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Abstract
Scott asked the question of determining cd such that if D is

a digraph with m arcs and minimum outdegree d 2.
then V D( ) has a partition V V,1 2 such that min
e V V e V V c m{ ( , ), ( , )} d1 2 2 1 . , where e V V( , )1 2 (respec-

tively, e V V( , )2 1 ) is the number of arcs from V1 to V2 (re-

spectively, from V2 to V1). Lee, Loh, and Sudakov showed

that c o= 1 6 + (1)2 ∕ and c o= 1 5 + (1)3 ∕ , and con-

jectured that c o= + (1)d
d
d
− 1

2(2 − 1)
for d 4. . In this paper,

we show c o= 3 14 + (1)4 ∕ and prove some partial results

for d 5. .
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1 | INTRODUCTION

Judicious partitioning problems concern partitions of graphs and hypergraphs that provide
bounds for several parameters simultaneously, while classical partitioning problems seek for
partitions that optimize a single parameter. For a graph G and A B V G, ( )⊆ , we use e A B( , ) to
denote the number of edges in G between A and B, and we write e A e A A( ) ( , )≔ . An example
of a classical partitioning result is Edwards' theorem [4,5] that ifG is a graph withm edges then

V G( ) has a partition V V,1 2 such that e V V m m( , ) 2 + ( 2 + 1 4 − 1 2) 41 2 . ∕ ∕ ∕ ∕ , and the
inequality is tight for complete graphs of odd order. Bollobás and Scott [2] proved the following
judicious version of Edwards' result: The vertex set of any m‐edge graph has a bipartition

V V,1 2 such that e V V m m( , ) 2 + ( 2 + 1 4 − 1 2) 41 2 . ∕ ∕ ∕ ∕ and e V e V mmax{ ( ), ( )}1 2 - ∕

m4 + ( 2 + 1 4 − 1 2) 8∕ ∕ ∕ , and both bounds are tight for complete graphs of odd order.
Bollobás and Scott [3,16] initiated a systematic study of judicious partitioning problems, which

has lead to a large amount of research in this area, see, for instance [7,10,11,13,13-15,17,17-20].
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Partitioning problems concerning digraphs (i.e., directed graphs) may be more difficult. For
a digraph D and A B V D, ( )⊆ , we use e A B( , ) to denote the number of arcs in D directed from
A to B and write e A e A A( ) ( , )≔ . Edwards' result above implies that every digraph D with m
arcs has a vertex partition V V,1 2 such that e V V m m( , ) 4 + ( 2 + 1 4 − 1 2) 81 2 . ∕ ∕ ∕ ∕ , and the
bound is tight for complete graphs of odd order with an Eulerian orientation. On the other
hand, Alon et al. [1] constructed digraphs whose maximum directed cut is m O m4 + ( )4 5∕ ∕ .

A natural judicious version of Edwards' result is to bound both e V V( , )1 2 and e V V( , )2 1 . Indeed,
Scott [16] asked the following question for digraphs without loops or parallel arcs in the same
direction. (Throughout this paper, all digraphs have no loops or parallel arcs in the same direction.)
Note that the outdegree of a vertex in a digraph is the number of arcs directed away from that vertex.

Problem 1.1 (Scott [16]). What is the maximum constant cd such that every digraph D
with m arcs and minimum outdegree d 2. admits a bipartition V D V V( ) = 1 2∪
such that

e V V e V V c mmin{ ( , ), ( , )} ?d1 2 2 1 .

The reason for the requirement d 2. in Problem 1.1 is the following: Take the star K n1, −1 with
n 4. , and add a single edge between two vertices of degree 1. Orient the unique triangle so that it
becomes a directed cycle, and orient all other edges so that they are directed towards the unique
vertex of degree n − 1. This digraph has minimum outdegree 1, and e V V( , ) 11 2 - for any bipartition
V V,1 2 of its vertex set with V1 containing the unique vertex of degree n − 1. Thus, c = 01 .

Lee et al. [11] proved that c o= 1 6 + (1)2 ∕ and c o= 1 5 + (1)3 ∕ , and they made the following
conjecture for d 4. .

Conjecture 1.2 (Lee et al. [11]). Let d be an integer satisfying d 4. . Every digraph D with
m arcs and minimum outdegree at least d admits a bipartition V D V V( ) = 1 2∪ with

LNMMMM \̂]]]]e V V e V V d
d

o mmin{ ( , ), ( , )} − 1
2(2 − 1)

+ (1) .1 2 2 1 .

The main term d
d
− 1

2(2 − 1)
in Conjecture 1.2 is best possible, because of examples constructed in

[11] using copies of K d2 −1 and one copy of K d2 +1. Lee et al. [11] also noted that their tools for
d = 2, 3 appear to be insufficient for d 4. . Hence, much effort has been devoted to studying
variations of this problem, for instance, by considering minimum total degree conditions, see
[6-9]. In this paper, we show that Conjecture 1.2 holds under certain natural conditions. In
particular, we prove Conjecture 1.2 for d = 4.

Theorem 1.3. Every digraph D withm arcs and minimum outdegree at least 4 admits a
bipartition V D V V( ) = 1 2∪ with

e V V e V V o mmin{ ( , ), ( , )} (3 14 + (1)) .1 2 2 1 . ∕

In Section 2, we set up notation and list previous results needed in our proof of Theorem 1.3. In
Section 3, we describe and discuss our approach for all d and obtain information in terms of “huge”
vertices, vertices whose indegree and outdegree have a large gap. In Section 4, we show that Con-
jecture 1.2 holds under some additional conditions on the number of huge vertices. We complete the
proof of Theorem 1.3 in Section 5 and offer some concluding remarks in Section 6.
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2 | NOTATION AND LEMMAS

We start with notation and terminology that will be used in this paper. Let D be a digraph. For
x V D( )� , let N x y xy E D( ) = { : ( )}D

+ � and N x y yx E D( ) = { : ( )}D
− � . Then Þ Þd x N x( ) ( )D D

+ +≔ andÞ Þd x N x( ) ( )D D
− −≔ are the the outdegree and indegree of x , respectively. The degree of
x V D( )� is defined as d x d x d x( ) = ( ) + ( )D D D

+ − . We use D d x x V DΔ( ) = max{ ( ) : ( )}D � to
denote themaximum degree of D. For any X V D( )⊆ , the subgraph of D induced by X is denoted
by D X[ ]. We will often omit the subscript D in the above notation when there is no danger of
confusion. It will be convenient to write k[ ] for k{1, …, }, where k is any positive integer.

Lee et al. [11] proved that certain partial partitions of a digraph may be extended to a good
partition of the entire digraph.

Lemma 2.1 (Lee et al. [11]). Let D be a digraph with m arcs. Let p be a real satisfying
p [0, 1]� , and let ε > 0. Suppose that a subset X V⊆ and its partition X X X= 1 2∪ are

given, and let Y V X= \ . Further suppose that d y ε mmax ( ) 4y Y
2-� ∕ . Then there exists a

bipartition V D V V( ) = 1 2∪ with X Vi i⊆ for i [2]� such that

e V V e X X p e X Y p e Y X p p e Y εm( , ) ( , ) + (1 − ) ( , ) + ( , ) + (1 − ) ( ) − ,1 2 1 2 1 2. ⋅ ⋅ ⋅

e V V e X X p e X Y p e Y X p p e Y εm( , ) ( , ) + ( , ) + (1 − ) ( , ) + (1 − ) ( ) − .2 1 2 1 2 1. ⋅ ⋅ ⋅

By applying Lemma 2.1 with p = 1 2∕ and X X= =1 2 ∅ and by noting that Þ Þd v V D( ) 2 ( )D - ,
we obtain the following.

Corollary 2.2 (Lee et al. [11]). Let D be a digraph with n vertices and m arcs. For any
ε > 0, if m n ε8 2. ∕ or D ε mΔ( ) 42- ∕ , then D admits a bipartition V D V V( ) = 1 2∪
with e V V e V V m εmmin{ ( , ), ( , )} 4 −1 2 2 1 . ∕ .

From Corollary 2.2 we see that if the maximum degree of a digraph D is not too large, then
V D( ) admits a partitionV V,1 2 such that both e V V( , )1 2 and e V V( , )2 1 are close tom 4∕ . We will see
that the vertices causing problems for obtaining the desired partition in Conjecture 1.2 are
those whose outdegree and indegree differ significantly. Hence, for x V D( )� , let

s x d x d x s x d x d x s x s x s x( ) ( ) − ( ), ( ) ( ) − ( ), and ( ) max{ ( ), ( )}.+ + − − − + + −≔ ≔ ≔

Note that d x s x( ) − ( ) is an even integer, and we often write½b d x s x2 = ( ( ) − ( )).
x X�

To study those vertices x with large s x( ), we need the concept of the gap of a partition. Let
D be a digraph and let X Y, be a partition of V D( ). For each partition X X,1 2 of X , the gap of
X X,1 2 is defined as

θ X X e X Y e Y X e X Y e Y X( , ) = ( ( , ) + ( , )) − ( ( , ) + ( , )).1 2 1 2 2 1

The huge vertices of D with respect to the partition X Y, are the vertices x such that

Þ Þs x θ X X X X X( ) min{ ( , ) : , is a partition of }.1 2 1 2.
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Let D be a digraph, X Y, a partition of V D( ), and X X,1 2 a partition of X . For convenience,
let m X X e X Y e Y X( , ) = ( , ) + ( , )f 1 2 1 2 and m X X e X Y e Y X( , ) = ( , ) + ( , )b 1 2 2 1 ; so

θ X X m X X m X X( , ) = ( , ) − ( , ).f b1 2 1 2 1 2

Note that
θ X X e X Y e Y X e X Y e Y X( , ) = ( ( , ) − ( , )) − ( ( , ) − ( , )).1 2 1 1 2 2

Thus, if e X( ) = 0 then ½ ½L
NMMMMMM

\]̂]]]]] L
NMMMMMM

\]̂]]]]]θ X X s x s x( , ) = ( ) − ( )
x X x X

1 2
+ +

1 2� �
(1)

For any x X� , we say that x is

(X X,1 2)‐forward if x X1� and s x( ) > 0+ , or x X2� and s x( ) > 0− , and
(X X,1 2)‐backward if x X1� and s x( ) > 0− , or x X2� and s x( ) > 0+ .

Let X x X x X X{ : is ( , )‐ forward}f 1 2�≔ and X x X x X X{ : is ( , )‐backward}b 1 2�≔ . By (1), if
e X( ) = 0 then ½ ½θ X X s x s x( , ) = ( ) − ( ).

x X x X
1 2

f b� �
(2)

We will need the following result from [9].

Lemma 2.3 (Hou et al. [9]). Let D be a digraph and V D X Y( ) = ∪ be a partition of D
with e X( ) = 0. Let X X X= 1 2∪ be a partition of X that minimizes Þ Þθ X X( , )1 2 among all
partitions of X . Then

(1) Þ Þ Þ Þθ X X Y( , )1 2 - , and
(2) ½ Þ Þ Þ ÞÞ Þg s v Y θ X X( ) − ( , )v X s v θ X X{ : ( )< ( , ) } 1 21 2

-�≔ .

3 | PROPERTIES OF PARTITIONS WITH MINIMUM GAP

In this section, we explore the probabilistic approach used by Lee et al. [10,11]. In particular,
we investigate digraph partitions whose gaps have minimum absolute value. We will prove
several properties about gaps and huge vertices, by considering various ways to partition the set
of huge vertices. Those properties may be useful for the eventual resolution of Conjecture 1.2.

Lemma 3.1. Let D be a digraph withm arcs and minimum outdegree d 4. , and let X Y, be
a partition of V D( ) with e X( ) = 0. Let Þ Þθ θ X X X X X= min{ ( , ) : , is a partition of }1 2 1 2 ,
and let X x X s x θ′ = { : ( ) }� . . Let ε > 0 such that d y ε mmax ( ) 4y Y

2-� ∕ . Then there exists
a partition V V,1 2 of V D( ) such that ( )e V V e V V ε mmin{ ( , ), ( , )} −d

d1 2 2 1
− 1

2(2 − 1). , or the
following statements hold:

(1) θ m d> (2 − 1)∕ ;
(2) Þ ÞX ′ is an odd integer;
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(3) letting ½g s x= ( )x X X ′� ⧹ and X v v′ = { , …, }k1 2 +1 such that s v s v s( ) ( )1 2. . .⋯
v( )k2 +1 , we have ½ ½s v s v g θ( ) − ( ) +j k

k
j j

k
j= +1

2 +1
=1 . .

Proof. Suppose, for any partition V V,1 2 of V D( ), e V V e V Vmin{ ( , ), ( , )} <1 2 2 1

( )ε m−d
d
− 1

2(2 − 1) . We show that (1), (2), and (3) hold. First, we prove (1). Let

m e X Y e Y X= ( , ) + ( , )1 andm e Y= ( )2 . Thus,m m m= +1 2, as e X( ) = 0. Let (X X,1 2) be
a partition of X such that θ X X θ( , ) =1 2 . Applying Lemma 2.1 with p = 1 2∕ , there is a
bipartition V V,1 2 of V D( ) such that X Vi i⊆ for i [2]� , and

e V V e V V

e X Y e Y X e X Y e Y X e Y εm

m θ m εm

m θ εm

min{ ( , ), ( , )}
1
2

min{ ( , ) + ( , ), ( , ) + ( , )} + ( )
4

−

= −
4

+
4
−

= −
4

− .

1 2 2 1

1 2 2 1

1 2

.

If θ m d(2 − 1)- ∕ then m θ d m d( − ) 4 ( − 1) (2(2 − 1)).∕ ∕ ; so e V V e Vmin{ ( , ), ( ,1 2 2

( )V ε m)} −d
d1
− 1

2(2 − 1). , a contradiction. Thus, θ m d> (2 − 1)∕ , and (1) holds.

Let Þ ÞX v v= { , …, }X1 such that Þ Þs v s v s v( ) ( ) … ( )X1 2. . . To prove (2), let us assumeÞ ÞX k′ = 2 for some nonnegative integer k. Then X v v′ = { , …, }k1 2 .
First, suppose k = 0. Then s v θ( ) <1 by the definition of X ′. Let X X*, *1 2 be the

partition of X such that v v v, , …, p1 3 2 −1 are (X X*, *1 2 )‐forward, where CÞ Þ Sp X= 2∕ , and all
other vertices are (X X*, *1 2 )‐backward. If Þ ÞX is even then, by (2),½ Þ Þ( )θ X X s v s v s v s v s v θ*, * = ( ) − ( ( ) − ( )) − ( ) ( ) < ,

i

p

i i X1 2 1
=1

−1

2 2 +1 1-

a contradiction. If Þ ÞX is odd then, by (2),½( )θ X X s v s v s v s v θ*, * = ( ) − ( ( ) − ( )) ( ) < ,
i

p

i i1 2 1
=1

−1

2 2 +1 1-

a contradiction.

Now suppose k > 0. Then s v θ( )k2 . . Let X X*, *1 2 be the partition of X such that
v v v, , …, k1 3 2 −1 are (X X*, *1 2 )‐forward, and all other vertices in X are (X X*, *1 2 )‐backward.
Then by (2), Þ Þ Þ½ ½ Þθ X X s v s v g( *, *) = ( ) − ( ( ) + )i

k
i i

k
i1 2 =1 2 −1 =1 2 . Note that

½ ½ ½LNMMMMM \̂]]]]]
Þ Þ

s v s v g s v s v s v s v g

s v s v
Y θ

( ) − ( ) + = ( ) − ( ( ) − ( )) − ( ) −

( ) − ( )
− ,

i

k

i
i

k

i
i

k

i i k

k

=1
2 −1

=1
2 1

=1

−1

2 2 +1 2

1 2-
-
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and, since Þ Þg Y θ−- (by Lemma 2.3),

½ ½ ½LNMMMMM \̂]]]]] Þ Þs v g s v s v s v g g Y θ( ) + − ( ) = ( ( ) − ( )) + − .
i

k

i
i

k

i
i

k

i i
=1

2
=1

2 −1
=1

2 2 −1 - -

Hence, Þ Þ Þ Þθ X X Y θ( *, *) −1 2 - . Because θ m d> (2 − 1)∕ (by 1) and Þ Þm d V D( ). , we see

that Þ Þ Þ Þθ V D Y> ( ) 2 2.∕ ∕ . Thus, Þ Þ Þ Þθ X X Y θ θ( *, *) − <1 2 - , a contradiction. Thus, Þ ÞX ′
must be odd, and we have (2).

By (2), let X v v′ { , …, }k1 2 +1≔ for some k 0. . Recall that d x s x( ) − ( ) is an even integer
for all x X� , and we write ½b d x s x2 = ( ( ) − ( ))x X� . To prove (3), we consider the partition

X X,1
1

2
1 of X such that v v v X X{ , , …, } ( \ ′)k1 3 2 −1 ∪ is the set of (X X,1

1
2
1)‐forward vertices, and

v v v v{ , , …, , }k k2 4 2 2 +1 is the set of (X X,1
1

2
2)‐backward vertices. Then m X X( , ) =f 1

1
2
1

½ s v g b( ) + +j
k

j=1 2 −1 and ½m X X s v s v b( , ) = ( ) + ( ) +b j
k

j k1
1

2
1

=1 2 2 +1 . Note that

½ ½
½

Þ Þ Þ ÞÞ ÞÞ Þ Þ Þ Þ Þ

( ) ( ) ( )θ X X m X X m X X

s v g s v s v

s v s v s v s v s v g

s v s v s v Y θ g Y θ
s v Y θ
V D θ

θ θ V D m d V D

, = , − ,

= ( ) + − ( ) − ( )

= ( ( ) − ( ) − ( )) + ( ( ) − ( )) +

( ) − ( ) − ( ) + − (since − by Lemma 2.3)
( ) + − 3

2 ( ) − 3
< (as > ( ) 2 because ( ) and by (1)).

f b

j

k

j
j

k

j k

k k
j

k

j j

k k

1
1

2
1

1
1

2
1

1
1

2
1

=1
2 −1

=1
2 2 +1

1 2 2 +1
=1

−1

2 +1 2

1 2 2 +1

1

- -
-
-

.∕

Thus, since Þ Þ Þ Þm X X m X X θ X X θ( , ) − ( , ) = ( , )f b1
1

2
1

1
1

2
1

1
1

2
1 . , we have

½ ½( ) ( )m X X m X X s v s v s v g θ, − , = ( ) + ( ) − ( ) − .b f
j

k

j k
j

k

j1
1

2
1

1
1

2
1

=1
2 2 +1

=1
2 −1 .

Now exchange the sides for v2 and v k2 −1, and consider the partition X X,1
2

2
2 of X such

that X X v v= ( \{ }) { }k1
2

1
1

2 −1 2∪ and X X v v= ( \{ }) { }k2
2

2
1

2 2 −1∪ . Then m X X( , ) =f 1
2

2
2

m X X s v s v( , ) − ( ) + ( )f k1
1

2
1

2 −1 2 and m X X( , ) =b 1
2

2
2 m X X s v s v( , ) − ( ) + ( )b k1

1
2
1

2 2 −1 . Hence,

( )( ) ( ) ( ) ( )m X X m X X m X X m X X s v s v, − , = , − , − 2( ( ) − ( )),b f b f k1
2

2
2

1
2

2
2

1
1

2
1

1
1

2
1

2 2 −1

which implies that

Þ Þ( ) ( )m X X m X X θ Y θ θ θ θ, − , − 2( − ) > − 2 = − .b f1
2

2
2

1
2

2
2 .

Therefore, since Þ Þ Þ Þm X X m X X θ X X θ( , ) − ( , ) = ( , )b f1
2

2
2

1
2

2
2

1
2

2
2 . , we see that

( ) ( )m X X m X X θ, − , .b f1
2

2
2

1
2

2
2 .
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Repeating the same argument by exchanging the sides for v k i2( − )+1 and v i2 , one step at
a time in the order G Wi k= 2, …, 2∕ , we arrive at the partition G W G WX X,k k

1
2

2
2∕ ∕ of X , such that

v v v X X{ , , …, } ( \ ′)k1 2 ∪ is the set of ( G W G WX X,k k
1

2
2

2∕ ∕ )‐forward vertices, v v v{ , , …, }k k k+1 +2 2 +1 is
the set of ( G W G WX X,k k

1
2

2
2∕ ∕ )‐backward vertices, and

G W G W G W G W( ) ( )m X X m X X θ, − , .b
k k

f
k k

1
2

2
2

1
2

2
2 .∕ ∕ ∕ ∕

On the other hand, we have, by (2), that

½ ½G W G W G W G W( ) ( )m X X m X X s v s v g, − , = ( ) − ( ) − .b
k k

f
k k

j k

k

j
j

k

j1
2

2
2

1
2

2
2

= +1

2 +1

=1

∕ ∕ ∕ ∕

Hence, (3) holds. □

Lemma 3.2. Let D be a digraph withm arcs and minimum outdegree d 4. , and let X Y, be
a partition of V D( ) with e X( ) = 0. Let Þ Þθ θ X X X X X= min{ ( , ) : , is a partition of }1 2 1 2 ,
X x X s x θ′ = { : ( ) }� . , ½g s x= ( )x X X ′� ⧹ , and ½b d x s x2 = ( ( ) − ( ))x X� . Let ε > 0 and

assume that d y ε mmax ( ) 4y Y
2-� ∕ . Then there exists a partition V V,1 2 of V D( ) such that

( )e V V e V V ε mmin{ ( , ), ( , )} −d
d1 2 2 1
− 1

2(2 − 1). ; or Þ ÞX ′ is odd and if we let X v v′ = { , …, }k1 2 +1

such that s v s v s v( ) ( ) ( )k1 2 2 +1. . .⋯ and write s vΔ = ( )j j for j k[2 + 1]� then

(1) ½ ½d g d b e Y( Δ + ) − ( − 1) Δ + + ( ) 2 < 0j
k

j j k
k

j=1 = +1
2 +1 ∕ ,

(2) ½ ½b d d g e Y> Δ − ( Δ + Δ + Δ ) + ( − 1) + ( )d d
d j k

k
j j

k
j k k

d
d

+ 2 − 1
− 1 =

2 −1
=1
−1

2 2 +1
− 1
2

2
,

(3) Þ Þ ½ ½b V D< ( ) + ( Δ + Δ + Δ ) − Δd k
d

d d
d j

k
j k k

d d
d j k

k
j

2(2 − 1)( + 1)
3 − 1

− 5 + 2
3 − 1 =1

−1
2 2 +1

+ 2 − 1
3 − 1 =

2 −12 2

g e Y+ − ( )d d
d

d
d d

( − 1)
3 − 1

( − 1)
2 (3 − 1)

2
, and

(4) when d = 4 and k = 1, g b e Y2Δ + 2Δ − 3Δ − 3 − + 3 ( ) 14 < 02 3 1 ∕ , or both 6Δ − 3Δ −1 2

g b e Y3Δ + 2 − + 3 ( ) 14 < 03 ∕ and g b e Y6Δ − 3Δ − 3Δ − 3 + 3 + 3 ( ) 14 < 03 1 2 ∕ ∕ .

Proof. For convenience, we introduce two functions which we will use to compare

e V V e V Vmin{ ( , ), ( , )}1 2 2 1 with ( )ε m−d
d
− 1

2(2 − 1) for any partition V V,1 2 of V D( ). For any

partition X X,1 2 of X , let z X X e X Y( , ) = ( , )1 2 1 and z X X e Y X′( , ) = ( , )1 2 2 ; so
m X X z X X z X X( , ) = ( , ) + ′( , )f 1 2 1 2 1 2 . Let m e X Y e Y X( , ) + ( , )1 ≔ , m e Y( )2 ≔ , and

½p X X d d g d b

d p p d m

ℓ( , , ) ( − 1) Δ + ( − 1) + (2 − 2)

− (2(2 − 1) (1 − ) − ( − 1)) .

j

k

j1 2
=1

2 +1

2

≔

Define

f p X X p d z X X p d z X X p X X( , , ) = 2(1 − )(2 − 1) ( , ) + 2 (2 − 1) ′( , ) − ℓ( , , )1 2 1 2 1 2 1 2 , and
h p X X p d m z X X z X X p X X( , , ) = 2 (2 − 1)( − ( , ) − ′( , )) − ℓ( , , )1 2 1 1 2 1 2 1 2 .
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By Lemma 2.1, for any p0 1- - , there is a partition V D V V( ) = 1 2∪ such that
X Vi i⊆ for i [2]� , and

OPRRQRRe V V p e X Y p e Y X p p e Y εm
e V V p e X Y p e Y X p p e Y εm

( , ) (1 − ) ( , ) + ( , ) + (1 − ) ( ) − ,
( , ) ( , ) + (1 − ) ( , ) + (1 − ) ( ) − .

1 2 1 2

2 1 2 1

.

.
⋅ ⋅ ⋅

⋅ ⋅ ⋅
(3)

Without loss of generality, we may assume p p1 −- ; so p 1 2- ∕ . Then, from (3), we have

OPRRQRRe V V p z X X pz X X p p m εm
e V V p m z X X z X X p p m εm

( , ) (1 − ) ( , ) + ′( , ) + (1 − ) − ,
( , ) ( − ( , ) − ′( , )) + (1 − ) − .

1 2 1 2 1 2 2

2 1 1 1 2 1 2 2

.

. (4)

Note that ½m m m g b m= + = Δ + + 2 + .
j

k

j1 2
=1

2 +1

2 (5)

By (4) and (5), we have

½
LNMMMM \̂]]]] L

NMMMMMM
\]̂]]]]]

e V V d
d

m εm

p z X X pz X X p p m d
d

g b m

d
f p X X

( , ) − − 1
2(2 − 1)

−

(1 − ) ( , ) + ′( , ) + (1 − ) − − 1
2(2 − 1)

Δ + + 2 +

= 1
2(2 − 1)

( , , ),

j

k

j

1 2

1 2 1 2 2
=1

2 +1

2

1 2

.

and

½
LNMMMM \̂]]]] L

NMMMMMM
\]̂]]]]]

e V V d
d

m εm

p m z X X z X X p p m d
d

g b m

d
h p X X

( , ) − − 1
2(2 − 1)

−

( − ( , ) − ′( , )) + (1 − ) − − 1
2(2 − 1)

Δ + + 2 +

= 1
2(2 − 1)

( , , ).

j

k

j

2 1

1 1 2 1 2 2
=1

2 +1

2

1 2

.

If f p X X( , , ) 01 2 . and h p X X( , , ) 01 2 . for some choice of p X X, ,1 2, we see that the
there is a partition V V,1 2 of V D( ) such that for i [2]� , X Vi i⊆ and

( )e V V ε m( , ) −i i
d
d3−
− 1

2(2 − 1). . Hence, we may assume that

f p X X h p X X p X X( , , ) < 0 or ( , , ) < 0 for any choice of , , .1 2 1 2 1 2 (6)

To see (1), we consider the partition X X,1
1

2
1 of X such that v v v X X{ , , …, } ( \ ′)k1 2 ∪ is the

set of (X X,1
1

2
1)‐forward vertices, and v v v{ , , …, }k k k+1 +2 2 +1 is the set of (X X,1

1
2
1)‐backward

vertices. Then ½z X X z X X m X X g b( , ) + ′( , ) = ( , ) = Δ + +f j
k

j1
1

2
1

1
1

2
1

1
1

2
1

=1 and m X X( , ) =b 1
1

2
1

½ bΔ +j k
k

j= +1
2 +1 . Setting p = 1 2∕ , it follows from a simple calculation that
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½ ½
½ ½

O
P
RRRRRRRRRR
Q
RRRRRRRRRR

L
NMMMMMM

\]̂]]]]] L
NMMMMMM

\]̂]]]]]
( )

( )

f X X d g d b m

h X X d d g b m

1 2, , = Δ + − ( − 1) Δ + + 2,

1 2, , = Δ − ( − 1) Δ + + + 2.

j

k

j
j k

k

j

j k

k

j
j

k

j

1
1

2
1

=1 = +1

2 +1

2

1
1

2
1

= +1

2 +1

=1
2

∕ ∕

∕ ∕

By (3) of Lemma 3.1, we may assume h X X(1 2, , ) > 01
1

2
1∕ ; so by (6), we have

f X X(1 2, , ) < 01
1

2
1∕ . Thus, (1) holds.

For (2) and (3), we note that at least k members of s v s v s v{ ( ), ( ), …, ( )}k
+

1
+

2
+

2 −1 have
the same sign. We may assume that s v( )j+

1
, s v( )j+

2
,…, s v( )j+

k
are positive, where

j j j k1 < < < 2 − 1k1 2- -⋯ ; otherwise, we may consider the digraph D′ obtained
from D by reversing orientations of all arcs in D.

To prove (2), let X X,1
2

2
2 be the partition of X such that v v v X X{ , , , } ( \ ′)j j jk1 2

⋯ ∪ is the
set of (X X,1

2
2
2)‐forward vertices, and all other vertices in X are (X X,1

2
2
2)‐backward. Then½( )m X X g b, = Δ + +f

i

k

j1
2

2
2

=1
i

and ½ ½ ½( )m X X b b, = Δ − Δ + Δ + .b
j

k

j
i

k

j
j k

k

j1
2

2
2

=1

2 +1

=1 = +1

2 +1

i
.

Note that ½z X X e X Y( , ) = ( , ) Δi
k

j1
2

2
2

1
2

=1 i
. and z X X e Y X m X X′( , ) = ( , ) = ( , ) −f1

2
2
2

2
2

1
2

2
2

e X Y( , )1
2 . Setting p d d= ( − 1) (2 )∕ , we see that

½ ½
½ ½ ½
½ ½

LNMMM \̂]]]

L
N
MMMMMMM L

NMMMMMM
\]̂]]]]] \

^
]]]]]]]L

N
MMMMMMM L

NMMMMMM
\]̂]]]]] \

^
]]]]]]]

f d
d

X X

d d
d

d d
d

g b d

d g d b d
d

m

d
d

d d
d

d d g b d
d

m

d
d

d d
d

d d g b d
d

m

− 1
2

, ,

( + 1)(2 − 1) Δ + ( − 1)(2 − 1) ( + ) − ( − 1) Δ

− ( − 1) − (2 − 2) + ( − 1)
2

= − 1 + 2 − 1
− 1

Δ − Δ − Δ + ( − 1) − + − 1
2

− 1 + 2 − 1
− 1

Δ − Δ + Δ + Δ + ( − 1) − + − 1
2

,

i

k

j
j

k

j

i

k

j
j

k

j
i

k

j

j k

k

j
j

k

j k k

1
2

2
2

=1 =1

2 +1

2

2 2

2

=1 =1

2 +1

=1
2

2

=

2 −1

=1

−1

2 2 +1 2

i

i i

.

.

and

½ ½
½ ½

LNMMM \̂]]] L
NMMMMMM

\]̂]]]]]L
N
MMMMMMM L

NMMMMMM
\]̂]]]]] \

^
]]]]]]]

h d
d

X X

d d
d

b d d g d b d
d

m

d
d

d d g b d
d

m

− 1
2

, ,

( − 1)(2 − 1) Δ + − ( − 1) Δ − ( − 1) − (2 − 2) + ( − 1)
2

= − 1 ( − 1) Δ − Δ + − + − 1
2

.

j k

k

j
j

k

j

j k

k

j
j

k

j

1
2

2
2

= +1

2 +1

=1

2 +1 2

2 2

= +1

2 +1

=1
2

.

By (1), ( )h X X, , > 0d
d
− 1
2 1

2
2
2 . So ( )f X X, , < 0d

d
− 1
2 1

2
2
2 by (6). Hence, (2) holds.
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To prove (3), consider the partition X X,1
3

2
3 of X such that v v v X X X{ , , …, } ( \ ′)j j j 1

3
k1 2
∪ ⊆ ,

and the vertices in X v v′\ { , …, }j jk1
are (X X,1

3
2
3)‐backward. Since s v( ) > 0j

+
i

for i k[ ]� , the
vertices v v v, , …,j j jk1 2

are (X X,1
3

2
3)‐forward. Hence,½( )m X X b, Δ +f

i

k

j1
3

2
3

=1
i

.

and ½ ½ ½( )m X X b b, Δ − Δ + Δ + .b
j

k

j
i

k

j
j k

k

j1
3

2
3

=1

2 +1

=1 = +1

2 +1

i
. .

Let Þ Þn V D( )≔ . Note that X X v v′\ { , …, }j j2
3

k1
⊆ ; so ½ ½L

NMMMMMM
\]̂]]]]]( ) ( )z X X e Y X k n′ , = , ( + 1) − Δ − Δ .

j

k

j
i

k

j1
3

2
3

2
3

=1

2 +1

=1
i

-

Hence, ½ ½ ½L
N
MMMMMMM L

NMMMMMM
\]̂]]]]]\^
]]]]]]]( ) ( )z X X e X Y b k n, = , Δ + − ( + 1) − Δ − Δ .

i

k

j
j

k

j
i

k

j1
3

2
3

1
3

=1 =1

2 +1

=1
i i

.

Setting p d d= ( − 1) (2 )∕ , we have

½ ½ ½
½ ½ ½

½ ½ ½
½ ½

c
e
ddddddddddddd

L
N
MMMMMMM L

NMMMMMM
\]̂]]]]]\^
]]]]]]]
f
h
gggggggggggggL

N
MMMMMMM L

NMMMMMM
\]̂]]]]]\^
]]]]]]]

L
N
MMMMMMM L

NMMMMMM
\]̂]]]]]

L
N
MMMMMMM L

NMMMMMM
\]̂]]]]]

)

)

( )f X X

b k n

k n d

d g d b m

n

g b m

n

g b m

, ,

Δ + − ( + 1) − Δ − Δ

+ ( + 1) − Δ − Δ − ( − 1) Δ

− ( − 1) − (2 − 2) +

= Δ − Δ − Δ −

− + +

Δ − Δ + Δ + Δ −

− + + ,

d
d

d d
d

i

k

j
j

k

j
i

k

j

d d
d

j

k

j
i

k

j
j

k

j

d
d

d
d

d d
d

i

k

j
d d

d
j

k

j
i

k

j
d k
d

d d
d

d
d d

d
d

d d
d

j k

k

j
d d

d
j

k

j k k
d k
d

d d
d

d
d d

− 1
2 1

3
2
3

( + 1)(2 − 1)

=1 =1

2 +1

=1

( − 1)(2 − 1)

=1

2 +1

=1 =1

2 +1

( − 1)
2 2

3 − 1 + 2 − 1
3 − 1

=1

− 5 + 2
3 − 1

=1

2 +1

=1

2(2 − 1)( + 1)
3 − 1

( − 1)
3 − 1

( − 1)
2 (3 − 1) 2

3 − 1 + 2 − 1
3 − 1

=

2 −1
− 5 + 2
3 − 1

=1

−1

2 2 +1
2(2 − 1)( + 1)

3 − 1

( − 1)
3 − 1

( − 1)
2 (3 − 1) 2

i i

i

i i

2

2

2 2

2

2 2

2

.

.

and

½ ½
½ ½

LNMMM \̂]]] L
NMMMMMM

\]̂]]]]]L
N
MMMMMMM L

NMMMMMM
\]̂]]]]] \

^
]]]]]]]

h d
d

X X

d d
d

b d d g d b d
d

m

d
d

d d g b d
d

m

− 1
2

, ,

( − 1)(2 − 1) Δ + − ( − 1) Δ − ( − 1) − (2 − 2) + ( − 1)
2

= − 1 ( − 1) Δ − Δ + − + − 1
2

.

j k

k

j
j

k

j

j k

k

j
j

k

j

1
3

2
3

= +1

2 +1

=1

2 +1 2

2 2

= +1

2 +1

=1
2

.
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By (1), ( )h X X, , > 0d
d
− 1
2 1

3
2
3 . So ( )f X X, , < 0d

d
− 1
2 1

3
2
3 by (6). Hence, (3) holds.

Now we prove (4); so assume d = 4 and k = 1. First, let X X,1
4

2
4 be the partition of X

such that v X X{ } ( \ ′)1 ∪ is the set of (X X,1
4

2
4)‐forward vertices, and v v,2 3 are (X X,1

4
2
4)‐

backward. Thenm X X g b( , ) = Δ + +f 1
4

2
4

1 andm X X b( , ) = Δ + Δ +b 1
4

2
4

2 3 . Also, we have
e X Y( , ) Δ1

4
1. . Setting p = 5 14∕ , we see that

( )h X X b g b m

g b m

5 14, , 5(Δ + Δ + ) − 3(Δ + Δ + Δ ) − 3 − 6 + 3 14

= 2Δ + 2Δ − 3Δ − 3 − + 3 14
1
4

2
4

2 3 1 2 3 2

2 3 1 2

.∕ ∕

∕
and

( )f X X g b g b m

g b m

5 14, , 9Δ + 5( + ) − 3(Δ + Δ + Δ ) − 3 − 6 + 3 14

= 6Δ − 3Δ − 3Δ + 2 − + 3 14.
1
4

2
4

1 1 2 3 2

1 2 3 2

.∕ ∕

∕

Thus, we have g b m2Δ + 2Δ − 3Δ − 3 − + 3 14 < 02 3 1 2∕ or 6Δ − 3Δ − 31 2
g b mΔ + 2 − + 3 14 < 03 2∕ .

Next, we choose some i [3]� such that the number of arcs from vi to Y counted in b is
maximum. Consider the partition X X,1

5
2
5 of X such that v X X X{ } ( \ ′)i 1

5∪ ⊆ , and the

vertices in X v′\ { }i are (X X,1
5

2
5)‐backward. Then, clearly, m X X b b( , ) Δ + Δ +f i1

5
2
5

3. .
and m X X b( , ) Δ + Δ +b 1

5
2
5

2 3. . Also, we have e X Y b b b( , ) (Δ + ) − 2 3 Δ + 3i1
5

3. .∕ ∕ .

Setting p = 5 14∕ , we see that

( )h X X b g b m

g b m

5 14, , 5(Δ + Δ + ) − 3(Δ + Δ + Δ ) − 3 − 6 + 3 14

2Δ + 2Δ − 3Δ − 3 − + 3 14,
1
5

2
5

2 3 1 2 3 2

2 3 1 2

.

.
∕ ∕

∕

and

( )f X X b b g b m

g b m

5 14, , 5(Δ + ) + 4(Δ + 3) − 3(Δ + Δ + Δ ) − 3 − 6 + 3 14

= 6Δ − 3Δ − 3Δ − 3 + 3 + 3 14.
1
5

2
5

3 3 1 2 3 2

3 1 2 2

.∕ ∕ ∕

∕ ∕

Thus, g b m2Δ + 2Δ − 3Δ − 3 − + 3 14 < 02 3 1 2∕ or g b6Δ − 3Δ − 3Δ − 3 + 3 +3 1 2 ∕
m3 14 < 02∕ . This completes the proof of (4). □

4 | HUGE VERTICES

In this section, we show that if V D( ) has a partition X Y, such that e X( ) = 0,
d y ε mmax ( ) 4y Y

2-� ∕ , and X has at least d huge vertices or a unique huge vertex then Con-
jecture 1.2 holds.

Proposition 4.1. Let d 4. be an integer and ε > 0 be a real. Let D be a digraph withm
arcs and minimum outdegree at least d. Let X Y, be a partition ofV D( ) with e X( ) = 0 and

d y ε mmax ( ) 4
y Y

2-
�

∕ . Let Þ Þθ θ X X X X X= min{ ( , ) : , is a partition of }1 2 1 2 and X ′ =
x X s x θ{ : ( ) }� . . Suppose Þ ÞX d′ . . Then V D( ) admits a partition V V,1 2 such
that ( )e V V e V V ε mmin{ ( , ), ( , )} −d

d1 2 2 1
− 1

2(2 − 1). .
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Proof. Suppose the desired partition V V,1 2 does not exist. By (2) of Lemma 3.1, let
X v v′ = { , …, }k1 2 +1 . Then k d2 + 1 4. . by assumption. Let s vΔ = ( )i i for i k[2 + 1]�
and assume, without loss of generality, Δ Δ Δ k1 2 2 +1. . .⋯ . Let X X,1 2 be a partition of
X such that θ X X θ( , ) =1 2 . Then, by (1) and (2) of Lemma 3.2, we have

½ ½
½ ½ ½

½
½

L
NMMMMMM

\]̂]]]]]L
NMMMMMM

\]̂]]]]] L
NMMMMMM

\]̂]]]]]L
NMMMMMM

\]̂]]]]]

d g d b m

d d

d

d

d

0 > Δ + − ( − 1) Δ + + 2

> Δ + Δ − ( − 1) Δ + Δ + Δ

− Δ + Δ + Δ

= Δ − (2 − 1)Δ

Δ − (2 − 1)Δ

= Δ ,

j

k

j
j k

k

j

j

k

j k
j k

k

j k
d d

d
j k

k

j

j

k

j k k

d
d

j k

k

j k

k d
d k k

d k d
d k

=1 = +1

2 +1

2

=1

−1

2
=

2 −1

2 +1
+ 2 − 1
− 1

=

2 −1

=1

−1

2 2 +1

4 − 2
− 1

=

2 −1

2 +1

(4 − 2)
− 1 2 +1 2 +1

(2 − 1)(2 + 1− )
− 1 2 +1

2

.

∕

This is a contradiction, as k d2 + 1 . . □

Remark 4.2. The requirement e X( ) = 0 in Proposition can be replaced by e X o m( ) = ( ).

Next, we show that if V D( ) admits a partition X Y, such that Þ Þ Þ ÞX o V D= ( ( ) ),
d y ε mmax ( ) 4y Y

2-� ∕ , and D has a unique huge vertex in X then the conclusion of Conjecture
1.2 holds. For this, we need another concept introduced by Lee et al. [10], and we use the result
of Lu et al. in [12] to give its definition. We say that a connected graph is tight if all its blocks are
odd cliques. If a disconnected graph G is the underlying graph of a digraph D, the tight
components of D are the components ofG that are tight. (The underlying graph of D is obtained
from D by ignoring arc orientations and removing redundant parallel edges.) For a tight
component T of D, we say T is essential if D V T[ ( )], the subgraph of D induced by V T( ), does
not contain any parallel arcs in opposite directions. Recently, Hou et al. [7] proved the
following.

Lemma 4.3 (Hou et al. [7]). For any positive constants C and ε, there exist γ , n > 00 for
which the following holds. Let D be a digraph with n n0. vertices and at most Cn arcs.
Suppose X V D( )⊆ is a set of at most γn vertices and X X,1 2 is a partition of X . Let
Y V D X= ( )\ and let τ be the number of essential tight components in D Y[ ]. If every vertex
in Y has degree at most γn in D, then there is a bipartitionV D V V( ) = 1 2∪ with X Vi i⊆ for
i = 1, 2 such that

e V V e X X e X Y e Y X e Y n τ εn

e V V e X X e X Y e Y X e Y n τ εn

( , ) ( , ) + ( , ) + ( , )
2

+ ( )
4

+ −
8

− ,

( , ) ( , ) + ( , ) + ( , )
2

+ ( )
4

+ −
8

− .

1 2 1 2
1 2

2 1 2 1
2 1

.

.

Proposition 4.4. Let d 4. be an integer and let C ε, be positive reals. Let D be a digraph
with n vertices, m Cn- arcs, and minimum outdegree at least d. Then there exists γ with
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γ ε0 < < such that the following holds: Let X Y, be a partition of V D( ) with Þ ÞX γn- ,
e X( ) = 0, and d y γnmax ( )y Y -� . Let Þ Þθ θ X X X X X= min{ ( , ) : , is a partition of }1 2 1 2 ,
X x X s x θ′ = { : ( ) }� . , ½g s x= ( )x X X ′� ⧹ , and ½b d x s x2 = ( ( ) − ( ))x X� . Then the
following statements hold.

(1) Þ Þτ n g b d X( + 2 + 2 ) (2 − 2 ′ + 1)- ∕ , where τ is the number of essential tight compo-
nents in D Y[ ].

(2) Suppose Þ ÞX ′ = 1. Then V D( ) admits a partition V V,1 2 such that

( )e V V e V V ε mmin{ ( , ), ( , )} −d
d1 2 2 1
− 1

2(2 − 1). .

Proof. First, we prove (1). Let Þ Þα X ′≔ . For i d α= 1, 3, …, 2 − 2 − 1, let τi be the
number of essential tight components of order i; and let τ′ be the number of essential
tight components of order at least d α2 − 2 + 1. Then ½τ τ τ= + ′i

d α
i=1

−
2 −1 and

τ τ d α τ d α τ n+ 3 + +(2 − 2 − 1) + (2 − 2 + 1) ′ .d α1 3 2 −2 −1 -⋯ (7)

For each essential tight component Di of order i, we see that e D i i( ) ( − 1) 2i - ∕ and
e D X αi( , ′)i - . Thus, since the outdegree of D is at least d, we see that
e D X X di αi i i( , \ ′) − − ( − 1) 2i . ∕ . Viewing di αi i i− − ( − 1) 2∕ as a function of i over
the interval d α[1, 2 − 2 ], we see that it achieves its minimum at i = 1 (as well as at
i d α= 2 − 2 ). Hence, e D X X d α( , \ ′) −i . for i d α[2 − 2 ]� . Thus, ½e Y X X( , \ ′) i

d α
=1
−.

d α τ( − ) i2 −1. On the other hand, we have e Y X X g b( , \ ′) +- . Hence,½ d α τ g b( − ) + .
i

d α

i
=1

−

2 −1 - (8)

Multiplying (8) by 2 and adding the resulting inequality to (7), we derive that
d α τ n g b(2 − 2 + 1) + 2 + 2- , completing the proof of (1).
To prove (2), let X v′ = { }0 and let s vΔ = ( )0 . Let X X,1 2 be the partition of X such that

v0 is the only (X X,1 2)‐forward vertex. Then m X X b( , ) = Δ +f 1 2 and m X X g b( , ) = +b 1 2 .
By Lemma 4.3 (with p = 1 2∕ ), there is a bipartition V V,1 2 of V D( ) such that X Vi i⊆ for
i [2]� and

{ }
e V V e V V

e X Y e Y X e X Y e Y X e Y n τ εn

m θ n τ εn

min{ ( , ), ( , )}
1
2

min ( , ) + ( , ), ( , ) + ( , ) + ( ) 4 + ( − ) 8 −

= ( − ) 4 + ( − ) 8 − .

1 2 2 1

1 2 2 1. ∕ ∕

∕ ∕

Hence, LNMMMM \̂]]]]LNMMMM \̂]]]]LNMMM \̂]]]

e V V e V V d
d

ε m

m θ n τ εn d
d

ε m

m
d

n d εn θ τ m dn

min{ ( , ), ( , )} − − 1
2(2 − 1)

−

( − ) 4 + ( − ) 8 − − − 1
2(2 − 1)

−

1
4 2 − 1

+
2

+ 4( − 1) − −
2

(since ).

1 2 2 2

.

. .

∕ ∕

Since the minimum outdegree of D at least d and Þ Þ Þ ÞY n X n εn= − > − , we haveÞ Þm b d Y b dn dεn+ + − .. .
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Therefore,

Þ Þ

m
d

n d εn θ τ

b dn dεn
d

n d εn θ
n g b

d

d
b dn d n d θ n g b

d
d n d θ g

n Y θ g

2 − 1
+

2
+ 4( − 1) − −

2
+ −

2 − 1
+

2
+ 4( − 1) − −

+ 2 + 2
2(2 − 1)

(by (1))

1
2(2 − 1)

(2 + 2 + (2 − 1) − (4 − 2) − − 2 − 2 )

= 1
2(2 − 1)

((4 − 2) − (4 − 2) − 2 )

0 (since + by Lemma2.3).

.

.

. . .
So V V,1 2 gives the desired partition for (2). □

We now use Lemma 4.3 to define (1) of Lemma 3.2 for the case when there are only three
huge vertices.

Lemma 4.5. Let D be a digraph withm arcs and minimum outdegree d 4. , and let X Y,
be a partition of V D( ) with e X( ) = 0. Let Þ Þθ θ X X X X X= min{ ( , ) : , is a partition of }1 2 1 2 ,
X x X s x θ′ = { : ( ) }� . , ½g s x= ( )x X X ′� ⧹ , ½b d x s x2 = ( ( ) − ( ))x X� , and τ the number of

essential tight components in D Y[ ]. Let ε > 0 and assume that d y ε mmax ( ) 4y Y
2-� ∕ .

Suppose Þ ÞX ′ = 3. Then there exists a partition V V,1 2 of V D( ) such that
e V V e V V ε mmin{ ( , ), ( , )} (3 14 − )1 2 2 1 . ∕ ; or if we write X v v v′ = { , , }1 2 3 with

s v s v s v( ) ( ) ( )1 2 3. . and s vΔ = ( )j j for j [3]� then Þ Þb g m V D τ< 3Δ + 3Δ − 4Δ − 4 − 2 − 7( ( ) − ) 4.2 3 1 2∕ ∕

Proof. We consider the partition X X,1 2 of X such that v X X{ } ( \ ′)1 ∪ is the set of (X X,1 2)‐
forward vertices, and v v{ , }2 3 is the set of (X X,1 2)‐backward vertices. Then
m X X g b( , ) = Δ + +f 1 2 1 and m X X b( , ) = Δ + Δ +b 1 2 2 3 . Note that½m m m g b m= + = Δ + + 2 + .

j
j1 2

=1

3

2 (9)

Let Þ Þn V D( )≔ . By applying Lemma 4.3 with p = 1 2∕ , there is a partition
V D V V( ) = 1 2∪ such that X Vi i⊆ for i [2]� , andOPRRQRRe V V g b m n τ εn

e V V b m n τ εn
( , ) (Δ + + ) 2 + 4 + ( − ) 8 − ,
( , ) (Δ + Δ + ) 2 + 4 + ( − ) 8 − .

1 2 1 2

2 1 2 3 2

.

.
∕ ∕ ∕
∕ ∕ ∕

(10)

Define

f X X g b m n τ(1 2, , ) = 4Δ − 3Δ − 3Δ + 4 + + 2 + 7( − ) 41 2 1 2 3 2∕ ∕ ∕ , and
h X X g b m n τ(1 2, , ) = 4Δ + 4Δ − 3Δ − 3 + + 2 + 7( − ) 41 2 2 3 1 2∕ ∕ ∕ .

By (3) of Lemma 3.1, we may assume g θΔ + Δ − Δ +2 3 1 . ; for otherwise the desired
partition of V D( ) exists. Hence, h X X(1 2, , ) > 01 2∕ .

By (9) and (10), we have
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½LNMMMMMM \]̂]]]]]
e V V m εm

g b m n τ g b m

f X X

( , ) − (3 14 − )

(Δ + + ) 2 + 4 + ( − ) 8 − (3 14) Δ + + 2 +

= (1 14) (1 2, , ),
j

j

1 2

1 2
=1

3

2

1 2

.

∕

∕ ∕ ∕ ∕

∕ ∕
and

½LNMMMMMM \]̂]]]]]
e V V m εm

b m n τ g b m

h X X

( , ) − (3 14 − )

(Δ + Δ + ) 2 + 4 + ( − ) 8 − (3 14) Δ + + 2 +

= (1 14) (1 2, , ).
j

j

2 1

2 3 2
=1

3

2

1 2

.

∕

∕ ∕ ∕ ∕

∕ ∕

Thus, if f X X(1 2, , ) 01 2 .∕ then, since h X X(1 2, , ) > 01 2∕ , the desired partition ofV D( )
exists. So, we may assume f X X(1 2, , ) < 01 2∕ which implies the desired inequality. □

5 | PROOF OF THEOREM 1.3

In this section, we prove Theorem 1.3, by using Propositions 4.1 and 4.4 and Lemma 4.5 and by
choosing X to consist of vertices of degree at most n3 4∕ . Our proof is much simpler when
applied to the cases d = 2 and d = 3, and gives the results of Lee et al. [11] that Conjecture 1.2
is true for these cases.

Proof of Theorem 1.3. Let D be a digraph with n vertices and m arcs, and assume that
the minimum outdegree of D is at least 4. We wish to find a partition V D V V( ) = 1 2∪ ,
such that e V V e V V o mmin{ ( , ), ( , )} (3 14 + (1))1 2 2 1 . ∕ . We may assume that n is
sufficiently large so that all lemmas in the previous sections can be applied. We
claim that

(1) m n4. and we may assume m n< 128 72⋅ .

Since D has minimum outdegree at least 4, we have m n4. . Now suppose m n128 72. ⋅ .
Then applying Corollary 2.2 with ε = 1 28∕ we obtain a partition V D V V( ) = 1 2∪ such that

e V V e V V m mmin{ ( , ), ( , )} (1 4 − 1 28) = 3 14.1 2 2 1 . ∕ ∕ ∕

So we may assume m n< 128 72⋅ . □

Consider the partition X Y, of V D( ) such that X v V D d v n= { ( ) : ( ) }3 4� . ∕ and
Y V D X= ( )\ . Then, by (1), ½ ½Þ ÞX n d v d v m n( ) ( ) = 2 < 256 7 .

v X v V D

3 4

( )

2- -
� �

⋅ ⋅∕

Hence, Þ ÞX O n= ( )1 4∕ and, thus, Þ Þe X X O n o m( ) = ( ) = ( )2 1 2- ∕ . Therefore, we may assume

(2) e X( ) = 0.
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Let Þ Þθ θ S T S T X= min{ ( , ) : , is a partition of }. Let X X,1 2 be a partition of X such that
θ X X θ( , ) =1 2 , and let X x X s x θ′ = { : ( ) }� . . If Þ ÞX ′ = 1 or Þ ÞX ′ 5. then the desired partition
exists by Propositions 4.1 and 4.4. So let X v v v′ = { , , }1 2 3 and s vΔ = ( )i i for i [3]� such that
Δ Δ Δ1 2 3. . . Since Þ ÞX o n= ( ), ½ Þ Þg b m d Y n o nΔ + Δ + Δ + + + 4 = 4 − ( ).

y Y

y
1 2 3 2

+( ). .
�

Hence, writing t = 2Δ − (Δ + Δ )1 2 3 , we have

b n g m o n n g m t o n4 − Δ − Δ − Δ − − − ( ) = 4 − 3Δ − − + − ( ),1 2 3 2 1 2. (11)

Next, we will derive bounds on m t, Δ ,2 1 and b in terms of n and g, so that we can use (4) of
Lemma 3.2.

By Lemma 4.5,

b g m n τ t g m n τ< 3Δ + 3Δ − 4Δ − 4 − 2 − 7( − ) 4 = 2Δ − 3 − 4 − 2 − 7( − ) 4,2 3 1 2 1 2∕ ∕ ∕ ∕

which, combined with τ n g b( + 2 + 2 ) 3- ∕ (by (1) of Proposition 4.4), imlpies

b n m g t> 7 + 3 + 17 − 12Δ + 18 .2 1 (12)

We may assume that (2) and (3) of Lemma 3.2 hold; for, otherwise, by Lemma 3.2, the
desired partition of V D( ) exists. Thus,

b g m t> 3 + 3 8 − Δ 3 + 4 ,2 1∕ ∕ (13)

and

b n g m t< 28
11

− 27
11
Δ + 12

11
− 9

88
+ 2

11
.1 2 (14)

Combining (14) with (11), (12), (13), respectively, we obtain (by eliminating b)

m g n t o n79
8

+ 23 > 16 − 6Δ + 9 − ( ),2 1 (15)

m g n t273
8

+ 175 < 105Δ − 49 − 196 .2 1 (16)

m g n t63
4

+ 63 < 84 − 70Δ − 126 .2 1 (17)

Noting that Þ Þn XΔ −1 - (by (2)) and n is large, we see from (15) that m g n+ 23 > 9.9979
8 2 ; so

m g n+ 2.31 >2 (18)

We now combine (15) with (16) and (17), respectively, and we get (by eliminating m2)

t g n1.806 + 0.759 < Δ − 0.829 ,1 (19)

t g n2.322 + 0.435 < 0.968 − Δ .1 (20)

From (19), we have

nΔ > 0.829 .1 (21)

Combining (19) and (20) to eliminate Δ1, we have
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t g n3 + < 0.117 . (22)

From (14), we have

LNMMM \̂]]] LNMMM \̂]]]b n m g t g< 28
11

− 27
11
Δ − 9

88
+ 21

88
+ 2

11
+ 117

88
.1 2

Hence, by (18), (21), and (22), we have

b n n n n n< 28
11

− 27
11

× 0.829 − 9
88

+ 117
88

× 0.117 < 0.564 . (23)

We wish to use (4) of Lemma 3.2. Note that

g b m m g b t g2Δ + 2Δ − 3Δ − 3 − + 3 14 = Δ + (3 14 + 2) − − (2 + 7 2).2 3 1 2 1 2∕ ∕ ∕ ∕

So by (18), (21), (22), and (23), we see that

g b m
n n n n
n

2Δ + 2Δ − 3Δ − 3 − + 3 14
>0.829 + 3 14 − 0.564 − (7 2) × 0.117
>0.069
>0.

2 3 1 2∕
∕ ∕

Hence, by (4) of Lemma 3.2, we have g b m6Δ − 3Δ − 3Δ + 2 − + 3 14 < 01 2 3 2∕ . Thus,

b m g m g t> 6Δ − 3Δ − 3Δ + 3 14 + 2 = 3 14 + 2 + 3 .1 2 3 2 2∕ ∕ (24)

Combining (14) and (24) (by eliminating b), we have

m g n t195
56

+ 10 < 28 − 27Δ − 31 ,2 1

which, combined with (15) (by eliminating m2), gives

t g n1.373 + 0.075 < 0.899 − Δ ,1 (25)

which implies nΔ < 0.8991 ; so by (11), we have

g b m n t o n n n n+ + > 4 − 3Δ + − ( ) > 4 − 3 × 0.9 = 1.3 .2 1 (26)

Combining (19) and (25) (to eliminate Δ1), we derive

t g n3 + < 0.084 . (27)

Again by (4) of Lemma 3.2, we have

g b m m b g b

t g g

0 > 6Δ − 3Δ − 3Δ − 3 + 3 + 3 14 = 3( + + ) 14 + 5 42

− (6 + 2 + 17 14) + 9(Δ − Δ ).
3 1 2 2 2

1 2

∕ ∕ ∕ ∕

∕

Hence, noting that b n> 3 14∕ (by 18 and 24) and by (26) and (27),

n n n n0 > (3 14) × 1.3 + (5 42) × (3 14) − (2 + 17 14)) × 0.084 > 0.034 .∕ ∕ ∕ ∕

This is a contradiction, completing the proof of Theorem 1.3.
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6 | CONCLUDING REMARKS

We studied partitions of digraphs with minimum outdegree d 4. and proved Conjecture 1.2 in
the case when d = 4. We used a typical approach for finding a partition V V,1 2 in a digraph D
that bounds e V V( , )1 2 and e V V( , )2 1 simultaneously: Start with a partition X Y, ofV D( ) such that
X consists of large degree vertices; partition X by considering the “huge” vertices in X , those
vertices with large gap between their outdegree and their indegree; and randomly partition the
vertices in Y . Huge vertices play an important role in the process for obtaining the desired
partition. For instance, we showed that Conjecture 1.2 holds when there exists a partition of
V D( ) for which the number of huge vertices is at least d or exactly 1. We hope that our work
would shed light on how the set V D( ) should be partitioned into X Y, and how the set X
should be partitioned.

In [11], Lee, Loh, and Sudakov point out that one needs to combine both Lemma 2.1 and
Lemma 4.3 to prove Conjecture 1.2. They also remarked that a naive combination is not
adequate for d 4. because of the following example. Let D′ be the digraph obtained from
K n5, −5 (with n > 9) by orienting the edges so that one vertex, say v1, has outdegree n − 5 and
four vertices, say v v v v, , ,2 3 4 5, each have indegree n − 5. Let D be obtained from D′ by adding an
arc directed from vi to vj for each ordered pair (i j, ) with i j1 5- -≠ . Then the minimum
outdegree of D is 4 and the number of arcs in D is m n= 5 − 5. Let X v v= { , …, }1 5 . If we
partition V D( ) to X (consisting of large degree vertices) and Y V D X= ( )\ (consisting of small
degree vertices), then X is the set of huge vertices. One can check that X v= { }1 2 and
X v v v v= { , , , }2 1 3 4 5 form a partition of X with minimum gap. However, for any partition Y Y,1 2 of
Y , we see that e X Y X Y n n m( , ) = − 5 + 4 = − 1 = 52 2 1 1∪ ∪ ∕ , which is smaller than m3 14∕ .
What this means is that one need to consider different partitions of the set of huge vertices. In
this paper, we have managed to prove Conjecture 1.2 in the case when d = 4 by carefully
partitioning the huge vertices.

For digraphs with minimum outdegree d 5. , new ideas seem needed (in addition to better
partitioning the huge vertices), as shown by the following example. Let D′ be the digraph
obtained from K n3, −3 (with n > 900) by orienting all edges from the part Y of size n − 3 to the
part X of size 3. Let D be obtained from D′ by adding six arcs directed from each vertex in X to
6 vertices in Y (so that no two arcs get directed towards the same vertex in Y ), and adding a 3‐
out‐regular graph on Y . Hence, the minimum outdegree of D is 6, and X is the set of huge
vertices with respect to the partition X Y, . It is not difficult to verify that for any value p and
any partition X X,1 2 of X , we have f p X X( , , ) < 01 2 or h p X X( , , ) < 01 2 (see Section 3). Therefore,
one needs to better partition V D X( ) \ to achieve the bound in Conjecture 1.2.
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