qd-Dpd -p)-(@d-1)m,.

Define

f, X, %) =20 - p)2d — Dz(X, X) + 2p(2d — 1)2'(X, X)) — €(p, X, X5), and
h(p, X, %) =2p2d — 1)(im — z2(X, %) — 2/ (X, X)) — €(p, X1, X).
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By Lemma 2.1, for any 0 < p < 1, there is a partition V(D) = V4 U V5 such that
X; CV fori € [2], and

—-preX,Y) +pe(Y,X) + p(1 — p)e(Y) — em,

{e(Vl, V) = ( 3)
peG, Y)+ (1 —p)re(Y, X)) + p(1 — p)e(Y) —em.

e(V2, )

VoWV

Without loss of generality, we may assume p < 1 — p; so p < 1/2. Then, from (3), we have

e(V, Vo) 2 (1 — p)z(X, Xo) + pz’' (X, X5) + p(1 — p)my — em, @
eV, 2pm —z2(X,X%) -2/, %)) + p(1 — p)my — em.
Note that
2k+1
m=m+m= Y A+g+2b+m. (5)
Jj=1

By (4) and (5), we have

d—-1

W) — | ———m —
e(h, 12) 2(2d—1)m em
d—1 [(*n
> (1 = p)z(X, %) + pz' (X%, X)) + p(1 — p)m, — 20d—1) ZA tg+2b+m
X1, X
2(2d f(p 1, %),
and
d—1
V) — | ————m —
e(V5, W) 2(2d—1)m em
d—1 2k+1
>plm —z(X, %) —2'(X, X)) + p(1 — p)my — 20d-1 ZA +g+2b+m
1
=—h(p, X, X).
20d - 1) (P, X1, %)

If f(p, X1, %) > 0 and h(p, X3, X;) > 0 for some choice of p, X, X, we see that the
there is a partition V,V, of V(D) such that for i€ [2], X; CV, and

e(Vi,V5_y) > (ﬁl) E)m. Hence, we may assume that
f(, X,%)<0 or h(p,X,X) <0 foranychoiceof p,X,X%. (6)

To see (1), we consider the partition X}, X3 of X such that {vy, vy, ..., v} U (X\X") is the
set of (X}, X})-forward vertices, and {Viy1, V2, .- Vaks1} is the set of (X}, X3)-backward
vertices. Then z(X{,X3) + 2/ (X!, X3) = mp(X{, X3) = Z';zl Aj+ g+ b and m,(X, X)) =

2k+1
X

i=k+1 4 + D. Setting p = 1/2, it follows from a simple calculation that
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j=1 j=k+1

k 2k+1
f(1/2,X1,X21) = d[ZAj + g] —d-1) 3 A+b+m2,

2k+1
h(l/Z,Xl,le) d Y a-(d- 1)(ZA +g]+b+ my /2.

Jj=k+1 Jj=1

By (3) of Lemma 3.1, we may assume h(1/2,X},X)) > 0; so by (6), we have
f(Q/2, X, X3) < 0. Thus, (1) holds.

For (2) and (3), we note that at least k members of {sT(v,), sT(v), ..., st (Vo_1)} have
the same sign. We may assume that s*(v;), s*(vj),..,s*(v;) are positive, where
1<), <Jj, < -+ <Ji €2k —1; otherwise, we may consider the digraph D’ obtained
from D by reversing orientations of all arcs in D.

To prove (2), let X7, X be the partition of X such that {v;,v;, -+ ,v;} U (X\X") is the
set of (X7, X7)-forward vertices, and all other vertices in X are (X7, X3)-backward. Then

k
m(X2,X3) = YA, +g+b
i=1

and
2k+1 2k+1
my (X2, X3) = Z A — ZA +b> 3 A+b.
Jj=k+1

Note that z(X2, X2) = e(X2,Y) > Sk, A; and Z'(X,X5) = e(Y,X3) = my (X7, X3) —
e(X?,Y). Setting p = (d — 1) /(2d), we see that

d-—1
d+1D2d-1) & (d-1@d-1) kA1
>72Ah+f(g+b)—(d—1)2@
i=1 j=1
d—1)?
—(d—l)g—(2d—2)b+(2d2)m2
d—1|d*+2d-1 & s d—1
= A= DA l+W@—-1)g—-b+ m
d{ a1 &hiT [Z Z] @-1g 2d P
_ 2 ! k=1
S A2 170 4 S A+ A+ A |+ (@ = Dg — b+ T,
d i-1 & p d
and
i)
2d

2k+1 2k+1
2%( 3 Aj+bJ—(d—1) A -(d-Dg—@d-2b+ GV

d Jj=k+1 j=1 2d2
d-1 m
d f

By (1), h( - ,Xf,Xz) > 0. So f( - ,Xf,XZ) < 0 by (6). Hence, (2) holds.

d— 2k+1
== -1 D A—d[ZA +g]—b+

Jj=k+1 Jj=1
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To prove (3), consider the partition X7, X3 of X such that {v;, v;, .., v;} U (X\X") C X7,
and the vertices in X'\ {v;, .., v;} are (X7, X )-backward. Since s*(v;) > 0 for i € [k], the
vertices v, Vj, ..., vj, are (X7, X;)-forward. Hence,

k
Mf()(l"’,X;) > ZAji +b
i=1

and
2k+1 2k+1
my (X3, 3) > Z A — ZA +b> 3 A +b.
Jj=k+1

Let n == [V (D)I. Note that X3 € X'\{v;, ..., v;}; so

z'(Xf,Xg) = e(Y, X23) (k + Dn — {ZEIA - ZA,{]

i=1

Hence,

z(X3,Xz3):e(X3, ) ZA +b— (k+1)n—[2kZ+]1A - Ek]Ajl].

Jj=1 i=1

Setting p = (d — 1)/(2d), we have

5 0.%)

2k+1 k
/w ZA +b— (k+1)n—[2A _ZAh]

i=1 j=1 i=1

@d—1)@d-1) 2k+1 k 2k+1
+ﬁ(k+l)n— ZAJ_ZAJL —(d—l)ZA]

j=1 i=1 Jj=1

—(d-1g—-@d—-2)b+ TV,

2d?
— 3d—1|d*+2d-1 ZA d? —5d+2[ EIA _ ZA ]_ 2(2d—1)(k+1)n
d | 3d-1 ; Ji 3d = Ji 3d-1
- d3(;i:11)g +b+ 2;(:3?11—)21)'%2)
> 3d-1 d2+2d_12kZ_1A-— d?>—5d+2 EIA-+A +A _ 2(2d—1)(k+1)n
Z 4 3d—1 = J 3d—1 =1 J 2k 2k+1 3d-1

_ d(d—l)

(d-1y
Sa-1 8t b+ 2d(3d—1)m2)’

and

d-1
{4

2k+1 2k+1
>@=DRA=DIN y |- (d—l)ZA—(d—l)g 2d-2b+ G-V,
d Jj=k+1 2d?

2k+1 k
4= [(d—l) 3 A —d[ZAj+g]—b+ dz_dlmz).
j=1

Jj=k+1
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4

By (1), h(%,X{XS) > 0. So f(%,X{XS) < 0 by (6). Hence, (3) holds.

Now we prove (4); so assume d = 4 and k = 1. First, let X;}, X} be the partition of X
such that {v;} U (X\X") is the set of (X;', X;)-forward vertices, and v,, v3 are (X}, X;)-
backward. Then m; (X{', X5) = Ay + g + band my (X}, X3) = A, + A; + b. Also, we have
e(X;',Y) > A,. Setting p = 5/14, we see that

h(5/14, X14,X24) >5(Ay + As + b) — 3(A; + Ay + As) — 3g — 6b + 3m, /14

:2A2 +2A3 - 3A1 - 3g— b+ 3m2/14
and

f(s/14, X;‘,X;) >9A; + 5(g + b) — 3(A1 + A, + Ag) — 3g — 6b + 3m, /14
=6A; — 3A, — 3A3 + 2g — b + 3m,/14.
Thus, we have 2A;+2A;3—3A;—3¢—b+3m/14<0 or 6A; —3A,—3
A3 +2g — b+ 3my/14 < 0.

Next, we choose some i € [3] such that the number of arcs from v; to Y counted in b is
maximum. Consider the partition X7, X; of X such that {y;} U (X\X’) C X;, and the
vertices in X'\{v;} are (X7, X;)-backward. Then, clearly, my (X7, X3) > A+ b > A + b
and m, (X7, X5) > A, + As + b. Also, we have e(X}’, Y) > (A; + b) — 2b/3 > A; + b/3.
Setting p = 5/14, we see that

(A2+A3+b)—3(A1+A2+A3)—3g—6b+3m2/14
Ay + 2A;3 — 3A; — 3g—b+3m2/14,

h(5/14, Xf’,X;)

VoWV

5
2
and

f(5/14,X15,X25) >5(As + b) + 4(As + b/3) — 3(Ay + A, + A3) — 3g — 6b + 3my/14

Thus, 2A; + 2A; —3A; —3g8—b+3m,/14<0 or 6A; —3A; —3A, —3g+ b/3 +
3m, /14 < 0. This completes the proof of (4). O

| HUGE VERTICES

In this section, we show that if V(D) has a partition X,Y such that e(X) =0,
maxyeyd (y) < €?m/4, and X has at least d huge vertices or a unique huge vertex then Con-
jecture 1.2 holds.

Proposition 4.1. Letd > 4 be an integer and € > 0 be a real. Let D be a digraph with m
arcs and minimum outdegree at least d. Let X, Y be a partition of V (D) with e(X) = 0 and
maxd(y) < e?m/4. Let 6 = min{l6(X, X)l : X, X, isapartitionof X} and X' =
{Xceé X :s(x) > 6). Suppose X'l >d. Then V(D) admits a partition Vi, V, such

. d—
that minfe(Vi, V5), e(Va, W} > (55525 — ¢ )m.
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Proof. Suppose the desired partition V;, V5 does not exist. By (2) of Lemma 3.1, let
X' = {vy, ..., Vog41}. Then 2k + 1 > d > 4 by assumption. Let A; = s(v;) for i € [2k + 1]
and assume, without loss of generality, A} > A, > ---> Ay, Let X, X5 be a partition of
X such that 6(X;, X;) = 6. Then, by (1) and (2) of Lemma 3.2, we have

k 2k+1
0>d[DA+g|-Wd-1) >, A+b+m/2
j=1 j=k+1

k—1 2k—1 Paad—1 2k—1
>d ZAj+A2k —(d—l) ZAj+A2k+1 +? ZA]

j=1 j=k j=k

k-1
- d[ZAj + Ay + A2k+1]

j=1
-2 2!
=" 24— @d - DAy
j=k
k(4d—2
> (d_l Y Agirr — (2d — D Ageyy
2d—-1)2k+1-d
= 24-D@k+1-d) ﬁ_: )A2k+1,
This is a contradiction, as 2k + 1 > d. O

Remark 4.2. The requirement e(X) = 0 in Proposition can be replaced by e(X) = o(m).

Next, we show that if V(D) admits a partition X,Y such that IXI =o(IV (D)),
maxyeyd(y) < €2m/4, and D has a unique huge vertex in X then the conclusion of Conjecture
1.2 holds. For this, we need another concept introduced by Lee et al. [10], and we use the result
of Lu et al. in [12] to give its definition. We say that a connected graph is tight if all its blocks are
odd cliques. If a disconnected graph G is the underlying graph of a digraph D, the tight
components of D are the components of G that are tight. (The underlying graph of D is obtained
from D by ignoring arc orientations and removing redundant parallel edges.) For a tight
component T of D, we say T is essential if D[V (T)], the subgraph of D induced by V (T), does
not contain any parallel arcs in opposite directions. Recently, Hou et al. [7] proved the
following.

Lemma 4.3 (Hou et al. [7]). For any positive constants C and ¢, there exist y, ny > 0 for
which the following holds. Let D be a digraph with n > nq vertices and at most Cn arcs.
Suppose X C V(D) is a set of at most yn vertices and X;, X, is a partition of X. Let
Y = V(D)\X and let T be the number of essential tight components in D[Y]. If every vertex
in'Y has degree at most yn in D, then there is a bipartition V (D) = V; U V, with X; C V] for
i =1, 2 such that

e(X,Y)+e(Y,X) + e(Y) + n—rt

eV, V) 2 e(X,X) + — &n,
M, V2) (X, %) 5 2 2

X, Y Y, X Y —
(Vi V) > e(X, X)) + <% );e( ’ l)+e(4)+"87—sn.

Proposition 4.4. Letd > 4 be an integer and let C, € be positive reals. Let D be a digraph
with n vertices, m < Cn arcs, and minimum outdegree at least d. Then there exists y with
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0 < y < € such that the following holds: Let X,Y be a partition of V (D) with 1X| < yn,
e(X) =0, and maxycyd(y) < yn. Let 6 = min{l6(X;, Xo)! : X;, X, isapartitionof X},
X =xeX:s(x)>06}, g= ZXGX\X,s(x), and 2b =3 x(d(x) —s(x)). Then the
following statements hold.

(1) t<(n+2g+ 2b)/(2d — 21X’ + 1), where T is the number of essential tight compo-
nents in D[Y].

(2) Suppose X'l =1. Then V(D) admits a partition V,V, such that
minfe (i, V3), e(Va, W} > (5555 — €)m.

22d—1)

Proof. First, we prove (1). Let a:=I1X'l. For i =1,3,.., 2d — 2a — 1, let 7; be the
number of essential tight components of order i; and let 7’ be the number of essential

tight components of order at least 2d — 2a + 1. Then 7 = Z?:'f‘ Bi_1 + v’ and

T4 3% ++0Qd — 200 — Dog_geq + 2d — 2a + 1)’ < n. (7)

For each essential tight component D; of order i, we see that e(D;) < i(i — 1)/2 and
e(D;, X') < ai. Thus, since the outdegree of D is at least d, we see that
e(D;, X\X") > di — ai —i(i — 1)/2. Viewing di — ai — i(i — 1) /2 as a function of i over
the interval [1, 2d — 2a], we see that it achieves its minimum at i = 1 (as well as at
i = 2d — 2a). Hence, e(D;, X\X") > d — « for i € [2d — 2a]. Thus, e(Y, X\X") > Y%
(d — a);_1. On the other hand, we have e(Y, X\X’) < g + b. Hence,

d—a
> (d—a)mi_1 < g+ b. (®)
i=1
Multiplying (8) by 2 and adding the resulting inequality to (7), we derive that
(2d — 2a + 1) < n + 2g + 2b, completing the proof of (1).
To prove (2), let X’ = {vo} and let A = s(vy). Let X, X; be the partition of X such that
Vo is the only (X, X;)-forward vertex. Then my;(X;, X;) = A + b and my (X1, X;) = g + b.
By Lemma 4.3 (with p = 1/2), there is a bipartition 13, V, of V(D) such that X; C V; for
i € [2] and

min{e(V}, 2), e(Va, W)}
> %min{e(Xl, Y)+e(Y,X),e(%,Y) + e(Y,Xl)} +e(¥)/4+(n—1)/8 —en
=(m—-0)/4+(n—-1)/8 —¢n.

Hence,

min{e(‘/b ‘/2)7 e(‘/b ‘/2)} - (% - E]m

d-1
>(m—6)/4+(n—‘r)/8—sn—(m—£]m

21( m +£+4(d—1)£n—6—£) (since m > dn).
4\2d -1 2 2

Since the minimum outdegree of D at least d and 1Yl = n — IX| > n — en, we have

m>b+dYl > b+ dn — den.
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Therefore,
m +£+4(d—1)sn—9—£
2d — 1 2 2
b+dn—dem n n+2g+2b
> 4 44d-1m -6 - —=2— (by(1
2d—1 y T Den 2ad—1 YW
1
>—@b+2dn+(2d—-1)n—(4d —-2)0 —n—2g—2b
TeTIEIL n+(Qd - 1n - (4d — 2)6 — n — 2g — 2b)
1
=——((4d — 2)n — (4d — 2)6 — 2
SGa (@ - 2n - (4d =20 - %)
>0 (since n>I1Yl>0+g byLemma2.3).
So W, V, gives the desired partition for (2). O

We now use Lemma 4.3 to define (1) of Lemma 3.2 for the case when there are only three
huge vertices.

Lemma 4.5. Let D be a digraph with m arcs and minimum outdegreed > 4, and let X, Y
be a partition of V(D) with e(X) = 0. Let 6 = min{l6(X;, X5)! : X;, X; is a partition of X},
X' =fxeX:s(x)>6},g= erX\X,s(x), 2b =3, x(d(x) — s(x)), and T the number of

essential tight components in D[Y] Let € >0 and assume that maxyevd(y) < e’m/4.
Suppose 1X'l =3. Then there exists a partition V;,V, of V(D) such that
min{e(V}, V5),e(V5, )} = 3/14 — e)m;  or if we write X' ={v,v,,v3} with
s(v) = 5(vy) = s(v3) and A;j = s(vy) for j € [3] then

Proof. 'We consider the partition X, X, of X such that {v;} U (X\X’) is the set of (X, X;)-
forward vertices, and {v,,v;} is the set of (X, X;)-backward vertices. Then
mp(X1, X)) = Ay + g + b and mp (X, X)) = Ay + Az + b. Note that
3
m=m+m= YA +g+2b+ m. (9)
j=1
Let n:=1V (D). By applying Lemma 4.3 with p =1/2, there is a partition
V(D) = V;U V, such that X; C V; fori € [2], and

{e(vl, V)= (A +g+b)/2+m/4+ (n—1)/8 —en, (10)

eV V) =2 (A + A3+ D)2+ my/4+ (n—1)/8 — ¢n.
Define

fQ/2,X,X)=4A1 —3A, —3A; +4g+ b+ my/2 + 7(n — 7) /4, and
h(1/2,X,%) = 40, + 473 — 3A, — 3g + b + my /2 + 7(n — 1) /4.

By (3) of Lemma 3.1, we may assume A, + A; — A; > g + 6; for otherwise the desired
partition of V (D) exists. Hence, h(1/2, X3, X;) > 0.
By (9) and (10), we have
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e(K, V2) — Bm/14 — em)

3
> (A +g+b)/2+m/4+(n—1)/8 — (3/14)[2Aj +g+2b+ mz]

j=1
= (1/14)f /2, X%, %),
and

e(V, 1) — Bm/14 — em)
3
> (A +M+Db)/2+m/4+(n—1)/8 — (3/14)[2Aj +g+2b+ mz]
j=1

= (1/149)h(1/2, X, X).

Thus, if f(1/2, X1, X;) > 0 then, since h(1/2, X1, X5) > 0, the desired partition of V (D)
exists. So, we may assume f(1/2, Xj, X;) < 0 which implies the desired inequality. []

5 | PROOF OF THEOREM 1.3

In this section, we prove Theorem 1.3, by using Propositions 4.1 and 4.4 and Lemma 4.5 and by
choosing X to consist of vertices of degree at most n*/4. Our proof is much simpler when
applied to the cases d = 2 and d = 3, and gives the results of Lee et al. [11] that Conjecture 1.2
is true for these cases.

Proof of Theorem 1.3. Let D be a digraph with n vertices and m arcs, and assume that
the minimum outdegree of D is at least 4. We wish to find a partition V(D) = V; U V;,
such that minf{e(WV;, V), e(V5, 1)} > (3/14 + 0(1))m. We may assume that n is
sufficiently large so that all lemmas in the previous sections can be applied. We
claim that

(1) m > 4n and we may assume m < 128 - 7%n.

Since D has minimum outdegree at least 4, we have m > 4n. Now suppose m > 128 - 7°n.
Then applying Corollary 2.2 with € = 1/28 we obtain a partition V (D) = V; U V, such that
minfe(Vi, ), e(V5, D)} > (1/4 — 1/28)m = 3m/14.

So we may assume m < 128 - 72n. O

Consider the partition X,Y of V(D) such that X={ve V(D):d() > n*/% and
Y = V(D)\X. Then, by (1),

IXI-n3/4 < Y dw) < D) d©v) =2m < 256 - 7n.
veX veV (D)

Hence, IX| = O(n'/*) and, thus, e(X) < IX? = O0(n!/?) = o(m). Therefore, we may assume

(2) eX)=0.
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Let 6 = min{l6(S, T)I : S, T is a partition ofX}. Let X;, X, be a partition of X such that
0(X,X) =6,andlet X' = {x € X :s(x) > 6}. IfIX'l = 1 orIX’l > 5 then the desired partition
exists by Propositions 4.1 and 4.4. So let X’ = {vy, v,, v3} and A; = s(v;) for i € [3] such that
Ay > Ay > As. Since IX] = o(n),

M+M+M+g+b+m> ) d*® > 4YI =4n - o(n).
yey

Hence, writing t = 2A; — (A, + As), we have
b>d4n—A—-N—AN—g—m—on)=4n—3A —g —my + t — o(n), 11)

Next, we will derive bounds on m;,, Ay, t and b in terms of n and g, so that we can use (4) of
Lemma 3.2.
By Lemma 4.5,

b<3MA)+3A;—4A —4g —my /2 —T(n—1)/4 =27 —3t—4g —my /2 — 7(n — 1) /4,

which, combined with 7 < (n + 2g + 2b)/3 (by (1) of Proposition 4.4), imlpies
b>7n + 3m, + 17g — 124, + 18¢. (12)

We may assume that (2) and (3) of Lemma 3.2 hold; for, otherwise, by Lemma 3.2, the
desired partition of V (D) exists. Thus,

b>3g+3my/8 — A/3 + 4, (13)
and
28 27 12 9 2
b<—n- —A+—g— —m + —t. (14)
11 11 11 88 11

Combining (14) with (11), (12), (13), respectively, we obtain (by eliminating b)

?mz + 23g > 16n — 6A; + 9t — o(n), (15)
273
?mz + 175g < 105A; — 49n — 196¢. (16)
63
Tmz + 63g < 84n — 70A; — 126¢. (17)

Noting that Ay < n — X1 (by (2)) and n is large, we see from (15) that %9m2 + 23g > 9.99n; so
my + 2.31g>n (18)

We now combine (15) with (16) and (17), respectively, and we get (by eliminating m,)

1.806¢ + 0.759g < A; — 0.829n, (19)
2.322t + 0.435g < 0.968n — A,. (20)

From (19), we have
A, > 0.829n. (21)

Combining (19) and (20) to eliminate A;, we have
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3t + g < 0.117n. (22)
From (14), we have

b<§n—£A —(im +£)+(it+£)
! 27T g8 1 " sssS

Hence, by (18), (21), and (22), we have

2 27 117
b < —Sn — — x 0.829n — in + — % 0.117n < 0.564n. (23)
11 88 88

We wish to use (4) of Lemma 3.2. Note that

20, + 2A3 — 3A1 —3g — b+ 3my /14 = A + B3my /14 + g/2) — b — (2t + 7g/2).

So by (18), (21), (22), and (23), we see that

2A2 + 2A3 - 3A1 - 3g - b+ 3m2/14
>0.829n + 3n/14 — 0.564n — (7/2) x 0.117n

>0.069n
>0.

Hence, by (4) of Lemma 3.2, we have 6A; — 3A, — 3A3 + 2¢ — b + 3m, /14 < 0. Thus,
b > 6A; — 3A; — 3A; + 3m, /14 + 2g = 3m, /14 + 2g + 3t. (24)

Combining (14) and (24) (by eliminating b), we have

1
%mz + 10g < 28n — 27A; — 31t,

which, combined with (15) (by eliminating m,), gives
1.373t + 0.075g < 0.899n — A, (25)
which implies A; < 0.899n; so by (11), we have
g+b+m>4n—3A +t—o0(n)>4n -3 x09n = 1.3n. (26)

Combining (19) and (25) (to eliminate A;), we derive
3t + g < 0.084n. (27)

Again by (4) of Lemma 3.2, we have

0> 6A; — 3A; —3A, —3g + b/3 +3my /14 =3(my + b + g) /14 + 5b/42
— (6t + 2g + 17g/14) + 9(A; — Ay).

Hence, noting that b > 3n/14 (by 18 and 24) and by (26) and (27),

0> (3/14) x 1.3n + (5/42) X (3n/14) — (2 + 17/14)) X 0.084n > 0.034n.

This is a contradiction, completing the proof of Theorem 1.3.
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6 | CONCLUDING REMARKS

We studied partitions of digraphs with minimum outdegree d > 4 and proved Conjecture 1.2 in
the case when d = 4. We used a typical approach for finding a partition V4, V; in a digraph D
that bounds e (W4, V5) and e (V3, V;) simultaneously: Start with a partition X, Y of V (D) such that
X consists of large degree vertices; partition X by considering the “huge” vertices in X, those
vertices with large gap between their outdegree and their indegree; and randomly partition the
vertices in Y. Huge vertices play an important role in the process for obtaining the desired
partition. For instance, we showed that Conjecture 1.2 holds when there exists a partition of
V (D) for which the number of huge vertices is at least d or exactly 1. We hope that our work
would shed light on how the set V(D) should be partitioned into X, Y and how the set X
should be partitioned.

In [11], Lee, Loh, and Sudakov point out that one needs to combine both Lemma 2.1 and
Lemma 4.3 to prove Conjecture 1.2. They also remarked that a naive combination is not
adequate for d > 4 because of the following example. Let D’ be the digraph obtained from
Ks ,—s (with n > 9) by orienting the edges so that one vertex, say v;, has outdegree n — 5 and
four vertices, say v,, V3, V4, Vs, each have indegree n — 5. Let D be obtained from D’ by adding an
arc directed from v; to v; for each ordered pair (i,j) with 1 < i # j < 5. Then the minimum
outdegree of D is 4 and the number of arcs in D is m = 5n — 5. Let X = {vy, ..., vs}. If we
partition V (D) to X (consisting of large degree vertices) and Y = V (D)\X (consisting of small
degree vertices), then X is the set of huge vertices. One can check that X; = {v,} and
X5 = {v1, v3, 1y, vs} form a partition of X with minimum gap. However, for any partition Y3, Y, of
Y,weseethate(QoUY,, X, UY) =n—5+4=n—1=m/5 which is smaller than 3m/14.
What this means is that one need to consider different partitions of the set of huge vertices. In
this paper, we have managed to prove Conjecture 1.2 in the case when d = 4 by carefully
partitioning the huge vertices.

For digraphs with minimum outdegree d > 5, new ideas seem needed (in addition to better
partitioning the huge vertices), as shown by the following example. Let D’ be the digraph
obtained from Kj ,,_; (with n > 900) by orienting all edges from the part Y of size n — 3 to the
part X of size 3. Let D be obtained from D’ by adding six arcs directed from each vertex in X to
6 vertices in Y (so that no two arcs get directed towards the same vertex in Y), and adding a 3-
out-regular graph on Y. Hence, the minimum outdegree of D is 6, and X is the set of huge
vertices with respect to the partition X, Y. It is not difficult to verify that for any value p and
any partition X, X, of X, we have f (p, X1, X3) < 0 or h(p, X, X5) < 0 (see Section 3). Therefore,
one needs to better partition V (D)\X to achieve the bound in Conjecture 1.2.
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