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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS⇤

HONGLIANG LU† , XINGXING YU‡ , AND XIAOFAN YUAN†

Abstract. We prove that, for any integers k, l with k � 3 and k/2 < l  k � 1, there exists a
positive real µ such that, for all su�ciently large integers m,n satisfying n

k � µn  m  n
k � 1 �

(1� l
k )

l
k�l
2l�k

m
, if H is a k-uniform hypergraph on n vertices and �l(H) >

�n�l
k�l

�
�

�(n�l)�m
k�l

�
, then

H has a matching of size m + 1. This improves upon an earlier result of Hàn, Person, and Schacht
for the range k/2 < l  k � 1. In many cases, our result gives a tight bound on �l(H) for near
perfect matchings (e.g., when l � 2k/3, n ⌘ r (mod k), 0  r < k, and r + l � k, we can take
m = dn/ke�2). When k = 3, using an absorbing lemma of Hàn, Person, and Schacht, our proof also
implies a result of Kühn, Osthus, and Treglown (and, independently, of Khan) on perfect matchings
in 3-uniform hypergraphs.
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1. Introduction. A hypergraph H consists of a vertex set V (H) and an edge set
E(H) whose members are subsets of V (H). For a positive integer k, a hypergraph H
is k-uniform if E(H) ✓

�V (H)
k

�
, and a k-uniform hypergraph is also called a k-graph.

Let H be a hypergraph. For S ✓ V (H), we use H � S to denote the hypergraph
obtained from H by deleting S and all edges of H with a vertex in S, and we use
H[S] to denote the hypergraph with vertex set S and edge set {e 2 E(H) : e ✓ S}.
For S ✓ R ✓ V (H), let NH�R(S) = {T ✓ V (H) \ R : S [ T 2 E(H)}, and let
NH(S) := NH�S(S). For any positive integer n, let [n] := {1, . . . , n}.

Let H be a hypergraph. A matching in H is a set of pairwise disjoint edges of H.
(If M is a matching in H, we write V (M) :=

S
e2M e.) The size of a largest matching

in H is denoted by ⌫(H), known as the matching number of H. A matching in H is
perfect if it covers all vertices of H. A matching is nearly perfect in H if it covers all
but a constant number of vertices. Moreover, a matching in a k-graph is near perfect
if it covers all but at most k vertices.

We are interested in degree conditions for the existence of a nearly perfect match-
ing in a hypergraph. Let H be a hypergraph. For any T ✓ V (H), we use dH(T )
to denote the degree of T in H, i.e., the number of edges of H containing T . Let l
be a nonnegative integer. Then �l(H) := min{dH(T ) : T 2

�V (H)
l

�
} is the minimum

l-degree of H. Note that �0(H) is the number of edges in H, and �1(H) is often called
the minimum vertex degree of H. When H is a k-graph for some positive integer k,
�k�1(H) is known as the minimum codegree of H.
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1023

Bollobás, Daykin, and Erdős [5] considered minimum vertex degree conditions for
matchings in k-graphs. They proved that if H is a k-graph of order n � 2k2(m+ 2)
and �1(H) >

�n�1
k�1

�
�
�n�m
k�1

�
then ⌫(H) � m. For 3-graphs, Kühn, Osthus, and

Treglown [17] and, independently, Khan [14] proved the following stronger result:
There exists n0 2 N such that if H is a 3-graph of order n � n0, m  n/3, and
�1(H) >

�n�1
2

�
�
�n�m

2

�
then ⌫(H) � m.

In [15], Kuhn and Osthus proved that there exists n0 2 N such that if H is a
k-graph of order n � n0 and �k�1(H) � n/2 + 3K2

p
n log n, then H has a perfect

matching. Rödl, Ruciński, and Szemerédi [21] determined the minimum codegree
threshold for the existence of a perfect matching in a k-graph. Treglown and Zhao
[23, 24] extended this result to include l-degrees for k/2  l  k � 2. Hàn, Person,
and Schacht [12] considered the minimum l-degree condition for perfect matchings
in the range 1  l  k/2. In particular, they showed that if H is a 3-graph and
�1(H) > (1 + o(1)) 59

�|V (H)|
2

�
then H has a perfect matching. Two surveys of these

and other related results appear in [19, 25].
For near perfect matchings, Han [11] proved a conjecture of Rödl, Ruciński, and

Szemerédi [21] that, for n 6⌘ 0 (mod k), the codegree threshold for the existence of
a near perfect matching in a k-graph H is bn/kc. This is much smaller than the
codegree threshold (roughly n/2) obtained by Rödl, Ruciński, and Szemerédi [21] for
perfect matchings.

For nearly perfect matchings, Hàn, Person, and Schacht [12] proved the following
result: For any integers k > l > 0, there exists n0 2 N such that for all n > n0 with
n 2 kZ and for every n-vertex k-graph H with

�l(H) � k � l

k

✓
n

k � l

◆
+ kk+1(lnn)1/2nk�l�1/2,

H contains a matching covering in all but (l� 1)k vertices. Our main result improves
this bound for the range k/2 < l  k�1, by providing an exact l-degree threshold for
the existence of a matching covering in all but at most (k� l)d(k� l)/(2l�k)e+k�1
vertices.

Theorem 1.1. For any integers k, l satisfying k � 3 and k/2 < l  k � 1, there
exists a positive real µ such that, for all su�ciently large integers m,n satisfying

(1.1)
n

k
� µn  m  n

k
� 1�

✓
1� l

k

◆⇠
k � l

2l � k

⇡
,

if H is a k-graph on n vertices and �l(H) >
�n�l
k�l

�
�
�(n�l)�m

k�l

�
then ⌫(H) � m+ 1.

When l � 2k/3, we have (k � l)/(2l � k)  1. Moreover, if n ⌘ r (mod k),
0  r < k, and r + l � k then Theorem 1.1 with m = dn/ke � 2 implies that H
has a matching covering in all but at most k vertices. In general, if the interval
[n/k� 2, n/k� 1� (1� l/k) d(k � l)/(2l � k)e] contains an integer, then by letting m
be that integer, Theorem 1.1 implies that H has a near perfect matching.

The bound on �l(H) in Theorem 1.1 is best possible. To see this, consider
the k-graph Hk

k (U,W ), where U,W is a partition of V (Hk
k (U,W )) and the edges

of Hk
k (U,W ) are precisely those k-subsets of V (Hk

k (U,W )) intersecting W at least
once. For integers k, l, n with k � 2 and 0 < l < k and for large n, �l(Hk

k (U,W )) =�n�l
k�l

�
�
�(n�l)�|W |

k�l

�
and the matching number of Hk

k (U,W ) is |W |. Thus, the bound
on �l(H) in Theorem 1.1 is best possible (by letting |W | = m).
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1024 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

We need to refine the definition of Hk
k (U,W ) to Hs

k(U,W ) for all s 2 [k]. Again,
U,W is a partition of V (Hs

k(U,W )) and the edges of Hs
k(U,W ) are precisely those

k-subsets of V (Hs
k(U,W )) intersecting W at least once and at most s times.

Given two hypergraphs H1, H2 and a real number " > 0, we say that H2 is "-close
to H1 if V (H1) = V (H2) and |E(H1)\E(H2)|  "|V (H1)|k. Our proof of Theorem 1.1
consists of two parts by considering whether or not H is “close” to Hs

k(U,W ), which
is similar to arguments in [21]. In the next two paragraphs, we give an outline for
each case.

We first consider the case when V (H) has a partition U,W with |W | = m such
that H is close to Hk�l

k (U,W ). If every vertex of H is “good” (to be made precise
later) with respect to Hk�l

k (U,W ) then we find the desired matching by a greedy
argument. Otherwise, we find the desired matching in two steps by first finding a
matching M 0 such that every vertex in H � V (M 0) is good, thereby reducing the
problem to the previous case.

The other case is when H is not close to Hk�l
k (U,W ) for any partition V (H) into

U,W with |W | = m. We will see that such H does not have any sparse subset of very
large size. To deal with this case, we will use the following approach of Alon et al. [1]:

• Find a small absorbing matching Ma in H;
• find random subgraphs of H � V (Ma) with perfect fractional matchings (see
section 4 for a definition);

• use those random subgraphs and a theorem of Frankl and Rödl to find an
almost perfect matching M 0 in H � V (Ma) (see Lemma 5.7); and

• use the matching Ma to absorb the remaining vertices in V (H) \ (V (Ma) [
V (M 0)).

To find a perfect fractional matching in certain random subgraphs of H � V (Ma)
we need to prove a stability version of a result of Frankl [8] on the Erdős matching
conjecture [6], which might be of independent interest. We also need to use the hyper-
graph container result of Balogh, Morris, and Samotij [3] to bound the independence
number of random subgraphs of H.

Our paper is organized as follows. In section 2, we prove Theorem 1.1 for k-
graphs H such that V (H) has a partition U,W with |W | = m and H is "-close
to Hk�l

k (U,W ) (for any " < (8k�1k5(k�1)k!)�3). In fact, in this case, the degree
threshold works for all m < n/k. In section 3, we prove an absorbing lemma that
ensures the existence of a small matching Ma in H with the following property: For
any small set S, the subgraph of H induced by V (Ma) [ S has a nearly perfect
matching. This is done by a standard second moment method. In section 4, we
show that if a k-graph does not have a very large independence number but has
a large minimum l-degree then it has a perfect fractional matching. This is done
by proving a stability version of a result of Frankl. In section 5, we first prove
Lemma 5.3, which is used to control the independence number of H when it is not
close to Hk�l

k (U,W ) for any partition of V (H) into U,W with |W | = m. This in
turn allows us to apply the hypergraph container result to control the independence
number of random subgraphs of H � V (Ma). We then use the approach in [1] to find
random subgraphs of H � V (Ma) with perfect fractional matchings. Those random
subgraphs enable us to use a result of Frankl and Rödl [10] (see Lemma 5.1) to find
an almost perfect matching in H � V (Ma). In section 6, we complete the proof of
Theorem 1.1 by applying the absorbing lemma from section 3. We also show how our
proof implies a result on perfect matchings in 3-graphs proved by Kühn, Osthus, and
Treglown [17] and, independently, by Khan [14].
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1025

2. Hypergraphs close to H
k�l
k (U,W ). In this section, we prove Theorem

1.1 for the case when V (H) has a partition U,W with |W | = m such that H is close
to Hk�l

k (U,W ). Actually, in this case, the assertion of Theorem 1.1 holds for all
m  n/k � 1. Moreover, in the case when m  n/(2k4), we do not require H to be
close to Hk�l

k (U,W ) or l > k/2.

Lemma 2.1. Let n,m, k, l be positive integers such that k � 3, m  n/(2k4), and
l 2 [k � 1]. Let H be a k-graph on n vertices and �l(H) >

�n�l
k�l

�
�
�(n�l)�m

k�l

�
. Then

⌫(H) � m+ 1.

Proof. We apply induction on m. When m = 0, we have �l(H) > 0; so ⌫(H) � 1.
Now assume m � 1 and that the assertion holds when m is replaced with m� 1. Let
M be a maximum matching in H, and assume |M |  m.

Since M is a maximum matching in H, every edge of H intersects M . So there
exists a vertex v 2 V (M) such that

dH(v) >
e(H)

km
.

Note that e(H) � �l(H)
�n
l

�
/
�k
l

�
, and

�l(H) >

✓
n� l

k � l

◆
�
✓
(n� l)�m

k � l

◆
(by assumption)

=

✓
n� l

k � l

◆ 
1�

m�1Y

i=0

n� k � i

n� l � i

!

>

✓
n� l

k � l

◆✓
1�

✓
1� k � l

n� l

◆m◆

>

✓
n� l

k � l

◆ 
1�

 
1�m

k � l

n� l
+

✓
m

2

◆✓
k � l

n� l

◆2
!!

>
m(k � l)

2(n� l)

✓
n� l

k � l

◆
(since m  n/(2k4)).

Thus we have

dH(v) >
e(H)

km
�

�l(H)
�n
l

�

km
�k
l

� >
(k � l)

2nk

✓
n� l

k � l

◆�n
l

�
�k
l

� =
(k � l)

2k2

✓
n� 1

k � 1

◆
� 1

2k2

✓
n� 1

k � 1

◆
,

where the last inequality holds because l  k � 1.
Note that

�l(H � v) � �l(H)�
✓
n� (l + 1)

k � (l + 1)

◆

>

✓
n� l

k � l

◆
�
✓
(n� l)�m

k � l

◆
�
✓
n� (l + 1)

k � (l + 1)

◆

=

✓
(n� 1)� l

k � l

◆
�
✓
((n� 1)� l)� (m� 1)

k � l

◆
.

Recall that m  n/(2k4), so m� 1  (n� 1)/(2k4). Hence, by the induction hypoth-
esis, H � v has a matching of size m, say M 0.
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1026 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

The number of edges of H containing v and intersecting V (M 0) is at most
km
�n�2
k�2

�
. Since m  n/(2k4),

km

✓
n� 2

k � 2

◆
<

1

2k2

✓
n� 1

k � 1

◆
< dH(v).

Thus H � V (M 0) contains an edge e such that v 2 e. Now M 0 [ {e} is a matching in
H of size m+ 1.

For the case when m > n/(2k4), we use the structure of Hk�l
k (U,W ) to help us

construct the desired matching in H. First, we prove a lemma for the case where, for
each vertex v 2 V (H), only a small number of edges of Hk�l

k (U,W ) containing v do
not belong to H.

Let H be a k-graph and let U,W be a partition of V (H) and let n = |U |+ |W |.
Given real number ↵ with 0 < ↵ < 1, a vertex v 2 V (H) is called ↵-good with respect
to Hk�l

k (U,W ) if ���NHk�l

k
(U,W )(v) \NH(v)

���  ↵nk�1,

and, otherwise, v is called ↵-bad. This notion quantifies the closeness of H to
Hk�l

k (U,W ) at a vertex. Clearly, if H is "-close to Hk�l
k (U,W ), then the number

of ↵-bad vertices in H is at most k"n/↵, otherwise,

|E(Hk�l
k (U,W )) \ E(H)| � 1

k

X

v2V (H)

���NHk�l

k
(U,W )(v) \NH(v)

���

� 1

k
(k"n/↵)(↵nk�1) = "nk,

a contradiction. Note that in the statement of the lemma below we use m � n/(2k5)
rather than m � n/(2k4) as opposed to Lemma 2.1. The reason is for its application
in the proof of Lemma 2.3.

Lemma 2.2. Let k, l,m, n be integers and ↵ be a positive real, such that k � 3,
l 2 [k � 1], ↵ < (8k�1k5(k�1)k!)�1, n � 8k6, and n/(2k5)  m  n/k. Suppose that
H is a k-graph on n vertices and U,W is a partition of V (H) with |W | = m such that
every vertex of H is ↵-good with respect to Hk�l

k (U,W ). Then ⌫(H) � m.

Proof. We find a matching of size m in H using those edges that intersect W
just once. Let M be a maximum matching in H such that |e \ W | = 1 for each
e 2 M , and let t = |M |. We may assume t < m, or else the desired matching
exists. So W \ V (M) 6= ;. By the maximality of M , NH(x) \

�U\V (M)
k�1

�
= ; for all

x 2 W \ V (M).
We claim that t � m/2. For, suppose t < m/2. Since m  n/k, t < n/(2k), so

|V (H) \ V (M)| = n� tk > n� n/2 = n/2. Hence,

|U \ V (M)| > |V (H) \ V (M)|� |W | � n/2� n/k � n/6.

Thus, for any x 2 W \ V (M),

���NHk�l

k
(U,W )(x) \NH(x)

��� �
����

✓
|U \ V (M)|

k � 1

◆���� >
✓

n/6

k � 1

◆
> ↵nk�1,

contradicting the assumption that every vertex in H is ↵-good.
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Since t < m  n/k and |e \ W | = 1 for each e 2 M , there exists a k-set
S = {u1, . . . , uk} ✓ V (H) \ V (M) such that uk 2 W , and S \ {uk} ✓ U . Since
m � n/(2k5) > 2k, we have t � m/2 > k.

Arbitrarily choose k�1 pairwise distinct edges e1, . . . , ek�1 fromM and write ei :=
{vi,1, vi,2, . . . , vi,k} such that vi,k 2 W and vi,j 2 U for j 2 [k�1]. For convenience, let
vk,j := uj for j 2 [k]. For i 2 [k], define fi := {v1,1+i, v2,2+i, . . . , vk�1,(k�1)+i, vk,k+i},
where the addition in the subscripts is modulo k (except that we write k for 0). Then
fi 62 E(H) for some i 2 [k] as, otherwise, (M \ {ei : i 2 [k � 1]}) [ {fi : i 2 [k]} is
a matching in H that contradicts the maximality of M .

Note that for di↵erent choices of e1, . . . , ek�1 2 M and e01, . . . , e
0
k�1 2 M , the

corresponding sets {f1, . . . , fk} and {f 0
1, . . . , f

0
k} constructed in the above paragraph

are disjoint. Since there are
� t
k�1

�
choices of e1, . . . , ek�1 from M , we have

kX

i=1

���NHk�l

k
(U,W )(ui) \NH(ui)

���

�
✓

t

k � 1

◆

>
(t� (k � 1) + 1)k�1

(k � 1)!

>
(n/(4k5)� (k � 1))k�1

(k � 1)!
(since t � m/2 > n/(4k5))

>
(n/(8k5))k�1

(k � 1)!
(since n � 8k6)

= (8k�1k5(k�1)k!)�1knk�1

> ↵knk�1 (since ↵ < (8k�1k5(k�1)k!)�1).

Thus there exists uj 2 S such that

���NHk�l

k
(U,W )(uj) \NH(uj)

��� > ↵nk�1,

contradicting the assumption that every vertex in H is ↵-good.

The next lemma takes care of Theorem 1.1 for the case when m > n/(2k4)
and H is "-close to Hk�l

k (U,W ). We first find two matchings (in two steps and
using Lemma 2.1) that cover all

p
"-bad vertices. We then apply Lemma 2.2 to the

hypergraph obtained from H by deleting these two matchings.

Lemma 2.3. Let k, l,m, n be integers and let 0 < " < (8k�1k5(k�1)k!)�3, such
that k � 3, l 2 [k � 1], n � 8k6/(1 � 5k2

p
"), and n/(2k4) < m  n/k � 1. Suppose

H is a k-graph on n vertices and U,W is a partition of V (H) with |W | = m, such
that �l(H) >

�n�l
k�l

�
�
�n�l�m

k�l

�
and H is "-close to Hk�l

k (U,W ). Then ⌫(H) � m+ 1
when m < n/k � 1 or l  k � 2, and ⌫(H) � m when l = k � 1 and m = n/k � 1.

Proof. Since H is "-close to Hk�l
k (U,W ), all but at most k

p
"n vertices of H arep

"-good with respect to Hk�l
k (U,W ). Let U bad and W bad denote the set of

p
"-bad

vertices in U and W , respectively. So |U bad| + |W bad|  k
p
"n. Let c := |W bad|,

V1 := U [ W bad, and W1 := W \ W bad. Note that possibly c = 0. We deal with
vertices in W1 later since at those vertices H and Hk�l

k (U,W ) are close. We claim
that
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1028 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

(1) H[V1] has a matching M1 of size c+ 1.
To see this, let s be the maximum number of edges inH intersectingW1 and containing
a fixed l-set in V1. Then s 

�n�l
k�l

�
�
�n�l�(m�c)

k�l

�
and �l(H[V1]) � �l(H)� s. Hence,

�l(H[V1]) � �l(H)� s >

✓
(n�m+ c)� l

k � l

◆
�
✓
(n�m+ c)� l � c

k � l

◆
.

Since n/(2k4) < m < n/k  n/3, we have n�m+ c > 2m+ c > n/k4+ c. Thus, since
c  k

p
"n, n�m+ c > 2k4c by the choice of ". So by Lemma 2.1, H[V1] contains a

matching of size c+ 1. This completes the proof of (1).
Let H1 := H � V (M1). Next, we cover U bad [ W bad with two matchings in

H1, using edges intersecting W1 at most once. First note that, for each l-set S ✓
V1 \ V (M1), H1 has lots of edges containing S and intersecting W1 just once, or H1

has lots of edges of containing S and contained in V1 \ V (M1). More precisely, we
show that

(2) for any real number � with 2k2
p
" < � < (2k)�(k�l+3)/2�k2

p
" (which exists

as " < (2k)�2k�11 and k � 3) and for any S 2
�V1\V (M1)

l

�
, we have

|{T 2 NH1
(S) : |T \W1| = 1}| � �nk�l, or

|{T 2 NH1
(S) : T ✓ V1 \ V (M1)}| � �nk�l.

To prove (2), let S 2
�V1\V (M1)

l

�
and |{T 2 NH1

(S) : |T \W1| = 1}| < �nk�l. Since

|{T 2 NH1
(S) : |T \W1| � 2}| 

k�lX

i=2

✓
m

i

◆✓
n� l �m

k � l � i

◆

and
|{T 2 NH(S) : |T \ V (M1)| � 1}|  k(c+ 1)nk�l�1 < 2k2

p
"nk�l,

we have

|{T 2 NH1
(S) : T ✓ V1 \ V (M1)}|

> �l(H)� |{T 2 NH1
(S) : |T \W1| � 2}|

� |{T 2 NH1
(S) : |T \W1| = 1}|� 2k2

p
"nk�l

>

✓✓
n� l

k � l

◆
�
✓
n� l �m

k � l

◆◆
�

k�lX

i=2

✓
m

i

◆✓
n� l �m

k � l � i

◆
� �nk�l � 2k2

p
"nk�l

= m

✓
n� l �m

k � l � 1

◆
� 2k2

p
"nk�l � �nk�l

> nk�l/(2k)k�l+3 � 2k2
p
"nk�l � �nk�l (since n/(2k4)  m < n/k and n � 8k6)

� �nk�l (by the choice of �).

This completes the proof of (2).
To find matchings in H1 covering (U bad [ W bad) \ V (M1), we fix a set B ✓

V1 \ V (M1) such that |B| ⌘ 0 (mod l), (U bad [W bad) \ V (M1) ✓ B, and |B \ (U bad [
W bad)| < l. For convenience, let q = |B|/l. Then

q  k
p
"n.

We partition B into q disjoint l-sets B1, . . . , Bq. By (2), we may assume that, for
some q1 2 [q] [ {0}, |{T 2 NH1

(Bi) : |T \ W1| = 1}| � �nk�l for 1  i  q1 and
|{T 2 NH1

(Bj) : T ✓ V1 \ V (M1)}| � �nk�l for q1 < j  q. We claim that
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1029

(3) there exist disjoint matchings M21 and M22 in H1 such that
• |M21|+ |M22|  k

p
"n,

• M21 covers
Sq1

i=1 Bi and each edge in M21 intersects W1 just once, and
• M22 covers

Sq
i=q1+1 Bi and each edge in M22 is disjoint from W1.

First, we find the matching M21 covering
Sq1

i=1 Bi (which is empty if q1 = 0). Suppose
for some 0  h < q1 we have chosen pairwise disjoint edges e1, . . . , eh of H1 = H �
V (M1) (which is empty when h = 0), such that, for i 2 [h], we have |ei \W | = 1 and
Bi ✓ ei. Since |{T 2 NH1

(Bh+1) : |T \W1| = 1}| � �nk�l and h  q1�1  k
p
"n�1,

the number of edges of H disjoint from V (M1) [ (
Sh

i=1 ei) but containing Bh+1 and
exactly one vertex from W1 is at least

�nk�l � k|M1|nk�l�1 � (hk)nk�l�1 � �nk�l � 2k2
p
"nk�l > 0.

Thus, there is an edge eh+1 of H1 such that |eh+1 \ W1| = 1, Bh+1 ✓ eh+1, and

eh+1 \ (
Sh

j=1 ej) = ;. Since q1  q  k
p
"n, we may continue this process till

h = q1 � 1. Now M21 = {e1, . . . , eq1} is the desired matching that covers
Sq1

i=1 Bi.
Next, we find the matching M22 = {ej : q1 < j  q}, such that for q1 <

j  q, Bj ✓ ej and ej ✓ V1 \ (V (M1) [ (
Sj�1

s=1 es)). Suppose that we have chosen
e1, . . . , eq1 , . . . , es for some s with q1  s < q (which is empty if q1 = q). Since
|{T 2 NH1

(Bs+1) : T ✓ V1 \V (M1)}| � �nk�l and s  q� 1  k
p
"n� 1, the number

of edges in H disjoint from V (M1) [ ([s
i=1ei) [W1 but containing Bs+1 is at least

�nk�l � k|M1|nk�l�1 � (sk)nk�l�1 � �nk�l � 2k2
p
"nk�l > 0.

So there exists an edge es+1 of H1 such that Bs+1 ✓ es+1 and es+1 \ (
Ss

i=1 ei) =
;. Since q  k

p
"n, we may continue this process till s = q � 1. Now M22 =

{eq1+1, . . . , eq} gives the desired matching that covers
Sq

i=q1+1 Bi. This completes
the proof of (3).

Now, every vertex in V (H) \ V (M1 [M21 [M22) (as a vertex of H) is
p
"-good

with respect to Hk�l
k (U,W ). In order to apply Lemma 2.2, we find a matching M23 in

H1�V (M21[M22) such that every vertex of H2 := H1�V (M21[M22[M23) is "1/3-
good with respect to Hk�l

k (U⇤,W ⇤), where U⇤ = U \ V (H2) and W ⇤ = W \ V (H2),
|U⇤| + |W ⇤| � 8k6, and (|U⇤| + |W ⇤|)/(2k4) < |W ⇤|  (|U⇤| + |W ⇤|)/k. So we need
to prove (4) and (5) below.

(4) There exists a matching M23 in H1 � V (M21 [M22) with |M23| < k
p
"n and

satisfying the following property: If we let H2 := H1 � V (M21 [M22 [M23),
U 0 = U \ V (H2), W 0 = W \ V (H2), then, for some r 2 {0, 1} with r = 0 for
l  k � 2, we have

• |W 0| � r = m � c � |M21| � |M22| � |M23|, |U 0| + |W 0| � r � 8k6, and
(|U 0|+ |W 0|� r)/(2k5) < |W 0|� r,

• |W 0|� r  (|U 0|+ |W 0|� r)/k when l  k � 2 or m < n/k � 1, and
• |W 0|� r  (|U 0|+ |W 0|)/k when l = k � 1 and m = n/k � 1.

We prove (4) by considering two cases. Note |M1[M21[M22| = (c+1)+ q  3k
p
"n

as c, q  k
p
"n.

Case 1. l  k � 2.
In this case, we construct the matching M23 as follows. Suppose for some 1 

t  q � q1, we found vertices x1, . . . , xt�1 in U \ V (M1 [ M21 [ M22) and edges
f1, . . . , ft�1 in H1 � V (M21 [ M22) such that, for i 2 [t � 1], we have xi 2 fi,
|fi \ W1| = 2, and fi \ (

Si�1
j=1 fj) = ;. (When t = 1, these sequences are empty.)

Let xt 2 U \ V (M1 [ M21 [ M22) \ (
St�1

i=1 fi). Since xt is
p
"-good with respect to
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1030 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

Hk�l
k (U,W ), the number of edges of H1 � V (M21 [ M22) � (

St�1
i=1 fi) containing xt

and exactly two vertices in W1 is at least
✓
m� c� 2(t� 1)

2

◆✓
n�m� 1

k � 3

◆
�

p
"nk�1 � (3k

p
"n)nk�2 � (kt)nk�2 > 0,

as n/(2k4) < m, c < k
p
"n, t < k

p
"n, and " < (8k�1k5(k�1)k!)�3. So there exists an

edge ft in H1 � V (M21 [M22)� (
St�1

i=1 fi) such that xt 2 ft and |ft \W1| = 2. This
process works as long as t  q�q1. Thus, we have a matchingM23 = {fj : j 2 [q�q1]}
such that, for j 2 [q�q1], fj ✓ V (H1)\ (V (M21[M22)[ (

Sj�1
i=1 fi)) and |fj \W1| = 2.

LetH2 := H1�V (M21[M22[M23) and let U 0 = U\V (H2) andW 0 = W\V (H2).
Note that |M23| = |M22|, and note that

|W 0| = |W |� c� |M21|� 2|M23| = |W |� c� |M21|� |M22|� |M23|, and

|U 0| = |U |� (k(c+ 1)� c)� (k � 1)|M21|� k|M22|� (k � 2)|M23|
= |U |� (k � 1)(c+ 1 + |M21|+ |M22|+ |M23|)� 1.

Hence, we have

|U 0|+ |W 0| = |U |+ |W |� k(c+ 1)� k|M21|� k|M22|� k|M23|.

Thus, |U 0|+ |W 0| � n� 5k2
p
"n � 8k6 and, since m  n/k � 1,

(|U 0|+ |W 0|)/k = (|U |+ |W |)/k � (c+ 1)� |M21|� |M22|� |M23|
� (|W |+ 1)� (c+ 1)� |M21|� |M22|� |M23|
= |W 0|.

Moreover, since |W | > n/(2k4) and |W | � |W 0| � |W |� 3k
p
"n, we have

(|U 0|+ |W 0|)� 2k5|W 0|
= |U |+ |W |� k(c+ 1)� k|M21|� k|M22|� k|M23|� 2k5|W 0|
< |U |+ |W |� 2k5|W 0|
< 2k4|W |� 2k5|W 0|
< 0 (since n is large and " is small).

Case 2. l = k � 1.
Arbitrarily choose q�q1 pairwise disjoint (k�1)-sets in V (H)\V (M1[M21[M22),

each containing exactly two vertices in W1. Note that this can be done, because
|W1| = m � c � n/(2k4) � k

p
"n > 2q. Since �k�1(H) > m � n/(2k4) > 5k2

p
"n �

k((c + 1) + 3q), we can extend these q � q1 sets to q � q1 pairwise disjoint edges
f1, . . . , fq�q1 in H � V (M1 [M21 [M22).

Clearly, each fi contains either two or three vertices from W1. Thus, there exists
some integer p with 0  p  q�q1 such that q�q1+p�1  |W1\(

Sp
i=1 fi) |  q�q1+p.

Let M23 = {f1, . . . , fp}, H2 := H1 � V (M21 [M22 [M23), and U 0 = U \ V (H2) and
W 0 = W \ V (H2).

Note that |W1 \ V (M23)| = |M22|+ |M23|� r for some r 2 {0, 1}. Hence,

|W 0| = |W |� c� |M21|� |W1 \ V (M23)| = |W |� c� |M21|� |M22|� |M23|+ r

and

|U 0| = |U |� (k(c+ 1)� c)� (k � 1)|M21|� k|M22|� (k|M23|� |W1 \ V (M23)|).
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1031

Therefore,

|U 0|+ |W 0|� r = (|U |+ |W |� r)� k(c+ 1)� k|M21|� k|M22|� k|M23|.

It is easy to see that the same calculations in Case 1 also allow us to conclude
that |U 0| + |W 0| � r � 8k6 and (|U 0| + |W 0| � r) � 2k5(|W 0| � r) < 0. Moreover, if
r = 0 then the same argument in Case 1 shows that |W 0|  (|U 0| + |W 0|)/k. So we
may assume r = 1.

First, suppose m < n/k � 1. Then (|U |+ |W |)/k � |W |+ 1 + 1/k, so

(|U 0|+ |W 0|� 1)/k = (|U |+ |W |� 1)/k � (c+ 1)� |M21|� |M22|� |M23|
� (|W |+ 1 + 1/k)� 1/k � (c+ 1)� |M21|� |M22|� |M23|
= |W 0|� 1.

Now suppose m = n/k � 1 (so n 2 kZ). Then

(|U 0|+ |W 0|)/k = (|U |+ |W |)/k � (c+ 1)� |M21|� |M22|� |M23|
� (|W |+ 1)� (c+ 1)� |M21|� |M22|� |M23|
� |W 0|� 1.

So |W 0|� r  (|U 0|+ |W 0|)/k, completing the proof of (4).
We now defineW ⇤ ✓ W 0 and U⇤ = V (H)\W ⇤ as follows: If r = 0 letW ⇤ = W 0. If

r = 1 and n /2 kZ or m < n/k�1 then choose some w 2 W 0 and let W ⇤ = W 0\{w}. If
r = 1, n 2 kZ, and m = n/k�1 then choose w1, w2 2 W 0 and let W ⇤ = W 0\{w1, w2}.

(5) Every vertex of H2 := H1 � V (M21 [M22 [M23) is "1/3-good with respect
to Hk�l

k (U⇤,W ⇤).
To prove (5), we note that k|M1[M21[M22[M23|+2  k((c+1)+3q)+2  5k2

p
"n.

For each x 2 V (H2), since x is
p
"-good with respect to Hk�l

k (U,W ), we have

|NHk�l

k
(U,W )(x) \NH(x)| 

p
"nk�1.

Thus,
���NHk�l

k
(U⇤,W⇤)(x) \NH2

(x)
���


���NHk�l

k
(U,W )(x) \NH(x)

���+ (k |M1 [M21 [M22 [M23|+ 2)nk�2


p
"nk�1 + 5k2

p
"nk�1

< "1/3nk�1.

This completes the proof of (5).
Hence, by (4) and (5), it follows from Lemma 2.2 that there is a matching M3

in H2 of size |W ⇤|. Let M := M1 [M21 [M22 [M23 [M3. Then M is a matching
in H. By (4), |W 0| � r = m � (|M1| � 1) � |M21| � |M22| � |M23|. If l = k � 1 and
m = n/k � 1, then |W ⇤| � |W 0|� r � 1, so

|M | � (|W 0|� r � 1) + |M1|+ |M21|+ |M22|+ |M23| = n/k � 1.

Otherwise, |W ⇤| = |W 0|� r and |M | = (|W 0|� r) + |M1| + |M21|+ |M22| + |M23| =
m+ 1.

3. An absorbing lemma. A typical approach to finding large matchings in a
dense k-graph H is to find a small matching Ma in H such that, for each small subset
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1032 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

S ✓ V (H) \ V (Ma), H[V (Ma) [ S] has a large matching (e.g., an almost perfect
matching). Such a matching Ma is known as an absorbing matching, often found by
applying the second moment method. This approach was initiated by Rödl, Ruciński,
and Szemerédi [20].

Let Bi(n, p) be the binomial distribution with parameters n and p. The following
lemma on the Cherno↵ bound can be found in Alon and Spencer [2, page 313] (also
see [18]).

Lemma 3.1 (Cherno↵). Suppose X1, . . . , Xn are independent random variables
taking values in {0, 1}. Let X =

Pn
i=1 Xi and µ = E[X]. Then, for any 0 < �  1,

P[X � (1 + �)µ]  e��2µ/3 and P[X  (1� �)µ]  e��2µ/2.

In particular, when X ⇠ Bi(n, p) and � < 3
2np, then

P(|X � np| � �)  e�⌦(�2/np).

We will frequently use the following fact: For integers 0  l0 < l  k� 1 and any
k-graph H, if �l(H) � c

�n�l
k�l

�
for some 0  c  1, then �l0(H) � c

�n�l0

l�l0

��n�l
k�l

�
/
�k�l0

l�l0

�
�

c
�n�l0

k�l0

�
.

The main result of this section is the following lemma for absorbing matchings
in k-graphs with large l-degree for k/2 < l  k � 1. We are able to do this partly
due to the existence of positive integers a, h satisfying h  l, a  k � l, and al �
a(k� l)+ (k�h). (One can check that a = k� l and h = l satisfies this requirement.)
We use ↵ ⌧ � to mean that ↵ is su�ciently smaller than �.

Lemma 3.2. Let k, l be integers with k � 3 and k/2 < l  k � 1, and let c > 0
be a constant with c < 1/k!. Then there exist ⇢ > 0 and c0 > 0 with 0 < ⇢ ⌧ c0 ⌧ c,
such that the following holds for all su�ciently large integers n:

Let a, h be positive integers satisfying h  l, a  k� l, and al � a(k� l)+(k�h).
Let H be a k-graph on n vertices with �l(H) � c

�n�l
k�l

�
. Then there exists a matching

M in H such that
• |M |  2k⇢n and
• for any subset S ✓ V (H) with |S|  c0⇢n, H[V (M) [ S] has a matching
covering all but at most al + h� 1 vertices.

Proof. For R 2
�V (H)
al+h

�
and Q 2

�V (H)
ak

�
, we say that Q is R-absorbing if

⌫(H[Q [ R]) � a + 1 and Q is the vertex set of a matching in H. (In particular,
this requires al + h � k, which is guaranteed by assumption.) Let L(R) denote the
collection of all R-absorbing sets in H. We claim that

(1) there exists c0 = c0(c, k) > 0 such that |L(R)| � c0nak for every R 2
�V (H)
al+h

�
.

To prove (1), let R 2
�V (H)
al+h

�
. We wish to extend R to a matching of size a + 1 by

adding a set of size (a+1)k�(al+h) = a(k�l)+(k�h). Partition R into a+1 pairwise
disjoint subsets R1, . . . , Ra+1 with |Ra+1| = h and |Ri| = l for i 2 [a]. Next we choose
(k� l)-sets Ts for s 2 [a] and a (k�h)-set Ta+1 such that {Rs [Ts : s 2 [a+1]} form
a matching in H.

For j 2 [a], since dH(Rj) � �l(H) � c
�n�l
k�l

�
, we have, for large n,

���N(H�R)�
S

j�1

s=1
Ts

(Rj+1)
��� � c

✓
n� l

k � l

◆
�((al+h)+(k� l)j)

✓
(n� l)� 1

(k � l)� 1

◆
>

c

2

✓
n� l

k � l

◆
;
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thus, we have more than c
2

�n�l
k�l

�
choices for each Tj with j 2 [a]. Similarly, since

dH(Ra+1) � c
�n�h
k�h

�
as h  l, we have

��N(H�R)�
S

a

s=1
Ts
(Ra+1)

�� � c

✓
n� h

k � h

◆
�((al+h)+(k�l)a)

✓
(n� h)� 1

(k � h)� 1

◆
>

c

2

✓
n� h

k � h

◆
;

hence, we have more than c
2

�n�h
k�h

�
choices for Ta+1.

Fix an arbitrary choice of Ti 2 N(H�R)�
S

i�1

s=1
Ts
(Ri), i 2 [a+ 1], such that {Rs [

Ts : s 2 [a + 1]} form a matching in H. Let T =
Sa+1

i=1 Ti. Next, we form an R-
absorbing set Q by extending the set T to a matching of size a. We partition T into
subsets T 0

1, . . . , T
0
a such that 1  |T 0

i |  l for i 2 [a]. Such a partition exists since
|T | = a(k � l) + (k � h)  al. Similarly to the arguments in the previous paragraph,
we can show that there exists Pi 2 N(H�(R[T ))�

S
i�1

s=1
Ps
(T 0

i ) for i 2 [a], such that

���N(H�(R[T ))�
S

i�1

s=1
Ps
(T 0

i )
��� >

c

2

✓
n� |T 0

i |
k � |T 0

i |

◆
.

This means that there are more than c
2

�n�|T 0
i
|

k�|T 0
i
|
�
choices for each Pi with i 2 [a]. Let

Q = T [ (
Sa

i=1 Pi). Then Q is the vertex set of a matching of size a in H. Hence Q
is an R-absorbing set.

Note that each such ak-set Q can be produced at most (ak)! times by the above
process, and recall that

Pa
i=1 |T 0

i | = a(k� l) + (k� h). Hence, for large n (compared
with k), we have

|L(R)| > ((ak)!)�1

✓
c

2

✓
n� l

k � l

◆◆a✓ c

2

✓
n� h

k � h

◆◆ aY

i=1

✓
c

2

✓
n� |T 0

i |
k � |T 0

i |

◆◆

> (2(ak)!)�1
⇣ c
2

⌘2a+1
✓

na(k�l)

((k � l)!)a

◆✓
nk�h

(k � h)!

◆✓
nak�(a(k�l)+(k�h))

(ak � (a(k � l) + (k � h)))!

◆

> c0nak

by choosing c0 < (2(ak)!)�1 (c/2)2a+1 (((k � l)!)a(k � h)!(al + h� k)!)�1. This com-
pletes the proof of (1).

Choose ⇢ < c0/(2a2k2). We form a family F ✓
�V (H)

ak

�
by choosing each member

of
�V (H)

ak

�
independently at random with probability

p =
⇢n� n
ak

� .

Then
(2) with probability 1/2� o(1), all of the following hold:

(2a) |F|  2⇢n,
(2b) |L(R) \ F| � 2c0⇢n for all (al + h)-sets R, and
(2c) F contains less than c0⇢n intersecting pairs.

Clearly, E(|F|) = ⇢n and, by (1), E(|L(R) \ F|) > c0nakp > 4c0⇢n (as a � 1 and
k � 3). So by Lemma 3.1, with probability 1� o(1),

|F|  2⇢n,

and, for each fixed (al + h)-set R, with probability at least 1� e�⌦(⇢n), F satisfies

|L(R) \ F| � 2c0⇢n.
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1034 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

Hence given n su�ciently large, it follows from the union bound that, with probability
1� o(1), (2a) and (2b) hold.

Furthermore, the expected number of intersecting pairs in F is at most
✓
n

ak

◆✓
ak

1

◆✓
n� 1

ak � 1

◆
p2 = a2k2⇢2n < c0⇢n/2.

Thus, using Markov’s inequality, we derive that with probability at least 1/2, F
contains less than c0⇢n intersecting pairs of ak-sets. Hence, by the union bound, (2a),
(2b), (2c) hold with probability 1/2� o(1), completing the proof of (2).

Let F 0 denote the family obtained from F by deleting one ak-set from each
intersecting pair of sets in F and removing all ak-sets that are not the vertex set of a
matching in H. (Note that the latter are not in L(R) for any (al + h)-set R.) Then
F 0 consists of pairwise disjoint vertex sets of matchings of size a in H. Moreover, for
all (al + h)-sets R,

|L(R) \ F 0| � 2c0⇢n� c0⇢n � c0⇢n.

For each F 2 F 0, let MF be a matching in H with V (MF ) = F . Then M =S
F2F 0 MF is a perfect matching in H[V (F 0)], and |M |  a|F|  k|F|  2k⇢n. It

remains to show that M absorbes small sets.
Let S be an arbitrary subset of V (H) \ V (M) with |S|  c0⇢n. We use M to

absorb (al + h)-sets iteratively, starting with an arbitrary (al + h)-subset of S. Let
S0 := S and let R0 ✓ S0 with |R0| = al + h. Since |L(R0) \ F 0| � c0⇢n, we can find
Q0 2 F 0 such that H[R0 [ Q0] has a matching M0 with |M0| = a + 1. Let t � 0 be
the maximal integer such that there exist

• sets S0, . . . , St with |Si| � al + h for i 2 [t] [ {0},
• (al + h)-sets R0, . . . , Rt with Ri ✓ Si for i 2 [t] [ {0},
• pairwise disjoint sets Q0, . . . , Qt 2 F 0 with Qi being Ri-absorbing for i 2
[t] [ {0},

• and pairwise disjoint (a + 1)-matchings M0, . . . ,Mt, with Mi in H[Ri [ Qi]
for i 2 [t] [ {0},

satisfying the property that Si = (Si�1 [Qi�1) \ V (Mi�1) for i 2 [t]
Then |Si| = |Si�1|�k for i 2 [t]. Let St+1 = (St [Qt) \V (Mt). If |St+1| < al+h

then M is the desired matching. So assume |St+1| � al + h and let Rt+1 be an
(al+ h)-subset of St+1. Since |L(Rt+1)\F 0| � c0⇢n and t+1  |S|/k+1  c0⇢n� 1,
there exists Qt+1 2 F 0 \ {Q0, . . . , Qt} such that H[Rt+1 [Qt+1] has a matching Mt+1

with |Mt+1| = a+ 1. This contradicts the maximality of t.

4. Perfect fractional matchings. A fractional matching in a k-graph H is a
function w : E(H) ! [0, 1] such that for any v 2 V (H),

P
{e2E(H):v2e} w(e)  1.

A fractional matching is called perfect if
P

e2E(H) w(e) = |V (H)|/k. Any subset
I ✓ V (H) that contains no edge of H is called an independent set. We use ↵(H) to
denote the size of a largest independent set in the hypergraph H.

In this section, we show that for any reals 0 < ⇢ ⌧ ", if an n-vertex k-graph H
has ↵(H)  (1� 1/k� "/5)n and �l(H) >

�n�l
k�l

�
�
�n�l�m

k�l

�
� ⇢nk�l, then H admits a

perfect fractional matching. Note the term �⇢nk�l, since the result will be applied to
a hypergraph after removing an absorbing matching. (In section 5 (see Lemma 5.3)
we show that when ↵(H) > (1� 1/k � "/5)n and �l(H) >

�n�l
k�l

�
�
�n�l�m

k�l

�
� ⇢nk�l,

H is close to Hk�l
k (U,W ).)

We need to consider matchings in the “link” graph of an l-set in a k-graph, which
is a (k � l)-graph. This is related to the following well-known conjecture of Erdős [6]
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1035

on matchings in uniform hypegraphs: If F is a k-graph on n vertices and ⌫(F ) = s,
then e(F )  max{

�n
k

�
�
�n�s

k

�
,
�ks+1

k

�
}. Frankl [8] proved that if n � (2s + 1)k � s

then e(F ) 
�n
k

�
�
�n�s

k

�
with Hk

k (U,W ) (where |W | = s and |U | = n�s) as extremal
graphs. Very recently, Frankl and Kupavskii [9] further improved the lower bound to
n � (5k/3� 2/3)s for large s.

Ellis, Keller, and Lifshitz [7] recently proved the following stability version of
Frankl’s result, which we state as follows using our notation: For any s 2 N, ⌘ > 0, and
" > 0, there exists � = �(s, ⌘, ") > 0 such that the following holds. Let n, k 2 N with
k  ( 1

2s+1 � ⌘)n. Suppose H ✓
�[n]

k

�
with ⌫(H)  s and e(H) �

�n
k

�
�
�n�s

k

�
� �
�n�s
k�1

�
.

Then there exists W 2
�[n]

s

�
such that |E(H) \ E(Hk

k (U,W ))| < "
�n�s

k

�
.

The lower bound on e(H) in the above result of Ellis, Keller, and Lifshitz is too
large for our purpose. Using LP duality we only need to consider “stable” hypergraphs
and for such hypergraphs we can improve the bound on e(H) to

�n
k

�
�
�n�s

k

�
� ⇠nk.

For subsets e = {u1, . . . , uk}, f = {v1, . . . , vk} ✓ [n] with ui < ui+1 and vi < vi+1

for i 2 [k� 1], we write e  f if ui  vi for all i 2 [k]. A hypergraph H ✓
�[n]

k

�
is said

to be stable if, for e, f 2
�[n]

k

�
with e  f , f 2 E(H) implies e 2 E(H). Our proof of

a stability version of Frankl’s theorem for stable hypergraphs uses the same ideas as
in [8]. The following result from [8] is an extension of Katona’s intersection shadow
theorem [13].

Lemma 4.1. Let F ✓
�[n]

k

�
with ⌫(F) = s. Then s|@F| � |F|, where @F is the

shadow of F , defined by

@F :=

⇢
G 2

✓
[n]

k � 1

◆
: G ✓ F for some F 2 F

�
.

We can now state and prove the following stability version of Frankl’s result on
matchings for stable hypergraphs. Note that we allow k = 1.

Lemma 4.2. Let k be a positive integer, and let c and ⇠ be constants such that
0 < c < 1/(2k) and 0 < ⇠  (1 + 18(k � 1)!/c)�2. Let n,m be positive integers such
that n is su�ciently large and cn  m  n/(2k). Let H be a k-graph with vertex set
[n] such that H is stable and ⌫(H)  m. If e(H) >

�n
k

�
�
�n�m

k

�
� ⇠nk, then H isp

⇠-close to Hk
k ([n] \ [m], [m]).

Proof. Suppose e(H) >
�n
k

�
�
�n�m

k

�
� ⇠nk. When k = 1, each edge of H consists

of a single vertex. In this case, since e(H) > m � ⇠n � m �
p
⇠n and because H is

stable and e(H) = ⌫(H)  m, we have that H is
p
⇠-close to H1

1 ([n] \ [m], [m]).
Thus, we may assume k � 2. To show that H is close to Hk

k ([n] \ [m], [m]), we
bound e(H � [m]) (as edges in H � [m] are not in Hk

k ([n] \ [m], [m])). Since H is
stable, the vertex m+ 1 has the maximum degree in H � [m]. So

e(H � [m])  (n�m)

k
|{e 2 E(H � [m]) : m+ 1 2 e}|.

Hence, our objective is to bound the size of

F({m+ 1}) := {e 2 E(H � [m]) : m+ 1 2 e}.

Let

� =
2⇠(k � 1)!

c
.
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1036 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

First, we may assume that
(1) |F({m+ 1})| � 9k�nk�1.

For, suppose |F({m+ 1})| < 9k�nk�1, then

e(H � [m])  (n�m)

k
|F({m+ 1})| < 9�nk.

Thus

��E
�
Hk

k ([n] \ [m], [m])
�
\ E(H)

��

= e
�
Hk

k ([n] \ [m], [m])
�
�
�
e(H)� e(H � [m])

�

<

✓✓
n

k

◆
�
✓
n�m

k

◆◆
�
✓✓

n

k

◆
�
✓
n�m

k

◆
� ⇠nk � 9�nk

◆

= ⇠nk + 9 · 2⇠(k � 1)!

c
nk


p
⇠nk,

as ⇠  (1 + 18(k � 1)!/c)�2. That is, H is
p
⇠-close to Hk

k ([n] \ [m], [m]), and the
assertion of the lemma holds. So we may assume that (1) holds.

To proceed further, we extend the notation F({m + 1}) to all Q ✓ [m + 1] by
letting

F(Q) = {e 2 E(H) : e \ [m+ 1] = Q}.

Note that |F(Q)| 
�n�(m+1)

k�|Q|
�

=
�n�m�1

k�|Q|
�
. Also note that, since H is stable,

|F({m+ 1})| � |@F(;)|. So Lemma 4.1 gives

m|F({m+ 1})| � m|@F(;)| � |F(;)|.

We claim that
(2) (

Pm+1
i=1 |F({i})|) +m|F({m+ 1})| > m

�n�m
k�1

�
(1� �).

To prove (2), it su�ces to show |F(;)|+
Pm+1

i=1 |F({i})| > m
�n�m
k�1

�
(1� �). Note that

X

Q✓[m+1],|Q|�2

|F(Q)| 
kX

i=2

✓
m+ 1

i

◆✓
n� (m+ 1)

k � i

◆

and

✓
n

k

◆
=

✓
n� (m+ 1)

k

◆
+ (m+ 1)

✓
n� (m+ 1)

k � 1

◆
+

kX

i=2

✓
m+ 1

i

◆✓
n� (m+ 1)

k � i

◆

=

✓
n�m

k

◆
+m

✓
n� (m+ 1)

k � 1

◆
+

kX

i=2

✓
m+ 1

i

◆✓
n� (m+ 1)

k � i

◆
.
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1037

Thus,

|F(;)|+
m+1X

i=1

|F({i})|

= e(H)�
X

Q✓[m+1],|Q|�2

|F(Q)|

>

✓
n

k

◆
�
✓
n�m

k

◆
� ⇠nk �

kX

i=2

✓
m+ 1

i

◆✓
n� (m+ 1)

k � i

◆

= m

✓
n� (m+ 1)

k � 1

◆
� ⇠nk

> m

✓
n�m

k � 1

◆
(1� �) (since cn  m  n/(2k) and n large).

This proves (2).
Let t = d(2 + 1/k)me. Since n � 2km and m � cn (where n is su�ciently large),

n� (m+ 1) � 2km� (m+ 1) = (2 + 1/(k � 1))m(k � 1)� 1 > t(k � 1).

Let M = {f1, . . . , ft} be t pairwise disjoint (k � 1)-subsets of [n] \ [m + 1] chosen
uniformly at random. Let Fi := {e \ {i} : e 2 F({i})} for i 2 [m + 1]. Then
Fm+1 ✓ Fm ✓ · · · ✓ F1 (since H is stable) and, for each fixed pair i, j,

P(fj 2 Fi) =
|Fi|�n�(m+1)
k�1

� .

Let

xi =

(
1, fi 2 Fm+1,

0, fi 62 Fm+1,

and let p = P(xi = 1) (which is the same for all i 2 [t]). Now |Fm+1| = p
�n�(m+1)

k�1

�
.

So by (1), we have
(3) p > 9k�.
We claim that
(4) for 1  i < j  t, P(xixj = 1) 

�
1 + 1

4k

�
p2.

This is because

P(xixj = 1) = P(xj = 1|xi = 1)P(xi = 1)

 |Fm+1|�n�(m+1)�(k�1)
k�1

�
|Fm+1|�n�(m+1)

k�1

�

=

�n�(m+1)
k�1

�
�n�(m+1)�(k�1)

k�1

� · p2


✓
1 +

1

4k

◆
p2,

as n� (m+ 1) � (1� 1/(2k))n� 1 and n is large. This completes the proof of (4).
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Define a bipartite graph G with partition sets M and {F1, . . . ,Fm+1}, where
fj 2 M is adjacent to Fi if and only if fj 2 Fi. Note that a matching of size
m + 1 in G gives rise to a matching of size m + 1 in H. Thus, ⌫(G)  m. So by
a theorem of König, G has a vertex cover of size m, say T . Let x = |T \ M|, then
|T \ {F1, . . . ,Fm+1}| = m � x. Since Fm+1 ✓ Fm ✓ · · · ✓ F1, dG(fj) = m + 1
for fj 2 Fm+1; so fj 2 T for all fj 2 Fm+1. Hence 0  b  x  m, where
b := |M \ Fm+1| =

Pt
i=1 xi. So pt = E(b)  m  t/(2 + 1/k). This implies

(5) p  1/(2 + 1/k) < 1/2.
Moreover,

m+1X

i=1

|M \ Fi| = e(G)  t(m� x) + x((m+ 1)� (m� x)) = x2 � (t� 1)x+mt.

Thus, letting h(x, b) := x2 � (t� 1)x+mt+mb, we have

E(h(x, b)) � E
 
m|M \ Fm+1|+

m+1X

i=1

|M \ Fi|
!

= mt
|Fm+1|�n�(m+1)

k�1

� +
m+1X

i=1

t
|Fi|�n�(m+1)
k�1

�

=
t

�n�(m+1)
k�1

�

 
m|F({m+ 1})|+

m+1X

i=1

|F({i})|
!

> mt(1� �) (by (2)).

Next we obtain an upper bound on E(h(x, b)). Using the convexity of h(x, b)
(as a function of x over the interval [b,m]) and the fact that h(b, b) � h(m, b) =
(t� 1�m� b)(m� b) � 0, we have

h(x, b)  max{h(b, b), h(m, b)} = h(b, b) = b2 � (t� 1)b+mt+mb.

Thus,

E(h(x, b))  E(b2 � (t� 1)b+mt+mb)

= E

0

@
 

tX

i=1

xi

!2

� (t� 1�m)

 
tX

i=1

xi

!
+mt

1

A


✓
1 +

1

4k

◆
p2(t2 � t) + pt� (t� 1�m)pt+mt (by (4)).

Hence, combining the above bounds on E(h(x, b)), we have

✓
1 +

1

4k

◆
p2(t2 � t) + pt� (t� 1�m)pt+mt > mt(1� �).
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1039

Thus,

�mt > pt

✓
t�m�

✓
1 +

1

4k

◆
pt� 2 +

✓
1 +

1

4k

◆
p

◆

> pt

✓✓
1�

✓
1 +

1

4k

◆
p

◆
t�m� 2

◆

� pt

✓✓✓
1� 1

2

✓
1 +

1

4k

◆◆✓
2 +

1

k

◆
� 1

◆
m� 2

◆
(by (5) and the definition of t)

= pt

✓
2k � 1

8k2
m� 2

◆

> ptm/(9k) (since m � cn and n is large).

Thus, p < 9k�, contradicting (3). Hence H must be
p
⇠-close to Hk

k ([n]\ [m], [m]).

Remark. In the proof of Lemma 4.2 we require m  n/(2k) (e.g., when we define
t and M before (3)). We will see in section 6, we can replace it with n/2 � 1 when
k = 3 and l = 1.

For a hypergraph H, let

⌫⇤(H) = max

8
<

:
X

e2E(H)

w(e) : w is a fractional matching in H

9
=

; .

A fractional vertex cover of H is a function w : V (H) ! [0, 1] such that, for each
e 2 E,

P
v2e w(v) � 1 . Let

⌧⇤(H) = min

8
<

:
X

v2V (H)

w(v) : w is a fractional vertex cover of H

9
=

; .

Then the strong duality theorem of linear programming gives

⌫⇤(H) = ⌧⇤(H).

We conclude this section by proving the existence of a perfect fractional matching
in a uniform hypergraph whose independence number is not too large.

Lemma 4.3. Let k, l be integers with k � 3 and k/2  l < k, and let ", ⇠ be
positive reals with ⇠ < ("/5)2(3k)�4(k�l). Let n be a positive integer such that n is
su�ciently large and n 2 kZ. Let H be a k-graph of order n such that �l(H) >�n�l
k�l

�
�
�n�l�n/k

k�l

�
� ⇠nk�l and ↵(H)  (1� 1/k � "/5)n. Then H contains a perfect

fractional matching.

Proof. For convenience, let V (H) = [n]. Let ! be a minimum fractional vertex
cover of H and we may assume that !(1) � !(2) � · · · � !(n). Let E0 = {e 2

�[n]
k

�
:

e /2 E(H) and
P

i2e !(i) � 1} and let H 0 be obtained from H by adding the edges
in E0. Then H 0 is stable and ⌧⇤(H 0) = ⌧⇤(H). Thus ⌫⇤(H) = ⌫⇤(H 0) � ⌫(H 0), and
it su�ces to show that ⌫(H 0) = n/k, i.e., H 0 contains a perfect matching.

Let S = [n] \ [n� l], and let G be the hypergraph with V (G) = [n] and E(G) =
NH0(S), which is a (k � l)-graph on [n]. Since H 0 is stable, G is also stable. We may
assume that
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1040 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

(1) ⌫(G)  n/k � 1.

For, otherwise, let f1, . . . , fn/k be a matching in G. Now [n] \
⇣Sn/k

i=1 fi
⌘
is a set of

size (n/k)l and, hence, can be partitioned into l-sets, say S1, . . . , Sn/k. Since H 0 is
stable and S [ fi 2 E(H 0) for i 2 [n/k], we have Si [ fi 2 E(H 0) for i 2 [n/k]. Hence,
{Si [ fi : i 2 [n/k]} is a perfect matching in H 0. Hence, we may assume (1).

We may also assume that
(2) l  k � 2.

For, suppose l = k�1. Then G is a 1-graph. Since H 0 is stable and e(G) � �k�1(H) �
n/k � d⇠ne, the first n/k � d⇠ne vertices of G are edges of G.

Note that H 0� [n/k�d⇠ne] has n�n/k+ d⇠ne vertices. Since ↵(H)  (1�1/k�
"/5)n, H 0 � [n/k � d⇠ne] has an edge. In fact, since ⇠ < ("/5)2(3k)�4(k�l), we can
greedily find pairwise disjoint edges f1, . . . , fd⇠ne in H 0 � [n/k � d⇠ne]. Since

n� (n/k � d⇠ne)� d⇠nek = (k � 1)(n/k � d⇠ne),

we can partition [n]\([n/k�d⇠ne][
Sd⇠ne

i=1 fi) into (k�1)-sets S1, . . . , Sn/k�d⇠ne. Now
Si [ {i}, i 2 [n/k � d⇠ne], form a matching in H 0. These edges and {f1, . . . , fd⇠ne}
form a perfect matching in H 0. So we may assume (2).

Let ⌘ = "/(5k) and let t = n/k � b⌘nc. For i 2 [n], we use dG(i) to denote the
degree of i in G. We claim that

(3) dG(t) >
� n�1
k�l�1

�
�
�n/(2k)
k�l�1

�
.

For suppose dG(t) 
� n�1
k�l�1

�
�
�n/(2k)
k�l�1

�
. Since H 0 is stable, dG(i) 

� n�1
k�l�1

�
�
�n/(2k)
k�l�1

�

for t  i  n/k. Note that the degree of t in Hk�l
k�l ([n] \ [n/k], [n/k]) is

� n�1
k�l�1

�
. Thus,

��E
�
Hk�l

k�l ([n] \ [n/k], [n/k])
�
\ E(G)

��

� 1

k � l

0

@
n/kX

i=t

⇣
dHk�l

k�l
([n]\[n/k],[n/k])(i)� dG(i)

⌘
1

A

� 1

k � l
(n/k � t+ 1)

✓
n/(2k)

k � l � 1

◆

>
1

k � l
⌘n(3k)�(k�l�1)

✓
n

k � l � 1

◆

>
p

⇠nk�l,

as ⇠ < ("/5)2(3k)�4(k�l).
Hence G is not

p
⇠-close to Hk�l

k�l ([n] \ [n/k], [n/k]). However, since G is stable
and n/k  n/(2(k � l)) (as l � k/2), we may apply Lemma 4.2 with n/k, k � l, ⇠ as
m, k, ⇠, respectively. So ⌫(G) � n/k, contradicting (1) and completing the proof of
(3).

Note that H 0 � [t] has n� n/k + b⌘nc vertices. Since ↵(H)  (1� 1/k � "/5)n,
H 0 � [t] has an edge. In fact, since "n = 5k⌘n, H 0 � [t] has b⌘nc pairwise disjoint

edges, say f1, . . . fb⌘nc. Let T =
Sb⌘nc

i=1 fi.
Next we find disjoint edges e1, . . . , et of G such that |ei \ [t]| = 1 and ei \ T = ;

for all i 2 [t]. Suppose for some s 2 [t � 1] we have found pairwise disjoint edges
e1, . . . , es of G such that, for i 2 [s], ei \ [t] = {i} and ei \ T = ;. The number of
edges of G containing s+ 1 and intersecting T [ ([t] \ {s+ 1}) [ (

Ss
i=1 ei) is at most� n�1

k�l�1

�
�
�n�|T |�t�(k�l)s

k�l�1

�
. Note that n � |T | � t � (k � l)s � n/(2k), as l � k/2.

Hence, by (3), there exists es+1 2 E(G) such that es+1 \ [t] = {s+ 1}, es+1 \ T = ;,
and es+1 is disjoint from

Ss
i=1 ei.
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1041

Since t = n/k � b⌘nc, (H 0 � T )�
St

i=1 ei has exactly tl vertices (as |ei \ [t]| = 1

for i 2 [t]). Partition the vertices in (H � T ) �
St

i=1 ei into pairwise disjoint l-sets
S1, . . . , St. Then, since H 0 is stable, Si [ ei 2 E(H 0) for i 2 [t]. Hence, {fi : i 2
[b⌘nc]} [ {Sj [ ej : j 2 [t]} is a perfect matching in H 0.

Remark. When we apply Lemma 4.2 in the end of the proof of (3), we require
l � k/2 so that n/k  n(2(k�l)) (which amounts to m  n/(2k) in Lemma 4.2). This
is not necessary when k = 3 and l = 1, as we can use Lemma 6.3 (see section 6) which
is the same as Lemma 4.2 except with m  n/(2k) = n/4 replaced by m  n/2� 1.

5. Almost perfect matchings. To complete the proof of Theorem 1.1, we need
to consider n-vertex k-graphs H that are not close to Hk�l

k (U,W ) for any partition of
V (H) into U,W with |W | = m. We first use the absorbing lemma in section 3 to find
a small matching Ma in H such that for any small subset S ✓ V (H), H[V (Ma) [ S]
has a nearly perfect matching. We then find an almost perfect matching in H�V (Ma)
(see Lemma 5.7), and use Ma to absorb the unmatched vertices. To find this almost
perfect matching in H � V (Ma), we will find an almost regular subgraph of H with
bounded maximum 2-degree, so that the following result of Frankl and Rödl [10] can
be applied. For any positive integer l, we use �l(H) to denote the maximum l-degree
of H.

Lemma 5.1 (Frankl and Rödl, 1985). For every integer k � 2 and any real
" > 0, there exist ⌧ = ⌧(k, ") and d0 = d0(k, ") such that, for every n � D � d0 the
following holds: Every k-graph on n vertices with (1� ⌧)D < dH(v) < (1 + ⌧)D and
�2(H) < ⌧D contains a matching covering all but at most "n vertices.

In order to find a subgraph in a k-graph satisfying conditions in Lemma 5.1, we
use the two-round randomization technique in [1]. The only di↵erence is that in the
first round, we also need to bound the independence number of the subgraph (in or-
der to deal with hypergraphs not close to Hk�l

k (U,W )). Here we use the hypergraph
container result of Balogh, Morris, and Samoti [3]. (A similar result is proved inde-
pendently by Saxton and Thomason [22].) To state that result, we need additional
terminology.

A family F of subsets of a set V is said to be increasing if, for any A 2 F and
B ✓ V , A ✓ B implies B 2 F . Let H be a hypergraph. We use v(H) and e(H)
to denote the number of vertices and number of edges of H, respectively. Let I(H)
denote the set of all independent sets in H. Let " > 0, and let F be a family of
subsets of V (H). We say that H is (F , ")-dense if e(H[A]) � "e(H) for every A 2 F .
We use F to denote the family consisting of subsets of V (H) not in F .

Lemma 5.2 (Balogh, Morris, and Samotij, 2015). For every k 2 N and all
positive c and ", there exists a positive constant C such that the following holds.
Let H be a k-graph and let F be an increasing family of subsets of V (H) such that
|A| � "v(H) for all A 2 F . Suppose that H is (F , ")-dense and p 2 (0, 1) is such
that, for every l 2 [k],

�l(H)  cpl�1 e(H)

v(H)
.

Then there exist a family S ✓
� V (H)
Cpv(H)

�
and functions f : S ! F and g : I(H) ! S

such that, for every I 2 I(H),

g(I) ✓ I and I \ g(I) ✓ f(g(I)).
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1042 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

The next lemma says that, if an n-vertex k-graph H is not "-close to Hk�l
k (U,W )

and �l(H) �
�n�l
k�l

�
�
�n�l�m

k�l

�
� ⇢0nk�l then H is (F , "0)-dense.

Lemma 5.3. Let k, l be integers with k � 2 and l 2 [k � 1]. Let 0 < " ⌧ 1,
⇢0  "/8, and 0 < µ  "/40. Let m,n be su�ciently large integers such that
n/k � µn  m  n/k. Suppose H is a k-graph with order n such that �l(H) >�n�l
k�l

�
�
�n�l�m

k�l

�
� ⇢0nk�l, and H is not "-close to Hk�l

k (U,W ) for any partition of
V (H) into U,W with |W | = m. Then H is (F , "/(2k!))-dense, where F = {A ✓
V (H) : |A| � (1� 1/k � "/4)n}.

Proof. Suppose to the contrary that there exists A ✓ V (H) such that |A| �
(1 � 1/k � "/4)n and e(H[A])  "e(H)/(2k!). By removing vertices if necessary, we
may choose A such that |V (H) \A| � m (as m  n/k). Let W ✓ V (H) \A such that
|W | = m. For convenience, let B = V (H) \ (W [A). Then

|B|  n�m� (1� 1/k � "/4)n  "n/4 + n/k � (1/k � µ)n  11"n/40.

Let U = V (H) \ W and H0 = Hk�l
k (U,W ). We derive a contradiction by showing

that |E(H0) \ E(H)| < "nk.
Note that, for each f 2 E(H0) \E(H), we have 1  |f \W |  k� l (by definition

of H0), so |f \B| > 0 or |f \A| � l. Thus

|E(H0) \ E(H)|  |{f 2 E(H0) : |f \B| > 0}|+ |{f 2 E(H0) \ E(H) : |f \A| � l}|.

It is easy to see that

|{f 2 E(H0) : |f \B| > 0}|  |B||W |nk�2  (11"n/40)(n/k)nk�2 =
11"

40k
nk.

Next, we bound |{f 2 E(H0)\E(H) : |f \A| � l}|. Fix an arbitrary l-set S ✓ A.
Note that

|{f 2 E(H) : S ✓ f and f \B 6= ;}|  |B|nk�l�1  11"

40
nk�l.

For any f 2 E(H) and S ✓ f , we have f \B 6= ;, or f ✓ A, or f 2 E(H0). So

|{f 2 E(H) : S ✓ f and f 2 E(H0)|
� dH(S)� |{f 2 E(H) : S ✓ f and f \B 6= ;}|� |{f 2 E(H) : S ✓ f and f ✓ A}|

� dH(S)� 11"

40
nk�l � dH[A](S).

Hence,

|{f 2 E(H0) \ E(H) : |f \A| � l}|

X

S2(Al )

|{f 2 E(H0) \ E(H) : S ✓ f}|


X

S2(Al )

(dH0
(S)� |{f 2 E(H) : f 2 E(H0) and S ✓ f}|)


X

S2(Al )

✓
dH0

(S)� dH(S) +
11"

40
nk�l + dH[A](S)

◆
.
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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS 1043

Note that for S 2
�A
l

�
, dH0

(S) =
�n�l
k�l

�
�
�n�l�m

k�l

�
, so dH0

(S) � dH(S) < ⇢0nk�l by
the assumption on �l(H). Hence,

|E(H0) \ E(H)| < 11"

40k
nk +

✓
|A|
l

◆✓
⇢0 +

11"

40

◆
nk�l +

X

S2(Al )

dH[A](S)


✓
11"

40k
+ ⇢0 +

11"

40

◆
nk +

✓
k

l

◆
e(H[A])


✓

11

120
+

1

8
+

11

40

◆
"nk +

✓
k

l

◆
"nk

2k!
(since k � 3 and ⇢0  "/8)

< "nk,

a contradiction.

We now use Lemma 5.2 to show that one can control, with high probability, the
independence number of a subgraph of a k-graph induced by a random subset of
vertices.

Lemma 5.4. Let c, "0,↵ be positive reals and let k, n be positive integers. Let H
be an n-vertex k-graph such that e(H) � cnk and e(H[S]) � "0e(H) for all S ✓ V (H)
with |S| � ↵n. Let R ✓ V (H) be obtained by taking each vertex of H independently
and uniformly at random with probability n�0.9. Then, for any positive � ⌧ ↵, the
independence number of H[R] is at most (↵ + � + o(1))n0.1 with probability at least

1� nO(1)e�⌦(n0.1).

Proof. Define F := {A ✓ V (H) : e(H[A]) � "0e(H) and |A| � "0n}. Then F is
an increasing family, and H is (F , "0)-dense. Let p = n�1 and v(H) = n. Then

�l(H) 
✓

n

k � l

◆
 nk�l  c�1n�le(H) = c�1pl�1 e(H)

v(H)
.

Thus by Lemma 5.2, there exist a constant C (depending only on "0 and c), a family
S ✓

�V (H)
C

�
, a function f : S ! F , and a family T := {F [ S : F 2 f(S), S 2 S},

such that every independent set in H is contained in some T 2 T . Since S ✓
�V (H)

C

�
,

|S|  CnC , and, hence,

|T | = |S||f(S)|  |S|2  C2n2C .

We claim that |T | < ↵n + C for all T 2 T . To see this, let T = F [ S for some
F 2 f(S) and S 2 S. By definition, F 2 F and, hence, e(H[F ]) < "0e(H). Since
e(H[S]) � "0e(H) for any S ✓ V (H) with |S| � ↵n, we have |F | < ↵n. Therefore,
|T |  |F |+ |S| < ↵n+ C.

We wish to apply Lemma 3.1 and, hence, we need to make sets in T slightly
larger. Take an arbitrary map h : T !

� V (H)
b↵n+Cc

�
such that T ✓ h(T ) for all T 2 T ,

and let T 0 = h(T ). Then

|T 0|  |T |  |S|2  C2n2C .

Note that for each fixed T 0 2 T 0, we have |R\T 0| ⇠ Bi
�
|T 0|, n�0.9

�
and E(|R\T 0|) =

n�0.9|T 0| = b↵n + Ccn�0.9. We apply Lemma 3.1 to |R \ T 0| by taking � = �n0.1,
where � is fixed and � ⌧ ↵. Then

P
���|R \ T 0|� n�0.9|T 0|

�� � �
�
 e�⌦(�2/(n�0.9|T 0|)) = e�⌦(n0.1).
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1044 HONGLIANG LU, XINGXING YU, AND XIAOFAN YUAN

So with probability at most e�⌦(n0.1), we have |R \ T 0| � n�0.9|T 0| + �. Hence,

|R \ T 0| � (↵+ � + C/n)n0.1 with probability at most e�⌦(n0.1).

Therefore, with probability at most C2n2Ce�⌦(n0.1) (from the union bound), there
exists some T 0 2 T 0 such that |R \ T 0| � (↵+ � + C/n)n0.1. Hence, with probability

at least 1� C2n2Ce�⌦(n0.1), |R \ T 0| < (↵+ � + C/n)n0.1 for all T 0 2 T 0.
It remains to show that, conditioning on |R \ T 0| < (↵ + � + C/n)n0.1 for all

T 0 2 T 0, |J |  (↵+�+C/n)n0.1 for every independent set J in H[R]. Since such J is
also an independent set in H, there exist T 2 T and T 0 2 T 0 such that J ✓ T ✓ T 0.
Thus J ✓ R \ T 0 and |J |  |R \ T 0| < (↵+ � + C/n)n0.1.

Thus ↵(H[R])  (↵+�+C/n)n0.1 with probability at least 1�C2n2Ce�⌦(n0.1).

The following result is the outcome of the first round of the two-round random-
ization procedure in [1]. We summarize this round as a lemma (see the proof of Claim
4.1 in [1]) and outline a proof, since we need to make some small adjustments. Here
we adopt the notation in [1].

Lemma 5.5. Let k > d > 0 be integers with k � 3 and let H be a k-graph on n
vertices. Let R be chosen from V (H) by taking each vertex uniformly at random with
probability n�0.9 and then arbitrarily deleting less than k vertices so that |R| 2 kZ.
Take n1.1 independent copies of R and denote them by Ri, 1  i  n1.1. For each

S ✓ V (H) with |S|  k, let YS := |{i : S ✓ Ri}| and DEGi
S := |NH(S) \

� Ri

k�|S|
�
|.

Then with probability at least 1� o(1), all of the following statements hold:
(i) For every v 2 V (H), Y{v} = (1 + o(1))n0.2.
(ii) Y{u,v}  2 for every pair {u, v} ✓ V (H).
(iii) Ye  1 for every edge e 2 E(H).
(iv) For all i = 1, . . . , n1.1, we have |Ri| = (1 + o(1))n0.1.
(v) If µ, ⇢0 are constants with 0 < µ ⌧ ⇢0, n/k � µn  m  n/k. �d(H) ��n�d

k�d

�
�
�n�d�m

k�d

�
�⇢0nk�l, then for all i = 1, . . . , n1.1 and all D 2

�V (H)
d

�
and

for any positive real ⇠ � 2⇢0, we have

DEGi
D >

✓
|Ri|� d

k � d

◆
�
✓
|Ri|� d� |Ri|/k

k � d

◆
� ⇠|Ri|k�d.

Proof. Note that the removal of less than k vertices from each Ri does not a↵ect
(i)–(iv). Also note that |YS | ⇠ Bi(n1.1, n�0.9|S|) for S ✓ V (H).

Thus, E(|Y{v}|) = n0.2 for v 2 V (H), and it follows from Lemma 3.1 that

P
���Y{v} � n0.2

�� > n0.15
�
 e�⌦(n0.1).

Hence (i) holds with probability at least 1� e�⌦(n0.1).
To prove (ii), let

Z2 =

����

⇢
{u, v} 2

✓
V (H)

2

◆
: Y{u,v} � 3

� ����,

and for k � 3, let

Zk =

����

⇢
S 2

✓
V (H)

k

◆
: YS � 2

� ����.

Then E(Z2) < n2(n1.1)3(n�0.9)6 = n�0.1 and E(Zk) < nk(n1.1)2(n�0.9)2k = n2.2�0.8k 
n�0.2 (for k � 3). By Markov’s inequality,

P(Z2 = 0) > 1� n�0.1 and, for k � 3, P(Zk = 0) > 1� n�0.2.

Thus (ii) and (iii) hold with probability at least 1�n�0.1 and 1�n�0.2, respectively.
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By Lemma 3.1 (with � = n0.095), we have

P
���|Ri|� n0.1

�� � n0.095
�
 e�⌦(n0.09)

for each i. Thus by the union bound, (iv) holds with probability at least 1 �
n1.1e�⌦(n0.09).

Next, we prove (v). Conditioning on
��|Ri|� n0.1

�� < n0.095 for all i and using the
assumption that 0 < µ ⌧ ⇢0, n/k � µn  m  n/k and n is large, we have

✓✓
n� d

k � d

◆
�
✓
n� d�m

k � d

◆
� ⇢0nk�d

◆
(n�0.9)k�d

�
✓
|Ri|� d

k � d

◆
�
✓
|Ri|� d� |Ri|/k

k � d

◆
� 1.5⇢0|Ri|k�d.

So for each D 2
�V (H)

d

�
and each fixed Ri,

E(DEGi
D) = (1� o(1))dH(D)(n�0.9)k�d

� (1� o(1))

✓✓
n� d

k � d

◆
�
✓
n� d�m

k � d

◆
� ⇢0nk�d

◆
(n�0.9)k�d

� (1� o(1))

✓✓
|Ri|� d

k � d

◆
�
✓
|Ri|� d� |Ri|/k

k � d

◆
� 1.5⇢0|Ri|k�d

◆

�
✓
|Ri|� d

k � d

◆
�
✓
|Ri|� d� |Ri|/k

k � d

◆
� 1.8⇢0|Ri|k�d.

In particular,
E(DEGi

D) = ⌦(n0.1(k�d)).

We apply Janson’s inequality (Theorem 8.7.2 in [2]) to bound the deviation of
DEGi

D. Write DEGi
D =

P
e2NH(D) Xe, where Xe = 1 if e ✓ Ri and Xe = 0 otherwise.

Then

� =
X

e\f 6=;

P(Xe = Xf = 1) 
k�d�1X

l=1

p2(k�d)�l

✓
n� d

k � d

◆✓
k � d

l

◆✓
n� k

k � d� l

◆

and, thus, � = O(n0.1(2(k�d)�1)). By Janson’s inequality, for any � > 0,

P(DEGi
D  (1� �)E(DEGi

D))  e��2E(DEGi

D
)/(2+�/E(DEGi

D
)) = e�⌦(n0.1).

Since ⇠ � 2⇢0, by taking � small, the union bound shows that, with probability at
least 1� nd+1.1e�⌦(n0.1),

DEGi
D �

✓
|Ri|� d

k � d

◆
�
✓
|Ri|� d� |Ri|/k

k � d

◆
� ⇠|Ri|k�d.

Thus, (v) holds with probability at least

(1� n1.1e�⌦(n0.09))(1� nd+1.1e�⌦(n0.1)) > 1� n1.1e�⌦(n0.09) � nd+1.1e�⌦(n0.1).

Hence, it follows from the union bound that, with probability at least

1�e�⌦(n0.1)�n�0.1�n�0.2�n1.1e�⌦(n0.09)�n1.1e�⌦(n0.09)�nd+1.1e�⌦(n0.1) = 1�o(1),

(i)–(v) hold.
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We summarize the second round randomization in [1] as the following lemma
(again, see the proof of Claim 4.1 in [1]).

Lemma 5.6. Assume Ri, i = 1, . . . , n1.1, satisfy (i)–(v) in Lemma 5.5, and that
each Ri has a perfect fractional matching wi. Then there exists a spanning subgraph
H 00 of H such that dH00(v) = (1 + o(1))n0.2 for each v 2 V , and �2(H 00)  n0.1.

We are now ready to show that for any H satisfying the conditions of Theorem 1.1
and not "-close to Hk�l

k (U,W ), H � V (Ma) has an almost perfect matching, where
Ma is an absorbing matching from Lemma 3.2.

Lemma 5.7. Let k, l be integers with k � 3 and k/2  l  k � 1. Let ⇢0, ",�, µ be
positive reals with ⇢0 < "2(3k)�4(k�l)/100 and µ  "/40. Let n,m be su�ciently large
integers such that n/k � µn  m  n/k. Suppose H is a k-graph on n vertices such
that �l(H) �

�n�l
k�l

�
�
�n�l�m

k�l

�
� ⇢0nk�l, and H is not "-close to Hk�l

k (U,W ) for any
partition of V (H) into U,W with |W | = m. Then H contains a matching covering
all but at most �n vertices.

Proof. By Lemma 5.3, e(H[S]) � ("/(2k!))e(H) for all S ✓ V (H) with |S| � ↵n,
where ↵ = 1� 1/k � "/4. Note that

e(H) = �0(H) �
✓
n

l

◆
�l(H)/

✓
k

l

◆
� cnk,

where c > 0 is a constant and c ⌧ 1/
�k
l

�
.

Let R,Ri be given as in Lemma 5.5. Then it follows from Lemma 5.4 that, with
probability 1 � o(1), we have ↵(H[Ri])  (↵ + � + o(1))n0.1 for all i, where � ⌧ ↵.

Additionally, by (v) of Lemma 5.5, �d(H[Ri]) >
�|Ri|�d

k�d

�
�
�|Ri|�d�|Ri|/k

k�d

�
� ⇠|Ri|(k�d)

for any ⇠ � 2⇢0. Thus by Lemma 4.3, with probability 1� o(1), for each i, H[Ri] has
a perfect fractional matching.

Hence by Lemma 5.6, H has a spanning subgraph H 00 such that dH00(v) =
(1+ o(1))n0.2 for each v 2 V , and �2(H 00)  n0.1. Thus we may apply Lemma 5.1 to
find a matching covering all but at most �n vertices in H 00 for su�ciently large n.

6. Conclusion. In this section, we complete the proof of Theorem 1.1 and dis-
cuss some related work.

Proof of Theorem 1.1. By Lemmas 2.1 and 2.3, we may assume that for any 0 <
" < (8k�1k5(k�1)k!)�3, H is not "-close to Hk�l

k (U,W ) for any partition of V (H) into
U,W with |W | = m.

By Lemma 3.2, there exist constants c0 = c0(k, l) and ⇢ = ⇢(c0, k, l, ") small
enough, satisfying the following property: For positive integers a, h satisfying h  l,
a  k�l, and al � a(k�l)+(k�h), there exists a matchingMa such that |Ma|  2k⇢n
and, for any subset S ✓ V (H) with |S|  c0⇢n, H[V (Ma)[S] has a matching covering
all but at most al + h� 1 vertices.

Now consider H1 = H � V (Ma). Then �l(H1) � �l(H) � (2k2⇢n)nk�l�1. Let
⇢1 = 4k2⇢ and n1 = n� k|Ma|. Then, since n is large enough and ⇢ ⌧ ",

�l(H1) �
✓
n1 � l

k � l

◆
�
✓
n1 � l �m

k � l

◆
� ⇢1n

k�l
1

and H1 is not ("/2)-close to Hk�l
k (U,W ) for any partition of V (H1) into U,W with

|W | = m.
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By Lemma 5.7, H1 has a matching M1 such that |V (H1)\V (M1)| < c0⇢n1  c0⇢n.
Then there exists a matching M2 in H2 := H[V (Ma) [ (V (H1) \ V (M1))] such that
|V (H2)\V (M2)|  al + h� 1.

Now M1 [M2 is a matching in H covering all but at most al + h� 1 vertices of
H. By taking a = d(k� l)/(2l�k)e and h = k�a(2l�k), which minimizes al+h�1,
we see M1 [M2 is a matching in H of size n/k � 1� (1� l/k)d(k � l)/(2l � k)e.

There are two places in the proof of Theorem 1.1 where we require l > k/2:
Lemma 3.2 for absorbing matching and Lemma 4.3 for perfect fractional matchings.
We do not know how to derive such results for l  k/2. However, for k = 3 and l = 1,
the absorbing part can be taken care of by the following result of Hàn, Person, and
Schacht [12].

Lemma 6.1 (Hàn, Person, and Schacht, 2009). Given any � > 0, there exists
an integer n0 = n0(�) such that the following holds. Suppose that H is a 3-graph on
n � n0 vertices such that �1(H) � (1/2 + 2�)

�n
2

�
. Then there is a matching M in H

of size |M |  �3n/3 such that for every subset V 0 ✓ V (H)\V (M) with |V 0| 2 3Z and
|V 0|  �6n, there is a matching in H covering precisely the vertices in V 0 [ V (M).

For the perfect fractional matching part, we need a result of Berge [4] on maximum
matchings. For a graph G, we use co(G) to denote the number of odd components in
G.

Lemma 6.2 (Berge, 1958). Let G be a graph on n vertices. Then

⌫(G) = min {(n� co(G�W ) + |W |) /2 : W ✓ V (G)} .

Lemma 6.3. Let c, ⇢ be constant with 0 < ⇢ ⌧ 1 and 0 < c < 1/2, and let m,n be
positive integers with n su�ciently large and cn  m  n/2� 1. Let G be a 2-graph
with V (G) = [n] such that ⌫(G)  m and G is stable with respect to the natural order
on [n]. If e(G) >

�n
2

�
�
�n�m

2

�
� ⇢n2, then G is 2

p
⇢-close to H2

2 ([n] \ [m], [m]).

Proof. Since G is stable, we have
(1) NG(i) \ {j} ✓ NG(j) \ {i} for any i, j 2 [n] with i > j.
By Lemma 6.2, there exists W ✓ V (G) such that

⌫(G) = (n� co(G�W ) + |W |) /2.

We choose the maximal such W , and let C1, . . . , Cq denote the components of G�W .
Without loss of generality, assume |V (C1)| � · · · � |V (Cq)|, and let ci := |V (Ci)| for
i 2 [q]. Then

(2) q = co(G�W ), i.e., ci is odd for all i 2 [q].
For, otherwise, suppose that ci is even for some i 2 [q]. Let x 2 V (Ci) and W 0 :=
W [{x}. Then co(G�W 0) � co(G�W )+1. This forces (n� co(G�W ) + |W |) /2 =
(n� co(G�W 0) + |W 0|) /2, as ⌫(G) = (n� co(G�W ) + |W |) /2. But then, W 0

contradicts the choice of W , completing the proof of (2).
Next, we claim that
(3) ci = 1 for i = 2, . . . , q.

For, suppose c2 � 2. Then c1 � c2 � 2, so there exist a1b1 2 E(C1) and a2b2 2 E(C2).
If a1 > a2 then a1b2 2 E(G) by (1), and if a1 < a2 then b1a2 2 E(G) by (1). So there
is an edge between C1 and C2, contradicting the fact that C1 and C2 are di↵erent
components of G�W . This completes the proof of (3).
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By (3), we have

m � ⌫(G) = (n� (co(G�W )� |W |)) /2
= ((c1 + |W |+ q � 1)� (q � |W |)) /2
= (c1 � 1)/2 + |W |.

Thus, |W |  m� (c1 � 1)/2. Hence,

e(G) 
✓
n

2

◆
�
✓
n� |W |

2

◆
+

✓
c1
2

◆

✓
n

2

◆
�
✓
n�m+ (c1 � 1)/2

2

◆
+

✓
c1
2

◆
.

Since e(G) >
�n
2

�
�
�n�m

2

�
� ⇢n2, we have

✓
n�m

2

◆
+ ⇢n2 >

✓
n�m+ (c1 � 1)/2

2

◆
�
✓
c1
2

◆

=

✓
n�m

2

◆
+

1

8
(c1 � 1)2 +

1

4
(c1 � 1)(2n� 2m� 1)�

✓
c1
2

◆
,

which gives

�3

8
(c1 � 1)2 +

1

4
(c1 � 1)(2n� 2m� 3) < ⇢n2.

Hence, c1 <
p
⇢n, since ⇢ ⌧ 1 and m  n/2� 1.

Note that every edge of G intersects W [ V (C1). So by (1), every edge of G
intersects [|W |+c1] ✓ [m+(c1+1)/2] ✓ [m+

p
⇢n/2]. Since e(G) >

�n
2

�
�
�n�m

2

�
�⇢n2,

we have

|E(H2
2 ([n] \ [m], [m]))\E(G)|  2

p
⇢n2.

This completes the proof of the lemma.

Thus, using Lemma 6.3 instead of Lemma 4.2 in the end of the proof of (3) for
Lemma 4.3, we see that Lemma 4.3 holds in the case when k = 3 and l = 1. Thus, our
approach (using Lemma 6.1 instead of Lemma 3.2) gives an alternative proof of the
following result of Kühn, Osthus, and Treglown [17] (and independently by Khan [14])
on perfect matchings in 3-graphs.

Theorem 6.4 (Kühn, Osthus, and Treglown, 2013; Khan, 2013). There exists
n0 2 N such that if H is a 3-graph of order n � n0, m  n/3, and �1(H) >

�n�1
2

�
��n�m

2

�
, then ⌫(H) � m.

For the general case, Hàn, Person, and Schacht [12] and, independently, Kühn,
Osthus, and Treglown [17] conjectured that the asymptotic l-degree threshold for a
perfect matching in a k-graph with n vertices is

 
max

(
1

2
, 1�

✓
1� 1

k

◆k�l
)

+ o(1)

!✓
n� l

k � l

◆
.

The first term (1/2 + o(1))
�n�l
k�l

�
comes from a parity construction: Take disjoint

nonempty sets A and B with ||A| � |B||  2, form a hypergraph H by taking all
k-subsets f of A [ B with |f \ A| 6⌘ |A| (mod 2). The second term is given by the
hypergraph obtained from Kk

n (the complete k-graph on n vertices) by deleting all
edges from a subgraph Kk

n�n/k+1.
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