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NUMBER OF HAMILTONIAN CYCLES IN PLANAR
TRIANGULATIONS⇤

XIAONAN LIU† AND XINGXING YU†

Abstract. Whitney proved in 1931 that 4-connected planar triangulations are Hamiltonian.
Hakimi, Schmeichel, and Thomassen conjectured in 1979 that if G is a 4-connected planar triangu-
lation with n vertices, then G contains at least 2(n � 2)(n � 4) Hamiltonian cycles, with equality
if and only if G is a double wheel. On the other hand, a recent result of Alahmadi, Aldred, and
Thomassen states that there are exponentially many Hamiltonian cycles in 5-connected planar tri-
angulations. In this paper, we consider 4-connected planar n-vertex triangulations G that do not
have too many separating 4-cycles or have minimum degree 5. We show that if G has O(n/log2n)

separating 4-cycles, then G has ⌦(n2) Hamiltonian cycles, and if �(G) � 5, then G has 2⌦(n1/4)

Hamiltonian cycles. Both results improve previous work. Moreover, the proofs involve a “double
wheel” structure, providing further evidence to the above conjecture.
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1. Introduction. A cycle C in a connected graph G is said to be separating if
the graph obtained from G by deleting C is not connected. For any positive integer
k, a k-cycle is a cycle of length k. A separating 3-cycle is also known as a separating

triangle. A planar triangulation is a plane graph in which every face is bounded by a
triangle (i.e., 3-cycle).

In 1931, Whitney [10] showed that every planar triangulation without separating
triangles is Hamiltonian. In 1956, Tutte [9] proved that every 4-connected planar
graph is Hamiltonian. Thomassen [8] showed in 1983 that every 4-connected planar
graph is Hamiltonian connected, i.e., for any distinct vertices x and y there exists a
Hamiltonian path between x and y. Thus, every 4-connected planar graph has more
than one Hamiltonian cycle.

Hakimi, Schmeichel, and Thomassen [4] proved in 1979 that every 4-connected
planar triangulation has at least n/ log2 n Hamiltonian cycles. Recently, Brinkmann,
Sou↵riau, and Van Cleemput [3] improved the lower bound to 12

5 (n � 2). Consider
a double wheel, a planar triangulation obtained from a cycle by adding two vertices
and all edges from these two vertices to the cycle. Observe that a double wheel with
n vertices has precisely 2(n� 2)(n� 4) Hamiltonian cycles. Hakimi, Schmeichel, and
Thomassen [4] conjectured that, among 4-connected planar triangulations, the double
wheels have the smallest number of Hamiltonian cycles.

Conjecture 1.1 (Hakimi, Schmeichel, and Thomassen, 1979). If G is a 4-
connected planar triangulation with n vertices, then G has at least 2(n � 2)(n � 4)
Hamiltonian cycles, with equality if and only if G is a double wheel.

This conjecture remains open and appears to be di�cult. There are natural re-
lated questions one can ask: What can we say about the number of Hamiltonian cycles
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1006 XIAONAN LIU AND XINGXING YU

in 5-connected planar triangulations? What about 4-connected planar triangulations
without many separating 4-cycles or with minimum degree at least 5?

Recently, Lo [6] showed that every 4-connected n-vertex planar triangulation with
O(log n) separating 4-cycles has ⌦((n/ log n)2) Hamiltonian cycles. In this paper, we
improve Lo’s result by weakening its hypothesis and strengthening its conclusion to
a quadratic bound.

Theorem 1.2. Let G be a 4-connected planar triangulation with n vertices and

O(n/ log2 n) separating 4-cycles. Then G has ⌦(n2) Hamiltonian cycles.

Alahmadi, Aldred, and Thomassen [1] proved that every 5-connected n-vertex pla-

nar triangulation has 2⌦(n) Hamiltonian cycles, improving the earlier bound 2⌦(n1/4)

of Böhme, Harant, and Tkáč [2]. We prove the following result which improves
the result of Böhme, Harant, and Tkáč by replacing the 5-connectedness condition
with“minimum degree 5.”

Theorem 1.3. Let G be a 4-connected planar triangulation with n vertices and

minimum degree 5. Then G has 2⌦(n1/4)
Hamiltonian cycles.

In section 2, we discuss a key idea in [1] used to show the existence of exponentially
many Hamiltonian cycles in a 5-connected planar triangulation. We also collect several
known results on “Tutte paths” in planar graphs and use them to see when a certain
planar graph has at least two Hamiltonian paths between two given vertices.

In section 3, we prove Theorem 1.2. Basically, we show that if a 4-connected
planar triangulation G does not have too many separating 4-cycles, then either G has
a large independent set with nice properties or G has two vertices with many common
neighbors (i.e., G has a large structure which resembles a double wheel). In either
case, we can find the desired number of Hamiltonian cycles in G.

In section 4, we prove Theorem 1.3. We will see that if a 4-connected planar
triangulation G has minimum degree 5, then either G has a large independent set
with nice properties, or G has two vertices with a lot of common neighbors, or G has
many separating 4-cycles. For the first two possibilities, we use similar arguments as
in the proof of Theorem 1.2. For the third possibility, we show that there are many
separating 4-cycles in G which either have pairwise disjoint interiors or are all pairwise
“nested.” In both cases, we can find many Hamiltonian cycles in G.

We conclude this section with some terminology and notation. Let G and H
be graphs. We use G [ H and G \ H to denote the union and intersection of G
and H, respectively. For any S ✓ V (G), we use G[S] to denote the subgraph of G
induced by S and let G � S denote the graph obtained from G by deleting S and
all edges of G incident with S. A set S ✓ V (G) is a cut in G if G � S has more
components than G, and if |S| = k, then S is a cut of size k or k-cut for short.
For a subgraph T of G, we often write G � T for G � V (T ) and write G[T ] for
G[V (T )]. A path (respectively, cycle) is often represented as a sequence (respectively,
cyclic sequence) of vertices with consecutive vertices being adjacent. Given a path P
and distinct vertices x, y 2 V (P ), we use xPy to denote the subpath of P between
x and y.

Let G be a graph. For each v 2 V (G), we use NG(v) to denote the neighborhood
of v in G, and if there is no confusion we omit the reference to G. If H is a subgraph
of G, we write H ✓ G. For any set R consisting of 1-element or 2-element subsets
of V (G), we use H +R to denote the graph with vertex set V (H) [ (R \ V (G)) and
edge set E(H)[ (R\V (G)). If R = {{x, y}} (respectively, R = {v}), we write H+xy
(respectively, H + v) instead of H +R.

D
ow

nl
oa

de
d 

04
/0

1/
22

 to
 1

43
.2

15
.1

16
.8

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NUMBER OF HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS 1007

Let G be a plane graph. The outer walk of G consists of vertices and edges of G
incident with the infinite face of G. If the outer walk is a cycle in G, we call it outer
cycle instead. If all vertices of G are incident with its infinite face, then we say that
G is an outer planar graph. For a cycle C in G, we use C to denote the subgraph of
G consisting of all vertices and edges of G contained in the closed disc bounded by
C. The interior of C is then defined as the subgraph C�C. For any distinct vertices
u, v 2 V (C), we use uCv to denote the subpath of C from u to v in clockwise order.

2. Preliminaries. Alahmadi, Aldred, and Thomassen [1] recently proved that
if G is a 5-connected n-vertex planar triangulation, then G has an independent set S
of ⌦(n) vertices such that G�F is 4-connected for each set F consisting of |S| edges
of G that are incident with S. There are 2⌦(n) choices of F . Hence, applying the
above mentioned theorem of Tutte to each G�F , it follows from a simple calculation
that G has 2⌦(n) Hamiltonian cycles.

How could a cut of size at most 3 occur after removing from a 4-connected planar
triangulation such a set F of edges incident with an independent set S? Alahmadi, Al-
dred, and Thomassen [1] observed that this could happen if a vertex in S is contained
in a separating 4-cycle, or a vertex in S is adjacent to three vertices of a separating
4-cycle, or two vertices in S are contained in a separating 5-cycle, or three vertices
in S occur in some 9-vertex graph called a diamond-6-cycle. A diamond-6-cycle is a
graph isomorphic to the graph shown on the left in Figure 1, in which the vertices of
degree 3 are called crucial vertices. We also define diamond-4-cycle here for later use;
it is a graph isomorphic to the graph shown on the right in Figure 1, where the two
degree 3 vertices not adjacent to the degree 2 vertex are its crucial vertices.

Formally, let S be an independent set in a graph G. We say that S saturates a
4-cycle or 5-cycle C in G if |S \ V (C)| = 2, and S saturates a diamond-6-cycle D in
G if S contains three crucial vertices of D.

The following result for 5-connected planar triangulations was proved by Alah-
madi, Aldred, and Thomassen [1]. Lo [6] observed that it is essentially true for certain
4-connected planar triangulations. We further observe that a slight variation holds for
4-connected planar triangulations with minimum degree 5. We provide a proof here as
it is short and gives the key idea used in [1] for proving the existence of exponentially
many Hamiltonian cycles in 5-connected planar triangulations.

Lemma 2.1. Let S be an independent set in a 4-connected planar triangulation G
with |V (G)| � 6, and assume that the following conditions hold:

(i) all vertices in S have degree at most 6;
(ii) S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle;

Fig. 1. Diamond-6-cycle and diamond-4-cycle.

D
ow

nl
oa

de
d 

04
/0

1/
22

 to
 1

43
.2

15
.1

16
.8

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1008 XIAONAN LIU AND XINGXING YU

(iii) �(G) � 5, or no vertex in S is contained in a separating 4-cycle; and
(iv) no vertex in S is adjacent to 3 vertices of any separating 4-cycle.

Let F be any subset of E(G) with |F | = |S| edges such that for each vertex v 2 S,
there is exactly one edge in F incident with v. Then G� F is 4-connected and has a

Hamiltonian cycle. Moreover, if C is a collection of Hamiltonian cycles in G formed

by taking precisely one Hamiltonian cycle from G � F for each choice of F , then

|C| � (3/2)|S|
.

Proof. First, suppose G� F is 4-connected for all possible choices of F . Then S
contains no vertex of degree 4 in G, so by (i), all vertices in S have degree 5 or 6 in
G. Let a1 and a2 denote the number of vertices in S of degree 5 and 6, respectively.
There are 5a16a2 choices of the edge set F ✓ E(G), with precisely one edge from
each vertex in S. For each choice of F , G� F has a Hamiltonian cycle by a result of
Tutte. Let C be a collection of Hamiltonian cycles in G obtained by taking precisely
one Hamiltonian cycle from each G � F . Then each Hamiltonian cycle of G in C
is chosen at most (5 � 2)a1(6 � 2)a2 = 3a14a2 times. Thus |C| � (5/3)a1(6/4)a2 �
(3/2)a1+a2 = (3/2)|S|.

Now suppose there exists an F such that G � F is not 4-connected. Let K be
a minimal cut of G � F , so |K|  3. Let G1, G2 be subgraphs of G � F such that
G�F = G1[G2, V (G1\G2) = K, E(G1\G2) = ;, and V (Gi) 6= K for i = 1, 2. Let
F 0 be the set of the edges between G1 �K and G2 �K in G. Then F 0 ✓ F . Since G
is 4-connected, G�K is connected, so F 0 6= ;.

Since G is a 4-connected planar triangulation, for each e 2 F 0, the two vertices
incident with e have exactly two common neighbors, which must be contained in K.
Hence, |K| � 2.

Also observe that, for any two edges e1, e2 2 F 0, there do not exist distinct
vertices u, v 2 K such that all vertices incident with e1 or e2 are contained in NG(u)
and NG(v). For, otherwise, the vertices u and v form a 4-cycle with the two vertices
in S that are incident with e1 or e2, contradicting (ii).

By the above observations, |F 0| 
�|K|

2

�
. Moreover, |K| = 3, as otherwise |K| = 2

and |F 0| 
�2
2

�
= 1, contradicting the assumption that G is 4-connected. Hence,

1  |F 0|  3.
Suppose |F 0| = 1, and let uv 2 F 0 with u 2 S. Then G[K [ {v}] or G[K [ {u}]

is a separating 4-cycle in G (as |V (G)| � 6). Now, G[K [ {v}] is not a separating
4-cycle in G; otherwise, G[K [{v}] has three neighbors of u, contradicting (iv). Then
G[K [ {u}] is a separating 4-cycle in G. Thus, dG(v) = 4, and the vertex u 2 S is
contained in a separating 4-cycle in G, which contradicts (iii).

If |F 0| = 2, then let u, v 2 S be incident with the edges in F 0. We see that
G[K [ {u, v}] contains a 5-cycle, contradicting (ii). So |F 0| = 3, and let u, v, w 2 S be
incident with the edges in F 0. Since S saturates no 4-cycle by (ii), F 0 is a matching in
G. But then we see that G[K [ {u, v, w}] contains a diamond-6-cycle in which u, v, w
are crucial vertices, contradicting (ii).

We need the following result from Lo [6].

Lemma 2.2 (Lo, 2020). Let G be a 4-connected planar triangulation, and let S
be an independent set of vertices of degree at most 6 in G such that S saturates no

4-cycle in G. Then there exists a subset S0 ✓ S of size at least |S|/541 such that S0

saturates no 5-cycle in G.

Lo [6] also observed that the following lemma stated for 5-connected planar tri-
angulations in [1] actually holds for 4-connected planar triangulations.
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NUMBER OF HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS 1009

Lemma 2.3 (Alahmadi, Aldred, and Thomassen, 2020; Lo, 2020). Let G be a

4-connected planar triangulation, and let S be an independent set of vertices of degree

at most 6 in G such that S saturates no 4-cycle in G. Then there exists a subset

S0 ✓ S of size at least |S|/301 such that S0
saturates no diamond-6-cycle in G.

Lo [6] proved a lemma implying that any 4-connected planar triangulation has a
large independent set or contains two vertices with a lot of common neighbors.

Lemma 2.4 (Lo, 2020). Let G be a 4-connected planar triangulation. Let S be

an independent set of vertices of degree at most 6, and let S0
be a maximal subset

of S such that S0
saturates no 4-cycle in G. Then there exist two distinct vertices

v, x 2 V (G) such that |N(v) \N(x)| � |S|/(9|S0|).
We use Lemma 2.4 to derive the following result, which will be applied by setting

t = bc log2 nc or t = bcn1/4c for some constant c > 0.

Lemma 2.5. Let G be a 4-connected planar triangulation with n vertices. For any

positive integer t, one of the following holds:

(i) There exist two distinct vertices v, x 2 V (G) such that |N(v) \N(x)| > t.
(ii) There is an independent set S of vertices of degree at most 6 in G such that

S saturates no 4-cycle in G and |S| � n/(108t).

Proof. Since each vertex of G has degree at least 4 and |E(G)| = 3n�6 by Euler’s
formula, there exist at least n/3 vertices of degree at most 6 in G. Therefore, by the
four color theorem, G has an independent set I of vertices of degree at most 6 such
that |I| � n/12.

Let S be a maximal subset of I such that S saturates no 4-cycle in G. If |S| �
n/(108t), then (ii) holds. So assume |S| < n/(108t). By Lemma 2.4, there exist
v 6= x 2 V (G) such that |N(v) \N(x)| � |I|/(9|S|) � (n/12)/(9n/108t) > t.

Note that when Lemma 2.5 is applied later, we always have t � 2, and v, x are
nonadjacent as G is 4-connected.

We now show that if G does not have too many separating 4-cycles, then the
independent set in Lemma 2.5 may be required to satisfy additional properties.

Lemma 2.6. Let G be a 4-connected planar triangulation with n vertices and at

most c1n/ log2 n separating 4-cycles, where c1 = (108⇥ 16⇥ 541⇥ 301⇥ 2)�1
. Then

one of the following holds:

(i) There exist non-adjacent vertices v, x 2 V (G) such that |N(v) \ N(x)| >
b16 log2 nc.

(ii) G has an independent set S with |S| � c1n/ log2 n such that

(a) all vertices in S have degree at most 6;
(b) S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle;
(c) no vertex in S is contained in a separating 4-cycle; and
(d) no vertex in S is adjacent to 3 vertices of a separating 4-cycle.

Proof. Suppose (i) does not hold. Then by Lemma 2.5, G has an independent set
S1 of vertices of degree at most 6 such that S1 saturates no 4-cycle in G and |S1| �
n/(108 ⇥ 16 log2 n). By Lemma 2.2, there exists S2 ✓ S1 such that |S2| � |S1|/541
and S2 saturates no 4-cycle or 5-cycle in G. By Lemma 2.3, there exists S3 ✓ S2 such
that

|S3| � |S2|/301 � |S1|/(541⇥ 301) � 2c1n/ log2 n

and S3 saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G. Thus S3 satisfies (a)
and (b).

D
ow

nl
oa

de
d 

04
/0

1/
22

 to
 1

43
.2

15
.1

16
.8

8 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1010 XIAONAN LIU AND XINGXING YU

To obtain S ✓ S3 such that S satisfies (c) and (d), we show that, for any sep-
arating 4-cycle C in G, |V (C) \ S3| + |T (C)|  1, where T (C) := {v 2 S3 \ V (C) :
|N(v) \ V (C)| � 3}. Let C be an arbitrary separating 4-cycle in G. Note that
|V (C)\S3|  1, since S3 is independent and satisfies (b). Also note that |T (C)|  1,
for any two vertices in T (C) are contained in a 4-cycle, a contradiction, as S3 satisfies
(b). Moreover, if |V (C) \ S3| = 1, then |T (C)| = 0, for any v 2 T (C) and the vertex
in V (C) \ S3 are contained in a 4-cycle, a contradiction, as S3 satisfies (b). Hence,
|V (C) \ S3|+ |T (C)|  1.

Let S = S3 \
S

C((V (C)\S3)[T (C)). Then S satisfies (c) and (d), in addition to
(a) and (b). Since G has at most c1n/ log2 n separating 4-cycles, |

S
C((V (C) \ S3) [

T (C))|  c1n/ log2 n. Hence, |S| � |S3|� c1n/ log2 n � c1n/ log2 n. So (ii) holds.

From time to time, we need to find at least two Hamiltonian paths between two
given vertices in a subgraph of a planar triangulation. For this, we need several results
on “Tutte paths” in planar graphs which are defined using the notion of “bridge.” Let
G be a graph and H ✓ G. An H-bridge of G is a subgraph of G induced by either an
edge in E(G) \E(H) with both incident vertices in V (H) or all edges in G�H with
at least one incident vertex in a single component of G �H. For an H-bridge B of
G, the vertices in V (B \H) are the attachments of B on H.

A path P in a graph G is called a Tutte path if every P -bridge of G has at most
three attachments on P . If in addition, every P -bridge of G containing an edge of
some subgraph C of G has at most two attachments on P , then P is called a C-Tutte

path in G. When proving that 4-connected planar graphs are Hamiltonian connected,
Thomassen [8] proved a stronger result on Tutte paths in 2-connected planar graphs.

Lemma 2.7 (Thomassen, 1983). Let G be a 2-connected plane graph and C be

its outer cycle, and let x 2 V (C), y 2 V (G) \ {x}, and e 2 E(C). Then G has a

C-Tutte path P between x and y such that e 2 E(P ).

Note that if the graph G in Lemma 2.7 has no 2-cut contained in V (C) and no
3-cut separating C from some vertex in V (G) \ V (C) and e 6= xy, then the path P
is in fact a Hamiltonian path between x and y in G. Later when we say that “by
Lemma 2.7, we find a Hamiltonian path P” we are actually using this observation.

A near triangulation is a plane graph in which all faces except possibly its infinite
face are bounded by triangles. We now derive a simple result on the number of
Hamiltonian paths between two given vertices in near triangulations.

Lemma 2.8. Let G be a near triangulation with outer cycle C := uvwxu, and

assume that G 6= C+vx and G has no separating triangles. Then one of the following

holds:

(i) G� {v, x} has at least two Hamiltonian paths between u and w.
(ii) G� {v, x} is a path between u and w and, hence, outer planar.

Proof. If vx 2 E(G), then G = C + vx or G has a separating triangle, contra-
dicting our assumption. So vx /2 E(G). Then G � {v, x} has a path from u to w,
say, Q. Since G has no separating triangles, each block of G � {v, x} contains an
edge of Q. Hence, the blocks of G� {v, x} can be labeled as B1, . . . , Bt, and the cut
vertices of G � {v, x} can be labeled as b1, . . . , bt�1 such that V (Bi \ Bi+1) = {bi}
for i = 1, . . . , t � 1, and V (Bi \ Bj) = ; when |i � j| � 2. Let b0 = u and bt = w.
Moreover, let Ci denote the outer walk of Bi for 1  i  t. See Figure 2.

If |V (Bi)| = 2 for 1  i  t, then (ii) holds. Hence, we may assume that
|V (Bs)| � 3 for some s, where 1  s  t. Then bs�1bs /2 E(Bs), as otherwise,
vbs�1bsv or xbs�1bsx would be a separating triangle in G. Let e1, e2 be the edges of
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Fig. 2. The blocks B1, . . . , Bt.

Cs incident with bs�1. By Lemma 2.7, Bs has a Cs-Tutte path P j
s between bs�1 and

bs such that ej 2 E(P j
s ) for j = 1, 2. Since G has no separating triangles, P 1

s and P 2
s

are Hamiltonian paths in Bs.
For each 1  i  t with i 6= s, if |V (Bi)| � 3, we apply Lemma 2.7 to Bi and

find a Hamiltonian path Pi between bi�1 and bi in Bi; if |V (Bi)| = 2, let Pi = bi�1bi.
Then (

S
i 6=s Pi)[P 1

s and (
S

i 6=s Pi)[P 2
s are distinct Hamiltonian paths in G� {v, x}

between u and w. So (i) holds.

We also need the following result of Thomas and Yu [7], which was used to extend
Tutte’s theorem on Hamiltonian cycles in planar graphs to projective planar graphs.

Lemma 2.9 (Thomas and Yu, 1994). Let G be a 2-connected plane graph with

outer cycle C, and let u, v 2 V (C) and e, f 2 E(C) such that u, e, f, v occur on

C in clockwise order. Then G has a uCv-Tutte path P between u and v such that

e, f 2 E(P ).

We now use Lemma 2.9 to prove a result similar to Lemma 2.8.

Lemma 2.10. Let G be a near triangulation with outer cycle C := uvwxu, and
assume that G has no separating triangles. Then one of the following holds:

(i) G� {w, x} is an outer planar near triangulation.

(ii) G� {w, x} has at least two Hamiltonian paths between u and v.

Proof. We apply induction on |V (G)|. If |V (G)| = 4, then we see that (i) holds
trivially. So assume |V (G)| � 5. Then uw, vx /2 E(G), as G has no separating
triangles.

We may assume that u, v each have at least two neighbors in V (G) \ V (C). For,
otherwise, by symmetry assume that u has a unique neighbor in V (G) \ V (C), say,
u0. Now G0 := G� u is a near triangulation with outer cycle C 0 := u0vwxu0, and G0

has no separating triangles. Hence, by induction, G0 � {w, x} is an outer planar near
triangulation, or G0�{w, x} has at least two Hamiltonian paths between u0 and v. In
the former case, (i) holds; in the latter case, (ii) holds by extending the Hamiltonian
paths in G0 from u0 to u along the edge u0u.

Next, we claim that (G�{w, x})�u or (G�{w, x})�v is 2-connected. For, suppose
(G�{w, x})�u is not 2-connected. Then (G�{w, x})�u can be written as the union
of two subgraphs B1 and B2 such that |V (B1\B2)|  1, B1�B2 6= ;, and B2�B1 6= ;.
Without loss of generality, assume that v 2 V (B2). (Indeed, v 2 V (B2) \ V (B1).)
We further choose B1, B2 to minimize B1. Then B1 is connected, and B1 has no cut
vertex. By planarity, there exists a unique vertex y 2 NG(w) \NG(x). If y 2 V (B2),
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1012 XIAONAN LIU AND XINGXING YU

then V (B1 \ B2) [ {u, x} is a 2-cut in G or induces a separating triangle in G, a
contradiction. So y 2 V (B1) \ V (B2). Now u has a neighbor in V (B1) \ V (B2),
as otherwise, V (B1 \ B2) [ {w, x} is a 2-cut in G or induces a separating triangle
in G, a contradiction. This implies that G[B1 + u] is 2-connected. Now, we repeat
this argument for (G � {w, x}) � v. Suppose (G � {w, x}) � v is not 2-connected.
Then (G � {w, x}) � v can be written as the union of two subgraphs B0

1 and B0
2

such that |V (B0
1 \ B0

2)|  1, B0
1 � B0

2 6= ;, B0
2 � B0

1 6= ;, and u /2 V (B0
1) \ V (B0

2).
Then, since G[B1 + u] is 2-connected and y 2 V (B1) \ V (B2), we have y 2 V (B0

2).
Now, V (B0

1 \ B0
2) [ {v, w} is a 2-cut in G or induces a separating triangle in G, a

contradiction.
By symmetry, we may assume that H := (G� {w, x})� u is 2-connected. Let D

denote the outer cycle of H, and let u1, u2 2 NG(u) \ V (D) such that u1 2 NG(x)
and u2 2 NG(v). Since u has at least two neighbors in V (G) \ V (C), u1 6= u2. Let
y 2 NG(w)\NG(x). Choose an edge e 2 E(D) incident with y and an edge f 2 E(D)
incident with u1. By Lemma 2.7, H has a D-Tutte path P between u1 and v such
that e 2 E(P ). By Lemma 2.9, H has a vDu2-Tutte path Q between u2 and v such
that e, f 2 E(Q). Since G has no separating triangles, we see that both P,Q are
Hamiltonian paths in H. Now P [ u1u and Q [ u2u are distinct Hamiltonian paths
in G� {w, x} between u and v, and (ii) holds.

Later we will need the following result of Jackson and Yu [5] on Hamiltonian cycles
through more than two given edges in planar triangulations. This result was used to
show that planar triangulations with few separating triangles are Hamiltonian.

Lemma 2.11 (Jackson and Yu, 2002). Let G be a planar triangulation with no

separating triangles. Let T, T1, T2 be distinct triangles in G. Let V (T ) = {u, v, w}.
Then there exists a Hamiltonian cycle C in G and edges e1 2 E(T1), e2 2 E(T2) such
that uv, uw, e1, e2 are distinct and contained in E(C).

3. Planar triangulations with few separating 4-cycles. In this section, we
consider 4-connected planar triangulations without many separating 4-cycles, as a
natural relaxation of 5-connected planar triangulations. The main objective here is
to show that the number of Hamiltonian cycles in such graphs is quadratic in the
number of vertices. First, we need the following result.

Lemma 3.1. Let c1 = (108 ⇥ 16 ⇥ 541 ⇥ 301 ⇥ 2)�1
, and let G be a 4-connected

planar triangulation with n vertices and at most c1n/ log2 n separating 4-cycles. Then
for any two edges e, f in a triangle in G, there are at least c21n Hamiltonian cycles in

G containing both e and f .

Proof. We apply induction on the number of vertices in G. If n  1/c21, then
the result follows from Lemma 2.11 that every 4-connected planar triangulation has
a Hamiltonian cycle containing two given edges in a triangle. We may thus assume
that n � 1/c21.

Let e, f be two edges of G such that e, f 2 E(T ) for some triangle T . Without
loss of generality, we may assume that T is the outer cycle of G. By Lemma 2.6, there
are nonadjacent vertices v, x 2 V (G) such that |N(v)\N(x)| > b16 log2 nc, or G has
an independent set S of size at least c1n/ log2 n satisfying (a), (b), (c), and (d) in
Lemma 2.6.

Suppose G contains an independent set S of size at least c1n/ log2 n and satisfying
(a), (b), (c), and (d) in Lemma 2.6. Then S1 := S \ V (T ) is an independent set of
size at least c1n/ log2 n � 1, as S has at most 1 vertex in V (T ). Let F ✓ E(G) be
obtained by choosing precisely one edge incident with each vertex in S1; then G� F
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NUMBER OF HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS 1013

is 4-connected by Lemma 2.1. Let V (T ) = {u, v, w} such that e = uv and f = vw.
By Lemma 2.7, G � F has a T -Tutte path PF between v and w and containing the
edge e. Since G� F is 4-connected, CF := PF + f is a Hamiltonian cycle in G� F .
Now form a collection C by, for each choice of F , taking from G � F exactly one
Hamiltonian cycle CF that contains e and f . Then all cycles in C are Hamiltonian
cycles in G containing e and f . By Lemma 2.1,

|C| � (3/2)|S1| � (3/2)(c1n/ log
2
n)�1 � c21n,

since n � 1/c21.
Thus, we may assume that there are nonadjacent vertices v, x 2 V (G) such that

|N(v) \N(x)| > b16 log2 nc. Let C = uvwxu such that N(v) \N(x) ✓ V (C). Note
that C is a near triangulation and T 6✓ C (as T bounds the infinite face of G). Since G
is 4-connected, C � {v, x} has a path between u and w, and every block of C � {v, x}
contains an edge of that path. Hence, the blocks of C � {v, x} can be labeled as
B1, . . . , Bt, and the vertices in N(v) \ N(x) can be labeled as u0, u1, . . . , ut�1, ut

such that V (Bi \ Bi+1) = {ui} for 1  i  t � 1, Bi \ Bj = ; when |i � j| � 2,
u0 = u 2 V (B1 � u1), and ut = w 2 V (Bt � ut�1).

Observe that for 1  j  t, if |V (Bj)| � 3, then we use Lemma 2.7 to conclude
that Bj has at least two Hamiltonian paths between uj�1 and uj .

Case 1. |{i : |V (Bi)| � 3}| � 2 log2 n.
Let G⇤ denote the graph obtained from G by contracting C�C to a single vertex

v⇤. Then G⇤ is a 4-connected planar triangulation (and v⇤ has degree 4 in G⇤).
Hence, by applying Lemma 2.7, we see that G⇤ has a Hamiltonian cycle C⇤ such that
e, f 2 E(C⇤).

If uv⇤, wv⇤ 2 E(C⇤), then the union of C⇤ � v⇤ and a Hamiltonian path between
u and w in

St
i=1 Bi is a Hamiltonian cycle in G containing both e and f . By the

above observation,
St

i=1 Bi has at least 22 log
2
n = n2 Hamiltonian paths between u

and w. Hence, the number of Hamiltonian cycles in G containing both e and f is at
least n2 � c21n.

Now assume uv⇤, vv⇤ 2 E(C⇤). Then the union of C⇤ � v⇤ and a Hamiltonian
path between u and v in C � {w, x} is a Hamiltonian cycle in G. By the above
observation,

St�1
i=1 Bi has at least 22 log

2
n�1 = n2/2 Hamiltonian paths between u and

ut�1. By Lemma 2.7, G[(Bt � w) + v] has a Hamiltonian path between ut�1 and v
(and containing NG(w) \NG(v)). The union of any such two paths is a Hamiltonian
path between u and v in C � {x,w}, and, hence, the number of such paths is at
least n2/2. Thus, G has at least n2/2 � c21n Hamiltonian cycles containing both
e and f .

Similarly, we can show that G has at least n2/2 � c21n Hamiltonian cycles con-
taining both e and f if uv⇤, xv⇤ 2 E(C⇤), or vv⇤, wv⇤ 2 E(C⇤), or wv⇤, xv⇤ 2
E(C⇤).

So assume vv⇤, xv⇤ 2 E(C⇤). Then the union of C⇤� v⇤ and a Hamiltonian path
between x and v in C� {u,w} is a Hamiltonian cycle in G. By the above observation
again,

St�1
i=2 Bi has at least 22 log

2
n�2 = n2/4 Hamiltonian paths between u1 and ut�1.

By applying Lemma 2.7, we see that G[(B1�u)+ v] has a Hamiltonian path between
v and u1 (and containing NG(u) \ NG(x)), and G[(Bt � w) + x] has a Hamiltonian
path between ut�1 and x (and containing NG(w)\NG(v)). The union of these three
paths is a Hamiltonian path between v and x in C � {u,w}, and there are at least
n2/4 of such paths. Hence, G has at least n2/4 � c21n Hamiltonian cycles containing
both e and f .
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1014 XIAONAN LIU AND XINGXING YU

Case 2. |{i : |V (Bi)| � 3}| < 2 log2 n.
Then there exists some integer k with 0  k  t � 7 such that |V (Bi)| = 2 for

i = k, k + 1, . . . , k + 7. Without loss of generality, we may assume k = 0. Then ui,
1  i  6, all have degree 4 in G. Let G⇤ be obtained from G by contracting the edge
u3u4 to a vertex, denoted by u⇤. Then G⇤ is a 4-connected planar triangulation with
n � 1 vertices and at most c1(n � 1)/log2(n� 1) separating 4-cycles. By induction,
G⇤ contains at least c21(n � 1) Hamiltonian cycles through both e and f . These
Hamiltonian cycles in G⇤ can be modified inside the 4-cycle u2vu5xu2 to give at least
c21(n� 1) Hamiltonian cycles in G, all of which use the edge u3u4. Therefore, G has
at least c21(n � 1) Hamiltonian cycles containing e, f , and the edge u3u4. Hence, to
complete the proof of this lemma, it su�ces to find a Hamiltonian cycle in G using e
and f but not the edge u3u4, as c21(n� 1) + 1 � c21n.

Consider G0 := (G⇤ � u⇤) + u2u5, which is a 4-connected planar triangulation
with n� 2 vertices. Consider the triangles T1 := vu2u5v and T2 := xu2u5x in G0. By
Lemma 2.11, G0 has a Hamiltonian cycle C 0 that contains both e and f as well as
edges e1 2 E(T1) and e2 2 E(T2) such that e, f, e1, e2 are all distinct. We show that
C 0 gives rise to a Hamiltonian cycle in G containing both e and f but not the edge
u3u4. By symmetry, we may assume that e1 = vu2 and that e2 = u2u5, or e2 = u2x,
or e2 = u5x but u2u5 /2 E(C 0).

First, suppose e2 = u2u5. Then u1u2 /2 E(C 0), and, hence, vu1 2 E(C 0) or
xu1 2 E(C 0). If vu1 2 E(C 0), then (C 0 � {u2, v}) [ u1u2u3vu4u5 is a Hamiltonian
cycle in G containing e and f but not u3u4. If xu1 2 E(C 0), then (C 0 � {xu1, u2}) [
u1u2u3x [ vu4u5 is a Hamiltonian cycle in G containing e, f but not u3u4.

Now suppose e2 = u2x. Then u1u2 /2 E(C 0); hence vu1 2 E(C 0) or xu1 2 E(C 0).
Note that in this case we have symmetry between v and x. Hence, by this symmetry,
we may assume vu1 2 E(C 0). Then (C 0 � {u2, v}) [ u1u2u3vu4x is a Hamiltonian
cycle in G containing both e and f but not u3u4.

Finally, suppose e2 = u5x but u2u5 /2 E(C 0). Then (C 0 � {u2v, u5x}) [ u2u3v [
xu4u5 is a Hamiltonian cycle in G containing e and f but not u3u4.

We are ready to prove Theorem 1.2, using Lemma 3.1 as well as the idea used in
its proof.

Proof of Theorem 1.2. Let c1 = (108⇥16⇥541⇥301⇥2)�1. We apply induction
on n, the number of vertices in G, to show that G has at least c41n

2 Hamiltonian
cycles. It is easy to check that the assertion holds when n  1/c21 + 1, as G has at
least two Hamiltonian cycles by Lemma 2.7. So assume that n � 1/c21 + 2.

By Lemma 2.6, G has two nonadjacent vertices v and x such that |N(v)\N(x)| >
b16 log2 nc, or G contains an independent set S of size at least c1n/ log2 n such that
S satisfies (a), (b), (c), and (d) in Lemma 2.6 and, hence, (i), (ii), (iii), and (iv)
in Lemma 2.1. In the latter case, it follows from Lemma 2.1 that G has at least
(3/2)|S| � (3/2)c1n/ log

2
n � c41n

2 Hamiltonian cycles. So we may assume that the
former occurs.

Let C = uvwxu such that N(v) \ N(x) ✓ V (C). Note that C is a near trian-
gulation. Moreover, since G is 4-connected, C � {v, x} has a path from u to w, and
every block of C � {v, x} contains an edge of that path. So the blocks of C � {v, x}
can be labeled as B1, . . . , Bt, and the vertices in N(v) \ N(x) can be labeled as
u0, u1, . . . , ut�1, ut such that V (Bi\Bi+1) = {ui} for 1  i  t�1, Bi\Bj = ; when
|i� j| � 2, u0 = u 2 V (B1 � u1), and ut = w 2 V (Bt � ut�1).

Consider G0 := G � (C � C) as a near triangulation with C as its outer cycle,
which is 3-connected. By Lemma 2.7, there exists a C-Tutte path P between u and
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NUMBER OF HAMILTONIAN CYCLES IN PLANAR TRIANGULATIONS 1015

w in G0 containing the edge uv, which is in fact a Hamiltonian path in G0. To find
the desired number of Hamiltonian cycles in G using P , we need to find at least c41n

2

Hamiltonian paths in C � {v, x} between u and w.
Observe that for 1  j  t, if |V (Bj)| � 3, then a simple application of Lemma 2.7

shows that Bj has at least two Hamiltonian paths between uj�1 and uj . Hence, if
|{i : |V (Bi)| � 3}| � 2 log2 n, then C � {v, x} has at least 22 log

2
n = n2 Hamiltonian

paths between u and w, which, together with P , gives at least n2 � c41n
2 Hamiltonian

cycles in G. So assume |{i : |V (Bi)| � 3}| < 2 log2 n. Then there exists some integer k
with 0  k  t�7 such that |V (Bi)| = 2 for k+1  i  k+7. Since G is 4-connected,
dG(ui) = 4 for k + 1  i  k + 6. Without loss of generality, we may assume k = 0.

Let G⇤ be obtained from G by contracting u3u4 into a single vertex, say, u⇤, which
has degree 4 in G⇤. Then G⇤ is a 4-connected planar triangulation with n�1 vertices
and at most c1(n � 1)/log2(n� 1) separating 4-cycles. By induction, G⇤ contains
c41(n � 1)2 Hamiltonian cycles, each using exactly two edges incident with u⇤. It is
routine to check that these cycles can be modified inside the 4-cycle u2vu5xu2 to give
at least c41(n� 1)2 Hamiltonian cycles in G, all containing the edge u3u4.

To obtain additional Hamiltonian cycles in G, we consider H := (G⇤�u⇤)+u2u5,
which is a 4-connected planar triangulation with n � 2 � 1/c21 vertices and at most
c1(n� 2)/log2(n� 2) separating 4-cycles.

Note that vu2u5v is a facial triangle in H, which can be turned into the outer
cycle for a di↵erent embedding of H. So by Lemma 3.1, H has at least c21(n � 2)
Hamiltonian cycles through both vu2 and vu5. For each such cycle, say, D, we see
that (D�v)[u2u3vu4u5 is a Hamiltonian cycle in G not containing the edge u3u4 (as
they use u3vu4), and, hence, is di↵erent from the Hamiltonian cycles in G obtained
previously by modifying those c41(n� 1)2 Hamiltonian cycles in G⇤.

Similarly, since xu2u5x is a facial triangle in H, we can find at least c21(n � 2)
new Hamiltonian cycles in G containing u3xu4. Hence, G has at least c41(n � 1)2 +
2c21(n� 2) � c41n

2 Hamiltonian cycles.

4. Planar triangulations with minimum degree 5. In this section, we con-
sider 4-connected planar triangulations with minimum degree 5, another natural relax-
ation of 5-connected planar triangulations. Before we present a proof of Theorem 1.3,
we need the following result.

Lemma 4.1. Let G be a 4-connected planar triangulation with n vertices and min-

imum degree �(G) � 5. Then one of the following holds:

(i) G has 2⌦(n1/4)
Hamiltonian cycles.

(ii) G has an independent set S of vertices of degree at most 6 such that |S| =
⌦(n3/4) and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle.

Proof. Let c > 0 be an arbitrary constant. By Lemma 2.5 (with t = bcn1/4c),
there exist nonadjacent vertices v, x in G such that |N(v)\N(x)| > bcn1/4c, or G has
an independent set S1 of vertices of degree at most 6 such that |S1| � n3/4/(108c) and
S1 saturates no 4-cycle in G. If the latter holds, then, by Lemma 2.2 and Lemma 2.3,
there exists a subset S of S1 such that |S| � |S1|/(541 ⇥ 301) � c0n3/4, where c0 =
(541 ⇥ 301 ⇥ 108c)�1, and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in
G, so (ii) holds. Thus we may assume that the former occurs.

Let C = uvwxu such that N(v)\N(x) ✓ V (C). Since G is 4-connected, C�{v, x}
has a path, say, Q, between u and w. Let N(v) \ N(x) = {u0, u1, . . . , uk} with
k � bcn1/4c such that u0 = u, uk = w, and u0, u1, . . . , uk occur on Q in order.
Since G is a 4-connected planar triangulation, the blocks of C � {v, x} can be labeled
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1016 XIAONAN LIU AND XINGXING YU

as B1, . . . , Bk such that ui�1, ui 2 V (Bi) for i = 1, . . . , k and Bi \ Bj = ; for
i, j 2 {1, 2, . . . , k} with |i� j| � 2.

For each Bi with |V (Bi)| � 3, ui�1ui /2 E(G) as G is 4-connected. Thus, if
|V (Bi)| � 3, then Bi is a near triangulation that has no separating triangles, and, by
applying Lemma 2.7, we can find two Hamiltonian paths between ui�1 and ui in Bi.
Since �(G) � 5, we see that |V (Bi)| � 3 or |V (Bi+1)| � 3 for i = 1, . . . , k � 1. Thus,
|{i : |V (Bi)| � 3}| � (bcn1/4c � 1)/2. It is easy to see that C � {v, x} has at least

2(bcn
1/4c�1)/2 Hamiltonian paths between u and w.
We view C as the outer cycle of a di↵erent embedding of H := G� (C �C). By

Lemma 2.7, H has a C-Tutte path P between u and w, which is in fact a Hamiltonian
path in H. Now P and any Hamiltonian path in C � {v, x} between u and w form a

Hamiltonian cycle in G. So G has at least 2(bcn
1/4c�1)/2 Hamiltonian cycles, and (i)

holds.

Recall the definition of a diamond-4-cycle in Figure 1, and recall that the two
vertices contained in two triangles in a diamond-4-cycle are its crucial vertices. In the
proof of Theorem 1.3, we will need to consider the subgraph of a planar triangulation
that lie between two diamond-4-cycles and use the following result on Hamiltonian
paths in those subgraphs.

Lemma 4.2. Let G be a near triangulation with outer cycle C := uvwxu and with

no separating triangles, and let z 2 V (G)\V (C) have degree 4 in G such that G[N(z)]
is contained in a diamond-4-cycle D0

in G � z and all vertices in V (G) \ (V (C) [
{z} [N(z)) have degree at least 5 in G. Suppose

• V (D0) \ V (C) = ;; or
• V (D0)\V (C) consists of exactly two vertices that are non-adjacent in D0[C,

and one of these vertices is a crucial vertex of D0
; or

• V (D0) \ V (C) consists of exactly two vertices that are adjacent in both D0

and C, and none of these vertices is a crucial vertex of D0
.

Then one of the following holds:

(i) For any distinct a, b 2 V (C), G�(V (C)\{a, b}) has at least two Hamiltonian

paths between a and b.
(ii) There exist distinct a, b 2 V (C) such that G � (V (C) \ {a, b}) has a unique

Hamiltonian path, say, P , between a and b, but for any distinct c, d 2 V (C)
with {c, d} 6= {a, b}, G � (V (C) \ {c, d}) has at least two Hamiltonian paths

between c and d and avoiding an edge of P incident with z.

Proof. Let C 0 := G[N(z)] = u0v0w0x0u0, and let y0 2 V (G) such that y0u0, y0v0, y0x0

2 E(D0). Then y0 and u0 are crucial vertices of D0. Without loss of generality assume
that u0, v0, w0, x0 occur on C 0 in clockwise order and that u, v, w, x occur on C in
clockwise order.

Case 1. V (D0) \ V (C) = ;.
Then z is not incident with the infinite face of G � V (C). So for any distinct

a, b 2 V (C), G�(V (C)\{a, b}) cannot be an outer planar graph. Thus, by Lemma 2.8
or Lemma 2.10, G � (V (C) \ {a, b}) has at least two Hamiltonian paths between a
and b. So (i) holds.

Case 2. V (D0) \ V (C) consists of exactly two vertices that are nonadjacent in
D0 [ C, and one of these vertices is a crucial vertex of D0.

Then V (D0) \ V (C) = {y0, w0}, and V (D0) \ V (C) = {u,w} or V (D0) \ V (C) =
{v, x}. Without loss of generality, we may assume u = y0 and w = w0.
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For distinct a, b 2 V (C) with ab /2 E(C), {a, b} = {u,w} or {a, b} = {v, x}.
Since dG(v0) � 5 and dG(x0) � 5, G � (V (C) \ {a, b}) cannot be a path. Therefore,
by Lemma 2.8, G � (V (C) \ {a, b}) has at least two Hamiltonian paths between
a and b.

Now we consider a, b 2 V (C) with ab 2 E(C). Then, u0 or z is not incident with
the infinite face of G�(V (C)\{a, b}), so G�(V (C)\{a, b}) cannot be an outer planer
graph. Hence, by Lemma 2.10, G�(V (C)\{a, b}) has at least two Hamiltonian paths
between a and b.

Case 3. V (D0) \ V (C) consists of exactly two vertices that are adjacent in both
D0 and C, and none of these vertices is a crucial vertex of D0.

Then V (D0) \ V (C) = {v0, w0} or V (D0) \ V (C) = {x0, w0}. By the symmetry
among the edges in C and between the two orientations of C, we may assume V (D0)\
V (C) = {v, w}. Further by the symmetry between v0 and x0, we may assume that
v = v0 and w = w0.

Claim 1. For any distinct a, b 2 V (C) with {a, b} 6= {u, x}, G�(V (C)\{a, b})
has at least two Hamiltonian paths between a and b.

If {a, b} = {u,w} or {a, b} = {v, x}, then the claim follows from Lemma 2.8 (as
dG(y0) � 5). If {a, b} = {v, w} or {a, b} = {v, u}, then u0 is not incident with the
infinite face of G� (V (C) \ {a, b}), so the claim follows from Lemma 2.10.

Now suppose {a, b} = {w, x}. Suppose G� (V (C) \ {w, x}), i.e., G� {u, v}, has
exactly one Hamiltonian path between w and x. Then by Lemma 2.10, G � {u, v}
is an outer planar graph. Now x0 is incident with the infinite face of G � {u, v}, so
x0u, x0x 2 E(G). Also, y0 is incident with the infinite face of G�{u, v}, so y0u 2 E(G).
Then, since dG(y0) � 5, ux0y0u or uy0vu is a separating triangle in G, a contradiction.
Thus, we have Claim 1.

Therefore, if G � (V (C) \ {u, x}), i.e., G � {v, w}, has two Hamiltonian paths
between u to x, then (i) follows from Claim 1. Hence, we may assume that H :=
G�{v, w} has at most one Hamiltonian paths between u and x. Then by Lemma 2.10,
H is an outer planar graph, and the unique Hamiltonian path P in H between u and
x contains u0zx0, since z 2 NG(v)\NG(w), V (uPz) ✓ NG(v) and V (zPx) ✓ NG(w).

Note that dG(u0) = dG(z) = 4 and u0x0zu0 is a triangle in H � {u, x} = G� C.
Claim 2. H�u has two Hamiltonian paths P1, P2 between z and x, and H�x
has two Hamiltonian paths Q1, Q2 between z and u.

We only consider H � u, as the case for H � x can be taken care of by the same
argument. Suppose H�u is 2-connected. Then let F denote the outer cycle of H�u.
By Lemma 2.7, H � u contains F -Tutte paths P1, P2 between z and x such that
zu0 2 E(P1) and zx0 2 E(P2). We claim that P1, P2 are in fact Hamiltonian paths in
H � u. For suppose otherwise, and let B be a Pi-bridge of H � u with B�Pi 6= ; for
some i 2 {1, 2}. Recall that P � u ✓ F , V (uPz) ✓ NG(v), and V (zPx) ✓ NG(w).
To avoid separating triangles in G, the unique vertex in NP (u), say, u⇤, is in B � Pi.
Hence, we see that dG(u⇤) = 4, a contradiction.

Now assume that H �u is not 2-connected. Then since u0, z are the only vertices
in V (G) \ V (C) with degree 4 in G, x has a unique neighbor in H � u, say, x⇤, and
(H�u)�x is 2-connected. Moreover, x⇤ 6= x0, as, otherwise, y0 would have degree 4 in
G. Let F denote the outer cycle of (H �u)�x. By Lemma 2.7, (H �u)�x contains
F -Tutte paths R1, R2 between z and x⇤ such that zu0 2 E(R1) and zx0 2 E(R2).
Note that P � {u, x} ✓ F , V (uPz) ✓ NG(v), and V (zPx) ✓ NG(w). As in the
previous paragraph, we see that R1, R2 are Hamiltonian paths in (H � u) � x, since
G has no separating triangles. So R1 [ x⇤x,R2 [ x⇤x are Hamiltonian paths between
z and x in H � u. This completes the proof of Claim 2.
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1018 XIAONAN LIU AND XINGXING YU

We now show that (ii) holds, with {a, b} = {u, x}. Let c, d 2 V (C) be distinct
such that {c, d} 6= {u, x}. If {c, d} = {u,w}, then Q1 [ zw,Q2 [ zw are distinct
Hamiltonian paths in G � {v, x} = G � (V (C) \ {c, d}) between u and w and not
containing u0zx0. If {c, d} = {v, x}, then P1 [ zv, P2 [ zv are distinct Hamiltonian
paths in G� {u,w} = G� (V (C) \ {c, d}) between v and x and not containing u0zx0.
If {c, d} = {u, v}, then Q1[zv,Q2[zv are distinct Hamiltonian paths in G�{w, x} =
G� (V (C)\{c, d}) between u and v and not containing u0zx0. If {c, d} = {w, x}, then
P1 [ zw, P2 [ zw are distinct Hamiltonian paths in G� {u, v} = G� (V (C) \ {a, b})
between w and x and not containing u0zx0.

Thus to prove that (ii) holds, it remains to consider {c, d} = {v, w}. Then
G� (V (C) \ {c, d}) = G� {u, x}. Using the fact that H = G� {v, w} is outer planer
with P as its unique Hamiltonian path between u and x, we see that G�{u, x, w} has
a Hamiltonian path R1 between z and v, and G � {u, x, v} has a Hamiltonian path
R2 between z and w. Hence, R1 [ zw and R2 [ zv are distinct Hamiltonian paths
between v and w in G� {u, x} and not containing u0zx0.

Proof of Theorem 1.3. By Lemma 4.1, we may make the following assumption
for some constant c > 0.

(1) G has an independent set S of vertices of degree 5 or 6 such that |S| � cn3/4

and S saturates no 4-cycle, or 5-cycle, or diamond-6-cycle in G.
Let S⇤ consist of all vertices in S that are each adjacent to exactly 3 vertices of

a separating 4-cycle in G. We may make the following assumption.
(2) |S⇤| � cn3/4/2.

For, otherwise, |S \ S⇤| � cn3/4/2. Then, since �(G) � 5, we can apply Lemma 2.1

to G,S \ S⇤ and conclude that G has at least (3/2)|S\S⇤| � (3/2)cn
3/4/2 > 2cn

1/4/2

Hamiltonian cycles, and the assertion of Theorem 1.3 holds. So we may assume (2).
For convenience, we use D, for any diamond-4-cycle D, to denote the subgraph of

G consisting of vertices and edges of G in the closed disc bounded by the outer cycle
of D.

We now define a collection D of diamond-4-cycles that are associated with vertices
in S⇤, one for each vertex in S⇤. For each v 2 S⇤, v is adjacent to three vertices of
some separating 4-cycle, say, Cv, and, since �(G) � 5, Dv := G[Cv + v] is a diamond-
4-cycle in G. Note that v is a crucial vertex of Dv. For every v 2 S⇤, we choose Dv

so that Dv is maximal. Now let D = {Dv : v 2 S⇤}. Clearly, if u 6= v 2 S⇤, then
Du 6= Dv (as S⇤ does not saturate any 4-cycle in G). Thus |D| = |S⇤| � cn3/4/2. We
now prove the following claim.

(3) For distinct u, u0 2 S⇤, |V (Du) \ V (Du0)|  2. Moreover, if V (Du) \ V (Du0)
consists of two vertices, say, a and b, then either ab 2 E(Du) \ E(Du0) and
neither a nor b is a crucial vertex of Du or Du0 , or ab /2 E(Du)[E(Du0) and
Du, Du0 each have precisely one crucial vertex in {a, b}.

To prove (3), let u, u0 2 S⇤ be distinct. Then u0 /2 V (Du), as otherwise u, u0 are
contained in a 4-cycle inDu, a contradiction as S⇤ saturates no 4-cycle in G. Similarly,
u /2 V (Du0). Moreover, |N(u0) \ V (Du)|  1, for otherwise u, u0 are contained in a
4-cycle or 5-cycle in G[Du + u0], a contradiction as S⇤ saturates no 4-cycle or 5-cycle
in G. Likewise, |N(u) \ V (Du0)|  1. Therefore, |V (Du) \ V (Du0)|  2.

Now suppose V (Du) \ V (Du0) = {a, b} with a 6= b. If ab 2 E(Du) \ E(Du0),
then ab and two edges in D0

u form a separating triangle in G, a contradiction. So
ab /2 E(Du) \ E(Du0). Similarly, ab /2 E(Du0) \ E(Du).

If ab 2 E(Du) \E(Du0), then neither a nor b is a crucial vertex in Du or Du0 , as
otherwise u and u0 would be contained in 4-cycle or 5-cycle in G. If ab /2 E(Du) [
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E(Du0), then Du and Du0 each have exactly one crucial vertex in {a, b}, to avoid a
4-cycle or 5-cycle containing {u, u0}. This completes the proof of (3).

By (3), for any D1, D2 2 D, either D1 � D1 and D2 � D2 are disjoint, or D1

contains D2 or vice versa. We may assume the following.
(4) There exists an integer t � n1/2 and D1, D2, . . . , Dt 2 D such that D1 ◆

D2 ◆ · · · ◆ Dt.
For, otherwise, there exists some integer k � cn1/4/2 and diamond-4-cyclesD1, . . . , Dk

2 D such that Di �Di and Dj �Dj are disjoint whenever 1  i 6= j  k. Let G⇤ be
obtained from G by contracting Di �Di to a new vertex vi for all 1  i  k. Then
G⇤ is a 4-connected planar triangulation and, hence, has a Hamiltonian cycle, say, C.

Let ai, bi 2 NG⇤(vi) such that aivibi ✓ C for 1  i  k. Let Ci denote the 4-cycle
in G such that Di �Di is the interior of Ci. Then, Ci ✓ Di and Ci � Ci = Di �Di.
Since all vertices in Ci � Ci have degree at least 5, Ci � (V (Ci) \ {ai, bi}) cannot be
outer planar. So by Lemma 2.8 or Lemma 2.10, Ci � (V (Ci) \ {ai, bi}) has at least
two Hamiltonian paths between ai and bi.

We can form a Hamiltonian cycle in G by taking the union of C�{vi : 1  i  k}
and by selecting one Hamiltonian path between ai and bi in each Ci�(V (Ci)\{ai, bi})
for 1  i  k. Thus, G has at least 2k � 2cn

1/4/2 Hamiltonian cycles, completing the
proof of (4).

For each 1  j  t, let uj and yj be the crucial vertices of Dj , and let vj , wj , xj be
the other vertices of Dj , so that yjvjwjxjyj is the outer cycle of Dj and yj , vj , xj 2
NG(uj). Then uj 2 S⇤ or yj 2 S⇤. Let Cj := ujvjwjxjuj . Then by (4), C1 ◆
C2 ◆ · · · ◆ Ct. For j = 1, . . . , t � 1, let Gj denote the graph obtained from Cj by
contracting Cj+1 � Cj+1 to a new vertex, denoted by zj+1. Note that Gj is a near
triangulation with outer cycle Cj and that Gj contains the diamond-4-cycle Dj+1.
For convenience, let Gt := Ct. We claim the following.

(5) For any j 2 {1, . . . , t�1}, if |V (Cj)\V (Dj+1)| = 1, then, for any distinct a, b
2 V (Cj), Gj � (V (Cj) \ {a, b}) has two Hamiltonian paths between a and b.

For, suppose V (Cj) \ V (Dj+1) = {v}. If v = yj+1, then zj+1 is not incident with
the infinite face of Gj � Cj , so Gj � Cj is not outer planar, and, by Lemma 2.8 or
Lemma 2.10, for any distinct a, b 2 V (Cj), Gj � (V (Cj) \{a, b}) has two Hamiltonian
paths between a and b. If v = wj+1, then uj+1 is not incident with the infinite face
of Gj � Cj , so again by Lemma 2.8 or Lemma 2.10, for any distinct a, b 2 V (Cj),
Gj � (V (Cj) \ {a, b}) has two Hamiltonian paths between a and b. Thus, we may
assume without loss of generality that v = vj = vj+1.

For {a, b} = {uj , wj} or {a, b} = {vj , xj}, since dGj (yj+1) = dG(yj+1) � 5, it
follows from Lemma 2.8 that Gj�(V (Cj)\{a, b}) has two Hamiltonian paths between
a to b. For {a, b} = {vj , uj} or {a, b} = {vj , wj}, since zj+1 is not incident with the
infinite face of Gj � (V (Cj) \ {a, b}), Gj � (V (Cj) \ {a, b}) has two Hamiltonian paths
between a and b by Lemma 2.10. For {a, b} = {wj , xj}, since dGj (yj+1) � 5, xj+1 is
not incident with the infinite face of Gj � (V (Cj)\{a, b}), it follows from Lemma 2.10
that Gj � (V (Cj) \ {a, b}) has two Hamiltonian paths between a and b.

Finally, consider {a, b} = {uj , xj}. Suppose Gj � (V (Cj)\{a, b}) = Gj �{vj , wj}
has a unique Hamiltonian path between a and b. Then Gj � {vj , wj} is outer planar,
so xj+1 is incident with the infinite face of Gj �{vj , wj}, and, hence, xj+1wj 2 E(G).
Therefore, D0

j+1 := (Dj+1 � wj+1) [ vj+1wjxj+1 is a diamond-4-cycle containing

{uj+1, yj+1}, and D0
j+1 properly contains Dj+1. Thus D0

j+1 contradicts the choice of
Dj+1. So Gj � (V (Cj) \ {a, b}) has at least two Hamiltonian paths between a and b.
This completes the proof of (5).
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We may assume the following.
(6) There exists some integer k with 1  k  t � n1/4, and there exist distinct

aj , bj 2 V (Cj) for k  j  k + bn1/4c such that, for k  j  k + bn1/4c � 1,
Gj � (V (Cj) \ {aj , bj}) has a unique Hamiltonian path Pj between aj and bj ,
and Pj contains aj+1zj+1bj+1.

For j = 1, . . . , t, let Hj denote the graph obtained from G by contracting Cj � Cj to
a new vertex zj . Let Ht+1 := G. Note that Hj , 1  j  t+1, are 4-connected planar
triangulations.

We see that H1 has a Hamiltonian cycle, say, F1, and let a1, b1 2 V (C1) such that
a1z1b1 ✓ F1. We now define a rooted tree T whose root r represents F1 and whose
leaves are Hamiltonian cycles in G. Recall the graphs Gj , 1  j  t.

For each Hamiltonian path P1 in G1 � (V (C1) \ {a1, b1}) between a1 and b1,
F2 := (F1 � z1) [ P1 is a Hamiltonian cycle in H2; we add a neighbor to r in T to
represent F2. This defines all vertices of T at distance 1 from the root r. Now, suppose
we have defined all vertices of T at distance s from r for some s with 1  s  t � 1,
each of which represents a Hamiltonian cycle in Hs+1. To define the vertices of T at
distance s+1 from r, we let v be an arbitrary vertex in T that is at distance s from r.
Then v represents a Hamiltonian cycle Fs+1 in Hs+1. Let as+1, bs+1 2 V (Fs+1) such
that as+1zs+1bs+1 ✓ Fs+1. For each Hamiltonian path Ps+1 in Gs+1 � (V (Cs+1) \
{as+1, bs+1}) between as+1 and bs+1, Fs+2 := (Fs+1 � zs+1) [ Ps+1 is a Hamiltonian
cycle in Hs+2; we add a neighbor to v in T to represent Fs+2. This process continues
until s = t � 1. Then the leaves of T correspond to distinct Hamiltonian cycles in
Ht+1 = G. Note that, by construction, the distance in T between the root and any
leaf is t.

If T has a path of length bn1/4c whose internal vertices are of degree 2 in T , then
(6) holds. So assume no such path exists in T . We obtain the tree T ⇤ from T by
contracting all edges of T incident with degree 2 vertices in T . Then all vertices in
T ⇤, except the leaves and possibly the root, have degree at least 3. Since each leaf of
T has distance t � n1/2 from the root r, the distance between the root and any leaf in

T ⇤ is at least n1/4. Hence, T ⇤ and, thus, T both have at least 2n
1/4

leaves. Therefore,

G has at least 2n
1/4

Hamiltonian cycles. This proves (6).
Without loss of generality, we may assume k = 1 in (6), i.e., for each 1  j  1+

bn1/4c, there exist aj , bj 2 V (Cj) such that, for 1  j  bn1/4c, Gj�(V (Cj)\{aj , bj})
has a unique Hamiltonian path Pj between aj and bj , and Pj contains aj+1zj+1bj+1.
For the sake of simplicity, let q := 1 + bn1/4c.

By (3) and (5), we see that Dj+1, Cj , and Gj , for 1  j  q � 1, satisfy the
conditions in Lemma 4.2 (with Dj+1, Cj , Gj as D0, C,G, respectively, in Lemma 4.2).
Hence, by Lemma 4.2, we know that, for 1  j  q � 1, if {cj , dj} ✓ V (Cj) and
{cj , dj} 6= {aj , bj}, then Gj � (V (Cj) \ {cj , dj}) has at least two Hamiltonian paths
between cj and dj but not containing aj+1zj+1bj+1. Recall that for 1  j  q, Hj

denotes the graph obtained from G by contracting Cj � Cj to a new vertex zj .
Let c1, d1 2 V (C1) be distinct such that {c1, d1} 6= {a1, b1}. Then by Lemma 2.7,

G� (C1 �C1) has a Hamiltonian path Q between c1 and d1. In H1, F1 = Q[ c1z1d1
is a Hamiltonian cycle. We now define a rooted tree T whose root r represents F1

and whose leaves are Hamiltonian cycles in G.
By (6) (where we assume k = 1), G1 � (V (C1) \ {c1, d1}) has at least two

Hamiltonian paths between c1 and d1 and not containing a2z2b2. For each such
Hamiltonian path P1, we see that (F1 � z1) [ P1 is a Hamiltonian cycle in H2,
and we add a vertex to T representing (F1 � z1) [ P1 and make it adjacent to
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r. This defines all vertices of T within distance 1 from r. Note that dT (r) � 2.
Now suppose we have defined the vertices of T at distance s from r for some s
with 1  s < q � 1, each representing a Hamiltonian cycle in Hs+1 not containing
as+1zs+1bs+1. To define the vertices of T that are at distance s + 1 from r, let v be
an arbitrary vertex of T at distance s from r. Then v corresponds to a Hamiltonian
cycle Fs+1 in Hs+1 not containing as+1zs+1bs+1. Let cs+1, ds+1 2 V (Cs+1) be distinct
such that cs+1zs+1ds+1 ✓ Fs+1. Then {cs+1, ds+1} 6= {as+1, bs+1}. Hence, by (6),
Gs+1� (V (Cs+1)\{cs+1, ds+1}) has at least two Hamiltonian paths between cs+1 and
ds+1 and not containing as+2zs+2bs+2. For each such path Ps+1, (Fs+1�zs+1)[Ps+1

is a Hamiltonian cycle in Hs+2 not containing as+2zs+2bs+2, and we add a neighbor
to v in T to represent (Fs+1 � zs+1)[Ps+1. Thus, dT (v) � 3. We repeat this process
for s = 1, . . . , q � 2.

For an arbitrary vertex u of T that has distance q � 1 from r in T , it represents
a Hamiltonian cycle Fq in Hq. Assume cqzqdq ✓ Fq. Since �(G) = 5, we may apply
Lemma 2.8 or Lemma 2.10 to conclude that Cq � (V (Cq) \ {cq, dq}) has at least two
Hamiltonian paths between cq and dq. For each such path Pq, (Fq � zq) [ Pq is a
Hamiltonian cycle in G, and we add a neighbor to u in T , and this vertex is a leaf of
T . Thus, dT (u) � 3. The distance between the root and any leaf in T is q. Moreover,
for any vertex w 2 V (T ) which is not the root or a leaf, dT (w) � 3. So T has at least

2q � 2n
1/4

leaves. Hence, G has at least 2n
1/4

Hamiltonian cycles.
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