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NUMBER OF HAMILTONIAN CYCLES IN PLANAR
TRIANGULATIONS*
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Abstract. Whitney proved in 1931 that 4-connected planar triangulations are Hamiltonian.
Hakimi, Schmeichel, and Thomassen conjectured in 1979 that if G is a 4-connected planar triangu-
lation with n vertices, then G contains at least 2(n — 2)(n — 4) Hamiltonian cycles, with equality
if and only if G is a double wheel. On the other hand, a recent result of Alahmadi, Aldred, and
Thomassen states that there are exponentially many Hamiltonian cycles in 5-connected planar tri-
angulations. In this paper, we consider 4-connected planar n-vertex triangulations G that do not
have too many separating 4-cycles or have minimum degree 5. We show that if G has O(n/logyn)

separating 4-cycles, then G has Q(n2?) Hamiltonian cycles, and if §(G) > 5, then G has 20(n'/*)
Hamiltonian cycles. Both results improve previous work. Moreover, the proofs involve a “double
wheel” structure, providing further evidence to the above conjecture.
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1. Introduction. A cycle C in a connected graph G is said to be separating if
the graph obtained from G by deleting C' is not connected. For any positive integer
k, a k-cycle is a cycle of length k. A separating 3-cycle is also known as a separating
triangle. A planar triangulation is a plane graph in which every face is bounded by a
triangle (i.e., 3-cycle).

In 1931, Whitney [10] showed that every planar triangulation without separating
triangles is Hamiltonian. In 1956, Tutte [9] proved that every 4-connected planar
graph is Hamiltonian. Thomassen [8] showed in 1983 that every 4-connected planar
graph is Hamiltonian connected, i.e., for any distinct vertices x and y there exists a
Hamiltonian path between x and y. Thus, every 4-connected planar graph has more
than one Hamiltonian cycle.

Hakimi, Schmeichel, and Thomassen [4] proved in 1979 that every 4-connected
planar triangulation has at least n/log, n Hamiltonian cycles. Recently, Brinkmann,
Souffriau, and Van Cleemput [3] improved the lower bound to “2(n — 2). Consider
a double wheel, a planar triangulation obtained from a cycle by adding two vertices
and all edges from these two vertices to the cycle. Observe that a double wheel with
n vertices has precisely 2(n — 2)(n — 4) Hamiltonian cycles. Hakimi, Schmeichel, and
Thomassen [4] conjectured that, among 4-connected planar triangulations, the double
wheels have the smallest number of Hamiltonian cycles.

CONJECTURE 1.1 (Hakimi, Schmeichel, and Thomassen, 1979). If G is a 4-
connected planar triangulation with n vertices, then G has at least 2(n — 2)(n — 4)
Hamiltonian cycles, with equality if and only if G is a double wheel.

This conjecture remains open and appears to be difficult. There are natural re-
lated questions one can ask: What can we say about the number of Hamiltonian cycles
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in 5-connected planar triangulations? What about 4-connected planar triangulations
without many separating 4-cycles or with minimum degree at least 57

Recently, Lo [6] showed that every 4-connected n-vertex planar triangulation with
O(logn) separating 4-cycles has €((n/logn)?) Hamiltonian cycles. In this paper, we
improve Lo’s result by weakening its hypothesis and strengthening its conclusion to
a quadratic bound.

THEOREM 1.2. Let G be a 4-connected planar triangulation with n vertices and
O(n/logyn) separating 4-cycles. Then G has Q(n?) Hamiltonian cycles.

Alahmadi, Aldred, and Thomassen [1] proved that every 5-connected n-vertex pla-
nar triangulation has 2°4") Hamiltonian cycles, improving the earlier bound 20(n')
of Bohme, Harant, and Tka¢ [2]. We prove the following result which improves
the result of Bohme, Harant, and Tka¢ by replacing the 5-connectedness condition
with “minimum degree 5.”

THEOREM 1.3. Let G be a 4-connected planar triangulation with n vertices and

minimum degree 5. Then G has 220" Hamiltonian cycles.

In section 2, we discuss a key idea in [1] used to show the existence of exponentially
many Hamiltonian cycles in a 5-connected planar triangulation. We also collect several
known results on “Tutte paths” in planar graphs and use them to see when a certain
planar graph has at least two Hamiltonian paths between two given vertices.

In section 3, we prove Theorem 1.2. Basically, we show that if a 4-connected
planar triangulation G does not have too many separating 4-cycles, then either G has
a large independent set with nice properties or G has two vertices with many common
neighbors (i.e., G has a large structure which resembles a double wheel). In either
case, we can find the desired number of Hamiltonian cycles in G.

In section 4, we prove Theorem 1.3. We will see that if a 4-connected planar
triangulation G has minimum degree 5, then either G has a large independent set
with nice properties, or G has two vertices with a lot of common neighbors, or G has
many separating 4-cycles. For the first two possibilities, we use similar arguments as
in the proof of Theorem 1.2. For the third possibility, we show that there are many
separating 4-cycles in G which either have pairwise disjoint interiors or are all pairwise
“nested.” In both cases, we can find many Hamiltonian cycles in G.

We conclude this section with some terminology and notation. Let G and H
be graphs. We use G U H and G N H to denote the union and intersection of G
and H, respectively. For any S C V(G), we use G[S] to denote the subgraph of G
induced by S and let G — S denote the graph obtained from G by deleting S and
all edges of G incident with S. A set S C V(G) is a cut in G if G — S has more
components than G, and if |S| = k, then S is a cut of size k or k-cut for short.
For a subgraph T of G, we often write G — T for G — V(T') and write G[T] for
G[V(T)]. A path (respectively, cycle) is often represented as a sequence (respectively,
cyclic sequence) of vertices with consecutive vertices being adjacent. Given a path P
and distinct vertices x,y € V(P), we use Py to denote the subpath of P between
z and y.

Let G be a graph. For each v € V(G), we use N¢g(v) to denote the neighborhood
of v in G, and if there is no confusion we omit the reference to G. If H is a subgraph
of G, we write H C G. For any set R consisting of 1-element or 2-element subsets
of V(G), we use H + R to denote the graph with vertex set V(H)U (RN V(G)) and
edge set E(H)U(R\V(@)). If R = {{x,y}} (respectively, R = {v}), we write H +zy
(respectively, H + v) instead of H + R.
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Let G be a plane graph. The outer walk of G consists of vertices and edges of G
incident with the infinite face of G. If the outer walk is a cycle in G, we call it outer
cycle instead. If all vertices of G are incident with its infinite face, then we say that
G is an outer planar graph. For a cycle C in G, we use C to denote the subgraph of
G consisting of all vertices and edges of G contained in the closed disc bounded by
C. The interior of C is then defined as the subgraph C' — C. For any distinct vertices
u,v € V(C), we use uCv to denote the subpath of C' from u to v in clockwise order.

2. Preliminaries. Alahmadi, Aldred, and Thomassen [1] recently proved that
if G is a b-connected n-vertex planar triangulation, then G has an independent set S
of Q(n) vertices such that G — F' is 4-connected for each set F' consisting of |S| edges
of G that are incident with S. There are 2°2(") choices of F. Hence, applying the
above mentioned theorem of Tutte to each G — F, it follows from a simple calculation
that G has 2(") Hamiltonian cycles.

How could a cut of size at most 3 occur after removing from a 4-connected planar
triangulation such a set F' of edges incident with an independent set S? Alahmadi, Al-
dred, and Thomassen [1] observed that this could happen if a vertex in .S is contained
in a separating 4-cycle, or a vertex in S is adjacent to three vertices of a separating
4-cycle, or two vertices in S are contained in a separating 5-cycle, or three vertices
in S occur in some 9-vertex graph called a diamond-6-cycle. A diamond-6-cycle is a
graph isomorphic to the graph shown on the left in Figure 1, in which the vertices of
degree 3 are called crucial vertices. We also define diamond-4-cycle here for later use;
it is a graph isomorphic to the graph shown on the right in Figure 1, where the two
degree 3 vertices not adjacent to the degree 2 vertex are its crucial vertices.

Formally, let S be an independent set in a graph G. We say that S saturates a
4-cycle or 5-cycle C in G if |SNV(C)| = 2, and S saturates a diamond-6-cycle D in
G if S contains three crucial vertices of D.

The following result for 5-connected planar triangulations was proved by Alah-
madi, Aldred, and Thomassen [1]. Lo [6] observed that it is essentially true for certain
4-connected planar triangulations. We further observe that a slight variation holds for
4-connected planar triangulations with minimum degree 5. We provide a proof here as
it is short and gives the key idea used in [1] for proving the existence of exponentially
many Hamiltonian cycles in 5-connected planar triangulations.

LEMMA 2.1. Let S be an independent set in a 4-connected planar triangulation G
with |[V(G)| > 6, and assume that the following conditions hold:

(i) all vertices in S have degree at most 6;

(ii) S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle;

diamond-6-cycle diamond-4-cycle

Fic. 1. Diamond-6-cycle and diamond-4-cycle.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/22 to 143.215.116.88 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1008 XIAONAN LIU AND XINGXING YU

(iii) 6(G) > 5, or no vertex in S is contained in a separating 4-cycle; and

(iv) no vertex in S is adjacent to 3 vertices of any separating 4-cycle.
Let F be any subset of E(G) with |F| = |S| edges such that for each verter v € S,
there is exactly one edge in F incident with v. Then G — F is 4-connected and has a
Hamiltonian cycle. Moreover, if C is a collection of Hamiltonian cycles in G formed
by taking precisely one Hamiltonian cycle from G — F for each choice of F', then
Cl > (3/2)9].

Proof. First, suppose G — F' is 4-connected for all possible choices of F'. Then S
contains no vertex of degree 4 in G, so by (i), all vertices in S have degree 5 or 6 in
G. Let a1 and as denote the number of vertices in S of degree 5 and 6, respectively.
There are 5%16%2 choices of the edge set F C E(G), with precisely one edge from
each vertex in S. For each choice of F'; G — F has a Hamiltonian cycle by a result of
Tutte. Let C be a collection of Hamiltonian cycles in G obtained by taking precisely
one Hamiltonian cycle from each G — F. Then each Hamiltonian cycle of G in C
is chosen at most (5 — 2)*(6 — 2)%2 = 3%14%2 times. Thus |C| > (5/3)%1(6/4)*> >
(3/2)m = — (3/2)15.

Now suppose there exists an F' such that G — F' is not 4-connected. Let K be
a minimal cut of G — F, so |K| < 3. Let G1,Gy be subgraphs of G — F such that
G—F =G1UG,, V(Gl OGQ) =K, E(Gl OGQ) = @, and V(Gl) 7é K fori=1,2. Let
I’ be the set of the edges between G; — K and Go — K in G. Then F’ C F. Since G
is 4-connected, G — K is connected, so F’ # ().

Since G is a 4-connected planar triangulation, for each e € F’, the two vertices
incident with e have exactly two common neighbors, which must be contained in K.
Hence, |K| > 2.

Also observe that, for any two edges e1,es € F’, there do not exist distinct
vertices u,v € K such that all vertices incident with e; or ey are contained in Ng(u)
and Ng(v). For, otherwise, the vertices u and v form a 4-cycle with the two vertices
in S that are incident with e; or es, contradicting (ii).

By the above observations, |F'| < (lgl). Moreover, |K| = 3, as otherwise |K| = 2
and |F'| < (3) = 1, contradicting the assumption that G is 4-connected. Hence,
1<|F'| <3.

Suppose |F'| =1, and let uv € F’ with u € S. Then G[K U {v}] or G[K U {u}]
is a separating 4-cycle in G (as |V(G)| > 6). Now, G[K U {v}] is not a separating
4-cycle in G; otherwise, G[K U{v}] has three neighbors of u, contradicting (iv). Then
G[K U {u}] is a separating 4-cycle in G. Thus, dg(v) = 4, and the vertex u € S is
contained in a separating 4-cycle in G, which contradicts (iii).

If |[F'| = 2, then let u,v € S be incident with the edges in F’. We see that
G[K U{u,v}] contains a 5-cycle, contradicting (ii). So |F’| =3, and let u,v,w € S be
incident with the edges in F’. Since S saturates no 4-cycle by (ii), F” is a matching in
G. But then we see that G[K U{u,v,w}] contains a diamond-6-cycle in which u, v, w
are crucial vertices, contradicting (ii). |

We need the following result from Lo [6].

LEMMA 2.2 (Lo, 2020). Let G be a 4-connected planar triangulation, and let S
be an independent set of vertices of degree at most 6 in G such that S saturates no
4-cycle in G. Then there exists a subset S" C S of size at least |S|/541 such that S’
saturates no 5-cycle in G.

Lo [6] also observed that the following lemma stated for 5-connected planar tri-
angulations in [1] actually holds for 4-connected planar triangulations.
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LEMMA 2.3 (Alahmadi, Aldred, and Thomassen, 2020; Lo, 2020). Let G be a
4-connected planar triangulation, and let S be an independent set of vertices of degree
at most 6 in G such that S saturates no 4-cycle in G. Then there exists a subset
S" C S of size at least |S|/301 such that S’ saturates no diamond-6-cycle in G.

Lo [6] proved a lemma implying that any 4-connected planar triangulation has a
large independent set or contains two vertices with a lot of common neighbors.

LEMMA 2.4 (Lo, 2020). Let G be a 4-connected planar triangulation. Let S be
an independent set of vertices of degree at most 6, and let S' be a mazimal subset
of S such that S’ saturates no 4-cycle in G. Then there exist two distinct vertices

v,z € V(G) such that |N(v) N N(z)| > 1S|/(9]57]).

We use Lemma 2.4 to derive the following result, which will be applied by setting
t = |clogyn] or t = |cn'/*] for some constant ¢ > 0.

LEMMA 2.5. Let G be a 4-connected planar triangulation with n vertices. For any
positive integer t, one of the following holds:
(i) There exist two distinct vertices v,z € V(G) such that |N(v) N N(z)| > t.
(ii) There is an independent set S of vertices of degree at most 6 in G such that
S saturates no 4-cycle in G and |S| > n/(108t).

Proof. Since each vertex of G has degree at least 4 and |E(G)| = 3n—6 by Euler’s
formula, there exist at least n/3 vertices of degree at most 6 in G. Therefore, by the
four color theorem, GG has an independent set I of vertices of degree at most 6 such
that |I] > n/12.

Let S be a maximal subset of I such that S saturates no 4-cycle in G. If |S| >
n/(108¢), then (ii) holds. So assume |S| < n/(108t). By Lemma 2.4, there exist
v # x € V(Q) such that |N(v) N N(x)| > |I]/(9]S]) > (n/12)/(9n/108t) > t. ad

Note that when Lemma 2.5 is applied later, we always have t > 2, and v, x are
nonadjacent as G is 4-connected.

We now show that if G does not have too many separating 4-cycles, then the
independent set in Lemma 2.5 may be required to satisfy additional properties.

LEMMA 2.6. Let G be a 4-connected planar triangulation with n vertices and at
most cin/logyn separating 4-cycles, where ¢y = (108 x 16 x 541 x 301 x 2)~1. Then
one of the following holds:

(i) There exist non-adjacent vertices v,x € V(G) such that |[N(v) N N(z)| >

[16logy ).
(ii) G has an independent set S with |S| > cin/log, n such that
(a) all vertices in S have degree at most 6;
(b) S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle;
(c) no vertex in S is contained in a separating 4-cycle; and
(d) no vertex in S is adjacent to 3 vertices of a separating 4-cycle.

Proof. Suppose (i) does not hold. Then by Lemma 2.5, G has an independent set
Sy of vertices of degree at most 6 such that S; saturates no 4-cycle in G and |S;| >
n/(108 x 16log, n). By Lemma 2.2, there exists So C Sy such that [Sa| > [S1]/541
and S, saturates no 4-cycle or 5-cycle in G. By Lemma 2.3, there exists S5 C S5 such
that

15| > |S2]/301 > [S1]/(541 x 301) > 2¢1n/ logy 1

and S3 saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G. Thus Ss satisfies (a)
and (b).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/22 to 143.215.116.88 . Redistribution subject to STAM license or copyright; see https://epubs.siam.org/terms-privacy

1010 XIAONAN LIU AND XINGXING YU

To obtain S C S3 such that S satisfies (¢) and (d), we show that, for any sep-
arating 4-cycle C in G, |V(C) N Ss| + |T(C)| < 1, where T(C) := {v € S3\ V(C) :
IN(v) N V(C)| > 3}. Let C be an arbitrary separating 4-cycle in G. Note that
|[V(C)NS3| <1, since S3 is independent and satisfies (b). Also note that |T(C)| < 1,
for any two vertices in T'(C') are contained in a 4-cycle, a contradiction, as Ss satisfies
(b). Moreover, if |[V(C) N S3| =1, then |T(C)| =0, for any v € T(C) and the vertex
in V(C) N S; are contained in a 4-cycle, a contradiction, as S3 satisfies (b). Hence,
[V(C)nSs|+|T(C)| < 1.

Let S = S3\U((V(C)NS3)UT(C)). Then S satisfies (c) and (d), in addition to
(a) and (b). Since G has at most ¢;n/log, n separating 4-cycles, ||J((V(C) N .Ss) U
T(C))| < e1n/logyn. Hence, |S| > |S3] — cin/logyn > ¢in/logy n. So (ii) holds. 0O

From time to time, we need to find at least two Hamiltonian paths between two
given vertices in a subgraph of a planar triangulation. For this, we need several results
on “Tutte paths” in planar graphs which are defined using the notion of “bridge.” Let
G be a graph and H C G. An H-bridge of G is a subgraph of G induced by either an
edge in E(G) \ E(H) with both incident vertices in V(H) or all edges in G — H with
at least one incident vertex in a single component of G — H. For an H-bridge B of
G, the vertices in V(B N H) are the attachments of B on H.

A path P in a graph G is called a Tutte path if every P-bridge of G has at most
three attachments on P. If in addition, every P-bridge of G containing an edge of
some subgraph C of G has at most two attachments on P, then P is called a C-Tutte
path in G. When proving that 4-connected planar graphs are Hamiltonian connected,
Thomassen [8] proved a stronger result on Tutte paths in 2-connected planar graphs.

LEMMA 2.7 (Thomassen, 1983). Let G be a 2-connected plane graph and C be
its outer cycle, and let x € V(C), y € V(G)\ {z}, and e € E(C). Then G has a
C'-Tutte path P between x and y such that e € E(P).

Note that if the graph G in Lemma 2.7 has no 2-cut contained in V(C) and no
3-cut separating C' from some vertex in V(G) \ V(C) and e # zy, then the path P
is in fact a Hamiltonian path between z and y in G. Later when we say that “by
Lemma 2.7, we find a Hamiltonian path P” we are actually using this observation.

A near triangulation is a plane graph in which all faces except possibly its infinite
face are bounded by triangles. We now derive a simple result on the number of
Hamiltonian paths between two given vertices in near triangulations.

LEMMA 2.8. Let G be a near triangulation with outer cycle C' := wvwzxu, and
assume that G # C'+vzx and G has no separating triangles. Then one of the following
holds:

(i) G —{v,z} has at least two Hamiltonian paths between u and w.

(ii) G —{v,z} is a path between u and w and, hence, outer planar.

Proof. If vz € E(G), then G = C + vz or G has a separating triangle, contra-
dicting our assumption. So vxz ¢ E(G). Then G — {v,z} has a path from u to w,
say, . Since G has no separating triangles, each block of G — {v,z} contains an
edge of Q). Hence, the blocks of G — {v,z} can be labeled as By, ..., B, and the cut
vertices of G — {v,z} can be labeled as by,...,b,—1 such that V(B; N B;y1) = {b;}
fori=1,...,t —1, and V(B; N Bj) = 0 when [i — j| > 2. Let by = v and b; = w.
Moreover, let C; denote the outer walk of B; for 1 < i <t. See Figure 2.

If |V(B;)] = 2 for 1 < ¢ < ¢, then (ii) holds. Hence, we may assume that
|[V(Bs)| > 3 for some s, where 1 < s < t. Then bs_1bs ¢ E(Bs), as otherwise,
vbs_1bsv or xbs_1bsx would be a separating triangle in G. Let e, es be the edges of
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Fi1G. 2. The blocks B1, ..., Bt.

C, incident with bs_;. By Lemma 2.7, B has a C,-Tutte path PJ between bs_; and
bs such that e; € F(P?) for j = 1,2. Since G has no separating triangles, P! and P?
are Hamiltonian paths in Bg.

For each 1 < i <t with i # s, if |V(B;)| > 3, we apply Lemma 2.7 to B; and
find a Hamiltonian path P; between b;,_1 and b; in B;; if |V (B;)| = 2, let P; = b;_1b;.
Then (U, 4, %) U Pl and (Uips Pi) U P? are distinct Hamiltonian paths in G — {v, z}
between v and w. So (i) holds. 0

We also need the following result of Thomas and Yu [7], which was used to extend
Tutte’s theorem on Hamiltonian cycles in planar graphs to projective planar graphs.

LEMMA 2.9 (Thomas and Yu, 1994). Let G be a 2-connected plane graph with
outer cycle C, and let u,v € V(C) and e, f € E(C) such that u,e, f,v occur on
C in clockwise order. Then G has a uCv-Tutte path P between u and v such that
e, f € E(P).

We now use Lemma 2.9 to prove a result similar to Lemma 2.8.

LEMMA 2.10. Let G be a near triangulation with outer cycle C' := uvwzu, and
assume that G has no separating triangles. Then one of the following holds:

(i) G —{w,z} is an outer planar near triangulation.

(ii) G —{w,z} has at least two Hamiltonian paths between u and v.

Proof. We apply induction on |V(G)|. If |V(G)| = 4, then we see that (i) holds
trivially. So assume |[V(G)| > 5. Then ww,vz ¢ E(G), as G has no separating
triangles.

We may assume that u, v each have at least two neighbors in V(G) \ V(C). For,
otherwise, by symmetry assume that « has a unique neighbor in V(G) \ V(C), say,
u'. Now G’ := G — u is a near triangulation with outer cycle C' := v/vwzu’, and G’
has no separating triangles. Hence, by induction, G’ — {w, } is an outer planar near
triangulation, or G’ — {w, x} has at least two Hamiltonian paths between v’ and v. In
the former case, (i) holds; in the latter case, (ii) holds by extending the Hamiltonian
paths in G’ from «’ to u along the edge u'u.

Next, we claim that (G—{w, z})—u or (G—{w, x})—v is 2-connected. For, suppose
(G—{w,z})—uis not 2-connected. Then (G—{w,x})—wu can be written as the union
of two subgraphs B; and Bs such that |V (B1NBsy)| < 1, By—Bs # 0, and Bo— By # (.
Without loss of generality, assume that v € V(Bs). (Indeed, v € V(By) \ V(By).)
We further choose By, Bs to minimize B;. Then B is connected, and By has no cut
vertex. By planarity, there exists a unique vertex y € Ng(w) N Ng(z). If y € V(Bs),
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then V(By N By) U {u,z} is a 2-cut in G or induces a separating triangle in G, a
contradiction. So y € V(By) \ V(Bz2). Now u has a neighbor in V(By) \ V(B2),
as otherwise, V(B; N By) U{w,z} is a 2-cut in G or induces a separating triangle
in G, a contradiction. This implies that G[B; + u] is 2-connected. Now, we repeat
this argument for (G — {w,z}) — v. Suppose (G — {w,z}) — v is not 2-connected.
Then (G — {w,z}) — v can be written as the union of two subgraphs B} and Bj)
such that |V(B{ N By)| <1, By — By # 0, By — B} # 0, and u ¢ V(B]) \ V(Bj).
Then, since G[By + u] is 2-connected and y € V(B1) \ V(B2), we have y € V(BY)).
Now, V(B N B) U{v,w} is a 2-cut in G or induces a separating triangle in G, a
contradiction.

By symmetry, we may assume that H := (G — {w,x}) — u is 2-connected. Let D
denote the outer cycle of H, and let uy,us € Ng(u) N V(D) such that u; € Ng(z)
and ug € Ng(v). Since u has at least two neighbors in V(G) \ V(C), u; # ug. Let
y € Ng(w)NNg(z). Choose an edge e € E(D) incident with y and an edge f € E(D)
incident with w;. By Lemma 2.7, H has a D-Tutte path P between u; and v such
that e € E(P). By Lemma 2.9, H has a vDus-Tutte path @ between us and v such
that e, f € E(Q). Since G has no separating triangles, we see that both P,Q are
Hamiltonian paths in H. Now P U uju and @ U ugu are distinct Hamiltonian paths
in G — {w,z} between v and v, and (ii) holds. O

Later we will need the following result of Jackson and Yu [5] on Hamiltonian cycles
through more than two given edges in planar triangulations. This result was used to
show that planar triangulations with few separating triangles are Hamiltonian.

LEMMA 2.11 (Jackson and Yu, 2002). Let G be a planar triangulation with no
separating triangles. Let T, Ty, Ty be distinct triangles in G. Let V(T) = {u,v,w}.
Then there exists a Hamiltonian cycle C in G and edges e; € E(T1), ez € E(Tz) such
that uwv, uw, eq, ez are distinct and contained in E(C).

3. Planar triangulations with few separating 4-cycles. In this section, we
consider 4-connected planar triangulations without many separating 4-cycles, as a
natural relaxation of 5-connected planar triangulations. The main objective here is
to show that the number of Hamiltonian cycles in such graphs is quadratic in the
number of vertices. First, we need the following result.

LEMMA 3.1. Let ¢; = (108 x 16 x 541 x 301 x 2)~, and let G be a 4-connected
planar triangulation with n vertices and at most cyn/logy n separating 4-cycles. Then
for any two edges e, f in a triangle in G, there are at least c2n Hamiltonian cycles in
G containing both e and f.

Proof. We apply induction on the number of vertices in G. If n < 1/c2, then
the result follows from Lemma 2.11 that every 4-connected planar triangulation has
a Hamiltonian cycle containing two given edges in a triangle. We may thus assume
that n > 1/c3.

Let e, f be two edges of G such that e, f € E(T) for some triangle T. Without
loss of generality, we may assume that T is the outer cycle of G. By Lemma 2.6, there
are nonadjacent vertices v,z € V(@) such that |[N(v) N N(x)| > |16logy,n|, or G has
an independent set S of size at least cin/log, n satisfying (a), (b), (c¢), and (d) in
Lemma 2.6.

Suppose G contains an independent set S of size at least ¢;n/ logy n and satisfying
(a), (b), (¢), and (d) in Lemma 2.6. Then S; := S\ V(T) is an independent set of
size at least ¢in/logon — 1, as S has at most 1 vertex in V(T). Let F C E(G) be
obtained by choosing precisely one edge incident with each vertex in Sp; then G — F
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is 4-connected by Lemma 2.1. Let V(T') = {u,v,w} such that e = wv and f = vw.
By Lemma 2.7, G — F has a T-Tutte path Pr between v and w and containing the
edge e. Since G — F is 4-connected, Cr := Pr + f is a Hamiltonian cycle in G — F.
Now form a collection C by, for each choice of F, taking from G — F exactly one
Hamiltonian cycle C'r that contains e and f. Then all cycles in C are Hamiltonian
cycles in G containing e and f. By Lemma 2.1,

€] > (3/2)15:] > (3/2)(crn/ s =1 > 2,

since n > 1/c3.

Thus, we may assume that there are nonadjacent vertices v,z € V(G) such that
|IN(v) N N(z)| > [16logyn|. Let C' = uvwzu such that N(v) N N(z) € V(C). Note
that C is a near triangulation and 7' Z C (as T bounds the infinite face of G). Since G
is 4-connected, C' — {v,x} has a path between u and w, and every block of C — {v,x}
contains an edge of that path. Hence, the blocks of C' — {v,z} can be labeled as
By,...,By, and the vertices in N(v) N N(z) can be labeled as wg, w1, ..., u—1,ut
such that V(B; N Biy1) = {w;} for 1 < i <t—1, BN B; = 0 when i — j| > 2,
ug=u € V(B1 —u1), and uy = w € V(B — ug—1).

Observe that for 1 < j < ¢, if [V(B;)| > 3, then we use Lemma 2.7 to conclude
that B; has at least two Hamiltonian paths between u;_; and u;.

Case 1. |{i:|V(B;)| > 3}| > 2log, n.

Let G* denote the graph obtained from G by contracting C' — C' to a single vertex
v*. Then G* is a 4-connected planar triangulation (and v* has degree 4 in G*).
Hence, by applying Lemma 2.7, we see that G* has a Hamiltonian cycle C* such that
e, f € E(C").

If wv*, wv* € E(C*), then the union of C* — v* and a Hamiltonian path between
u and w in U§:1 B; is a Hamiltonian cycle in G containing both e and f. By the
above observation, U§:1 B; has at least 221°82" = n2? Hamiltonian paths between u
and w. Hence, the number of Hamiltonian cycles in G containing both e and f is at
least n? > c2n.

Now assume uv*,vv* € E(C*). Then the union of C* — v* and a Hamiltonian
path between u and v in C' — {w,z} is a Hamiltonian cycle in G. By the above
observation, Uf;i B; has at least 221°82"~1 = n2 /2 Hamiltonian paths between u and
u¢—1. By Lemma 2.7, G[(B; — w) + v] has a Hamiltonian path between w;—; and v
(and containing Ng(w) N Ng(v)). The union of any such two paths is a Hamiltonian
path between v and v in C' — {z,w}, and, hence, the number of such paths is at
least n?/2. Thus, G has at least n?/2 > ¢?n Hamiltonian cycles containing both
e and f.

Similarly, we can show that G has at least n?/2 > ¢2n Hamiltonian cycles con-
taining both e and f if wv*, zv* € E(C*), or vvo*,wv* € E(C*), or wv*,zv* €
E(C*).

So assume vv*, zv* € E(C*). Then the union of C* —v* and a Hamiltonian path
between x and v in C' — {u, w} is a Hamiltonian cycle in G. By the above observation
again, |J'_) B; has at least 221°62"~2 = 2 /4 Hamiltonian paths between u; and u;_;.
By applying Lemma 2.7, we see that G[(B1 — u) + v] has a Hamiltonian path between
v and up (and containing Ng(u) N Ng(z)), and G[(B; — w) + 2| has a Hamiltonian
path between u;—; and z (and containing Ng(w) N Ng(v)). The union of these three
paths is a Hamiltonian path between v and z in C — {u,w}, and there are at least
n?/4 of such paths. Hence, G has at least n?/4 > c¢2n Hamiltonian cycles containing
both e and f.
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Case 2. |{i:|V(B;)| > 3} < 2log,n.

Then there exists some integer k with 0 < k < ¢ — 7 such that |V(B;)| = 2 for
i=kk+1,...,k+ 7. Without loss of generality, we may assume k = 0. Then u;,
1 <4 <6, all have degree 4 in G. Let G* be obtained from G by contracting the edge
uzuy to a vertex, denoted by u*. Then G* is a 4-connected planar triangulation with
n — 1 vertices and at most ¢1(n — 1)/log,(n — 1) separating 4-cycles. By induction,
G* contains at least ¢(n — 1) Hamiltonian cycles through both e and f. These
Hamiltonian cycles in G* can be modified inside the 4-cycle usvuszus to give at least
c?(n — 1) Hamiltonian cycles in G, all of which use the edge uzuy. Therefore, G has
at least ¢(n — 1) Hamiltonian cycles containing e, f, and the edge uzus. Hence, to
complete the proof of this lemma, it suffices to find a Hamiltonian cycle in G using e
and f but not the edge uguy, as c3(n — 1) +1 > c¢in.

Consider G’ := (G* — u*) + ugus, which is a 4-connected planar triangulation
with n — 2 vertices. Consider the triangles T} := vususv and T := xususz in G'. By
Lemma 2.11, G’ has a Hamiltonian cycle C’ that contains both e and f as well as
edges e; € E(T1) and ey € E(T») such that e, f, e, es are all distinct. We show that
C' gives rise to a Hamiltonian cycle in G containing both e and f but not the edge
uzu4. By symmetry, we may assume that e; = vus and that es = ugus, or es = ugx,
or ex = usx but ugus ¢ E(C”).

First, suppose e3 = wugus. Then wjus ¢ E(C’), and, hence, vu; € E(C') or
zuy € E(C"). If vuy € E(C’), then (C" — {uz,v}) U ujuguzvugus is a Hamiltonian
cycle in G containing e and f but not usuy. If xu; € E(C), then (C' — {zuq,uz}) U
uiuguzx U vugus is a Hamiltonian cycle in G containing e, f but not uguy.

Now suppose ez = ugx. Then ujus ¢ E(C’); hence vu; € E(C’) or zuy € E(C).
Note that in this case we have symmetry between v and x. Hence, by this symmetry,
we may assume vu; € E(C’). Then (C' — {ug,v}) U ujuguzvugz is a Hamiltonian
cycle in G containing both e and f but not uguy.

Finally, suppose e2 = uzx but ugus ¢ E(C’). Then (C’ — {ugv,usz}) U ugugv U
zugus is a Hamiltonian cycle in G containing e and f but not uguy. O

We are ready to prove Theorem 1.2, using Lemma 3.1 as well as the idea used in
its proof.

Proof of Theorem 1.2. Let ¢; = (108 x 16 x 541 x 301 x 2)~*. We apply induction
on n, the number of vertices in G, to show that G has at least ¢fn? Hamiltonian
cycles. It is easy to check that the assertion holds when n < 1/¢? + 1, as G has at
least two Hamiltonian cycles by Lemma 2.7. So assume that n > 1/c? + 2.

By Lemma 2.6, G has two nonadjacent vertices v and x such that |[N(v)NN(z)| >
|161ogy n], or G contains an independent set S of size at least ¢in/log, n such that
S satisfies (a), (b), (c), and (d) in Lemma 2.6 and, hence, (i), (ii), (iii), and (iv)
in Lemma 2.1. In the latter case, it follows from Lemma 2.1 that G has at least
(3/2)I51 > (3/2)e1n/1o82m > ¢{n? Hamiltonian cycles. So we may assume that the
former occurs.

Let C = wvwzu such that N(v) N N(z) C V(C). Note that C is a near trian-
gulation. Moreover, since G is 4-connected, C' — {v,z} has a path from u to w, and
every block of C' — {v,z} contains an edge of that path. So the blocks of C' — {v,x}
can be labeled as Bj,...,B;, and the vertices in N(v) N N(z) can be labeled as
U, U1, - . -, Up—1, ug such that V(B;NBij1) = {w;} for 1 <i <t—1, B;NB; = when
li —j| > 2, up=u € V(B —uy), and us = w € V(By — uz_1).

Consider G’ := G — (C — C) as a near triangulation with C as its outer cycle,
which is 3-connected. By Lemma 2.7, there exists a C-Tutte path P between u and
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w in G’ containing the edge uwv, which is in fact a Hamiltonian path in G’. To find
the desired number of Hamiltonian cycles in G using P, we need to find at least c{n?
Hamiltonian paths in C — {v,z} between u and w.

Observe that for 1 < j <t,if |V(Bj)| > 3, then a simple application of Lemma 2.7
shows that B; has at least two Hamiltonian paths between u;_; and u;. Hence, if
[{i: |[V(B;)| > 3}| > 2logyn, then C — {v,z} has at least 221°82" = n2 Hamiltonian
paths between u and w, which, together with P, gives at least n? > c¢in? Hamiltonian
cycles in G. So assume [{i : |[V(B;)| > 3}| < 2logy n. Then there exists some integer k
with 0 < k < t—7 such that |V(B;)| =2 for k+1 < i < k+7. Since G is 4-connected,
de(u;) =4 for k+1 <i < k+ 6. Without loss of generality, we may assume k = 0.

Let G* be obtained from G by contracting uzu, into a single vertex, say, u*, which
has degree 4 in G*. Then G* is a 4-connected planar triangulation with n — 1 vertices
and at most ¢;(n — 1)/logy(n — 1) separating 4-cycles. By induction, G* contains
ci(n — 1)? Hamiltonian cycles, each using exactly two edges incident with u*. It is
routine to check that these cycles can be modified inside the 4-cycle usvuszus to give
at least cf(n — 1) Hamiltonian cycles in G, all containing the edge uzuy.

To obtain additional Hamiltonian cycles in G, we consider H := (G* —u*) +ugus,
which is a 4-connected planar triangulation with n — 2 > 1/c? vertices and at most
c1(n — 2)/logy(n — 2) separating 4-cycles.

Note that vususv is a facial triangle in H, which can be turned into the outer
cycle for a different embedding of H. So by Lemma 3.1, H has at least c¢3(n — 2)
Hamiltonian cycles through both vus and vus. For each such cycle, say, D, we see
that (D —v)Uugusvugus is a Hamiltonian cycle in G not containing the edge usu4 (as
they use usvuy), and, hence, is different from the Hamiltonian cycles in G obtained
previously by modifying those cj(n — 1)? Hamiltonian cycles in G*.

Similarly, since zugusz is a facial triangle in H, we can find at least ¢f(n — 2)
new Hamiltonian cycles in G containing uzzus. Hence, G has at least cf(n — 1) +
2¢2(n — 2) > c¢in? Hamiltonian cycles. 0

4. Planar triangulations with minimum degree 5. In this section, we con-
sider 4-connected planar triangulations with minimum degree 5, another natural relax-
ation of 5-connected planar triangulations. Before we present a proof of Theorem 1.3,
we need the following result.

LEMMA 4.1. Let G be a 4-connected planar triangulation with n vertices and min-
imum degree §(G) > 5. Then one of the following holds:
(i) G has 22n"") Hamiltonian cycles.
(ii) G has an independent set S of vertices of degree at most 6 such that |S| =
Q(n3/4) and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle.

Proof. Let ¢ > 0 be an arbitrary constant. By Lemma 2.5 (with ¢ = |cn'/4]),
there exist nonadjacent vertices v,z in G such that [N (v) NN (x)| > [en'/?], or G has
an independent set S; of vertices of degree at most 6 such that |S;| > n?/4/(108¢) and
S1 saturates no 4-cycle in G. If the latter holds, then, by Lemma 2.2 and Lemma 2.3,
there exists a subset S of S; such that |S| > |S:1]/(541 x 301) > ¢'n®/*, where ¢ =
(541 x 301 x 108¢)~!, and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in
G, so (i) holds. Thus we may assume that the former occurs.

Let C' = uvwzu such that N(v)NN(x) C V(C). Since G is 4-connected, C—{v, x}
has a path, say, @, between v and w. Let N(v) N N(z) = {ug,u1,...,ur} with
k > |en'/*| such that ug = w,ur = w, and wug,uy,...,ux occur on @ in order.
Since G is a 4-connected planar triangulation, the blocks of C' — {v, 2} can be labeled
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as Bi,..., By such that u;_1,u; € V(B;) for i = 1,...,k and B; N B; = ( for
i,j€{1,2,... k} with [i — j| > 2.

For each B; with |V(B;)| > 3, u;—1u; ¢ E(G) as G is 4-connected. Thus, if
|[V(B;)| > 3, then B; is a near triangulation that has no separating triangles, and, by
applying Lemma 2.7, we can find two Hamiltonian paths between u;_1 and u; in B;.
Since 0(G) > 5, we see that |V(B;)| > 3 or |[V(B;41)| >3 fori=1,...,k — 1. Thus,
[{i : |V(By)| > 3} > (len'/*] —1)/2. Tt is easy to see that C' — {v,x} has at least
9(len*1=1)/2 Hamiltonian paths between v and w.

We view C as the outer cycle of a different embedding of H := G — (C — C). By
Lemma 2.7, H has a C-Tutte path P between v and w, which is in fact a Hamiltonian
path in H. Now P and any Hamiltonian path in C' — {v, 2} between u and w form a
Hamiltonian cycle in G. So G has at least 2(len'*1=1)/2 Hamiltonian cycles, and (i)
holds. ]

Recall the definition of a diamond-4-cycle in Figure 1, and recall that the two
vertices contained in two triangles in a diamond-4-cycle are its crucial vertices. In the
proof of Theorem 1.3, we will need to consider the subgraph of a planar triangulation
that lie between two diamond-4-cycles and use the following result on Hamiltonian
paths in those subgraphs.

LEMMA 4.2. Let G be a near triangulation with outer cycle C' := uvwzu and with
no separating triangles, and let z € V(G)\V(C) have degree 4 in G such that G[N(z)]
is contained in a diamond-4-cycle D' in G — z and all vertices in V(G) \ (V(C) U
{z} UN(2)) have degree at least 5 in G. Suppose
o V(D)NV(C)=10; or
o V(D')NV(C) consists of exactly two vertices that are non-adjacent in D'UC,
and one of these vertices is a crucial vertex of D’; or
e V(D')NV(C) consists of exactly two vertices that are adjacent in both D’
and C, and none of these vertices is a crucial vertex of D’.
Then one of the following holds:

(i) For any distinct a,b € V(C), G—(V(C)\{a,b}) has at least two Hamiltonian
paths between a and b.

(ii) There exist distinct a,b € V(C) such that G — (V(C) \ {a,b}) has a unique
Hamiltonian path, say, P, between a and b, but for any distinct ¢,d € V(C)
with {c,d} # {a,b}, G — (V(C) \ {c,d}) has at least two Hamiltonian paths
between ¢ and d and avoiding an edge of P incident with z.

Proof. Let C" := G[N(2)] = v/v'w'z’v/, and let y' € V(G) such that y'v’, y'v', y'2’
€ E(D’). Then y' and v are crucial vertices of D’. Without loss of generality assume
that u’,v’,w’, 2’ occur on C’ in clockwise order and that u,v,w,z occur on C in
clockwise order.

Case 1. V(D')nV(C) = 0.

Then z is not incident with the infinite face of G — V(C). So for any distinct
a,be V(C), G—(V(C)\{a,b}) cannot be an outer planar graph. Thus, by Lemma 2.8
or Lemma 2.10, G — (V(C) \ {a,b}) has at least two Hamiltonian paths between a
and b. So (i) holds.

Case 2. V(D) N V(C) consists of exactly two vertices that are nonadjacent in
D’ U C, and one of these vertices is a crucial vertex of D’.

Then V(D) NV(C) ={y,w'}, and V(D) NV (C) = {u,w} or V(D')NV(C) =
{v,2}. Without loss of generality, we may assume u =y’ and w = w'.
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For distinct a,b € V(C) with ab ¢ E(C), {a,b} = {u,w} or {a,b} = {v,z}.
Since dg(v') > 5 and dg(z') > 5, G — (V(C) \ {a,b}) cannot be a path. Therefore,
by Lemma 2.8, G — (V(C) \ {a,b}) has at least two Hamiltonian paths between
a and b.

Now we consider a,b € V(C) with ab € E(C). Then, v’ or z is not incident with
the infinite face of G — (V(C)\{a,b}), so G—(V(C)\{a, b}) cannot be an outer planer
graph. Hence, by Lemma 2.10, G— (V(C)\ {a, b}) has at least two Hamiltonian paths
between a and b.

Case 3. V(D) NV (C) consists of exactly two vertices that are adjacent in both
D' and C, and none of these vertices is a crucial vertex of D’.

Then V(D) NV(C) = {v/,w'} or V(D')NV(C) = {z/,w'}. By the symmetry
among the edges in C' and between the two orientations of C', we may assume V(D’)N
V(C) = {v,w}. Further by the symmetry between v’ and z’, we may assume that
v=v" and w=w'

Claim 1. For any distinct a, b € V(C) with {a,b} # {u,z}, G—(V(C)\{a,b})
has at least two Hamiltonian paths between a and b.
If {a,b} = {u,w} or {a,b} = {v,z}, then the claim follows from Lemma 2.8 (as
da(y') > 5). If {a,b} = {v,w} or {a,b} = {v,u}, then v is not incident with the
infinite face of G — (V(C) \ {a,b}), so the claim follows from Lemma 2.10.

Now suppose {a,b} = {w,z}. Suppose G — (V(C) \ {w, z}), i.e., G — {u, v}, has
exactly one Hamiltonian path between w and z. Then by Lemma 2.10, G — {u, v}
is an outer planar graph. Now 2’ is incident with the infinite face of G — {u, v}, so
2'u,x’x € E(G). Also, ¢ is incident with the infinite face of G—{u, v}, so y'u € E(G).
Then, since dg(y’) > 5, uz’y’u or uy’vu is a separating triangle in G, a contradiction.
Thus, we have Claim 1.

Therefore, if G — (V(C) \ {u,z}), i.e., G — {v,w}, has two Hamiltonian paths
between u to x, then (i) follows from Claim 1. Hence, we may assume that H :=
G —{v,w} has at most one Hamiltonian paths between w and x. Then by Lemma 2.10,
H is an outer planar graph, and the unique Hamiltonian path P in H between u and
x contains u'zz’, since z € Ng(v) N Ng(w), V(uPz) C Ng(v) and V(2Pz) C Ng(w).

Note that dg(u') = dg(z) = 4 and w2’z is a triangle in H — {u,z} = G — C.

Claim 2. H —wu has two Hamiltonian paths Py, P, between z and x, and H —x

has two Hamiltonian paths @1, @2 between z and u.
We only consider H — u, as the case for H — x can be taken care of by the same
argument. Suppose H —u is 2-connected. Then let F' denote the outer cycle of H —u.
By Lemma 2.7, H — u contains F-Tutte paths P;, P» between z and z such that
zu' € E(Py) and zz' € E(Py). We claim that Py, P; are in fact Hamiltonian paths in
H — u. For suppose otherwise, and let B be a P;-bridge of H —u with B — P; # () for
some i € {1,2}. Recall that P —u C F, V(uPz) C Ng(v), and V(zPz) C Ng(w).
To avoid separating triangles in G, the unique vertex in Np(u), say, v*, is in B — P;.
Hence, we see that dg(u*) = 4, a contradiction.

Now assume that H — u is not 2-connected. Then since v, z are the only vertices
in V(G) \ V(C) with degree 4 in G, z has a unique neighbor in H — u, say, =*, and
(H —u)—x is 2-connected. Moreover, z* # ', as, otherwise, ' would have degree 4 in
G. Let F denote the outer cycle of (H —u) — . By Lemma 2.7, (H —u) —  contains
F-Tutte paths Ry, Re between z and z* such that zu' € E(R;) and zz' € E(Rz2).
Note that P — {u,z} C F, V(uPz) C Ng(v), and V(zPz) C Ng(w). As in the
previous paragraph, we see that Ry, Ry are Hamiltonian paths in (H — u) — x, since
G has no separating triangles. So R; Ux*z, Ro U x*x are Hamiltonian paths between
z and x in H — u. This completes the proof of Claim 2.
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We now show that (ii) holds, with {a,b} = {u,z}. Let ¢,d € V(C) be distinct
such that {c,d} # {u,z}. If {¢,d} = {u,w}, then Q; U zw,Q2 U zw are distinct
Hamiltonian paths in G — {v,2} = G — (V(C) \ {¢,d}) between u and w and not
containing v'zz’. If {¢,d} = {v,z}, then P; U zv, P, U zv are distinct Hamiltonian
paths in G — {u,w} = G— (V(C)\ {¢,d}) between v and = and not containing u'zx’.
If {c,d} = {u,v}, then Q1 Uzv, Q2Uzv are distinct Hamiltonian paths in G —{w,z} =
G — (V(C)\{c,d}) between v and v and not containing v'zz’. If {¢,d} = {w,x}, then
Py U zw, P, U zw are distinct Hamiltonian paths in G — {u,v} = G — (V(C) \ {a,b})
between w and x and not containing u'zz’.

Thus to prove that (ii) holds, it remains to consider {c,d} = {v,w}. Then
G- (V(CY\{c,d}) = G —{u,z}. Using the fact that H = G — {v, w} is outer planer
with P as its unique Hamiltonian path between u and x, we see that G — {u, z, w} has
a Hamiltonian path R; between z and v, and G — {u,z,v} has a Hamiltonian path
Rs between z and w. Hence, R; U zw and Ry U zv are distinct Hamiltonian paths
between v and w in G — {u, 2} and not containing u'za’. 0

Proof of Theorem 1.3. By Lemma 4.1, we may make the following assumption
for some constant ¢ > 0.

(1) G has an independent set S of vertices of degree 5 or 6 such that S| > cn3/4

and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.

Let S* consist of all vertices in S that are each adjacent to exactly 3 vertices of
a separating 4-cycle in G. We may make the following assumption.

(2) |S*| > en?/*/2.

For, otherwise, |S\ S*| > ¢n®/*/2. Then, since §(G) > 5, we can apply Lemma 2.1
to G, S\ S* and conclude that G has at least (3/2)5\5" > (3/2)0"3/4/2 > gen’/t/2
Hamiltonian cycles, and the assertion of Theorem 1.3 holds. So we may assume (2).

For convenience, we use D, for any diamond-4-cycle D, to denote the subgraph of
G consisting of vertices and edges of G in the closed disc bounded by the outer cycle
of D.

We now define a collection D of diamond-4-cycles that are associated with vertices
in §*, one for each vertex in S*. For each v € §*, v is adjacent to three vertices of
some separating 4-cycle, say, C,,, and, since §(G) > 5, D,, := G[C, + v] is a diamond-
4-cycle in G. Note that v is a crucial vertex of D,,. For every v € S*, we choose D,
so that D, is maximal. Now let D = {D,, : v € S*}. Clearly, if u # v € S*, then
D, # D, (as S* does not saturate any 4-cycle in G). Thus |D| = |S*| > en®/4/2. We
now prove the following claim.

(3) For distinct u,u’ € S*, |[V(D,) NV (D,/)| < 2. Moreover, if V(D,) NV (D,)
consists of two vertices, say, a and b, then either ab € E(D,) N E(D,/) and
neither a nor b is a crucial vertex of D,, or Dy, or ab ¢ E(D,)U E(D,) and
D, D, each have precisely one crucial vertex in {a,b}.

To prove (3), let u,u’ € S* be distinct. Then «' ¢ V(D,), as otherwise u,u’ are
contained in a 4-cycle in D,,, a contradiction as S* saturates no 4-cycle in G. Similarly,
u ¢ V(Dy). Moreover, |[N(u')NV(D,)| < 1, for otherwise u,u’ are contained in a
4-cycle or 5-cycle in G[D,, + u'], a contradiction as S* saturates no 4-cycle or 5-cycle
in G. Likewise, |[N(u) NV (Dy)| < 1. Therefore, |V (D,) NV (D,)| < 2.

Now suppose V(D,) N V(D) = {a,b} with a # b. If ab € E(D,) \ E(Dy),
then ab and two edges in D!, form a separating triangle in G, a contradiction. So
ab ¢ E(D,)\ E(D,/). Similarly, ab ¢ E(D,/) \ E(D,).

If ab € E(D,) N E(D,/), then neither a nor b is a crucial vertex in D,, or D,, as
otherwise v and u’ would be contained in 4-cycle or 5-cycle in G. If ab ¢ E(D,) U
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E(Dy), then D, and D, each have exactly one crucial vertex in {a,b}, to avoid a
4-cycle or 5-cycle containing {u,w’}. This completes the proof of (3).

By (3), for any Dy, Dy € D, either D; — Dy and Dy — Dy are disjoint, or Dy
contains Dy or vice versa. We may assume the following.

(4) There exists an integer ¢ > n'/? and Dy, Ds,...,D; € D such that D; D

Dy 22Dy
For, otherwise, there exists some integer k > en'/4 /2 and diamond-4-cycles Dy, ..., Dy
€ D such that D; — D; and E — D; are disjoint whenever 1 < i # j < k. Let G* be
obtained from G by contracting D; — D; to a new vertex v; for all 1 < i < k. Then
G* is a 4-connected planar triangulation and, hence, has a Hamiltonian cycle, say, C'.

Let a;,b; € Ng«(v;) such that a;v;b; C C for 1 <i < k. Let C; denote the 4-cycle
in G such that D; — D; is the interior of C;. Then, C; C D; and C; — C; = D; — D;.
Since all vertices in C; — C; have degree at least 5, C; — (V(C;) \ {a;,b;}) cannot be
outer planar. So by Lemma 2.8 or Lemma 2.10, C; — (V(C;) \ {a;,b;}) has at least
two Hamiltonian paths between a; and b;.

We can form a Hamiltonian cycle in G by taking the union of C —{v; : 1 < i < k}
and by selecting one Hamiltonian path between a; and b; in each C; — (V (C;)\ {as, b; })
for 1 <4 < k. Thus, G has at least 2% > 2¢n'"*/2 Hamiltonian cycles, completing the
proof of (4).

For each 1 < j <'t, let u; and y; be the crucial vertices of Dj;, and let v;, w;, z; be
the other vertices of D;, so that y;v;w;z;y; is the outer cycle of D; and y;,v;,z; €
Ng(uj). Then u; € S* or y; € S*. Let Cj := ujv;w;xju;. Then by (4), C; 2
Cy D2 C;. Forj=1,...,t — 1, let G; denote the graph obtained from Cj by
contracting Cj1 — Cj11 to a new vertex, denoted by z;+1. Note that G; is a near
triangulation with outer cycle C; and that G; contains the diamond-4-cycle D .
For convenience, let G; := C;. We claim the following.

(5) Forany j € {1,...,t—1},if |V(C;)NV(D,+1)| = 1, then, for any distinct a, b

e V(Cj), G; — (V(C;) \ {a,b}) has two Hamiltonian paths between a and b.
For, suppose V(C;) NV (Dj41) = {v}. If v = yj41, then z;4; is not incident with
the infinite face of G; — C}, so G; — Cj is not outer planar, and, by Lemma 2.8 or
Lemma 2.10, for any distinct a,b € V(C;), G; — (V(C;)\ {a,b}) has two Hamiltonian
paths between a and b. If v = w;11, then u;4; is not incident with the infinite face
of G; — Cj, so again by Lemma 2.8 or Lemma 2.10, for any distinct a,b € V(Cj),
G; — (V(C5) \ {a,b}) has two Hamiltonian paths between o and b. Thus, we may
assume without loss of generality that v = v; = v;1.

For {a,b} = {uj,w;} or {a,b} = {v;,x;}, since dg,(y;11) = da(yj+1) > 5, it
follows from Lemma 2.8 that G; — (V' (C;)\{a, b}) has two Hamiltonian paths between
a to b. For {a,b} = {v;,u;} or {a,b} = {v;,w;}, since z;41 is not incident with the
infinite face of G; — (V(C;) \{qa,b}), G; — (V(C;) \ {a, b}) has two Hamiltonian paths
between a and b by Lemma 2.10. For {a,b} = {wj,z;}, since dg, (y;j+1) > 5, z;41 is
not incident with the infinite face of G; — (V(C;)\ {a, b}), it follows from Lemma 2.10
that G; — (V(Cj) \ {a,b}) has two Hamiltonian paths between a and b.

Finally, consider {a,b} = {u;,x;}. Suppose G; — (V(C;)\{qa,b}) = G; —{v;,w,}
has a unique Hamiltonian path between a and b. Then G; — {v;, w;} is outer planar,
0 ;41 is incident with the infinite face of G; — {v;,w;}, and, hence, z,;1w; € E(G).
Therefore, D}, = (Djt1 — wjy1) U vjpiwjzjqr is a diamond-4-cycle containing

Uji1,Yj+1}, and D’ . properly contains D; 1. Thus D’ , contradicts the choice of
Jj+1s 95+ j+1 Jj+ j+1
Dji1. So G — (V(C;) \ {a, b}) has at least two Hamiltonian paths between a and b.
This completes the proof of (5).
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We may assume the following.
(6) There exists some integer k with 1 < k <t —n'/%, and there exist distinct
aj,bj € V(C;) for k < j < k+ |n'/*] such that, for k < j < k+ [n'/4] -1,
G; — (V(C;)\{a;,b;}) has a unique Hamiltonian path P; between a; and b;,
and P; contains a;112j41bj41.
For j =1,...,t, let H; denote the graph obtained from G by contracting C; — C; to
a new vertex z;. Let Hy;1q := G. Note that H;, 1 < j <t+1, are 4-connected planar
triangulations.

We see that H; has a Hamiltonian cycle, say, Fy, and let a1,b; € V(Cy) such that
a1z1b1 € Fy. We now define a rooted tree T° whose root r represents F; and whose
leaves are Hamiltonian cycles in G. Recall the graphs G;, 1 < j <t.

For each Hamiltonian path P; in G; — (V(Cy) \ {a1,b1}) between ay and by,
Fy := (Fy; — z1) U Py is a Hamiltonian cycle in Hy; we add a neighbor to 7 in T to
represent F5. This defines all vertices of T" at distance 1 from the root r. Now, suppose
we have defined all vertices of T at distance s from r for some s with 1 < s <t —1,
each of which represents a Hamiltonian cycle in Hy41. To define the vertices of T at
distance s+ 1 from 7, we let v be an arbitrary vertex in T that is at distance s from r.
Then v represents a Hamiltonian cycle Fy11 in Hepq. Let agsy1,bs41 € V(Fs41) such
that as412s4+10s41 € Fsy1. For each Hamiltonian path Psi11 in Gepq1 — (V(Csi1) \
{ast1,bs41}) between as11 and bsy1, Fsia := (Fsq41 — 2s+1) U Psy1 is a Hamiltonian
cycle in Hgy9; we add a neighbor to v in T to represent Fso. This process continues
until s = ¢t — 1. Then the leaves of T correspond to distinct Hamiltonian cycles in
H;y; = G. Note that, by construction, the distance in T between the root and any
leaf is t.

If T has a path of length |n'/4| whose internal vertices are of degree 2 in T, then
(6) holds. So assume no such path exists in 7. We obtain the tree T* from T by
contracting all edges of T' incident with degree 2 vertices in 7. Then all vertices in
T*, except the leaves and possibly the root, have degree at least 3. Since each leaf of
T has distance ¢ > n'/? from the root r, the distance between the root and any leaf in
T* is at least n'/4. Hence, T* and, thus, T both have at least 27" leaves. Therefore,
@ has at least 2" Hamiltonian cycles. This proves (6).

Without loss of generality, we may assume k = 1 in (6), i.e., foreach 1 < j <14
|n'/4], there exist aj, b; € V(C;) such that, for 1 < j < [n'/*]|, G;—(V(C;)\{a;,b;})
has a unique Hamiltonian path P; between a; and b;, and P; contains a;112j41b;41-
For the sake of simplicity, let ¢ := 1+ |n'/4].

By (3) and (5), we see that D;11, Cj, and G, for 1 < j < ¢ — 1, satisfy the
conditions in Lemma 4.2 (with D;1,C},G; as D', C, G, respectively, in Lemma 4.2).
Hence, by Lemma 4.2, we know that, for 1 < j < ¢ — 1, if {¢;,d;} C V(C;) and
{¢j,d;} # {a;,b;}, then G; — (V(C;) \ {¢;,d;}) has at least two Hamiltonian paths
between ¢; and d; but not containing a;+12zj4+1b;+1. Recall that for 1 < j < ¢, H;
denotes the graph obtained from G by contracting C; — C; to a new vertex z;.

Let ¢1,d; € V(C1) be distinet such that {c1,d;} # {a1,b1}. Then by Lemma 2.7,
G — (C1 — C1) has a Hamiltonian path @ between ¢; and d;. In Hy, F} = QU ¢121d;
is a Hamiltonian cycle. We now define a rooted tree T" whose root r represents Fj
and whose leaves are Hamiltonian cycles in G.

By (6) (where we assume k = 1), G; — (V(C1) \ {c1,d1}) has at least two
Hamiltonian paths between c¢; and d; and not containing aszsbs. For each such
Hamiltonian path P;, we see that (Fy; — z;) U P; is a Hamiltonian cycle in Ha,
and we add a vertex to T representing (F} — z1) U P; and make it adjacent to
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r. This defines all vertices of T within distance 1 from r. Note that dp(r) > 2.
Now suppose we have defined the vertices of T at distance s from r for some s
with 1 < s < ¢ — 1, each representing a Hamiltonian cycle in Hsy; not containing
as412s+10s4+1. To define the vertices of T' that are at distance s + 1 from r, let v be
an arbitrary vertex of T' at distance s from r. Then v corresponds to a Hamiltonian
cycle Fs4q in Hsyq not containing as112s11bs41. Let cs1,ds41 € V(Csy1) be distinet
such that CS+1ZS+1d5+1 Q Eg+1. Then {Cs.}'_l,ds_i'_l} 7é {CLS+1,bS+1}. Hence, by (6),
Gsr1— (V(Cs41) \{Cs+1,ds4+1}) has at least two Hamiltonian paths between c¢s ;1 and
ds+1 and not containing asy2zs42bsi2. For each such path Py, (Fsi1— 2s41) U Psi1
is a Hamiltonian cycle in Hg49 not containing asy22sy2bst2, and we add a neighbor
to v in T to represent (Fsi1 — 2541) U Psy1. Thus, dr(v) > 3. We repeat this process
fors=1,...,q—2.

For an arbitrary vertex u of 1" that has distance ¢ — 1 from r in T, it represents
a Hamiltonian cycle Fy in H,. Assume cqz4dq C Fy. Since §(G) = 5, we may apply
Lemma 2.8 or Lemma 2.10 to conclude that C, — (V(C,) \ {c,4,d,}) has at least two
Hamiltonian paths between ¢, and d,. For each such path P,, (F;, — z,) U P, is a
Hamiltonian cycle in G, and we add a neighbor to » in T', and this vertex is a leaf of
T. Thus, dp(u) > 3. The distance between the root and any leaf in T is ¢. Moreover,
for any vertex w € V(T') which is not the root or a leaf, dp(w) > 3. So T has at least

29 > 27" leaves. Hence, G has at least 27""* Hamiltonian cycles. 0
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