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Kühn, Osthus, and Treglown and, independently, Khan 
proved that if H is a 3-uniform hypergraph with n vertices, 
where n ∈ 3Z and large, and δ1(H) >

(n−1
2

)
−

(2n/3
2

)
, 

then H contains a perfect matching. In this paper, we 
show that for n ∈ 3Z sufficiently large, if F1, . . . , Fn/3
are 3-uniform hypergraphs with a common vertex set and 
δ1(Fi) >

(n−1
2

)
−

(2n/3
2

)
for i ∈ [n/3], then {F1, . . . , Fn/3}

admits a rainbow matching, i.e., a matching consisting of one 
edge from each Fi. This is done by converting the rainbow 
matching problem to a perfect matching problem in a special 
class of uniform hypergraphs.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

For any positive integer k and any set S, let [k] := {1, . . . , k} and 
(S
k

)
:= {T ⊆ S :

|T | = k}. A hypergraph H consists of a vertex set V (H) and an edge set E(H) ⊆ 2V (H), 
and we write e(H) := |E(H)| and often identify E(H) with H. For a positive integer k, 
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a hypergraph H is said to be k-uniform if E(H) ⊆
(V (H)

k

)
, and a k-uniform hypergraph 

is also called a k-graph.
A matching in a hypergraph H is a set of pairwise disjoint edges in H, and we use 

ν(H) to denote the maximum size of a matching in H. The problem for finding maximum 
matchings in hypergraphs is NP-hard, even for 3-graphs [17]. It is of interest to find good 
sufficient conditions that guarantee large matchings.

Erdős [8] conjectured in 1965 that, for positive integers k, n, t, if H is a k-graph on 
n vertices and ν(H) < t then e(H) ≤ max

{(kt−1
k

)
,
(n
k

)
−
(n−t+1

k

)}
. This bound is tight 

because of the complete k-graph on kt −1 vertices and the k-graph on n vertices in which 
every edge intersects a fixed set of t − 1 vertices. For recent progress on this conjecture, 
see [4,5,9,10,13,16,22]. In particular, Frankl [9] proved that if n ≥ (2t − 1)k− (t − 1) and 
ν(H) < t then e(H) ≤

(n
k

)
−

(n−t+1
k

)
. This result was further improved by Frankl and 

Kupavskii [11].
There has been extensive study on degree conditions for large matchings in uniform 

hypergraphs. Let H be a hypergraph and T ⊆ V (H). The degree of T in H, denoted by 
dH(T ), is the number of edges in H containing T . For any integer l ≥ 0, let δl(H) :=
min{dH(T ) : T ∈

(V (H)
l

)
} denote the minimum l-degree of H. Hence, δ0(H) = e(H). 

Note that δ1(H) is often called the minimum vertex degree of H. For u ∈ V (H), let 
NH(u) := {e : e ⊆ V (H) \ {u} and e ∪ {u} ∈ E(H)}. When there is no confusion, we 
also view NH(u) as a hypergraph with vertex set V (H) \ {u} and edge set NH(u).

For integers n, k, d satisfying 0 ≤ d ≤ k − 1 and n ∈ kZ, let md(k, n) denote the 
minimum integer m such that every k-graph H on n vertices with δ(H) ≥ m has a perfect 
matching. Kühn, Osthus and Treglown [20] and, independently, Khan [18] determined 
m1(k, n) for k = 3 and large n. Khan [19] also determined m1(k, n) for k = 4 and large n. 
For d = k− 1, mk−1(k, n) was determined for large n by Rödl, Ruciński, and Szemerédi 
[24]. This result was generalized by Treglown and Zhao [26] to the range k/2 ≤ d ≤ k−1, 
where they also determined the extremal families.

There are attempts to extend the above conjecture of Erdős to a family of hypergraphs. 
Let F = {F1, . . . , Ft} be a family of hypergraphs. A set of pairwise disjoint edges, 
one from each Fi, is called a rainbow matching for F . (In this situation, we also say 
that F or {F1, . . . , Ft} admits a rainbow matching.) Aharoni and Howard [3] made 
the following conjecture, which first appeared in Huang, Loh, and Sudakov [16]: Let 
t be a positive integer and F = {F1, . . . , Ft} such that, for i ∈ [t], Fi ⊆

([n]
k

)
and 

e(Fi) > max
{(kt−1

k

)
,
(n
k

)
−
(n−t+1

k

)}
; then F admits a rainbow matching. Huang, Loh, 

and Sudakov [16] showed that this conjecture holds when n > 3k2t, and Frankl and 
Kupavskii [12] showed that this conjecture holds when n ≥ 12tk log(e2t).

In this paper, we prove a degree version of the above conjecture for rainbow matchings, 
which extends the results of Kühn, Osthus, and Treglown [20] and, independently, of 
Khan [18] for 3-graphs to families of 3-graphs.
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Theorem 1.1. Let n ∈ 3Z be positive and sufficiently large and let F = {F1, . . . , Fn/3}
be a family of n-vertex 3-graphs such that V (Fi) = V (F1) for i ∈ [n/3]. If δ1(Fi) >(n−1

2
)
−

(2n/3
2

)
for i ∈ [n/3], then F admits a rainbow matching.

The bound on δ1(Fi) in Theorem 1.1 is sharp. To see this, let m ≤ n/3 and let H(n, m)
denote a 3-graph that is isomorphic to the 3-graph with vertex set [n] and edge set

{
e ∈

([n]
3

)
: e ! [m] and e ∩ [m] (= ∅

}
.

Note that for n ∈ 3Z, δ1(H(n, n/3 − 1)) =
(n−1

2
)
−

(2n/3
2

)
and H(n, n/3 − 1) has no 

perfect matching. Hence, the family of n/3 copies of H(n, n/3 − 1) admits no rainbow 
matching.

To prove Theorem 1.1, we convert this rainbow matching problem to a perfect match-
ing problem for a special class of hypergraphs. For any integer k ≥ 2, a k-graph H
is (1, k − 1)-partite if there exists a partition of V (H) into sets V1, V2 (called partition 
classes) such that for any e ∈ E(H), |e ∩V1| = 1 and |e ∩V2| = k−1. A (1, k−1)-partite 
k-graph with partition classes V1, V2 is balanced if (k − 1)|V1| = |V2|.

Let n ∈ 3Z, let P and Q be disjoint sets such that |P | = n and |Q| = n/3, and let 
Q = {v1, . . . , vn/3}. Let F = {F1, . . . , Fn/3} be a family of 3-graphs on the same vertex 
set P . We use H1,3(F) to represent the balanced (1, 3)-partite 4-graph with partition
classes Q, P and edge set 

⋃n/3
i=1 Ei, where Ei = {e ∪ {vi} : e ∈ E(Fi)} for i ∈ [n/3]. 

If E(Fi) = E(H(n, n/3)) and V (Fi) = V (H(n, n/3)) for all i ∈ [n/3], then we write 
H1,3(n, n/3) for H1,3(F). The following observations will be useful:

(i) E(Fi) is the neighborhood of vi in H1,3(F) for i ∈ [n/3], and F admits a rainbow 
matching if, and only if, H1,3(F) has a perfect matching.

(ii) e(Fi) ≥ n
3 δ1(Fi) for all i ∈ [n/3], and dH1,3(F)(v) ≥

∑n/3
i=1 δ1(Fi) for v ∈ P .

(iii) dH1,3(F)({u, v}) ≥
(n−1

2
)
−

(2n/3
2

)
+ 1 for all u ∈ P and v ∈ Q, provided δ1(Fi) ≥(n−1

2
)
−

(2n/3
2

)
+ 1 for i ∈ [n/3].

(iv) δ1(H1,3(F)) ≥ n
3

((n−1
2
)
−
(2n/3

2
)

+ 1
)
, provided dH1,3(F)({u, v}) ≥

(n−1
2
)
−
(2n/3

2
)
+

1 for all u ∈ P and v ∈ Q.

By observations (i) and (iii), Theorem 1.1 follows from the following result.

Theorem 1.2. Let n ∈ 3Z be positive and sufficiently large, and let H be a (1, 3)-partite 4-
graph with partition classes Q, P such that |P | = n and Q = n/3. Suppose dH({u, v}) ≥(n−1

2
)
−

(2n/3
2

)
+ 1 for all u ∈ P and v ∈ Q. Then H has a perfect matching.

To prove Theorem 1.2, we take the usual approach by considering whether or not H is 
close to some H1,3(n, n/3) on the same vertex set. Given ε > 0 and two k-graphs H1, H2
with V (H1) = V (H2), we say that H2 is ε-close to H1 if |E(H1) \ E(H2)| < ε|V (H1)|k.
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In Section 2, we prove Theorem 1.2 when H is close to some H1,3(n, n/3), using the 
structure of H1,3(n, n/3) to find a perfect matching in H greedily. This is the extremal 
case, as H1,3(n, n/3) is an extremal graph for Theorem 1.2.

In the non-extremal case, H is not close to any H1,3(n, n/3) on V (H). We first find 
a small matching M ′ in H that can be used to “absorb” small sets of vertices, then find 
an almost perfect matching M ′′ in H − V (M ′), and finally use M ′ to absorb V (H) \
V (M ′ ∪M ′′). A more detailed account is given in Section 6.

In Section 3, we prove an absorbing lemma for (1, 3)-partite 4-graphs, which can 
be used to find the absorbing matching M ′. In Section 5, we find the almost perfect 
matching M ′′ in H − V (M ′). For this, we use the approach of Alon et al. in [4] to find 
random subgraphs with desired properties (including the existence of perfect fractional 
matchings). However, we need to modify this approach to make it work, which is done 
in Section 4. First, we need the random subgraphs to be balanced. Second, in the non-
extremal case, the (1, 3)-partite 4-graphs do not have large sparse sets; so we also need 
to control the independence number of those random subgraphs, for which we use the 
hypergraph container result of Balogh et al. [7].

We remark that most of the work in this paper may be used to extend Theorem 1.2 to 
4-graphs. However, one of the key results needed is a stability result similar to Lemma 4.4
for 3-graphs. For additional references on matchings in hypergraphs, see [1,2,14,15].

2. The extremal case

In this section, we prove Theorem 1.2 for the case when H is close to some H1,3(n, n/3)
on V (H). First, we prove a result on rainbow matchings for a small family of hypergraphs, 
which will serve as induction basis for our proof.

Lemma 2.1. Let n, t, k be positive integers such that n > 2k4t. Let Fi, i ∈ [t], be n-vertex 
k-graphs with a common vertex set. If δ1(Fi) >

(n−1
k−1

)
−
(n−t
k−1

)
for i ∈ [t] then {F1, . . . , Ft}

admits a rainbow matching.

Proof. We apply induction on t. Note that the assertion is trivial when t = 1. So assume 
t > 1 and the assertion holds for t − 1. Then, since δ1(Fi) >

(n−1
k−1

)
−

(n−t
k−1

)
>

(n−1
k−1

)
−

(n−(t−1)
k−1

)
, {F1, . . . , Ft−1} admits a rainbow matching, say M .

Suppose for a contradiction that {F1, . . . , Ft} does not admit a rainbow matching. 
Then every edge of Ft must intersect M . So there exists v ∈ V (M) such that dFt(v) >
e(Ft)/(kt). Note that

δ1(Ft) >
(
n− 1
k − 1

)
−

(
n− t

k − 1

)
>

(
n− 1
k − 1

)(
1 −

(
1 − k − 1

n− 1

)k−1)
>

t(k − 1)
2(n− 1)

(
n− 1
k − 1

)
,

since n > 2k4t. So we have
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dFt(v) >
δ1(Ft)n/k

kt
>

t(k − 1)n
2(n− 1)k2t

(
n− 1
k − 1

)
>

1
2k2

(
n− 1
k − 1

)
.

Let F ′
i = Fi − v for i ∈ [t − 1]. Since

δ1(F ′
i ) ≥ δ1(Fi) −

(
n− 2
k − 2

)
>

(
n− 1
k − 1

)
−

(
n− t

k − 1

)
−
(
n− 2
k − 2

)
=

(
n− 2
k − 1

)
−

(
n− t

k − 1

)
,

it follows from induction hypothesis that {F ′
1, . . . , F

′
t−1} admits a rainbow matching, say 

M ′.
Note that the number of edges in Ft containing v and intersecting M ′ is at most

k(t− 1)
(
n− 2
k − 2

)
<

1
2k2

(
n− 1
k − 1

)
< dFt(v),

as n ≥ 2k4t. Hence, v is contained in some edge of Ft − V (M ′), say e. Now M ′ ∪ {e} is 
a rainbow matching for {F1, . . . , Ft}, a contradiction. !

Next, we prove Theorem 1.2 for the case when, for every vertex v, most of the edges 
of H1,3(n, n/3) containing v also lie in H. More precisely, given α > 0, H1,3(n, n/3), and 
a (1, 3)-partite 4-graph H with V (H) = V (H1,3(n, n/3)), we say that a vertex v ∈ V (H)
is α-good with respect to H1,3(n, n/3) if |NH1,3(n,n/3)(v) \NH(v)| ≤ αn3. Otherwise we 
say that v is α-bad with respect to H1,3(n, n/3).

Lemma 2.2. Let n be positive integer and H be a balanced (1, 3)-partite 4-graph on 4n/3
vertices, and let α be a constant with 0 < α < 2−12. If all vertices of H are α-good with 
respect to some H1,3(n, n/3) on V (H), then H has a perfect matching.

Proof. Let Q, P be the partition classes of H, and let U ∪ W be partition classes of 
H(n, n/3) such that |Q| = |W | = n/3, |U | = 2n/3, and V (H(n, n/3)) = P .

Let M be a matching in H that only uses edges consisting of two vertices from U
and one vertex from each of Q and W , and choose such M that |M | is maximum. Let 
Q′ := Q \ V (M), U ′ = U \ V (M), and W ′ = W \ V (M). Then |U ′|/2 = |W ′| = |Q′|.

Note that |M | ≥ n/4. For, otherwise, |U ′|/2 = |W ′| = |Q′| = n/3 − |M | > n/12. 
Then, by the maximality of M , we have, for any u ∈ U ′,

|NH1,3(n,n/3)(u) \NH(u)| ≥ |Q′||W ′|(|U ′|− 1) > n3/123 > αn3,

a contradiction.
Now suppose M is not a perfect matching in H. Then Q′, U ′, W ′ are all non-empty. 

Let v ∈ Q′, u1, u2 ∈ U ′ be distinct, and w ∈ W ′.
Let {e1, e2, e3} be an arbitrary set of three pairwise distinct edges from M . By the 

maximality of M , no matching of size 4 in H is contained in e1 ∪ e2 ∪ e3 ∪ {v, w, u1, u2}
and uses only edges with two vertices from U and one vertex from each of Q and W . 
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Hence, there exists S ∈ E(H1,3(n, n/3)) \E(H) such that S ⊆ e1∪e2∪e3∪{v, w, u1, u2}, 
|S ∩ ei| = 1 for i ∈ [3], |S ∩ {v, w, u1, u2}| = 1, and S has two vertices from U and one 
vertex from each of Q and W .

Note that there are 
(m

3
)

choices for {e1, e2, e3}, which result in distinct choices for S. 
So the number of edges in E(H1,3(n, n/3)) \ E(H) containing exactly one vertex from 
{v, w, u1, u2} is at least

(
m

3

)
≥

(
n/4
3

)
> n3/(210).

This implies that for some u ∈ {v, w, x1, x2},

|NH1,3(n,n/3)(u) \NH(u)| > n3/(212) > αn3,

a contradiction. !

Having proved the above two results, we are ready to complete the proof of Theo-
rem 1.2 in the case when H is close to some H1,3(n, n/3).

Lemma 2.3. Let n ∈ 3Z be positive and ε > 0 sufficiently small, and let H be a balanced 
(1, 3)-partite 4-graph with partition classes Q, P and 3|Q| = |P | = n. Suppose H is ε-
close to some H1,3(n, n/3) with P = V (H(n, n/3)). If dH({u, v}) ≥

(n−1
2
)
−

(2n/3
2

)
+ 1

for all u ∈ P and v ∈ Q, then H has a perfect matching.

Proof. Let U, W denote the partition of P = V (H(n, n/3)) such that |W | = |U |/2 = n/3. 
Note that |Q| = n/3. Let B denote the set of √ε-bad vertices of H with respect to
H1,3(n, n/3). Since H is ε-close to H1,3(n, n/3), we have |B| ≤ 4√εn. Let Q ∩ B =
{v1, . . . , vq} and Q = {v1, . . . , vn/3}, and let W ′ ⊆ W \ B such that |W ′| = n/3 − (q +
|W ∩B|) ≥ n/3 − 4√εn.

First, we find a matching M ′
0 in H−W ′ covering Q ∩B. For this, let Fi = NH(vi) −W ′

for i ∈ [n/3]. Note that, for i ∈ [n/3], δ1(NH(vi)) = min{dH({u, vi}) : u ∈ P} ≥(n−1
2
)
−

(2n/3
2

)
+ 1. Hence,

δ1(Fi) ≥ δ1(NH(vi)) −
((

n− 1
2

)
−

(
n− |W ′|− 1

2

))

>

(
n− |W ′|− 1

2

)
−

(2n/3
2

)

=
(
n− |W ′|− 1

2

)
−

(
n− |W ′|− (q + |W ∩B|)

2

)
.

Since |B| ≤ 4√εn, |W ′| ≥ n/3 − 4√εn and q + |W ∩B| < (n − |W ′|)/(2 · 34). Hence by 
Lemma 2.1, {F1, . . . , Fq+|W∩B|} admits a rainbow matching, say M0. Let M0 = {ei ∈
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E(Fi) : i ∈ [q + |W ∩ B|]}, and let M ′
0 = {ei ∪ {vi} : i ∈ [q + |W ∩ B|]}. Then M ′

0 is a 
matching in H and Q ∩B ⊆ V (M ′

0).
Next, we find a matching in H1 := H − V (M ′

0) covering B \ V (M ′
0), in two steps. 

Since ε is very small, we can choose η such that √ε + η + 1. We divide B \ V (M ′
0) to 

two disjoint sets B1, B2 such that, for each x ∈ B \ V (M ′
0), x ∈ B1 if, and only if, H1

has at least ηn3 edges each of which contains x and exactly one vertex in W ′.
We greedily pick a matching M1 in H1 such that B1 ⊆ V (M1) and every edge of M1

contains at least one vertex from B1 and exactly one vertex from W ′. This can be done 
since each time we pick an edge e for a vertex x ∈ B1, we have at least ηn3 choices and 
at most 4(4√εn)n2 (+ ηn3 as √ε + η) of which intersect a previously chosen edge.

Now we find a matching M2 in H2 := H1 − V (M1) such that B2 ⊆ V (M2). Note that

δ1(H2) ≥ δ1(H) − 4|M ′
0 ∪M1|n2 ≥ n

3

((
n− 1

2

)
−

(2n/3
2

)
+ 1

)
− 16

√
εn3.

Hence, for any x ∈ B2, the number of edges containing x and disjoint from W ′ is at least

δ1(H2) − ηn3 − |Q|
(
|W ′|

2

)
> ηn3,

as √ε + η + 1 and n/3 = |Q| ≥ |W ′|. Thus, since 
√
ε + η, we greedily find a matching 

M2 in H1 − V (M1) such that B2 ⊆ V (M2), M2 is disjoint from W ′, and every edge of 
M2 contains at least one vertex from B2.

Thus, M1 ∪M2 gives the desired matching in H1 := H − V (M ′
0) covering B \ V (M ′

0). 
Note that |M ′

0∪M1∪M2| ≤ (q+|W∩B|) +|B1| +|B2| ≤ 2|B| ≤ 8√εn. Also note that each 
vertex of H − V (M ′

0 ∪M1 ∪M2) is √ε-good in H (with respect to H1,3(n, n/3)). Thus, 
for every vertex u ∈ U−V (M ′

0∪M1∪M2), the number of edges of H−V (M ′
0∪M1∪M2)

containing u and exactly two vertices of W − V (M ′
0 ∪M1 ∪M2) is at least

n

3

(
n/3
2

)
−

√
εn3 − 4|M ′

0 ∪M1 ∪M2|n2 > ηn3,

as √εη + 1. Hence, we may greedily find a matching M ′
2 in H −V (M ′

0 ∪M1 ∪M2) such 
that |M ′

2| = |M2| and every edge of M ′
2 contains exactly two vertices of W ′.

Let M = M ′
0 ∪M1 ∪M2 ∪M ′

2 and m = |M |. Then m ≤ 8√εn. Let H3 = H − V (M). 
Let H1,3(n − 3m, n/3 −m) be obtained from H1,3(n, n/3) by removing V (M). Then, for 
any x ∈ V (H3),

|NH1,3(n−3m,n/3−m)(x) \NH3(x)|
≤ |NH1,3(n,n/3)(x) \NH(x)|
≤

√
εn3

≤ 2
√
ε(n− 3m)3.
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Thus, every vertex of H3 is 2√ε-good with respect to H1,3(n − 3m, n/3 − m). By 
Lemma 2.2, H3 contains a perfect matching, say M3. Now M3∪M is a perfect matching 
in H. !

3. Absorbing lemma

Our strategy to prove Theorem 1.2 is to find a small matching M ′ in H that can be 
used to “absorb” small sets of vertices, find an almost perfect matching M ′′ in H−V (M ′), 
and then use M ′ to absorb V (H) \V (M ′∪M ′′). In this section, we prove such an absorbing 
lemma for (1, 3)-partite 4-graphs. Our proof follows along the same lines as in [24].

Lemma 3.1. Let n ∈ 3Z be large enough and let H be a (1, 3)-partite 4-graph with partition 
classes Q, P such that 3|Q| = |P | and δ1(H) ≥ (n/3) 

((n−1
2
)
−
(2n/3

2
)

+ 1
)
. Let ρ, ρ′ be 

constants such that 0 < ρ′ + ρ + 1. Then H has a matching M ′ such that |M ′| ≤ ρn

and, for any subset S ⊆ V (H) \V (M ′) with |S| ≤ ρ′n and 3|S∩Q| = |S∩P |, H[S∪V (M ′)]
has a perfect matching.

Proof. We call a balanced 12-element set A ⊆ V (H) an absorbing set for a balanced 
4-element set T ⊆ V (H) if H[A] has a matching of size 3 and H[A ∪ T ] has a matching 
of size 4. Denote by L(T ) the collection of all absorbing sets for T . Then

(1) for every balanced T ∈
(V (H)

4
)
, |L(T )| > 10−8n12/12!.

Let T = {u0, u1, u2, u3} ∈
(V (H)

4
)

be balanced, with u0 ∈ Q and u1, u2, u3 ∈ P . We form 
an absorbing set for T by choosing four pairwise disjoint 3-sets U0, U1, U2, U3 in order.

First, we choose a 3-set U0 ⊆ P \ T such that U0 ∪ {u0} ∈ E(H). The number of 
choices for U0 is at least

dH(u0) − 3
(
n− 3

2

)
> δ1(H) − 3

(
n− 1

2

)
>

n

9

(
n− 1

2

)
.

Now fix a choice of U0, and let U0 = {w1, w2, w3}. Note that, for each x ∈ P , NH(x) is 
a subset of the union of {{x0, x1, x2} : x0 ∈ Q, x1, x2 ∈ P}. Hence, |NH(ui) ∪NH(wi)| ≤
n
3
(n
2
)
. Thus, for i ∈ [3],

|NH(ui) ∩NH(wi)| ≥
2n
3

((
n− 1

2

)
−

(2n/3
2

)
+ 1

)
− n

3

(
n

2

)
≥ n

30

(
n− 1

2

)
.

For i ∈ [3], we choose 3-sets Ui from (V (H) \ T ) \
⋃i−1

j=0 Uj such that Ui ∪ {ui} and 
Ui∪{wi} are both edges of H. For each choice of Uj, 0 ≤ j ≤ i −1, the number of choices 
for Ui is at least

|NH(ui) ∩NH(wi)|− 13(n/3)n ≥ n

30

(
n− 1

2

)
− 13n2/3 >

n

50

(
n− 1

2

)
.
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Let A =
⋃3

i=0 Ui. Then {Ui∪{wi} : i ∈ [3]} is a matching in H[A], and {Ui∪{ui} : i ∈
[3] ∪{0}} is a matching in H[A ∪T ]. Thus A is an absorbing set for T . Since there are more 
than 10−8n12 choices of (U0, U1, U2, U3), there are more than 10−8n12/12! absorbing sets 
for T .

Now, form a family F of subsets of V (H) by selecting each of the 
(n/3

3
)(n

9
)

possible 
balanced 12-sets independently with probability

p = ρn

2
(n/3

3
)(n

9
) .

Then, it follows from Chernoff’s bound that, with probability 1 − o(1) (as n → ∞),

(2) |F| ≤ ρn, and
(3) |L(T ) ∩ F| ≥ p|L(T )|/2 ≥ 10−10ρn for all balanced T ∈

(V (H)
4

)
.

Furthermore, the expected number of intersecting pairs of sets in F is at most
(
n/3
3

)(
n

9

)[
3
(
n/3 − 1

2

)(
n

9

)
+ 9

(
n− 1

8

)(
n/3
3

)]
p2 < ρ1.5n.

Thus, using Markov’s inequality, we derive that, with probability at least 1/2,

(4) F contains at most 2ρ1.5n intersecting pairs.

Hence, with positive probability, F satisfies (2), (3), and (4). Let F ′ be obtained from 
F by removing one set from each intersecting pair and deleting all non-absorbing sets. 
Then F ′ consists of pairwise disjoint absorbing sets, such that, for each T ∈

(V (H)
4

)
,

|L(T ) ∩ F ′| ≥ 10−10ρn/2.

Since F ′ consists only of pairwise disjoint absorbing sets, H[V (F ′)] has a perfect 
matching, say M ′. Then |M ′| ≤ ρn. To complete the proof, take an arbitrary S ⊆
V (H) \V (M ′) with |S| ≤ ρ′n and 3|S ∩Q| = |S ∩P |, where ρ′ ≤ 10−10ρ/2. Note that S
can be partitioned into t balanced 4-sets, say T1, . . . , Tt, for some t ≤ ρ′n/4 < 10−10ρn/2. 
We can greedily choose distinct absorbing sets Ai ∈ F ′ in order for i = 1, . . . , t, such 
that H[Ai ∪ Ti] has a perfect matching. Hence, H[S ∪ V (M ′)] has a perfect matching as 
required. !

4. Perfect fractional matchings

When H is not close to any H1,3(n, n/3) we will show that H contains a (1, 3)-partite 
4-graph H ′ in which no independent set is too large (see Lemma 4.3) and we then use 
this property of H ′ to show that H ′ has a perfect fractional matching (see Lemma 4.5).
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To obtain H ′, we use the hypergraph container method developed by Balogh, Morris, 
and Samotij [7] and, independently, by Saxton and Thomason [25]. A family F of subsets 
of a set V is said to be increasing if, for any A ∈ F and B ⊆ V , A ⊆ B implies B ∈ F . 
Let H be a hypergraph. We use v(H), e(H) to denote the number of vertices, number 
of edges in H, respectively. We also use ∆l(H) to denote the maximum l-degree of H, 
and I(H) to denote the collection of all independent sets in H. Let ε > 0 and let F be a 
family of subsets of V (H). We say that H is (F , ε)-dense if e(H[A]) ≥ εe(H) for every 
A ∈ F . We use F to denote the family consisting of subsets of V (H) not in F .

Lemma 4.1 (Balogh, Morris, and Samotij, 2015). For every k ∈ N and all positive c and 
ε, there exists a positive constant C such that the following holds. Let H be a k-graph and 
let F be an increasing family of subsets of V (H) such that |A| ≥ εv(H) for all A ∈ F . 
Suppose that H is (F , ε)-dense and p ∈ (0, 1) is such that, for every l ∈ [k],

∆l(H) ≤ cpl−1 e(H)
v(H) .

Then there exist a family S ⊆
( V (H)
≤Cpv(H)

)
and functions f : S → F and g : I(H) → S

such that, for every I ∈ I(H),

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

In order to apply Lemma 4.1 we need a family F of subsets of V (H) so that H is 
(F , ε)-dense, which is possible when H is not close to any H1,3(n, n/3).

Lemma 4.2. Let ρ, ε be reals such that 0 < ρ ≤ ε/4 + 1, let n ∈ 3Z be large, and 
let H be a (1, 3)-partite 4-graph with partition classes Q, P such that 3|Q| = |P | = n

and dH({u, v}) ≥
(n−1

2
)
−

(2n/3
2

)
− ρn2 for any v ∈ Q and u ∈ P . If H is not ε-

close to any H1,3(n, n/3) with V (H1,3(n, n/3)) = P , then H is (F , ε/6)-dense, where 
F = {A ⊆ V (H) : |A ∩Q| ≥ (1/3 − ε/8)n and |A ∩ P | ≥ (2/3 − ε/8)n}.

Proof. Suppose to the contrary that there exists A ⊆ V (H) such that |A ∩Q| ≥ (1/3 −
ε/8)n, |A ∩P | ≥ (2/3 −ε/8)n, and e(H[A]) ≤ εe(H)/6. Choose such A that |P \A| ≥ n/3
and let W ⊆ P \ A such that |W | = n/3. Let A1 = A ∩ P and A2 = A ∩ Q, and let 
B1 = (P \W ) \A1, B2 = Q \A2, and B = B1∪B2. Then |A1| ≤ 2n/3 and, by the choice 
of A, |B1| ≤ εn/8 and |B2| ≤ εn/8.

Let U = P \W = A1 ∪ B1 and let H0 denote the H1,3(n, n/3) with partition classes 
Q, U, W . We derive a contradiction by showing that |E(H0) \ E(H)| < εn4. By the 
definition of H(n, n/3), each f ∈ E(H0) \ E(H) intersects U . So

|E(H0) \ E(H)| ≤ |{f ∈ E(H0) : f ∩B1 (= ∅}| + |{f ∈ E(H0) \ E(H) : f ∩A1 (= ∅}|.

Since |B1| ≤ εn/8, we have |{f ∈ E(H0) : f ∩B1 (= ∅}| ≤ |B1||Q||P |2/2 ≤ εn4/48. To 
bound |{f ∈ E(H0) \ E(H) : f ∩A1 (= ∅}|, we note that, for each fixed u ∈ A1,
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|{f ∈ E(H) : u ∈ f, f ∩B (= ∅}| ≤ |B1||P ||Q| + |B2||P |2/2 < εn3/8,

and that, for each f ∈ E(H) with u ∈ f , we have f ∩ B (= ∅, or f ⊆ A, or f ∈ E(H0). 
So for any u ∈ A1,

|{f ∈ E(H) : u ∈ f, f ∈ E(H0)|
≥dH(u) − |{f ∈ E(H) : u ∈ f, f ∩B (= ∅}|− |{f ∈ E(H) : u ∈ f, f ⊆ A}|

≥dH(u) − εn3/8 − dH[A](u).

Hence,

|{f ∈ E(H0) \ E(H) : f ∩A1 (= ∅}|

≤
∑

u∈A1

|{f ∈ E(H0) \ E(H) : u ∈ f}|

≤
∑

u∈A1

(dH0(u) − |{f ∈ E(H) : u ∈ f, f ∈ E(H0)|)

≤
∑

u∈A1

(
dH0(u) − dH(u) + εn3/8 + dH[A](u)

)
.

Since for u ∈ A1, dH0(u) = n
3

((n−1
2
)
−

(2n/3−1
2

))
and dH(u) =

∑
v∈Q dH({u, v}) ≥

n
3

((n−1
2
)
−

(2n/3
2

)
− ρn2

)
, we have dH0(u) − dH(u) ≤ ρn3/3 (for large n). Hence,

|E(H0) \ E(H)| ≤ εn4/48 + |A1| (ρ/3 + 3ε/8)n3 +
∑

u∈A1

dH[A](u)

≤ (ε/48 + 4ρ/9 + ε/4)n4 + 3e(H[A]) (since |A1| ≤ 2n/3)
≤ (1/48 + 1/9 + 1/4) εn4 + 3εn4/6 (since e(H[A]) ≤ εe(H)/6)
< εn4,

a contradiction. !

We now use Lemma 4.1 to control the independence number of a random subgraph.

Lemma 4.3. Let c, ε′, α1, α2 be positive reals, let γ > 0 with γ + min{α1, α2}, let k, n be 
positive integers with n ∈ 3Z, and let H be a (1, 3)-partite 4-graph with partition classes 
Q, P such that 3|Q| = |P | = n, e(H) ≥ cn4, and e(H[F ]) ≥ ε′e(H) for all F ⊆ V (H)
with |F ∩ P | ≥ α1n and |F ∩ Q| ≥ α2n. Let R ⊆ V (H) be obtained by taking each 
vertex of H uniformly at random with probability n−0.9. Then, with probability at least 
1 −nO(1)e−Ω(n0.1), every independent set J in H[R] satisfies |J ∩P | ≤ (α1 +γ+o(1))n0.1

or |J ∩Q| ≤ (α2 + γ + o(1))n0.1.
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Proof. Define F := {A ⊆ V (H) : e(H[A]) ≥ ε′e(H) and |A| ≥ ε′n}. Then F is an in-
creasing family, and H is (F , ε′)-dense. Let p = n−1 and v(H) = 4n/3. Then, for l ∈ [4],

∆l(H) ≤
(4n/3

4 − l

)
≤ (4n/3)4−l ≤ (4/3)4−lc−1n−le(H) = (4/3)4−l+1c−1pl−1 e(H)

v(H) .

Thus by Lemma 4.1, there exist constant C, family S ⊆
(V (H)

≤C

)
, and function f :

S → F , such that every independent set in H is contained in some T ∈ T :=
{F ∪ S : F ∈ f(S), S ∈ S}. Since S ⊆

(V (H)
≤C

)
, |S| ≤ C(4n/3)C and, hence,

|T | = |S||f(S)| ≤ |S|2 ≤ C2(4n/3)2C .

Since for T ∈ T it is possible that |T ∩ P | < α1n + C or |T ∩ Q| < α2n + C, we 
need to make the sets in T slightly larger in order to apply Chernoff’s inequality. For 
each T ∈ T , let T ′ be a set obtained from T by adding vertices such that |T ′ ∩ P | =
max{|T ∩P |, .α1n +C/} and |T ′ ∩Q| = max{|T ∩Q|, .α2n +C/}. (We choose one such 
T ′ for each T .) Let T ′ := {T ′ : T ∈ T }. Then

|T ′| ≤ |T | ≤ C2(4n/3)2C .

Note that for each fixed T ′ ∈ T ′, we have |R ∩ T ′ ∩ P | ∼ Bi 
(
|T ′ ∩ P |, n−0.9) and 

|R ∩ T ′ ∩Q| ∼ Bi 
(
|T ′ ∩Q|, n−0.9). Hence, E(|R ∩ T ′ ∩ P |) = n−0.9|T ′ ∩ P | and E(|R ∩

T ′ ∩Q|) = n−0.9|T ′ ∩Q|. Applying Chernoff’s bound to |R∩T ′ ∩P | and |R∩T ′ ∩Q| by 
taking λ = γn0.1, we have,

P
(∣∣|R ∩ T ′ ∩ P |− n−0.9|T ′ ∩ P |

∣∣ ≥ λ
)
≤ e−Ω(λ2/(n−0.9|T ′∩P |) ≤ e−Ω(n0.1), and

P
(∣∣|R ∩ T ′ ∩Q|− n−0.9|T ′ ∩Q|

∣∣ ≥ λ
)
≤ e−Ω(λ2/(n−0.9|T ′∩Q|) ≤ e−Ω(n0.1).

So with probability at most 2e−Ω(n0.1), |R∩T ′∩P | ≥ n−0.9|T ′∩P | +λ ≥ (α1+γ+C/n)n0.1

and |R ∩ T ′ ∩Q| ≥ n−0.9|T ′ ∩Q| + λ ≥ (α2 + γ + C/n)n0.1.
Therefore, with probability at most 2C2n2Ce−Ω(n0.1), there exists some T ′ ∈ T ′ such 

that |R ∩ T ′ ∩ P | ≥ (α1 + γ + C/n)n0.1 and |R ∩ T ′ ∩Q| ≥ (α2 + γ + C/n)n0.1. Hence, 
with probability at least 1 − 2C2n2Ce−Ω(n0.1), |R ∩ T ′ ∩ P | < (α1 + γ + C/n)n0.1 or 
|R ∩ T ′ ∩Q| < (α2 + γ + C/n)n0.1 for all T ′ ∈ T ′.

Now let J be an independent set in H[R]. Then J is also an independent set in 
H; so there exist T ∈ T and T ′ ∈ T ′ such that J ⊆ T ⊆ T ′. Thus J ⊆ R ∩ T ′; so 
|J ∩ P | ≤ |R ∩ T ′ ∩ P | and |J ∩ Q| ≤ |R ∩ T ′ ∩ Q|. Hence, with probability at least 
1 − 2C2n2Ce−Ω(n0.1), for all independent set J in H[R], |J ∩P | ≤ (α1 + γ +C/n)n0.1 or 
|J ∩Q| ≤ (α2 + γ + C/n)n0.1. !

To show that a (1, 3)-partite 4-graph with no large independent set has a perfect 
fractional matching, we need a result from [21] about stable 2-graphs. A 2-graph G is 
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stable with respect to a labeling u1, . . . , un of its vertices if, for any i, j, k, l ∈ [n] with 
k ≤ i and l ≤ j, uiuj ∈ E(G) implies ukul ∈ E(G).

Lemma 4.4 (Lu, Yu, and Yuan 2019). Let c, ρ be constants such that 0 < ρ + 1 and 
0 < c < 1/2, let m, n be positive integers such that n is sufficiently large and cn ≤ m ≤
n/2 − 1, and let G be a 2-graph with ν(G) ≤ m. Suppose G is stable with respect to the
ordering of its vertices u1, . . . , un. If e(G) >

(n
2
)
−
(n−m

2
)
− ρn2, then G is 2√ρ-close to 

the graph with vertex V (G) and edge set {e ∈
(V (G)

2
)

: e ∩ {ui : i ∈ [n/3 − 1]} (= ∅.

We now prove the main result of this section. A fractional matching in a k-graph H is 
a function w : E → [0, 1] such that for any v ∈ V (H), 

∑
{e∈E:v∈e} w(e) ≤ 1. A fractional 

matching w is perfect if 
∑

e∈E w(e) = |V (H)|/k.

Lemma 4.5. Let ρ, ε be constants with 0 < ε + 1 and 0 < ρ < ε12, and let H be 
a (1, 3)-partite 4-graph with partition classes Q, P such that 3|Q| = |P | = n. Suppose 
dH({u, v}) >

(n−1
2
)
−
(2n/3

2
)
−ρn2 for any v ∈ Q and u ∈ P . If H contains no independent 

set S with |S ∩ Q| ≥ n/3 − ε2n and |S ∩ P | ≥ 2n/3 − ε2n, then H contains a perfect 
fractional matching.

Proof. Let ω : V (H) → R+ ∪ {0} be a minimum fractional vertex cover of H, i.e., ∑
x∈e ω(x) ≥ 1 for e ∈ E(H) and, subject to this, 

∑
x∈V (H) ω(x) is minimum. Let 

P = {u1, . . . , un} and Q = {v1, . . . , vn/3}, such that ω(v1) ≥ · · · ≥ ω(vn/3) and ω(u1) ≥
· · · ≥ ω(un). Let H ′ be the (1, 3)-partite 4-graph with vertex set V (H) and edge set 
E(H ′) = E′, where

E′ =
{
e ∈

(
V (H)

4

)
: |e ∩Q| = 1 and

∑

x∈e

ω(x) ≥ 1
}
.

We claim that ω is a minimum fractional vertex cover of H ′. Since ω is fractional 
vertex cover of H, e ∈ E(H) implies that e ∈ E(H ′); so E(H) ⊆ E(H ′) and ω is also a 
fractional vertex cover of H ′. Let ω′ be a minimum fractional vertex cover of H ′. Then 
ω(H) ≥ ω′(H ′), where ω(H) :=

∑
v∈V (H) ω(v) and ω′(H ′) :=

∑
v∈V (H′) ω

′(v). On the 
other hand, ω′ is also a vertex cover of H; so ω′(H ′) ≥ ω(H). Hence, ω(H) = ω′(H ′), 
i.e., ω is a minimum fractional vertex cover of H ′.

Let νf (H) and νf (H ′) denote the maximum fractional matching numbers of H and H ′, 
respectively; then by the Strong Duality Theorem of linear programming, νf (H) = ω(H)
and νf (H ′) = ω(H ′). Thus νf (H) = νf (H ′) and, hence, it suffices to show that H ′ has 
a perfect matching.

Next, we observe that the edges of H ′ form a stable family with respect to the above or-
dering of vertices in P and Q: for any e1 = {vi1 , ui2 , ui3 , ui4} and e2 = {vj1 , uj2 , uj3 , uj4}
with il ≥ jl for 1 ≤ l ≤ 4, e2 ∈ E(H ′) implies e1 ∈ E(H ′). To see this, note that, since 
il ≥ jl for 1 ≤ l ≤ 4, we have ω(vi1) ≥ ω(vj1) and ω(uil) ≥ ω(ujl) for 2 ≤ l ≤ 4. If 
e2 ∈ E(H ′) then 

∑
x∈e2

ω(x) ≥ 1; so 
∑

x∈e1
ω(x) ≥ 1 and, hence, e1 ∈ E(H ′).
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Let G denote the graph with vertex set P and edge set formed by NH′({vn/3, un}). 
Then G is stable with respect to u1, . . . , un. Note that e(G) >

(n−1
2
)
−

(2n/3
2

)
− ρn2

(by assumption). Since the edges of H ′ form a stable family, {u, v} ∪ e ∈ E(H ′) for all 
u ∈ P, v ∈ Q, and e ∈ E(G). Thus, if G contains a matching M := {e1, . . . , en/3} then 
let x1, . . . , xn/3 ∈ P \ V (M); we see that {{vi, xi} ∪ ei ∈ E(H ′) : i ∈ [n/3]} is a perfect 
matching in H ′.

Thus, we may assume ν(G) < n/3. Recall that e(G) >
(n−1

2
)
−
(2n/3

2
)
− ρn2 and G is 

a stable 2-graph. Hence, by Lemma 4.4, G is 2√ρ-close to the graph with vertex V (G)
and edge set {e ∈

(V (G)
2

)
: e ∩{ui : i ∈ [n/3 −1]}} (= ∅. Therefore, G has at most 

√
2√ρn

vertices in {uj : j ∈ [n/3 −1]} of degree less than n −1 −
√

2√ρn. Since G is stable with 
respect to u1, . . . , un, we have dG(un/3−

√
2√ρn) ≥ n − 1 −

√
2√ρn.

Since ρ < ε12 and H contains no independent set S such that |S∩Q| ≥ n/3 −ε2n and 
|S ∩P | ≥ 2n/3 − ε2n, we may form a matching M0 of size 

√
2√ρn in H−{u1, . . . , un/3}

by greedily choosing edges.
Since dG(un/3−

√
2√ρn) ≥ n − 1 −

√
2√ρn, G − V (M0) has a matching M of size 

n/3 −
√

2√ρn which can be found by greedily choosing distinct neighbors of ui, 1 ≤ i ≤
n/3 −

√
2√ρn, in V (G) \ V (M0). Since {u, v} ∪ e ∈ E(H ′) for u ∈ P, v ∈ Q, and e ∈ M , 

we may extend M to a matching M ′ of size |M | in H ′ − M0. Then M ′ ∪ M0 gives a 
perfect matching in H ′. !

5. Almost perfect matchings

In this section, we use Lemmas 4.5 and 5.2 to find a “near regular” spanning subgraph 
of H. The discussion here follows that in [4]. We need to find a sequence of random 
subgraphs of a balanced (1, 3)-partite 4-graph and use them to find a subgraph on which 
a “Rödl nibble” result can be applied.

First, we show how to find such a sequence. The following result is a lemma in [21], 
which was essentially the first of the two round randomization in [4].

Lemma 5.1. Let n > k > d > 0 be integers with k ≥ 3 and let H be a k-graph on n
vertices. Take n1.1 independent copies of R and denote them by Ri, 1 ≤ i ≤ n1.1, where 
R is chosen from V (H) by taking each vertex uniformly at random with probability n−0.9

and then deleting less than k vertices uniformly at random so that |R| ∈ kZ. For each 
X ⊆ V (H), let YX := |{i : X ⊆ Ri}| and DEGi

X := |{e \X : X ⊆ e and e \X ⊆ Ri}|. 
Then, with probability at least 1 − o(1), we have

(i) Y{v} = (1 + o(1))n0.2 for v ∈ V (H),
(ii) Y{u,v} ≤ 2 for distinct u, v ∈ V (H),

(iii) Ye ≤ 1 for e ∈ E(H),
(iv) |Ri| = (1 + o(1))n0.1 for i = 1, . . . , n1.1, and
(v) if µ, ρ′ are constants with 0 < µ + ρ′, n/k − µn ≤ m ≤ n/k, and δd(H) ≥(n−d

k−d

)
−

(n−d−m
k−d

)
− ρ′nk−l, then for any positive real ξ ≥ 2ρ′, we have
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DEGi
D >

(
|Ri|− d

k − d

)
−

(
|Ri|− d− |Ri|/k

k − d

)
− ξ|Ri|k−d

for all i = 1, . . . , n1.1 and all D ∈
(V (H)

d

)
.

Since we work with balanced (1, 3)-partite 4-graphs, we need to make sure each random 
subgraph taken is also balanced. So we slightly modify the randomization process in the 
above lemma. We first fix an arbitrary small set S ⊆ V (H). Each time we obtain a 
random copy R, we delete some vertices in R∩S so that the resulting graph is balanced. 
We can do so in a way that, with high probability, all properties in Lemma 5.1 remain 
(approximately) true.

Lemma 5.2. Let n be a sufficiently large positive integer, and let H be a (1, 3)-partite 
4-graph with partition classes Q, P such that 3|Q| = |P | = n. Let S ⊆ V (H) be a set of 
vertices such that |S ∩Q| = n0.99/3 and |S ∩P | = n0.99. Take n1.1 independent copies of 
R+ and denote them by Ri

+, 1 ≤ i ≤ n1.1, where R+ is chosen from V (H) by taking each 
vertex uniformly at random with probability n−0.9. Define Ri

− = Ri
+ \S for 1 ≤ i ≤ n1.1.

Then, with probability 1 − o(1), for any sequence Ri, 1 ≤ i ≤ n1.1, satisfying Ri
− ⊆

Ri ⊆ Ri
+, all of the following hold:

(i) |Ri| = (4/3 + o(1))n0.1 for all i = 1, . . . , n1.1.
(ii) For each X ⊆ V (H), let YX := |{i : X ⊆ Ri}|, then,

(iia) Y{v} ≤ (1 + o(1))n0.2 for v ∈ V (H),
(iib) Y{v} = (1 + o(1))n0.2 for v ∈ V (H) \ S,
(iic) Y{u,v} ≤ 2 for distinct u, v ∈ V (H), and
(iid) Ye ≤ 1 for e ∈ E(H).

(iii) For each X ∈
(V (H)

2
)
, let DEGi

X = |NH(X) ∩
(Ri

2
)
|. If ρ > 0 is a constant and 

dH({u, v}) ≥
(n−1

2
)
−

(2n/3
2

)
− ρn2 for all v ∈ Q and u ∈ P , then for any constant 

ξ ≥ 5ρ, we have

DEGi
{u,v} >

(
|Ri ∩ P |− 1

2

)
−

(2|Ri ∩ P |/3
2

)
− ξ|Ri ∩ P |2,

for all i = 1, . . . , n1.1, v ∈ Q, and u ∈ P .

Proof. Note that E(|Ri
+|) = (4n/3) · n−0.9 = 4n0.1/3, and

E(|Ri
−|) = (4n/3 − 4n0.99/3) · n−0.9 = 4n0.1/3 − 4n0.09/3.

By Chernoff’s inequality,

P (|Ri
+|− 4n0.1/3 ≥ n0.095) ≤ e−Ω(n0.09)

and
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P (|Ri
−|− (4n0.1/3 − 4n0.09/3) ≤ −n0.095) ≤ e−Ω(n0.09).

In particular, (i) holds with probability at least 1 − e−Ω(n0.09).
Let Y +

X := |{i : X ⊆ Ri
+}| for X ⊆ V (H). Then Y +

X ∼ Bi(n1.1, n−0.9|X|) and 
YX ≤ Y +

X for all X ⊆ V (H), and YX = Y +
X for all X ⊆ V (H) \ S. Then by Lemma 5.1, 

(iic) and (iid) hold with probability 1 − o(1).
For each v ∈ V (H), E(Y +

{v}) = n0.2, thus by Chernoff’s inequality,

P
(∣∣∣Y +

{v} − n0.2
∣∣∣ ≥ n0.15

)
≤ e−Ω(n0.1).

Thus (iia) and (iib) hold with probability at least 1 − e−Ω(n0.1).
Let degiX =

∣∣∣NH(X) ∩
(Ri

−
2
)∣∣∣. To prove (iii), since n is sufficiently large, it suffices to 

show that for all v ∈ Q and u ∈ P ,

degi{u,v} >

(
n0.1 − 1

2

)
−
(2n0.1/3

2

)
− ξn0.2/2.

Conditioning on |Ri
+| < 4n0.1/3 − n0.095 and |Ri

−| > (4n0.1/3 − 4n0.01/3) − n0.095 for all 
i, we have, for all v ∈ Q and u ∈ P ,

E(degi{u,v}) = dH−S({u, v})(n−0.9)2

≥ (1 − o(1))
((

n− 1
2

)
−
(2n/3

2

)
− ρn2

)
(n−0.9)2

≥
(
n0.1 − 1

2

)
−
(2n0.1/3

2

)
− 2ρn0.2,

where the first inequality holds because |S| = 4n0.99/3 (and, hence, dH−S({u, v}) =
(1 − o(1))dH({u, v})). In particular, E 

(
degi{u,v}

)
= Ω(n0.2). Next, we apply Janson’s 

Inequality (Theorem 8.7.2 in [6]) to bound the deviation of degi{u,v}. Write degi{u,v} =∑
e∈NH({u,v}) Xe, where Xe = 1 if e ⊆ Ri

− and Xe = 0 otherwise. Then

∆ :=
∑

e∩f '=∅

P (Xe = Xf = 1) ≤
(
n− 1

2

)(2
1

)(
n− 3

1

)
(n−0.9)3

and, thus, ∆ = O(n0.3). By Janson’s inequality, for any constant γ > 0,

P
(
degi{u,v} ≤ (1 − γ)E(degi{u,v})

)
≤ e−γ2E(degi

{u,v})/(2+∆/E(degi
{u,v})) = e−Ω(n0.1).

Since ξ ≥ 5ρ (and taking γ sufficiently small), the union bound implies that, with 
probability at least 1 − n2+1.1e−Ω(n0.1), for all v ∈ Q and u ∈ P and for all i ∈ [n1.1],
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degi{u,v} >

(
n0.1 − 1

2

)
−

(2n0.1/3
2

)
− ξn0.2/2.

Thus, (iii) holds with probability at least

(1 − n1.1e−Ω(n0.09))(1 − n2+1.1e−Ω(n0.1)) > 1 − n4e−Ω(n0.09).

Hence, it follows from union bound that, with probability at least 1 − o(1), (i)-(iii)
hold for any sequence Ri, 1 ≤ i ≤ n1.1, satisfying Ri

− ⊆ Ri ⊆ Ri
+. !

In order to apply Lemma 4.5, we need an additional requirement that the induced 
subgraphs Ri be balanced.

Lemma 5.3. Let n, H, P, Q, S and Ri
+, R

i
−, i ∈ [n1.1], be given as in Lemma 5.2. Then, 

with probability 1 − o(1), for every i ∈ [n1.1], there exist subgraphs Ri such that Ri
− ⊆

Ri ⊆ Ri
+ and Ri is balanced.

Proof. Recall that |P | = n, |Q| = n/3, |S ∩ P | = n0.99, and |S ∩Q| = n0.99/3, and that 
Ri

+ is formed by taking each vertex of H independently and uniformly at random with 
probability n−0.9. So for i ∈ [n1.1],

E(|Ri
+ ∩ P |) = n0.1,

E(|Ri
+ ∩ P ∩ S|) = n0.09,

E(|Ri
+ ∩Q|) = n0.1/3, and

E(|Ri
+ ∩ P ∩ S|) = n0.09/3.

By Chernoff’s inequality,

P
(
||Ri

+ ∩ P |− n0.1| ≥ n0.08) ≤ e−Ω(n0.06),

P
(
||Ri

+ ∩ P ∩ S|− n0.09| ≥ n0.08) ≤ e−Ω(n0.07),

P
(
||Ri

+ ∩Q|− n0.1/3| ≥ n0.08) ≤ e−Ω(n0.06), and

P
(
||Ri

+ ∩Q ∩ S|− n0.09/3| ≥ n0.08) ≤ e−Ω(n0.07).

Thus, with probability 1 − o(1), for all i ∈ [n1.1],

|Ri
+ ∩ P | ∈ [n0.1 − n0.08, n0.1 + n0.08],

|Ri
+ ∩ P ∩ S| = (1 + o(1))n0.09,

|Ri
+ ∩Q| ∈ [n0.1/3 − n0.08, n0.1/3 + n0.08], and

|Ri
+ ∩Q ∩ S| = (1 + o(1))n0.09.
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Therefore,

∣∣|Ri
+ ∩ P |− 3|Ri

+ ∩Q|
∣∣ ≤ 4n0.08 < min{|Ri

+ ∩ P ∩ S|, |Ri
+ ∩Q ∩ S|}.

Hence, with probability 1 − o(1), Ri can be taken to be balanced for all i ∈ [n1.1]. !

Another small difference between here and [4] is that condition (ii) in Lemma 5.2 is 
slightly weaker than the corresponding condition in [4]. In [4] all vertices have almost 
the same degree, but here a small portion of the vertices could have smaller degree. The 
following lemma reflects a slightly weaker conclusion due to this difference, and the proof 
mainly follows that of Claim 4.1 in [4].

Lemma 5.4. Let n, H, S, Ri, i = 1, . . . , n1.1 be given as in Lemma 5.3 such that each 
H[Ri] is a balanced (1, 3)-partite 4-graph and has a perfect fractional matching wi. Then 
there exists a spanning subgraph H ′′ of H ′ :=

⋃n1.1

i=1 H[Ri] such that

(i) dH′′(u) ≤ (1 + o(1))n0.2 for u ∈ S,
(ii) dH′′(v) = (1 + o(1))n0.2 for v ∈ V (H) \ S, and

(iii) ∆2(H ′′) ≤ n0.1.

Proof. Let H ′ =
⋃n1.1

i=1 H[Ri]. By (iid) of Lemma 5.2, each edge of H is contained in at 
most one Ri. Let ie denote the index i such that e ⊆ Ri (if exists); and let wie(e) = 0
when ie is not defined. Let H ′′ be a spanning subgraph of H ′ obtained by independently 
selecting each edge e at random with probability wie(e).

For v ∈ V (H ′′), let Iv = {i : v ∈ Ri}, Ev = {e ∈ H ′ : v ∈ e}, and Ei
v = Ev ∩H[Ri]. 

Then Ei
v, i ∈ Iv, form a partition of Ev. Hence, for v ∈ V (H ′′),

dH′′(v) =
∑

e∈Ev

1 =
∑

i∈Iv

∑

e∈Ei
v

Xe,

where Xe ∼ Be(wie(e)) is the Bernoulli random variable with Xe = 1 if e ∈ E(H ′′) and 
Xe = 0 otherwise. Thus, since 

∑
e∈Ei

v
wi(e) = 1 (as wi is a perfect fractional matching 

in H[Ri]),

E(dH′′(v)) =
∑

i∈Iv

∑

e∈Ei
v

wi(e) =
∑

i∈Iv

1.

Hence, E(dH′′(v)) = (1 + o(1))n0.2 for v ∈ V (H) \ S (by (iib) of Lemma 5.2), and 
E(dH′′(v)) ≤ (1 + o(1))n0.2 for v ∈ S (by (iia) of Lemma 5.2). Now by Chernoff’s 
inequality, for v ∈ V (H) \ S,

P (|dH′′(v) − n0.2| ≥ n0.15) ≤ e−Ω(n0.1),
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and for v ∈ S,

P (dH′′(v) − n0.2 ≥ n0.15) ≤ e−Ω(n0.1).

Thus by taking union bound over all v ∈ V (H), we have that, with probability 1 −o(1), 
dH′′(v) = (1 + o(1))n0.2 for all v ∈ V (H) \ S and dH′′(v) ≤ (1 + o(1))n0.2 for all v ∈ S.

Next, note that for distinct u, v ∈ V (H),

dH′′({u, v}) =
∑

e∈Eu∩Ev∩E(H′′)
1 =

∑

i∈Iu∩Iv

∑

e∈Ei
u∩Ei

v

Xe

and E(dH′′({u, v})) =
∑

i∈Iu∩Iv

∑
e∈Ei

u∩Ei
v
wi(e). By (iic) in Lemma 5.2, |Iu ∩ Iv| ≤ 2. 

So E(dH′′({u, v})) ≤ |Iu ∩ Iv| ≤ 2. Thus by Chernoff’s inequality,

P (dH′′({u, v}) ≥ n0.1) ≤ e−Ω(n0.2).

Hence by a union bound ∆2(H ′′) ≤ n0.1 with probability 1 − o(1).
Therefore, with probability 1 − o(1), H ′′ satisfies (i), (ii), and (iii). !

We also need the following result attributed to Pippenger [23], stated as Theorem 4.7.1 
in [6]. A cover in a hypergraph H is a set of edges whose union is V (H).

Lemma 5.5 (Pippenger and Spencer, 1989). For every integer k ≥ 2 and reals r ≥ 1 and 
a > 0, there are γ = γ(k, r, a) > 0 and d0 = d0(k, r, a) such that for every n and D ≥ d0
the following holds: Every k-uniform hypergraph H = (V, E) on a set V of n vertices in 
which all vertices have positive degrees and which satisfies the following conditions:

(1 ) For all vertices x ∈ V but at most γn of them, d(x) = (1 ± γ)D;
(2 ) For all x ∈ V , d(x) < rD;
(3 ) For any two distinct x, y ∈ V , d(x, y) < γD;

contains a cover of at most (1 + a)(n/k) edges.

Note that H contains a cover of at most (1 +a)(n/k) edges implies that H contains a 
matching of size at least (1 − (k − 1)a)(n/k) (see, for example, [23]). Now we are ready 
to state and prove the main result of this section, which will be used to find an almost 
perfect matching after deleting an absorber.

Lemma 5.6. Let σ > 0 and 0 < ρ ≤ ε/4 + 1, let n be a sufficiently large positive integer, 
and let H be a (1, 3)-partite 4-graph with partition classes Q, P such that 3|Q| = |P | = n. 
Suppose H is not ε-close to any H1,3(n, n/3) with V (H1,3(n, n/3)) and dH({u, v}) ≥(n−1

2
)
−
(2n/3

2
)
− ρn2 for all v ∈ Q and u ∈ P . Then H contains a matching covering all 

but at most σn vertices.
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Proof. By Lemmas 5.2 and 5.3, we have the random subgraphs Ri, i ∈ [n1.1], such 
that, with probability 1 − o(1), all Ri satisfies the properties in Lemmas 5.2 and 5.3. In 
particular, H[Ri] is balanced with respect to the partition classes Q, P .

Next, by Lemma 4.2, H is (F , ε/6))-dense, where

F = {A ⊆ V (H) : |A ∩Q| ≥ (1/3 − ε/8)n and |A ∩ P | ≥ (2/3 − ε/8)n}.

Note that

e(H) =
∑

v∈Q

∑

u∈P

dH({u, v})/3 ≥ (n/3)(n/3)
((

n− 1
2

)
−
(2n/3

2

)
− ρn2

)
≥ n4/100.

Hence by Lemma 4.3 (and choosing suitable α1, α2, γ), we see that, with probability 
1 − o(1), for all i ∈ [n1.1] and for all independent sets J in H[Ri], |J ∩ P | ≤ (α1 + γ +
o(1))n0.1 < n/3 − ε2n or |J ∩Q| ≤ (α2 + γ + o(1))n0.1 < 2n/3 − ε2n.

Moreover, by (iii) of Lemma 5.2, with probability 1 − o(1), dH[Ri]({u, v}) >
(|Ri∩P |−1

2
)
−

(2|Ri∩P |/3
2

)
− ξ|Ri ∩ P |2 for all u ∈ P and v ∈ Q. Hence, by Lemma 4.5, 

H[Ri] contains a perfect fractional matching for all i ∈ [n1.1].
Thus by Lemma 5.4, there exists a spanning subgraph H ′′ of 

⋃n1.1

i=1 H[Ri] such that 
dH′′(u) ≤ (1 + o(1))n0.2 for each u ∈ S, dH′′(v) = (1 + o(1))n0.2 for each v ∈ V (H) \ S, 
and ∆2(H ′′) ≤ n0.1. Hence, by Lemma 5.5 (by setting D = n0.2), H ′′ contains a cover 
of at most (1 + a)(n/3) edges, where a is a constant satisfying 0 < a < σ/3.

Now by greedily deleting intersecting edges, we obtain a matching of size at least 
(1 − 3a)(n/3). Hence H contains a matching covering all but at most σn, provided n is 
sufficiently large. !

6. Conclusion

Proof of Theorem 1.2. By Lemma 2.3, we may assume H is not ε-close to any 
H1,3(n, n/3), where ε + 1. By Lemma 3.1, H1,3(F) has a matching M ′ such that, 
for some 0 < ρ′ + ρ + ε, |M ′| ≤ ρn/4 and, for any S ⊆ V (H1,3(F)) with |S| ≤ ρ′n and 
3|S ∩Q| = |S ∩ P |, H1,3(F)[S ∪ V (M ′)] has a perfect matching.

Let H1 = H − V (M ′). Then dH1({u, v}) ≥
(n′−1

2
)
−

(2n′/3
2

)
− ρ(n′)2 for all v ∈

Q ∩ V (H1) and u ∈ P ∩ V (H1), and H1 is not (2ε)-close to H1,3(n′, n′/3), where n′ =
(1 − o(1))n.

By Lemma 5.6, H1 contains a matching M1 covering all but at most σn vertices, 
where we choose σ so that 0 < σ < ρ′. Now H[(V (H1) \ V (M1)) ∪ V (M)] has a perfect 
matching M2. Clearly, M1 ∪M2 forms a perfect matching in H. !
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