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NEARLY PERFECT MATCHINGS IN UNIFORM HYPERGRAPHS*
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Abstract. We prove that, for any integers k,l with k > 3 and k/2 < | < k — 1, there exists a
positive real p such that, for all sufficiently large integers m,n satisfying ¥ —pun <m < 2 — 1 —
1- %) {%-‘ , if H is a k-uniform hypergraph on n vertices and 6;(H) > (Z:f) — ((";Q;m), then
H has a matching of size m 4+ 1. This improves upon an earlier result of Han, Person, and Schacht
for the range k/2 < | < k — 1. In many cases, our result gives a tight bound on §;(H) for near
perfect matchings (e.g., when | > 2k/3, n = r (mod k), 0 < r < k, and r + 1 > k, we can take
m = [n/k] —2). When k = 3, using an absorbing lemma of Han, Person, and Schacht, our proof also
implies a result of Kiihn, Osthus, and Treglown (and, independently, of Khan) on perfect matchings
in 3-uniform hypergraphs.
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1. Introduction. A hypergraph H consists of a vertex set V(H) and an edge set
E(H) whose members are subsets of V(H). For a positive integer k, a hypergraph H
is k-uniform if E(H) C (V(kH)), and a k-uniform hypergraph is also called a k-graph.
Let H be a hypergraph. For S C V(H), we use H — S to denote the hypergraph
obtained from H by deleting S and all edges of H with a vertex in S, and we use
H([S] to denote the hypergraph with vertex set S and edge set {e € E(H) : e C S}.
For S C R C V(H), let Ny_r(S) ={T CV(H)\R: SUT € E(H)}, and let
Ny (S) := Ny_s(S). For any positive integer n, let [n] := {1,...,n}.

Let H be a hypergraph. A matching in H is a set of pairwise disjoint edges of H.
(If M is a matching in H, we write V(M) := |J.c,, e.) The size of a largest matching
in H is denoted by v(H), known as the matching number of H. A matching in H is
perfect if it covers all vertices of H. A matching is nearly perfect in H if it covers all
but a constant number of vertices. Moreover, a matching in a k-graph is near perfect
if it covers all but at most k vertices.

We are interested in degree conditions for the existence of a nearly perfect match-
ing in a hypergraph. Let H be a hypergraph. For any T C V(H), we use dg(T)
to denote the degree of T' in H, i.e., the number of edges of H containing T'. Let [
be a nonnegative integer. Then §;(H) := min{dy(T) : T € (V(IH))} is the minimum
I-degree of H. Note that do(H) is the number of edges in H, and §; (H) is often called
the minimum verter degree of H. When H is a k-graph for some positive integer k,
0k—1(H) is known as the minimum codegree of H.
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Bollobds, Daykin, and Erdés [5] considered minimum vertex degree conditions for
matchings in k-graphs. They proved that if H is a k-graph of order n > 2k?(m + 2)
and 61(H) > (}~7) — ("_") then v(H) > m. For 3-graphs, Kiihn, Osthus, and
Treglown [17] and, independently, Khan [14] proved the following stronger result:
There exists ng € N such that if H is a 3-graph of order n > ng, m < n/3, and
S (H) > ("5") = ("3™) then v(H) > m.

In [15], Kuhn and Osthus proved that there exists nyo € N such that if H is a
k-graph of order n > ng and §x_1(H) > n/2 + 3K?\/nlogn, then H has a perfect
matching. Rodl, Ruciriski, and Szemerédi [21] determined the minimum codegree
threshold for the existence of a perfect matching in a k-graph. Treglown and Zhao
[23, 24] extended this result to include I-degrees for k/2 <1 < k — 2. Han, Person,
and Schacht [12] considered the minimum [-degree condition for perfect matchings
in the range 1 < ! < k/2. In particular, they showed that if H is a 3-graph and
n(H) > 1+ 0(1))%("/(2}[)') then H has a perfect matching. Two surveys of these
and other related results appear in [19, 25].

For near perfect matchings, Han [11] proved a conjecture of Rédl, Rucinski, and
Szemerédi [21] that, for n # 0 (mod k), the codegree threshold for the existence of
a near perfect matching in a k-graph H is |n/k|. This is much smaller than the
codegree threshold (roughly n/2) obtained by R6dl, Ruciriski, and Szemerédi [21] for
perfect matchings.

For nearly perfect matchings, Han, Person, and Schacht [12] proved the following
result: For any integers k > [ > 0, there exists ng € N such that for all n > ny with
n € kZ and for every n-vertex k-graph H with

Si(H) > % <k: i z) + B (Inn) 0k

H contains a matching covering in all but (I — 1)k vertices. Our main result improves
this bound for the range k/2 < I < k— 1, by providing an exact I-degree threshold for
the existence of a matching covering in all but at most (k—0)[(k—1)/(2l—k)]+k—1
vertices.

THEOREM 1.1. For any integers k,l satisfying k > 3 and k/2 <1 < k — 1, there
exists a positive real p such that, for all sufficiently large integers m,n satisfying

Cmem< o1 (1= L) [ AL
pr == k) |2i—k|
if H is a k-graph on n vertices and 6;(H) > (Z:f) — ((";Q;m) then v(H) > m+ 1.

When | > 2k/3, we have (k —1)/(2l — k) < 1. Moreover, if n = r (mod k),
0 <r < k,and r+1 > k then Theorem 1.1 with m = [n/k] — 2 implies that H
has a matching covering in all but at most k vertices. In general, if the interval
[n/k—2,n/k—1—(1—=1/k)[(k—1)/(2l — k)]] contains an integer, then by letting m
be that integer, Theorem 1.1 implies that H has a near perfect matching.

The bound on &;(H) in Theorem 1.1 is best possible. To see this, consider
the k-graph HF(U, W), where U,W is a partition of V(HF(U,W)) and the edges
of HF(U,W) are precisely those k-subsets of V(H[(U,W)) intersecting W at least
once. For integers k,l,n with k¥ > 2 and 0 < [ < k and for large n, & (HF(U,W)) =
(1= — (=)= /"1y and the matching number of HF (U, W) is |W|. Thus, the bound

k—1
on 0;(H) in Theorem 1.1 is best possible (by letting |W| = m).

(1.1)

>3
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We need to refine the definition of HF (U, W) to H(U, W) for all s € [k]. Again,
U,W is a partition of V(H};(U,W)) and the edges of Hj(U, W) are precisely those
k-subsets of V(Hy (U, W)) intersecting W at least once and at most s times.

Given two hypergraphs Hy, Ho and a real number € > 0, we say that Hs is e-close
to Hy if V(Hy) = V(Hs) and |E(H,)\E(Hz)| < €|V (H;)|*. Our proof of Theorem 1.1
consists of two parts by considering whether or not H is “close” to H (U, W), which
is similar to arguments in [21]. In the next two paragraphs, we give an outline for
each case.

We first consider the case when V(H) has a partition U, W with |W| = m such
that H is close to Hy~'(U,W). If every vertex of H is “good” (to be made precise
later) with respect to H ,’:_I(U,W) then we find the desired matching by a greedy
argument. Otherwise, we find the desired matching in two steps by first finding a
matching M’ such that every vertex in H — V(M') is good, thereby reducing the
problem to the previous case.

The other case is when H is not close to Hy (U, W) for any partition V (H) into
U, W with |W| = m. We will see that such H does not have any sparse subset of very
large size. To deal with this case, we will use the following approach of Alon et al. [1]:

e Find a small absorbing matching M, in H;
e find random subgraphs of H — V(M,) with perfect fractional matchings (see
section 4 for a definition);
e use those random subgraphs and a theorem of Frankl and Ro6dl to find an
almost perfect matching M’ in H — V(M,) (see Lemma 5.7); and
e use the matching M, to absorb the remaining vertices in V(H) \ (V(M,) U
V(M")).
To find a perfect fractional matching in certain random subgraphs of H — V(M,)
we need to prove a stability version of a result of Frankl [8] on the Erdés matching
conjecture [6], which might be of independent interest. We also need to use the hyper-
graph container result of Balogh, Morris, and Samotij [3] to bound the independence
number of random subgraphs of H.

Our paper is organized as follows. In section 2, we prove Theorem 1.1 for k-
graphs H such that V(H) has a partition U,W with |W| = m and H is e-close
to HE"HU, W) (for any ¢ < (8 1k**=Dk!)=3). In fact, in this case, the degree
threshold works for all m < n/k. In section 3, we prove an absorbing lemma that
ensures the existence of a small matching M, in H with the following property: For
any small set S, the subgraph of H induced by V(M,) U S has a nearly perfect
matching. This is done by a standard second moment method. In section 4, we
show that if a k-graph does not have a very large independence number but has
a large minimum [-degree then it has a perfect fractional matching. This is done
by proving a stability version of a result of Frankl. In section 5, we first prove
Lemma 5.3, which is used to control the independence number of H when it is not
close to HY™'(U, W) for any partition of V(H) into U, W with |[W| = m. This in
turn allows us to apply the hypergraph container result to control the independence
number of random subgraphs of H — V(M,). We then use the approach in [1] to find
random subgraphs of H — V(M,) with perfect fractional matchings. Those random
subgraphs enable us to use a result of Frankl and Rodl [10] (see Lemma 5.1) to find
an almost perfect matching in H — V(M,). In section 6, we complete the proof of
Theorem 1.1 by applying the absorbing lemma from section 3. We also show how our
proof implies a result on perfect matchings in 3-graphs proved by Kiihn, Osthus, and
Treglown [17] and, independently, by Khan [14].
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2. Hypergraphs close to H,’:_l(U, W). In this section, we prove Theorem
1.1 for the case when V(H) has a partition U, W with |W| = m such that H is close
to H}j*l(a W). Actually, in this case, the assertion of Theorem 1.1 holds for all
m < n/k — 1. Moreover, in the case when m < n/(2k*), we do not require H to be
close to Hf Y (U, W) or | > k/2.

LEMMA 2.1. Let n,m,k,l be positive integers such that k >3, m < n/(2k*), and
le€k—1]. Let H be a k-graph on n vertices and §;(H) > (Z:f) - ((";Q;m) Then
v(H)>m+1.

Proof. We apply induction on m. When m = 0, we have §;(H) > 0; so v(H) > 1.
Now assume m > 1 and that the assertion holds when m is replaced with m — 1. Let
M be a maximum matching in H, and assume |M| < m.

Since M is a maximum matching in H, every edge of H intersects M. So there
exists a vertex v € V(M) such that

Note that e(H) > &(H)(7)/(%). and

by assumption)

> 3
I
|
N

—
3
> |
| =
|
3
N~

() (- (-=))
() (- (e () (5))
> 7;((:__ 1)) <Z B 5) (since m < n/(2kY)).

Thus we have

e(H) _ (H)(}) _ (k=0 (n-0\() (k-1)(n-1 1 (n—1
du(v) > 50" 2 km(’;)l Z onk (k—l)(kl')_ %2 (k—1>>2k2(k—1>’

l

where the last inequality holds because | < k — 1.
Note that

Si(H —v) > &,(H) — (Z: Efﬂ;)

) () ()
_ ((nki)ll> B (((nl)kl_)l(ml))'

Recall that m < n/(2k*), so m —1 < (n —1)/(2k*). Hence, by the induction hypoth-
esis, H — v has a matching of size m, say M’.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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The number of edges of H containing v and intersecting V(M) is at most
km (7~ ) Since m < n/(2k*),

n—2 1 (n—-1
k — d .
m<k —2> < 252 <k: - 1> < du(v)
Thus H — V(M’) contains an edge e such that v € e. Now M’ U {e} is a matching in
H of size m + 1. ad

For the case when m > n/(2k*), we use the structure of HF (U, W) to help us
construct the desired matching in H. First, we prove a lemma for the case where, for
each vertex v € V(H), only a small number of edges of H; (U, W) containing v do
not belong to H.

Let H be a k-graph and let U, W be a partition of V(H) and let n = |U| + |[W]|.
Given real number a with 0 < a < 1, a vertex v € V(H) is called a-good with respect
to Hy LU, W) if

k—2

Nyt w,w) () \ NH(U)‘ <an™1,

and, otherwise, v is called a-bad. This notion quantifies the closeness of H to
H} Y (U,W) at a vertex. Clearly, if H is e-close to Hy (U, W), then the number
of a-bad vertices in H is at most ken/a, otherwise,

BHE OB = 1 3 [Nyt u(0)\ Nu )
UEV(H

> E(ksn/a)(ank_l) = enk,

a contradiction. Note that in the statement of the lemma below we use m > n/(2k°)
rather than m > n/(2k*) as opposed to Lemma 2.1. The reason is for its application
in the proof of Lemma 2.3.

LEMMA 2.2. Let k,I,m,n be integers and a be a positive real, such that k > 3,
lek—1], a < (8F1EPE=DEN=1 5 > 8kS, and n/(2k%) < m < n/k. Suppose that
H is a k-graph on n vertices and U, W is a partition of V(H) with |W| = m such that
every vertex of H is a-good with respect to Hy~'(U,W). Then v(H) > m.

Proof. We find a matching of size m in H using those edges that intersect W
just once. Let M be a maximum matching in H such that |e N W| = 1 for each
e € M, and let t = |M|. We may assume t < m, or else the desired matching

exists. So W\ V(M) # (. By the maximality of M, Ng(z) N (U\k‘i(lM)) = () for all
xeW\V(M)
We claim that ¢ > m/2. For, suppose ¢t < m/2. Since m < n/k, t < n/(2k), so
[V(H)\ V(M) =n—tk>n—n/2=mn/2. Hence,
U\V(M)| > [VH)\V(M)| = W[ =n/2=n/k>n/6.

Thus, for any x € W\ V(M),

Nyt ,w) () \NH(CE)‘ > ‘<|U>€V(i\4)|)‘ > (kn/ 1> > an*t

contradicting the assumption that every vertex in H is a-good.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/22 to 143.215.116.88 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy
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Since t < m < n/k and |e N W| = 1 for each e € M, there exists a k-set
S = {u,...,upy € V(H)\ V(M) such that up € W, and S\ {ur} € U. Since
m > n/(2k%) > 2k, we have t > m/2 > k.

Arbitrarily choose k—1 pairwise distinct edges eq, . .., ex_1 from M and write e; :=
{vi1,vi2,...,v; 5} such that v; , € W and v; ; € U for j € [k—1]. For convenience, let
Vk,j = Uj fOI"j S [k’] For i € [k], define fi = {1}1714_1', V22445« + 5 Vk—1,(k—1)+i> Uk,k+i},

where the addition in the subscripts is modulo k (except that we write &k for 0). Then
fi ¢ E(H) for some i € [k] as, otherwise, (M \{e; : i € [k—1]})U{fi : i€ [k]}is
a matching in H that contradicts the maximality of M.

Note that for different choices of e1,...,ex—1 € M and €},...,e},_; € M, the
corresponding sets {f1,..., fx} and {f{,..., fi} constructed in the above paragraph

are disjoint. Since there are (kil) choices of ey, ...,ex—1 from M, we have

k
S [Nt e (i) \ N ()
=1

><kil)

(t—(k—1)+1)k1

(k— 1)l
n 5\ o k—1
_ (n/(ak zk _(’i)! 1) (since t > m/2 > n/(4k"))
n 5\\k—1
m (since n > 8k°)

— (8k71k5(k71)k!)71knk71
> aknt1 (since o < (8 1P~ ~1),

Thus there exists u; € S such that

Nyr-1g,wy (ug) \ N (ug)| > an®~ 1,

contradicting the assumption that every vertex in H is a-good. ]

The next lemma takes care of Theorem 1.1 for the case when m > n/(2k?)
and H is e-close to HF "YU, W). We first find two matchings (in two steps and
using Lemma 2.1) that cover all y/e-bad vertices. We then apply Lemma 2.2 to the
hypergraph obtained from H by deleting these two matchings.

LEMMA 2.3. Let k,1,m,n be integers and let 0 < ¢ < (8F=1k>(R=DEI)=3 such
that k > 3,1 € [k —1], n > 8kS/(1 — 5k2\/¢), and n/(2k*) < m < n/k — 1. Suppose
H is a k-graph on n vertices and U, W is a partition of V(H) with |W| = m, such
that 6;(H) > (Z:f) - (";l__lm) and H is e-close to Hy "' (U,W). Then v(H) > m+1
when m <n/k—1orl<k—2, andv(H)>m whenl=k—1 and m =n/k — 1.

Proof. Since H is e-close to H,{E_Z(U7 W), all but at most k+/en vertices of H are
Ve-good with respect to Hy ~'(U, W). Let U and W denote the set of \/z-bad
vertices in U and W, respectively. So |U4| + |Wb| < ky/en. Let c := |[Wbad|
Vi = UU W and W, := W \ W Note that possibly ¢ = 0. We deal with
vertices in W later since at those vertices H and H, ,’j_l(U, W) are close. We claim
that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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(1) H[V4] has a matching M; of size ¢ + 1.
To see this, let s be the maximum number of edges in H intersecting W; and containing
a fixed I-set in V;. Then s < (Z:f) - ("_l;(f?_c)) and §;(H[V1]) > 6;(H) — s. Hence,

O T R (P o G |

Since n/(2k*) <m < n/k <n/3, we have n —m+c > 2m+c > n/k*+c. Thus, since
¢ < ky/en, n —m + ¢ > 2k*c by the choice of €. So by Lemma 2.1, H[V;] contains a
matching of size ¢ + 1. This completes the proof of (1).

Let Hy := H — V(M,;). Next, we cover U U W’ with two matchings in
H, using edges intersecting Wj at most once. First note that, for each l-set S C
V1 \ V(My), Hy has lots of edges containing S and intersecting W; just once, or Hy
has lots of edges of containing S and contained in V; \ V(M7). More precisely, we
show that

(2) for any real number 3 with 2k2\/ < 8 < (2k)~(*=1+3) /2 k2, /¢ (which exists

as e < (2k)72k=1 and k > 3) and for any S € (Vl\Vl(Ml)), we have

HT € Ny, (S) : [TnWy| =1} > pnk!, or
T & N (8) : TCVi\ V(MY > Bt
To prove (2), let S € (VI\VI(M”) and [{T € Ny, (S) : |[TNW| =1} < BnF~L. Since

{T € N, (S) : |TnWi| >2}| < ki (T) (r;—_zl—_rj)

=2

and
{T € Ng(S) : |[TNV(M)| > 1} <k(c+ 1)n*~171 < 2k2/enF~!,

we have

KT € Nu,(S) : T CVi\V(M)}|
>6(H) — |{T € Ny, (S) : |[TnWy| > 2}
— {T € Ng, (S) : |TNW| =1}| — 2k2/enk~!

k—1
n—1 n—Il—-—m m\(n—1—m bl 9 bl
- - - — 2k
>(<k—l) ( - )) 2<>(k—l—> on ven
_ n—Il—m 012 k—l _ p k—l
_m<kl1) 2k*\/en Bn
> nFmt /2K — 2k /en® Tt — pnkTl (since n/(2k*) < m < n/k and n > 8k°)
> pnF~!  (by the choice of 3).
This completes the proof of (2).
To find matchings in H; covering (U U Wbed) \ V(M;), we fix a set B C
Vi \ V(M) such that |B| =0 (mod 1), (U uWP)\ V(M) C B, and | B\ (U**? U
Whad)| < I. For convenience, let ¢ = |B|/l. Then

q < kv/en.

We partition B into ¢ disjoint I-sets Bi,...,B,. By (2), we may assume that, for
some q; € [qJU{0}, {T € Ny, (B;) : |TNnWi| =1} > pnFtfor 1 <i<q and
H{T € Ny, (B;) : T CVi\V(M)} > pnF~! for 1 < j < q. We claim that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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(3) there exist disjoint matchings My and Mss in Hy such that

o |May| + [Mas| < kv/en,

o M5 covers Ug;l B; and each edge in M»; intersects Wi just once, and
e My covers Ug:q1+1 B; and each edge in My, is disjoint from W;.
First, we find the matching Mb; covering |J{-, B; (which is empty if ¢; = 0). Suppose
for some 0 < h < ¢; we have chosen pairwise disjoint edges eq,...,e, of Hy = H —
V(M) (which is empty when h = 0), such that, for ¢ € [h], we have |e; N W] =1 and
B; C e;. Since |{T € Ny, (Bps1) : [TNWy| =1} > nF~tand h < q1 —1 < ky/en—1,
the number of edges of H disjoint from V(M) U (U?:1 e;) but containing B and
exactly one vertex from Wi is at least

BnPt — k| My |n* 1 — (hE)nk T > gt — 2k ent Tl > 0.

Thus, there is an edge epy1 of Hy such that |epqy N Wi| = 1, Bpy1 C epqq, and
eht1 N (U?=1 ej) = 0. Since ¢1 < ¢ < ky/en, we may continue this process till
h =g —1. Now My = {e1,...,eq } is the desired matching that covers |J-, B;.
Next, we find the matching My = {e; : ¢1 < j < ¢}, such that for ¢; <
j<q Bj Cejande; C Vi \ (V(M)U( ?S;} es)). Suppose that we have chosen
€1,--.,€q,---,€s for some s with ¢1 < s < ¢ (which is empty if g1 = ¢). Since
HT € Ng,(Bsy1) : T C Vi \V(M;)}| > pnF~tand s < ¢g—1 < ky/en — 1, the number
of edges in H disjoint from V(M7) U (Ui_;e;) U W, but containing By is at least

BnFt — k| My n* 1 — (sk)nk T > gkt - 2k2ent Tl > 0.

So there exists an edge es11 of Hy such that Byy1 C esq1 and es1 N (Ui, €) =
(. Since ¢ < k+/en, we may continue this process till s = ¢ — 1. Now Mas =
{€q1+1,-.,€eq} gives the desired matching that covers Ug=q1+1 B;. This completes
the proof of (3).

Now, every vertex in V(H) \ V(M U My U Ma,) (as a vertex of H) is y/e-good
with respect to Hllj_l(U7 W). In order to apply Lemma 2.2, we find a matching Mas in
H1 — V(Mgl UMQQ) such that every vertex of H2 = H1 —V(M21 UM22 UMgg) is 61/3—
good with respect to Hy~'(U*,W*), where U* = U NV (Hy) and W* = W NV (Hs),
|U*| + |[W*| > 8kS, and (|U*| + [W*|)/(2k*) < [W*| < (|U*| + [W*|)/k. So we need
to prove (4) and (5) below.

(4) There exists a matching Mas in Hy — V/(Ma1 U Mag) with |Maz| < ky/en and

satisfying the following property: If we let Ho := Hy — V (Ma1 U Mas U Ma3),
U =UNV(Hy), W =W NV(Hsy), then, for some r € {0,1} with » = 0 for
I <k —2, we have
o |W/|—r=m—c— M|~ |Ma| — |Mas|, |U|+ |W'| —r > 8kS, and
(U'[ + W] =)/ (2k%) < [W'| =7,
o (W |—r<(JU|+|W'|—-r)/kwhenl<k—2orm<n/k—1,and
o (W —r < (U |+ |W|)/kwhenl=k—1and m=n/k— 1.
We prove (4) by considering two cases. Note |[My U Moy U Maa| = (¢c+1)+q < 3k /en
as ¢,q < ky/en.

Casel. | < k-—2.

In this case, we construct the matching M3 as follows. Suppose for some 1 <
t < g — q, we found vertices xy,...,24—1 in U\ V(M; U My U M) and edges
fiseooy fi—1 in Hy — V(M U Mayy) such that, for ¢ € [t — 1], we have z; € fi,
|fi N Wi| = 2, and f; N (U;;L fj) = 0. (When t = 1, these sequences are empty.)
Let 2 € U\ V(My U Mgy U Mag) \ (Uz;} fi). Since z; is \/e-good with respect to
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H}Y (U, W), the number of edges of Hy — V(May U May) — (UZ: fi) containing x;
and exactly two vertices in W is at least

P

as n/(2k%) < m, c < ky/en, t < ky/zn, and € < (85 1k>(k=D =3, So there exists an
edge f; in Hy — V(Mg U M) — (Uf;i fi) such that x; € f; and |f; N W] = 2. This
process works as long as t < g—¢;. Thus, we have a matching Moz = {f; : j € [¢—q1]}
such that, for j € [g—q1], f; € V(H1)\ (V(Ma1UMaz)U( 3;11 fi)) and | f;NW;| = 2.
Let Hy := Hl—V(MglLJMQQUMQg) and let U’ = UﬂV(HQ) and W' = WﬂV(HQ)

Note that |Mas| = |Mas|, and note that

(W] = [W| = c— [Ma]| = 2|Mas| = [W| — ¢ — [Mo1| — |Maz| — [Mas|, and

U'| = |U| = (k(c+1) —¢) = (k — 1)|Ma21| — k| Mas| — (k — 2)| Mas|

=|U| - (k—1)(c+ 1+ |Ma| + |Maa| + | Mas]) — 1.

Hence, we have
\U'| 4+ |W| = U+ [W| = k(c+ 1) — k|May| — k| Maa| — k| Mas)|.
Thus, |U’'| + |W’| > n — 5k?\/en > 8kS and, since m < n/k — 1,

(U |+ W)k = (U] + [W|)/k = (c+ 1) — [ M| — |Mag| — | Mas]
> (IW[+1) = (c+1) = |Ma1| — [Maa| — | Mas|
= |W’].

Moreover, since |W| > n/(2k*) and |W| > |W'| > |W| — 3k\/zn, we have

(U + W) = 2% W'
= |U|+ W] = k(c+1) — k|Ma1| — k| Maa| — k| Mas| — 2k°|W|
< |U| + |W| = 2k>|1W'|
< 2K4|W| — 2K°|W'|

<0 (since n is large and ¢ is small).

Case2. 1 =k — 1.

Arbitrarily choose ¢—¢1 pairwise disjoint (k—1)-sets in V (H)\V (M1 UM UMa3),
each containing exactly two vertices in W;. Note that this can be done, because
Wil = m — ¢ > n/(2k*) — ky/en > 2q. Since §p_1(H) > m > n/(2k*) > 5k*\/en >
k((c + 1) + 3q), we can extend these ¢ — g1 sets to ¢ — ¢; pairwise disjoint edges
fl, ey fq—q1 in H— V(M1 U M21 ] Mgg).

Clearly, each f; contains either two or three vertices from Wj. Thus, there exists
some integer p with 0 < p < g—¢q such that g—g1+p—1 < [Win(U_, fi) | < ¢—aq1i+p-
Let Mys = {fh .. .,fp}, Hy .= H, — V(Mgl U Moy U M23), and U' =UnN V(HQ) and
W' =W NV (Hs).

Note that |W; NV (Ma3)| = |Maa| + |Mas| — r for some r € {0,1}. Hence,

[W'| = [W| = ¢ —|Ma1| — [Wy NV (Maz)| = [W| = ¢ — | M| — [Maa| — |Mas| + 7
and

U'| = U[ = (k(c+1) = ¢) = (k — 1)|May| — k| Mas| — (k[ Mas| — [W1 NV (Mas)]).
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Therefore,
U]+ W] = 7 = (U] + W] =) = k(e + 1) — k| Ma1| — k[ Maa| — k[ Mag].

It is easy to see that the same calculations in Case 1 also allow us to conclude
that |U'| + [W'| —r > 8kS and (|U’| + |W'| —r) — 2k5(|]W’| — r) < 0. Moreover, if
r = 0 then the same argument in Case 1 shows that |W'| < (JU'| + |W'|)/k. So we
may assume 7 = 1.

First, suppose m < n/k — 1. Then (|U|+ |W|)/k > |W|+ 1+ 1/k, so

(U 1+ W' = 1)/k = (U + W] =1)/k = (¢ + 1) = |Ma1| — | Mas| — | My

> (IWl+1+1/k) = 1/k = (c+ 1) = [Ma| — [Maz| — [Mas]
=|W'|-1.

Now suppose m = n/k — 1 (so n € kZ). Then

(U T+ W) /k=(Ul+[W|)/k = (c+1) = [Ma| — [Maa| — [Mas]
= (IW[+1) = (c+1) = [Ma| — [Maa| — [ Mas]
> [W'-1
So [W'| —r < (|U'| + |W'|)/k, completing the proof of (4).

We now define W* C W' and U* = V(H)\W* as follows: If r = 0let W* = W'. If
r=1andn ¢ kZ or m < n/k—1 then choose some w € W’ and let W* = W'\ {w}. If
r=1,n € kZ, and m = n/k—1 then choose wy, ws € W' and let W* = W'\ {wy, wsz}.

(5) Every vertex of Hy := Hy — V(May U May U Mas) is el/3_good with respect

to Hy~H(U*, W™).
To prove (5), we note that k|M; UMy UMagUMaz|+2 < k((c+1)+3q)+2 < 5k2\/zn.
For each = € V(Hy), since = is y/z-good with respect to HE (U, W), we have

|NHZ—Z(U,W)(x) \ Nu(z)| < \/gnk71~

Thus,
[Nyt ey @)\ Nty ()|
‘ it (& )\NH(x)‘+(k\M1UM21UM22UM23\+2)nk_2

< ekt 4 5k2 ek
c1/3,k—1
This completes the proof of (5).

Hence, by (4) and (5), it follows from Lemma 2.2 that there is a matching M3
in Hy of size [W*|. Let M := M; U My U Mas U M3 U Ms. Then M is a matching
in H. By (4), |W/| —r=m— (|M1| - 1) - |M21| - |M22| - |M23|. Ifl=%k—1 and
m=mn/k—1, then |W*| > |W’'| —r — 1, so

|M| > (|W'| =7 = 1) + [My| + | My | + |Maa| + |[Maz| = n/k — 1.

OthCI‘WiSC, ‘W*| = |W’| —r and |M| = (|W" — ’I") + |M1| + |M21| + |M22| + |M23| =
m+ 1. 0

3. An absorbing lemma. A typical approach to finding large matchings in a
dense k-graph H is to find a small matching M, in H such that, for each small subset
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S CV(H)\V(M,), HV(M,) U S] has a large matching (e.g., an almost perfect
matching). Such a matching M, is known as an absorbing matching, often found by
applying the second moment method. This approach was initiated by Rodl, Rucinski,
and Szemerédi [20].

Let Bi(n,p) be the binomial distribution with parameters n and p. The following
lemma on the Chernoff bound can be found in Alon and Spencer [2, page 313] (also
see [18]).

LEMMA 3.1 (Chernoff). Suppose Xi,...,X,, are independent random variables
taking values in {0,1}. Let X = > | X; and = E[X]. Then, for any 0 <4 <1,

PIX > (1+8)u] < e ™% and PX < (1= d)u] < e /2
In particular, when X ~ Bi(n,p) and X\ < 3np, then
P(X —np| > \) < o~ 2N /np)

We will frequently use the following fact: For integers 0 <1’ <[ <k —1 and any
k-graph H, if 6;(H) > C(Zj) for some 0 < ¢ < 1, then 6 (H) > c("_l ) ("_l)/(k_l ) >

; 1= ) \k—1 -r) =
c(r=y)-

The main result of this section is the following lemma for absorbing matchings
in k-graphs with large I-degree for k/2 < I < k — 1. We are able to do this partly
due to the existence of positive integers a, h satisfying h < I, a < k — 1, and al >
a(k—1)+ (k—h). (One can check that a = k—1 and h = [ satisfies this requirement.)
We use a < 3 to mean that « is sufficiently smaller than S.

LEMMA 3.2. Let k,l be integers with k > 3 and k/2 <1 <k —1, and let ¢ > 0
be a constant with ¢ < 1/k!. Then there exist p > 0 and ¢/ > 0 with 0 < p <€ ¢ K ¢,
such that the following holds for all sufficiently large integers n.:

Let a, h be positive integers satisfying h <1, a < k—1, and al > a(k—1)+ (k—h).
Let H be a k-graph on n vertices with 6;(H) > C(Zj) Then there exists a matching
M in H such that

o |M| < 2kpn and
o for any subset S C V(H) with |S| < dpn, H[V(M) U S| has a matching
covering all but at most al + h — 1 vertices.

Proof. For R € (Zl(fh)) and @ € (Véf)), we say that @ is R-absorbing if
v(H[QUR]) > a+ 1 and Q is the vertex set of a matching in H. (In particular,
this requires al + h > k, which is guaranteed by assumption.) Let £(R) denote the
collection of all R-absorbing sets in H. We claim that

(1) there exists ¢’ = ¢/(c, k) > 0 such that |[L(R)| > ¢'n®* for every R € (V(H)).

al+h
To prove (1), let R € (‘;l(flg) We wish to extend R to a matching of size a + 1 by
adding a set of size (a+1)k—(al+h) = a(k—1)+(k—h). Partition R into a+1 pairwise
disjoint subsets Ry, ..., Ryq1 with |Re11| = h and |R;| = [ for i € [a]. Next we choose

(k —1)-sets T for s € [a] and a (k — h)-set Ty41 such that {R;UT; : s € [a+ 1]} form
a matching in H.

For j € [a], since dg(R;) > 6;(H) > c(z:f), we have, for large n,

n—1

Nusorpe ()] 2 ey 7)) - Caemea-0a(( 2 71) > 5 (0 2y)
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thus, we have more than %(Zj) choices for each T; with j € [a]. Similarly, since

dg(Rat1) > C(Z:Z) as h <1, we have

N, (o) 2 () 7)== (f 20 ") > £ (720

hence, we have more than %(Z:,}:) choices for T 4.

Fix an arbitrary choice of T; € Ny _p)_ji-1 1, (R;), @ € [a+ 1], such that {R, U

T : s € [a+ 1]} form a matching in H. Let T = U?Ill T;. Next, we form an R-

absorbing set @ by extending the set T to a matching of size a. We partition T into
subsets T7,...,T, such that 1 < |T/| <[ for ¢ € [a]. Such a partition exists since
|T| = a(k — 1) + (k — h) < al. Similarly to the arguments in the previous paragraph,
we can show that there exists Pi € Ny _(gpur))_i-! p, (TY) for i € [a], such that

_e(n-IT]
2\k-|T!1)"

This means that there are more than 5(2:“;}: “) choices for each P; with ¢ € [a]. Let
Q =TU(U;_, P). Then Q is the vertex set of a matching of size a in H. Hence Q
is an R-absorbing set.

Note that each such ak-set @ can be produced at most (ak)! times by the above
process, and recall that > ¢ | |T/| = a(k — 1) + (k — h). Hence, for large n (compared
with k), we have

L(R)| > (k) (2 (Z:f)) <2 (Z:ZD 1_1 (2 (Z: ||§||>>

en2a41 [ palk=D) nk—h pak—(a(k=1)+(k—h))
> e (5)™ (=) (=) (@ = =

> 'no

N —rory -yt 2, (T7)

c

by choosing ¢/ < (2(ak))~* (¢/2)** T (((k — 1))*(k — h)!(al + h — k)!)~". This com-
pletes the proof of (1).
Choose p < ¢//(2a?k?). We form a family F C (Véf)) by choosing each member

of (Véf)) independently at random with probability

_
(o)
Then
(2) with probability 1/2 — o(1), all of the following hold:

(2a) |F| < 2pm,

(2b) |L(R) N F| > 2 pn for all (al 4+ h)-sets R, and

(2¢) F contains less than ¢’ pn intersecting pairs.
Clearly, E(|F|) = pn and, by (1), E(|L(R) N F|) > ¢n%p > 4c'pn (as a > 1 and
k > 3). So by Lemma 3.1, with probability 1 — o(1),

|F| < 2pn,
and, for each fixed (al + h)-set R, with probability at least 1 — e~2(P")| F satisfies
|L(R) N F| > 2 pn.
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Hence given n sufficiently large, it follows from the union bound that, with probability
1 —0(1), (2a) and (2b) hold.
Furthermore, the expected number of intersecting pairs in F is at most

n\fak\(n—=1\ o5 45 59 ,
(ak)(l)(ak—l)p =a’k“p*n < 'pn/2.

Thus, using Markov’s inequality, we derive that with probability at least 1/2, F
contains less than ¢/ pn intersecting pairs of ak-sets. Hence, by the union bound, (2a),
(2b), (2¢) hold with probability 1/2 — o(1), completing the proof of (2).

Let F’' denote the family obtained from F by deleting one ak-set from each
intersecting pair of sets in F and removing all ak-sets that are not the vertex set of a
matching in H. (Note that the latter are not in L(R) for any (al + h)-set R.) Then
F' consists of pairwise disjoint vertex sets of matchings of size a in H. Moreover, for
all (al 4+ h)-sets R,

|L(R)NF'| > 2 pn — ' pn > ¢ pn.

For each F € F', let Mp be a matching in H with V(Mp) = F. Then M =
Uper Mrp is a perfect matching in H[V(F')], and |M| < a|F| < k|F| < 2kpn. It
remains to show that M absorbes small sets.

Let S be an arbitrary subset of V(H) \ V(M) with |S| < ¢/pn. We use M to
absorb (al 4+ h)-sets iteratively, starting with an arbitrary (al 4+ h)-subset of S. Let
So := S and let Ry C Sy with |Ry| = al + h. Since |L(Ry) N F'| > ¢ pn, we can find
Qo € F' such that H[Ry U Qo] has a matching My with |My| = a + 1. Let t > 0 be
the maximal integer such that there exist

e sets Sp, ..., S with |S;| > al + h for ¢ € [t] U {0},
e (al + h)-sets Ry,..., Ry with R; C S; for i € [t] U {0},
e pairwise disjoint sets Qg,...,Q; € F’ with Q; being R;-absorbing for i €
[t} U{0},
e and pairwise disjoint (a + 1)-matchings My, ..., M, with M; in H[R; U Q;]
for i € [t] U {0},
satisfying the property that S; = (S;—1 U Q;—1) \ V(M;_1) for i € [¢{]

Then |S;| = |Si—1| —k for i € [t]. Let Sip1 = (St UQe) \V(My). If |Si41]| < al+h
then M is the desired matching. So assume |S¢i1| > al + h and let Riy; be an
(al + h)-subset of S¢i1. Since |[L(Rip1)NF'| > pnand t+1 <|S|/k+1<cpn—1,
there exists Q41 € F'\ {Qo, - .., Q:} such that H[R; 1 UQ:+1] has a matching M; 4
with |My41] = a + 1. This contradicts the maximality of t. d

4. Perfect fractional matchings. A fractional matching in a k-graph H is a
function w : E(H) — [0,1] such that for any v € V(H), > i cpmyveey wle) < 1.
A fractional matching is called perfect if 3 gy w(e) = [V(H)[/k. Any subset
I C V(H) that contains no edge of H is called an independent set. We use a(H) to
denote the size of a largest independent set in the hypergraph H.

In this section, we show that for any reals 0 < p < ¢, if an n-vertex k-graph H
has a(H) < (1—-1/k—¢/5)n and §;(H) > (Z:f) - (”;l:lm) — pnF~! then H admits a
perfect fractional matching. Note the term —pnF~!, since the result will be applied to
a hypergraph after removing an absorbing matching. (In section 5 (see Lemma 5.3)
we show that when a(H) > (1 —1/k —¢/5)n and 6,(H) > (Z:f) - (";l:lm) — pnFt
H is close to HF (U, W).)

We need to consider matchings in the “link” graph of an [-set in a k-graph, which
is a (k — I)-graph. This is related to the following well-known conjecture of Erdds [6]
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on matchings in uniform hypegraphs: If F is a k-graph on n vertices and v(F) = s,
then e(F) < max{(}) — (".°). (kégl)} Frankl [8] proved that if n > (25 + 1)k — s
then e(F) < (}) — (",°) with H}(U,W) (where [W| = s and |U| = n— s) as extremal
graphs. Very recently, Frankl and Kupavskii [9] further improved the lower bound to
n > (5k/3 — 2/3)s for large s.

Ellis, Keller, and Lifshitz [7] recently proved the following stability version of
Frankl’s result, which we state as follows using our notation: For any s € N, n > 0, and
€ > 0, there exists 6 = d(s,n,¢) > 0 such that the following holds. Let n,k € N with
k< (ﬁ —mn)n. Suppose H C ([Z]) with v(H) < sand e(H) > (})— (".°) = 0(773).
Then there exists W € ([:]) such that [E(H) \ E(HJ:(U,W))| <e(".?).

The lower bound on e(H) in the above result of Ellis, Keller, and Lifshitz is too
large for our purpose. Using LP duality we only need to consider “stable” hypergraphs
and for such hypergraphs we can improve the bound on e(H) to (}) — (",°) — &nk.

For subsets e = {uy,...,ux}, f = {v1,..., v} C [n] with u; < u;41 and v; < vi4q
for i € [k —1], we write e < f if u; < wv; for all i € [k]. A hypergraph H C ([Z]) is said
to be stable if, for e, f € ([z]) with e < f, f € E(H) implies e € E(H). Our proof of
a stability version of Frankl’s theorem for stable hypergraphs uses the same ideas as
in [8]. The following result from [8] is an extension of Katona’s intersection shadow
theorem [13].

LEMMA 4.1. Let F C ([Z]) with v(F) = s. Then s|0F| > |F|, where OF is the
shadow of F, defined by

OF = {GE (k[i]1> :GCFforsomeFE}"}.

We can now state and prove the following stability version of Frankl’s result on
matchings for stable hypergraphs. Note that we allow k£ = 1.

LEMMA 4.2. Let k be a positive integer, and let ¢ and & be constants such that
0<c<1/(2k) and 0 < & < (14 18(k — 1)!/c)=2. Let n,m be positive integers such
that n is sufficiently large and cn < m < n/(2k). Let H be a k-graph with vertezx set
[n] such that H is stable and v(H) < m. If e(H) > () — ("7.") — &n”, then H is
VE&-close to HE([n] \ [m], [m]).

Proof. Suppose e(H) > () — ("."") —&nF. When k = 1, each edge of H consists
of a single vertex. In this case, since e(H) > m — &n > m — v/En and because H is
stable and e(H) = v(H) < m, we have that H is v/-close to Hi([n]\ [m], [m]).

Thus, we may assume k > 2. To show that H is close to HF([n] \ [m], [m]), we
bound e(H — [m]) (as edges in H — [m] are not in HF([n] \ [m],[m])). Since H is
stable, the vertex m + 1 has the maximum degree in H — [m]. So

e(H —[m]) <

L}ﬂHeeE(H_[m]):mHee}l-

Hence, our objective is to bound the size of
F{m+1}):={ec E(H—[m]):m+1¢€ e}

Let
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First, we may assume that

(1) |F({m+1})| > 9konk~1.
For, suppose |F({m + 1})| < 9kon*~1, then

e(H — [m]) < @v({m +1})| < 9on*.

Thus

< ek,

as &€ < (1 + 18(k — 1)!/c)~2. That is, H is y/E-close to Hf([n] \ [m],[m]), and the
assertion of the lemma holds. So we may assume that (1) holds.

To proceed further, we extend the notation F({m + 1}) to all @ C [m + 1] by
letting

F(Q)={ececEH) : en[m+1]=Q}.

Note that |[F(Q)| < (";(_"lal)) = (”,;_T]gll) Also note that, since H is stable,

|F({m+1})| > |0F(0)]. So Lemma 4.1 gives
m|F({m +1})| = m|0OF(0)| = |F(D)].
We claim that

2) (ZE IFWED) +mlF((m+ 1) > m(37) (1= o).

To prove (2), it suffices to show |F(0)]+ 7 [F({i})] > m(",~"7) (1 — o). Note that

> F@ls é (")

QE[m+1],|Q|>2

and

()=o) L)
_ <n;m>+m<n— m+1>+§:<m+1)<n—k(n_1;-1)).
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Thus,

m—+1

IFO+ > [F{i})]
i=1

=e(H) - > |FQ)

QCE[m+1],|Q|=>2
n n—m " m+1 n—(m+1)
S () e () ()

_ m(n *k(filj 1)> —ent

> m(i_?) (1—-0) (since ecn < m < n/(2k) and n large).

This proves (2).
Let t = [(2+ 1/k)m]. Since n > 2km and m > cn (where n is sufficiently large),

n—(m+1)>2%km—(m+1)=2+1/(k—1)m(k—1) — 1> t(k - 1).

Let M = {f1,..., ft} be t pairwise disjoint (k — 1)-subsets of [n] \ [m + 1] chosen
uniformly at random. Let F; := {e\ {i} : e € F({i})} for i € [m + 1]. Then
Fms1 € Fp C--- C F (since H is stable) and, for each fixed pair 1, j,

| i

ST

P(f; € Fi) =

Let

T = 17 fiej:m+17
’ 07 fig]:m-‘rla

and let p = P(x; = 1) (which is the same for all ¢ € [t]). Now |Fp41| = p("_lgTiH)).
So by (1), we have

(3) p> 9ko.

We claim that

(4) for 1 <i<j<t Plaw;=1) < (14 ) p*
This is because

P(l’im]‘ = 1) = P(.’Ej = 1|-'17i = 1)P(J]Z = 1)

|]:m+1| ‘fm—kl‘
" TR ()

(n—(m+1))
= k1 7
(n—(m—i];l)l—(k—l))

1
< I 2
< <1+4k>p,

asn—(m+1)>(1-1/(2k))n — 1 and n is large. This completes the proof of (4).

2
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Define a bipartite graph G with partition sets M and {Fi,...,Fmn+1}, where
fi € M is adjacent to F; if and only if f; € F;. Note that a matching of size
m + 1 in G gives rise to a matching of size m + 1 in H. Thus, v(G) < m. So by
a theorem of Koénig, G has a vertex cover of size m, say T. Let = |T N M|, then
ITN{F,...,Fmt1}| = m —z. Since Fpqy1 C F, C -+ C Fy, da(fj) = m+1
for f; € Fmq1; so fj € T for all f; € Fppp1. Hence 0 < b < z < m, where

= |MNFs1] =3 x4 So pt =E(b) <m <t/(2+ 1/k). This implies

B) p<1/(2+1/k)<1/2.

Moreover,

m—+1
Z|Mﬂfi|:e(G)gt(mfx)+x((m+1)f(mf:c)):xzf(tfl)wqtmt.

Thus, letting h(x,b) := 2% — (t — 1)z + mt + mb, we have

m—+1
E(h(z,b)) > E <m|/\/l N Fmial + > IMN ]-'i|>
=1
m—+1

_ o | Fm | Fi]
=Mt Ty (n m+1) + Zt n mfl))

m—+1
- ((Z)) <mf<{m SUEDS |f<{z'}>|>

k—1 =1
>mt(l—0o) (by (2)).

Next we obtain an upper bound on E(h(z,b)). Using the convexity of h(z,b)
(as a function of x over the interval [b,m]) and the fact that h(b,b) — h(m,b) =
(t—1—m—b)(m —b) >0, we have

h(z,b) < max{h(b,b), h(m,b)} = h(b,b) = b*> — (t — 1)b+ mt + mb.
Thus,

E(h(z,b)) < E(b* — (t — 1)b + mt + mb)

() e () o

1
(1 + 4k> 28 —t)+pt—(t—1—m)pt+mt (by (4)).
Hence, combining the above bounds on E(h(z, b)), we have

1
<1+4k> 22 —t) +pt — (t — 1 —m)pt +mt > mt(1 — o).
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(1om= (o) mo2e (1055))
(-2
((( % ( 41k>) <2 + ,1) - 1) m— 2) (by (5) and the definition of t)

+
2% —1
- —2

> ptm/(9k) (since m > en and n is large).

Thus,

omt >pt(t—m—

Thus, p < 9ko, contradicting (3). Hence H must be v/E-close to HF([n]\ [m], [m]). O

Remark. In the proof of Lemma 4.2 we require m < n/(2k) (e.g., when we define
t and M before (3)). We will see in section 6, we can replace it with n/2 — 1 when
k=3and =1

For a hypergraph H, let

v*(H) = max Z w(e) : w is a fractional matching in H
ecE(H)

A fractional vertex cover of H is a function w : V(H) — [0, 1] such that, for each
ecE, > . w()>1. Let

vee

7*(H) = min Z w(v) : w is a fractional vertex cover of H
veEV (H)

Then the strong duality theorem of linear programming gives

We conclude this section by proving the existence of a perfect fractional matching
in a uniform hypergraph whose independence number is not too large.

LEMMA 4.3. Let k,l be integers with k > 3 and k/2 < 1 < k, and let ,£ be
positive reals with & < (¢/5)%(3k)~**=D. Let n be a positive integer such that n is
sufficiently large and n € kZ. Let H be a k-graph of order n such that §;(H) >
(Z:f) - ("_,l;’ll/k) — &Pt and a(H) < (1 —1/k —¢/5)n. Then H contains a perfect
fractional matching.

Proof. For convenience, let V(H) = [n]. Let w be a minimum fractional vertex
cover of H and we may assume that w(1) > w(2) > --- > w(n). Let £’ = {e € ([Z]) :
e¢ E(H) and ),  w(i) > 1} and let H' be obtained from H by adding the edges
in E'. Then H' is stable and 7*(H') = 7*(H). Thus v*(H) = v*(H') > v(H’), and
it suffices to show that v(H') = n/k, i.e., H' contains a perfect matching.

Let S = [n]\ [n — ], and let G be the hypergraph with V(G) = [n] and E(G) =
Ny (S), which is a (k —[)-graph on [n]. Since H' is stable, G is also stable. We may
assume that
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(1) v(G) <n/k—1.
For, otherwise, let fi,..., fn/x be a matching in G. Now [n] \ (U:l:/]f fl) is a set of
size (n/k)l and, hence, can be partitioned into [-sets, say Si,...,S, /. Since H' is
stable and SU f; € E(H') for i € [n/k], we have S; U f; € E(H') for i € [n/k]. Hence,
{S; U f; : i €[n/k]} is a perfect matching in H'. Hence, we may assume (1).

We may also assume that

(2) I <k-—2.
For, suppose l = k—1. Then G is a 1-graph. Since H' is stable and e(G) > éx_1(H) >
n/k — [&n], the first n/k — [€n] vertices of G are edges of G.

Note that H' — [n/k — [¢én]] has n —n/k+ [€n] vertices. Since a(H) < (1—-1/k—
e/5)n, H — [n/k — [¢n]] has an edge. In fact, since & < (g/5)2(3k) =% =D we can
greedily find pairwise disjoint edges fi,..., fren) in H' — [n/k — [{n]]. Since

n—(n/k—[¢n]) = [Enlk = (k = 1)(n/k — [¢n]),

we can partition [n]\ ([n/k— [&n]] UUK"] fi) into (k—1)-sets St,..., S, /k—r¢en]. Now
S;u{i}, i € [n/k — [&n]], form a matching in H’. These edges and {f1,..., fren]}
form a perfect matching in H’'. So we may assume (2).

Let n = ¢/(5k) and let t = n/k — |nn]. For i € [n], we use dg() to denote the
degree of i in G. We claim that

n—1 n/(2k

(8) da(t) > (1) = GI2)-
For suppose dg(t) < (kﬁ;ll) (Zi 2k)) Since H' is stable, dg (i) < (kn?11> - (Z/(fkf)
for t < i < n/k. Note that the degree of ¢ in Hy~/([n]\ [n/k], [n/k]) is (,"}",). Thus,

|E (Hf=) (In] \ [n/K], [n/K) \ E(G)]

n/k
|
= ;(d g gy () — A6 (D))
| n/(2k)
>_ - _
_k_l(n/k t+1)<k—l—1>

1 n
—(k—1—-1)
> =Mk (k—l—l)

> ek,

as &€ < (g/5)%(3k) k=D,

Hence G is not v/&-close to Hy~}([n] \ [n/k], [n/k]). However, since G is stable
and n/k < n/(2(k —1)) (as |l > k/2), we may apply Lemma 4.2 with n/k, k — [, as
m, k, &, respectively. So v(G) > n/k, contradicting (1) and completing the proof of

Note that H' — [t] has n — n/k + |nn] vertices. Since a(H) < (1 —1/k —¢/5)n,
H' — [t] has an edge. In fact, since en = 5knn, H' — [t] has |nn| pairwise disjoint
edges, say fi,... flyn)- Let T = UL”"J

Next we find disjoint edges e, ...,e; of G such that |e; N[¢]] =1 and e, N T =0
for all i € [t]. Suppose for some s € [t — 1] we have found pairwise disjoint edges
e1,...,es of G such that, for i € [s], e; N [t] = {i} and e; N T = (. The number of
edges of G containing s + 1 and intersecting T'U ([t] \ {s + 1}) U (U_, ;) is at most
(ot — (TG0 Note that no— |T) — ¢ — (k — 1)s > n/(2k), as 1 > k/2.
Hence, by (3), there exists es11 € F(G) such that e;.1 N[t] = {s+ 1}, esx1 NT =0,
and €511 is disjoint from (J;_, e;.
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Since t = n/k — |nn|, (H' —T) — J'_, e; has exactly tl vertices (as |e; N [t]| = 1
for i € [t]). Partition the vertices in (H — T) — |J'_, e; into pairwise disjoint I-sets
Si,...,S:. Then, since H' is stable, S; Ue; € E(H') for i € [t]. Hence, {f; : i €

[lnn]]}U{S; Ue; : j € [t]} is a perfect matching in H'. O

Remark. When we apply Lemma 4.2 in the end of the proof of (3), we require
I > k/2so that n/k < n(2(k—1)) (which amounts to m < n/(2k) in Lemma 4.2). This
is not necessary when k = 3 and [ = 1, as we can use Lemma 6.3 (see section 6) which
is the same as Lemma 4.2 except with m < n/(2k) = n/4 replaced by m <n/2 — 1.

5. Almost perfect matchings. To complete the proof of Theorem 1.1, we need
to consider n-vertex k-graphs H that are not close to H ]]j _Z(U, W) for any partition of
V(H) into U, W with |W| = m. We first use the absorbing lemma in section 3 to find
a small matching M, in H such that for any small subset S C V(H), H[V (M,) U S|
has a nearly perfect matching. We then find an almost perfect matching in H—V (M,)
(see Lemma 5.7), and use M, to absorb the unmatched vertices. To find this almost
perfect matching in H — V(M,), we will find an almost regular subgraph of H with
bounded maximum 2-degree, so that the following result of Frankl and Rodl [10] can
be applied. For any positive integer I, we use A;(H) to denote the maximum I-degree
of H.

LEMMA 5.1 (Frankl and Rodl, 1985).  For every integer k > 2 and any real
e > 0, there exist 7 = 7(k,e) and dy = do(k, &) such that, for every n > D > dqy the
following holds: Every k-graph on n vertices with (1 — 7)D < dg(v) < (14 7)D and
Ay(H) < 7D contains a matching covering all but at most en vertices.

In order to find a subgraph in a k-graph satisfying conditions in Lemma 5.1, we
use the two-round randomization technique in [1]. The only difference is that in the
first round, we also need to bound the independence number of the subgraph (in or-
der to deal with hypergraphs not close to H}j*l(& W)). Here we use the hypergraph
container result of Balogh, Morris, and Samoti [3]. (A similar result is proved inde-
pendently by Saxton and Thomason [22].) To state that result, we need additional
terminology.

A family F of subsets of a set V is said to be increasing if, for any A € F and
B CV, AC B implies B € F. Let H be a hypergraph. We use v(H) and e(H)
to denote the number of vertices and number of edges of H, respectively. Let Z(H)
denote the set of all independent sets in H. Let € > 0, and let F be a family of
subsets of V(H). We say that H is (F,e)-dense if e(H[A]) > ce(H) for every A € F.
We use F to denote the family consisting of subsets of V/(H) not in F.

LEMMA 5.2 (Balogh, Morris, and Samotij, 2015). For every k € N and all
positive ¢ and €, there exists a positive constant C' such that the following holds.
Let H be a k-graph and let F be an increasing family of subsets of V(H) such that
|A| > ev(H) for all A € F. Suppose that H is (F,e)-dense and p € (0,1) is such
that, for everyl € [k],

A(H) < cpz—lj;gg;.

Then there exist a family S C (<gz§£{(}{)) and functions f: S — F and g : Z(H) — S
such that, for every I € Z(H),

g(I) €I and I\g(I)C f(g9(1)).
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The next lemma says that, if an n-vertex k-graph H is not e-close to Hy (U, W)

and §;(H) > (Z:;) - (";:m) — p'n*~! then H is (F,¢’)-dense.

LEMMA 5.3. Let k,l be integers with k > 2 and | € [k —1]. Let 0 < ¢ < 1,
p < ¢/8, and 0 < p < €/40. Let m,n be sufficiently large integers such that
n/k —pn < m < n/k. Suppose H is a k-graph with order n such that 6;(H) >
(= f) (" - M) = p'nFTl and H s not e-close to H U, W) for any partition of
V(H) into U W with |W| = m. Then H is (F, 5/(2k:' )-dense, where F = {A C

V(H):|Al > (1 —-1/k—¢e/4)n}.

Proof. Suppose to the contrary that there exists A C V(H) such that |A| >
(1-1/k —¢e/4)n and e(H[A]) < ce(H)/(2k!). By removing vertices if necessary, we
may choose A such that |V (H)\ A| > m (asm <n/k). Let W C V(H)\ A such that
|W| = m. For convenience, let B =V (H)\ (W UA). Then

IBl<n—m—(1—-1/k—¢e/4)n <en/d+n/k— (1/k — p)n < 11en/40.

Let U = V(H)\ W and Hy = H; ' (U,W). We derive a contradiction by showing
that |E(Hy) \ E(H)| < en”.

Note that, for each f € E(Hp)\ E(H), we have 1 < |fNW| < k —1 (by definition
of Hy),so |fNB|>0or|fNA|l>I Thus

|E(Ho) \ E(H)| < [{f € E(Ho) : |f N B| >0} + [{f € E(Ho) \ E(H) : [f N A[ = I}].

It is easy to see that

11e ok
~ a0k

Next, we bound |{f € E(Ho)\E(H) : |fNA| > {}|. Fix an arbitrary I-set S C A.
Note that

{f € E(Hp) : |f N B| >0} < |B||W[n*% < (11en/40)(n/k)n"~2

llskl

{(f € B(H):SC fand fAB#0} < [Bln*"' < 5

For any f € E(H) and S C f, we have fN B # 0, or f C A, or f € E(Hyp). So
HfeE(H):SCfand f e E(H|
>du(S)-{feEMH):SC fand fANB#0} —|{f € E(H):SC fand fC A}

11le
>dy(9) - 4—On’“*l — dpa1(9).

{f € E(Ho) \ E(H) : |f N A > I}
< Y Hfe€EH)\EH):SC f}
se(?)
< > (du,(S)—|{f € E(H) : f € E(Hp) and S C f})

se(?)
11e el

< Z <dHo(S)—dH(S) 20" +dH[A](S)>
se(?)
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Note that for S € (1), du,(S) = (720 — ("1™, so dmy (S) — dr(S) < p'n*~! by
the assumption on §;(H). Hence,

|E(Ho) \ E(H)| < %nk + ('1;”) (p' + 14105> nFt 4 Sez(;) dp1a)(S)

11e 11e k
< [ == ! oc k
_<40k+p+ 40)71 +<l)e(H[A])

mn 1 11 k\ en®

< {—==+z+—=)en"+ o (since k > 3 and p’ <¢/8)
120 8

<5nk,

a contradiction. 0

We now use Lemma 5.2 to show that one can control, with high probability, the
independence number of a subgraph of a k-graph induced by a random subset of
vertices.

LEMMA 5.4. Let c,e',a be positive reals and let k,n be positive integers. Let H
be an n-vertex k-graph such that e(H) > cn® and e(H[S]) > €'e(H) for all S C V(H)
with |S| > an. Let R C V(H) be obtained by taking each vertex of H independently
and uniformly at random with probability n=°°. Then, for any positive v < «, the
independence number of H[R] is at most (a + v + o(1))n®1 with probability at least

| — pOW) =),

Proof. Define F := {ACV(H) : e(H[A]) >¢’e(H) and |A| > ¢'n}. Then F is
an increasing family, and H is (F,¢’)-dense. Let p=n~' and v(H) = n. Then

A(H) < <k71 l) <nPl<enTle(H) = Clpllzgf[;'

Thus by Lemma 5.2, there exist a constant C' (depending only on ¢’ and ¢), a family

S C (Vg(g)), a function f : S — F, and a family 7 := {FUS: F € f(S),S € S},
such that every independent set in H is contained in some T € 7. Since § C (Vég)),

|S| < Cn®, and, hence,
IT1=1SI1£(S) < |S]* < C*n*C.

We claim that || < an+ C for all T € T. To see this, let T = F U S for some
F € f(S) and S € S. By definition, F € F and, hence, e(H[F]) < €’e(H). Since
e(HI[S]) > €'e(H) for any S C V(H) with |S| > an, we have |F| < an. Therefore,
IT| <|F|+1|S| < an+ C.

We wish to apply Lemma 3.1 and, hence, we need to make sets in 7T slightly
larger. Take an arbitrary map h : T — ( V(H) ) such that T'C h(T) for all T € T,

and let 77/ = h(T). Then
1T < [T <[S] < C*n*C.

Note that for each fixed 7" € T', we have |[RNT"| ~ Bi (|T'|,n=%?) and E(|RNT"|) =
n= T’ = |an + C|n=9. We apply Lemma 3.1 to |R N T'| by taking A\ = yn0-1,
where 7 is fixed and v < . Then

P(|[RNT'|—n 2T'|| > A) < o~ OO/ (nO0T)) _ o~ (n®Y)
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So with probability at most e=2("") we have |[R N T'| > n=%°|T'| + A. Hence,
IRNT'| > (o + v + C/n)n®! with probability at most e~

Therefore, with probability at most C2n2Ce=%(""") (from the union bound), there
exists some T” € T’ such that |[RNT’| > (a + v + C/n)n%!. Hence, with probability
at least 1 — C2n2Ce=20") |RNT!| < (a+ v + C/n)n% for all T' € T".

It remains to show that, conditioning on |[RNT'| < (a + v + C/n)n! for all
T €T, |J| < (a++v+C/n)n’! for every independent set J in H[R]. Since such J is
also an independent set in H, there exist T € T and T € 7' such that J CT C T".
Thus J C RNT and |J| < |[RNT'| < (a + v+ C/n)n’L.

Thus a(H[R]) < (a+y+C/n)n’ ! with probability at least 1—C2n2Ce=2("" g

The following result is the outcome of the first round of the two-round random-
ization procedure in [1]. We summarize this round as a lemma (see the proof of Claim
4.1 in [1]) and outline a proof, since we need to make some small adjustments. Here
we adopt the notation in [1].

LEMMA 5.5. Let k > d > 0 be integers with k > 3 and let H be a k-graph on n
vertices. Let R be chosen from V(H) by taking each vertex uniformly at random with
probability n=° and then arbitrarily deleting less than k vertices so that |R| € kZ.
Take n'*' independent copies of R and denote them by R', 1 < i < n''!. For each
S C V(H) with |S| < k, let Ys := [{i : S C R'}| and DEGY := [Nu () N (5|
Then with probability at least 1 — o(1), all of the following statements hold:

(i) For every v e V(H), Y,y = (1 + o(1))n%2.

(ii) Yiu,e) <2 for every pair {u,v} C V(H).

(iii) Y, <1 for every edge e € E(H).

(iv) For alli=1,...,n"!, we have |RY| = (1 + o(1))n"L.

(v) If p,p' are constants with 0 < p < p', n/k —pun < m < n/k. 0q4(H) >

(Z:g) - (";‘i_dm) —p'nF7t then for alli=1,...,n"" and all D € (V(dH)) and
for any positive real £ > 2p’, we have

i (IR=d\ _ (IR =d=|RI/k\  pik-a
DEGD><k_d —d IR

Proof. Note that the removal of less than k vertices from each R’ does not affect
(i)-(iv). Also note that |Ys| ~ Bi(n*!,n=095) for S C V(H).
Thus, E(|Y{,}]) = n®? for v € V(H), and it follows from Lemma 3.1 that
P (’Y{v} . n0'2| > n0.15) < e—Q(nO'l).

Hence (i) holds with probability at least 1 — =",

To prove (ii), let
Zy = ’ {{u,v} € (V(;{)) Yiuwy = 3} ’7

el (1) )|

Then E(Zs) < n2(n'1)3(n=09)6 = n=01 and E(Zy,) < n*(n1)2(n=09)% = 2208k <
n=%2 (for k > 3). By Markov’s inequality,

P(Zy =0) >1—n"%" and, for k >3, P(Z, =0) > 1 —n""2

and for k > 3, let

Thus (ii) and (iii) hold with probability at least 1 —n=%! and 1 —n=°2, respectively.
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By Lemma 3.1 (with A = n%095) we have
P (“Rz‘ _ n0'1’ > n0'095) < e—Q(nO'OQ)

for each i. Thus by the union bound, (iv) holds with probability at least 1 —

nlle=0n®%)

Next, we prove (v). Conditioning on ||R’| — n%!| < n®0% for all i and using the
assumption that 0 < p < p/, n/k — un < m < n/k and n is large, we have

n—d _ n—d-m g k—d —0.9\k—d
() G R
|R'| —d |R'| —d—|R'|/k 1\ i k—d

> - -1 .
_<k_d o L5p/| R

So for each D € ( ) and each fixed R?,

E(DEGY) = (1 — o(1))dg (D)(n=29)~

oo ()15
( (mf - ) ) (|RZ| e d|Rl|/k) ) 1_5p,|Ri|k_d)

R — |R'| —d—|R'|/k I i b—d
> - ~1 .
<k_d ko —d 1.8p"|R'|

E(DEG%) = Q(n®1k=d),

We apply Janson’s inequality (Theorem 8.7.2 in [2]) to bound the deviation of
DEGY,. Write DEG}, = ZeENH(D) X,, where X, = 1ife C R* and X, = 0 otherwise.
Then

k—d—1
d\ (k—d\( n—k
D I L SE Sl () | P [ R

eNf#D

In particular,

and, thus, A = O(n%12*=d-1) By Janson’s inequality, for any v > 0,
P(DEGY, < (1 — y)E(DEGY)) < e~ VE(DEGD)/(2+A/E(DEGD)) _ ,—Q(n%!)

Since & > 20/, by takmg ~ small, the union bound shows that, with probability at
least 1 — nd+11e=2n"")

; |R| —d |R| —d — |R'|/k k—d
DEGY, > - — ¢|RY|FA.
D—<k—d k—d S|

Thus, (v) holds with probability at least

(1— n1.1679(n0-°9))(1 . nd+1.167Q(n0'1)) 1 n1‘1679(n°-09) . nd+1.1efQ(n0'1).

Hence, it follows from the union bound that, with probability at least
e Qn™Y) =01 =02 11,-0(n"%) _1.1,-0(n"%) _d+1.1,-0(n"") _ 1—o(1),

(i)~(v) hold. O
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We summarize the second round randomization in [1] as the following lemma
(again, see the proof of Claim 4.1 in [1]).

LEMMA 5.6. Assume R,i=1,... ,nl'l_, satisfy (1)—(v) in Lemma 5.5, and that
each R' has a perfect fractional matching w*. Then there exists a spanning subgraph
H" of H such that dg(v) = (1 + 0(1))n%2 for each v € V, and Ag(H") < not.

We are now ready to show that for any H satisfying the conditions of Theorem 1.1
and not e-close to Hy~'(U,W), H — V(M,) has an almost perfect matching, where
M, is an absorbing matching from Lemma 3.2.

LEMMA 5.7. Let k,l be integers with k > 3 and k/2 <1 <k —1. Let p',e,0,u be
positive reals with p' < €2(3k)~**=1 /100 and u < €/40. Let n,m be sufficiently large
integers such that n/k — un < m < n/k. Suppose H is a k-graph on n vertices such
that 6;(H) > (Z:f) — (";l__lm) — p'n*~ and H is not e-close to H,f_l(U,W) for any
partition of V(H) into U,W with |W| = m. Then H contains a matching covering
all but at most on vertices.

Proof. By Lemma 5.3, e(H[S]) > (¢/(2k!))e(H) for all S C V(H) with |S| > an,
where o = 1 — 1/k — /4. Note that

where ¢ > 0 is a constant and ¢ < 1/(];)

Let R, R" be given as in Lemma 5.5. Then it follows from Lemma 5.4 that, with
probability 1 — o(1), we have a(H[R]) < (a + v + o(1))n®! for all i, where v < a.
Additionally, by (v) of Lemma 5.5, §4(H[R]) > (17 4) — (IFI=a-FI/k) _¢|Ri|(b=d)
for any £ > 2p’. Thus by Lemma 4.3, with probability 1 — o(1), for each i, H[R’] has
a perfect fractional matching.

Hence by Lemma 5.6, H has a spanning subgraph H” such that dg.(v) =
(1+0(1))n%2 for each v € V, and Ay(H"”) < n°1. Thus we may apply Lemma 5.1 to
find a matching covering all but at most on vertices in H” for sufficiently large n. O

6. Conclusion. In this section, we complete the proof of Theorem 1.1 and dis-
cuss some related work.

Proof of Theorem 1.1. By Lemmas 2.1 and 2.3, we may assume that for any 0 <
e < (8" 1Pk=DEN) =3 H is not e-close to HE~!(U, W) for any partition of V (H) into
U, W with |[W| = m.

By Lemma 3.2, there exist constants ¢ = ¢/(k,l) and p = p(c/, k,l,e) small
enough, satisfying the following property: For positive integers a, h satisfying h < [,
a < k-1, and al > a(k—1)4(k—h), there exists a matching M, such that |M,| < 2kpn
and, for any subset S C V(H) with |S| < ¢/pn, H[V (M,)US] has a matching covering
all but at most al + h — 1 vertices.

Now consider H; = H — V(M,). Then &§(H;) > §(H) — (2k*pn)n*~1=1. Let
p1 = 4k?p and ny = n — k|M,|. Then, since n is large enough and p < e,

ny —1 ng—Il—m
6Z(H1)Z(k:1—l)<lk:—l >”1”]1€_l

and H; is not (¢/2)-close to Hy~'(U, W) for any partition of V(H;) into U, W with
[W| =m.
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By Lemma 5.7, Hy has a matching M such that |V (H,)\V(M;)| < pny < dpn.
Then there exists a matching My in Hy := H[V(M,) U (V(H;) \ V(My))] such that
|[V(H)\V(Mz)| <al+h—1.

Now M7 U M5 is a matching in H covering all but at most al + h — 1 vertices of
H. By taking a = [(k—1)/(2l— k)] and h = k — a(2] — k), which minimizes al +h —1,
we see My U My is a matching in H of size n/k —1— (1 —=1/k)[(k—1)/(2l—k)]. O

There are two places in the proof of Theorem 1.1 where we require [ > k/2:
Lemma 3.2 for absorbing matching and Lemma 4.3 for perfect fractional matchings.
We do not know how to derive such results for [ < k/2. However, for k =3 and [ = 1,
the absorbing part can be taken care of by the following result of Han, Person, and
Schacht [12].

LEMMA 6.1 (Han, Person, and Schacht, 2009). Given any v > 0, there exists
an integer ng = no(7y) such that the following holds. Suppose that H is a 3-graph on
n > ng vertices such that 01(H) > (1/2+ 2v)(%). Then there is a matching M in H
of size |M| < v3n/3 such that for every subset V! C V(H)\ V(M) with |V'| € 3Z and
|V'| < +%n, there is a matching in H covering precisely the vertices in V' UV (M).

For the perfect fractional matching part, we need a result of Berge [4] on maximum
matchings. For a graph G, we use ¢,(G) to denote the number of odd components in

G.
LEMMA 6.2 (Berge, 1958). Let G be a graph on n vertices. Then

V(G) = min {(n — co(G — W)+ |W]) /2: W C V(G)}.

LEMMA 6.3. Let ¢, p be constant with 0 < p < 1 and 0 < ¢ < 1/2, and let m,n be
positive integers with n sufficiently large and en < m < n/2—1. Let G be a 2-graph
with V(G) = [n] such that v(G) < m and G is stable with respect to the natural order

on [n]. If e(G) > (5) — ("3,™) — pn?, then G is 2\/p-close to H3([n]\ [m], [m]).

Proof. Since G is stable, we have
(1) No(i)\ {7} € Na(j) \ {3} for any i, € [n] with i > j.
By Lemma 6.2, there exists W C V(G) such that

V(G) = (n—c,(G—W)+|W|) /2.

We choose the maximal such W, and let C1, ..., C, denote the components of G —W.
Without loss of generality, assume [V(C1)| > --- > |[V(C,)|, and let ¢; := |V(C})| for
i € [q]. Then

(2) ¢=co(G—W),ie., ¢ is odd for all i € [q].
For, otherwise, suppose that ¢; is even for some i € [¢]. Let x € V(C;) and W' :=
WuU{z}. Then ¢,(G—W') > ¢,(G—W)+1. This forces (n — ¢,(G — W) + |W|) /2 =
(n—co(G=W")+|W'|)/2, as V(G) = (n—co(G—W)+|W]|)/2. But then, W’
contradicts the choice of W, completing the proof of (2).

Next, we claim that

(3) cs=1lfori=2,...,q.
For, suppose ¢3 > 2. Then ¢; > ¢g > 2, so there exist a1b; € E(Cy) and azbs € E(Cy).
If a1 > ag then a1b2 € E(G) by (1), and if a1 < ag then bias € E(G) by (1). So there
is an edge between C; and Cs, contradicting the fact that Cy and Cy are different
components of G — W. This completes the proof of (3).
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By (3), we have

m = v(G) = (n—(c(G - W) —|W]) /2
= (e +Wl+qg-1)—(¢—[W])/2
= (a —1)/2+[W].

Thus, [W| <m — (¢; — 1)/2. Hence,

@2 ()-( )+ ()= (-0 ()

Since e(G) > (5) — ("3™) — pn?, we have

<n—2m> o (n—m+§cl—l)/2> - <c21>

_ (”_Qm> +é(c1—1)2+i(01—1)(2n—2m—1)— (21)

which gives

3 1
—g(cl —1)% + 1(01 —1)(2n —2m — 3) < pn?.
Hence, ¢; < \/pn, since p < 1 and m < n/2 — 1.

Note that every edge of G intersects W U V(C7). So by (1), every edge of G
intersects [|[W|+c1] C [m+(c1+1)/2] C [m+,/pn/2]. Since e(G) > (3)—("3") —pn?,
we have

[E(H3([7] \ [m], [m])\E(G)| < 2/pn*.
This completes the proof of the lemma. 0

Thus, using Lemma 6.3 instead of Lemma 4.2 in the end of the proof of (3) for
Lemma 4.3, we see that Lemma 4.3 holds in the case when k = 3 and [ = 1. Thus, our
approach (using Lemma 6.1 instead of Lemma 3.2) gives an alternative proof of the
following result of Kiihn, Osthus, and Treglown [17] (and independently by Khan [14])
on perfect matchings in 3-graphs.

THEOREM 6.4 (Kiihn, Osthus, and Treglown, 2013; Khan, 2013). There exists
ng € N such that if H is a 3-graph of order n > ng, m < n/3, and 6;(H) > (”51) —

("3"), then v(H) > m.

For the general case, Han, Person, and Schacht [12] and, independently, Kiihn,
Osthus, and Treglown [17] conjectured that the asymptotic I-degree threshold for a
perfect matching in a k-graph with n vertices is

e et [ )

The first term (1/2 + 0(1))(2:5) comes from a parity construction: Take disjoint
nonempty sets A and B with ||A] — |B|| < 2, form a hypergraph H by taking all
k-subsets f of AU B with |f N A| # |A| (mod 2). The second term is given by the
hypergraph obtained from K¥ (the complete k-graph on n vertices) by deleting all

edges from a subgraph Kﬁ_n/m_l.
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