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Kiihn, Osthus, and Treglown and, independently, Khan
proved that if H is a 3-uniform hypergraph with n vertices,
where n € 3Z and large, and 6:(H) > (ngl) — (273/3),
then H contains a perfect matching. In this paper, we
show that for n € 3Z sufficiently large, if F1,...,F,/3
are 3-uniform hypergraphs with a common vertex set and
S1(F) > ("1 — (PY?) for i € [n/3], then {F,...,F,/3}
admits a rainbow matching, i.e., a matching consisting of one
edge from each F;. This is done by converting the rainbow
matching problem to a perfect matching problem in a special
class of uniform hypergraphs.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

For any positive integer k and any set S, let [k] := {1,...,k} and (;j) ={TCS:
|T| = k}. A hypergraph H consists of a vertex set V/(H) and an edge set E(H) C 2V (),
and we write e(H) := |E(H)| and often identify F(H) with H. For a positive integer k,
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a hypergraph H is said to be k-uniform if E(H) C (V(kH))7 and a k-uniform hypergraph
is also called a k-graph.

A matching in a hypergraph H is a set of pairwise disjoint edges in H, and we use
v(H) to denote the maximum size of a matching in H. The problem for finding maximum
matchings in hypergraphs is NP-hard, even for 3-graphs [17]. It is of interest to find good
sufficient conditions that guarantee large matchings.

Erdds [8] conjectured in 1965 that, for positive integers k,n,t, if H is a k-graph on
n vertices and v(H) < t then e(H) < max{(ktk_l), WEGrn } This bound is tight
because of the complete k-graph on kt —1 vertices and the k-graph on n vertices in which
every edge intersects a fixed set of t — 1 vertices. For recent progress on this conjecture,
see [4,5,9,10,13,16,22]. In particular, Frankl [9] proved that if n > (2t — 1)k — (t — 1) and
v(H) < t then e(H) < (}) — (”_;;‘H). This result was further improved by Frankl and
Kupavskii [11].

There has been extensive study on degree conditions for large matchings in uniform
hypergraphs. Let H be a hypergraph and T'C V(H). The degree of T in H, denoted by
dy(T), is the number of edges in H containing T'. For any integer [ > 0, let §;(H) :=
min{dg(T) : T € (V(IH))} denote the minimum [-degree of H. Hence, do(H) = e(H).
Note that §;(H) is often called the minimum vertez degree of H. For u € V(H), let
Ny(u) :={e:e CV(H)\ {u} and eU {u} € E(H)}. When there is no confusion, we
also view Ny (u) as a hypergraph with vertex set V(H) \ {u} and edge set Ny (u).

For integers n, k,d satisfying 0 < d < k — 1 and n € kZ, let mg(k,n) denote the
minimum integer m such that every k-graph H on n vertices with §(H) > m has a perfect
matching. Kiithn, Osthus and Treglown [20] and, independently, Khan [18] determined
mq(k,n) for k = 3 and large n. Khan [19] also determined m; (k,n) for k = 4 and large n.
For d = k — 1, my_1(k,n) was determined for large n by Rodl, Ruciniski, and Szemerédi
[24]. This result was generalized by Treglown and Zhao [26] to the range k/2 < d < k—1,
where they also determined the extremal families.

There are attempts to extend the above conjecture of Erdés to a family of hypergraphs.
Let F = {Fy,...,F;} be a family of hypergraphs. A set of pairwise disjoint edges,
one from each Fj, is called a rainbow matching for F. (In this situation, we also say
that F or {Fi,...,F;} admits a rainbow matching.) Aharoni and Howard [3] made
the following conjecture, which first appeared in Huang, Loh, and Sudakov [16]: Let
t be a positive integer and F = {Fy,..., F;} such that, for i € [t], F; C ([Z]) and
e(F;) > max{(ktk_l), () - ("_,z‘H) }; then F admits a rainbow matching. Huang, Loh,
and Sudakov [16] showed that this conjecture holds when n > 3k%*¢, and Frankl and
Kupavskii [12] showed that this conjecture holds when n > 12tk log(e?t).

In this paper, we prove a degree version of the above conjecture for rainbow matchings,
which extends the results of Kiihn, Osthus, and Treglown [20] and, independently, of
Khan [18] for 3-graphs to families of 3-graphs.
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Theorem 1.1. Let n € 3Z be positive and sufficiently large and let F = {F1,...,F,/3}
be a family of n-vertex 3-graphs such that V(F;) = V(F1) for i € [n/3]. If 61(F;) >
" - (2"2/3) fori € [n/3], then F admits a rainbow matching.

The bound on d§; (F;) in Theorem 1.1 is sharp. To see this, let m < n/3 and let H(n,m)
denote a 3-graph that is isomorphic to the 3-graph with vertex set [n] and edge set

{ee C?) te ¢ [m] andeﬂ[m]7é@}.

Note that for n € 3Z, &(H(n,n/3 — 1)) = (";') — (2"2/3) and H(n,n/3 — 1) has no
perfect matching. Hence, the family of n/3 copies of H(n,n/3 — 1) admits no rainbow
matching.

To prove Theorem 1.1, we convert this rainbow matching problem to a perfect match-
ing problem for a special class of hypergraphs. For any integer £ > 2, a k-graph H
is (1, k — 1)-partite if there exists a partition of V(H) into sets Vi, Vs (called partition
classes) such that for any e € E(H), l[enVi| =1and |[eNV2| = k—1. A (1, k— 1)-partite
k-graph with partition classes Vi, Vs is balanced if (k — 1)|Vi| = |Va|.

Let n € 3Z, let P and @ be disjoint sets such that |P| = n and |Q| = n/3, and let
Q ={v1,..., 053} Let F = {F1,..., F,/3} be a family of 3-graphs on the same vertex
set P. We use H; 3(F) to represent the balanced (1,3)-partite 4-graph with partition
classes ), P and edge set U?:/i’ E;, where E;, = {eU{v;} : e € E(F;)} for i € [n/3].
If E(F;) = E(H(n,n/3)) and V(F;) = V(H(n,n/3)) for all i € [n/3], then we write
H, 35(n,n/3) for Hy 3(F). The following observations will be useful:

(i) E(F;) is the neighborhood of v; in Hy 3(F) for i € [n/3], and F admits a rainbow
matching if, and only if, Hy 3(F) has a perfect matching.
(4i) e(F;) > §01(F;) for all i € [n/3], and dg, ,(Fr)(v) > Z:l:/:l)’ 01(F;) for v € P.
(iii) dp, o7 ({u,v}) > ("3 - (2"2/3) + 1 for all w € P and v € @, provided d; (F;) >
("3Y) — (*Y?) +1 for i € [n/3].
(10) 61(Haa()) 2 5 ((3") = () + 1), provided o ({w 0}) 2 (73") = () +
1 forall u € Pand v € Q.

By observations (i) and (#ii), Theorem 1.1 follows from the following result.

Theorem 1.2. Let n € 37Z be positive and sufficiently large, and let H be a (1, 3)-partite 4-
graph with partition classes Q, P such that |P| =n and Q = n/3. Suppose di({u,v}) >
(";1) — (2"2/3) +1 for allu € P andv € Q. Then H has a perfect matching.

To prove Theorem 1.2, we take the usual approach by considering whether or not H is
close to some H; 3(n,n/3) on the same vertex set. Given € > 0 and two k-graphs Hi, Ho
with V(H;) = V(Hs), we say that Hy is e-close to Hy if |E(H) \ E(Hs)| < €|V (H1)|*.
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In Section 2, we prove Theorem 1.2 when H is close to some Hj 3(n,n/3), using the
structure of Hj 3(n,n/3) to find a perfect matching in H greedily. This is the extremal
case, as Hj 3(n,n/3) is an extremal graph for Theorem 1.2.

In the non-extremal case, H is not close to any Hi 3(n,n/3) on V(H). We first find
a small matching M’ in H that can be used to “absorb” small sets of vertices, then find
an almost perfect matching M” in H — V(M’), and finally use M’ to absorb V(H) \
V(MU M'"). A more detailed account is given in Section 6.

In Section 3, we prove an absorbing lemma for (1,3)-partite 4-graphs, which can
be used to find the absorbing matching M’. In Section 5, we find the almost perfect
matching M in H — V(M’). For this, we use the approach of Alon et al. in [4] to find
random subgraphs with desired properties (including the existence of perfect fractional
matchings). However, we need to modify this approach to make it work, which is done
in Section 4. First, we need the random subgraphs to be balanced. Second, in the non-
extremal case, the (1, 3)-partite 4-graphs do not have large sparse sets; so we also need
to control the independence number of those random subgraphs, for which we use the
hypergraph container result of Balogh et al. [7].

We remark that most of the work in this paper may be used to extend Theorem 1.2 to
4-graphs. However, one of the key results needed is a stability result similar to Lemma 4.4
for 3-graphs. For additional references on matchings in hypergraphs, see [1,2,14,15].

2. The extremal case

In this section, we prove Theorem 1.2 for the case when H is close to some H; 3(n,n/3)
on V(H). First, we prove a result on rainbow matchings for a small family of hypergraphs,
which will serve as induction basis for our proof.

Lemma 2.1. Let n,t, k be positive integers such that n > 2k*t. Let F;, i € [t], be n-vertex
k-graphs with a common vertex set. If 61(F;) > (77) — (721) fori € [t] then {Fy,..., F;}
admits a rainbow matching.

Proof. We apply induction on ¢t. Note that the assertion is trivial when ¢ = 1. So assume
. . -1 —t -1
t > 1 and the assertion holds for ¢ — 1. Then, since 61(F;) > (=) — (7)) > (i71) —
(";(le)), {F,..., F;—1} admits a rainbow matching, say M.
Suppose for a contradiction that {F},..., F;} does not admit a rainbow matching.
Then every edge of F; must intersect M. So there exists v € V(M) such that dp, (v) >

e(Fy)/(kt). Note that

> (2= (2= (60)) (1 (17’2:1)k> N )

since n > 2k*t. So we have
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de, (U) >

ol om0 2 ()

Let F] = F; — v for i € [t — 1]. Since

-2 n—1 n—t n—2 n—2 n—t
7 > N (P _ _ — _
s zam - (3 22) = () - (o) -G =G - (o)
it follows from induction hypothesis that {F}, ..., F{_;} admits a rainbow matching, say

M.
Note that the number of edges in F; containing v and intersecting M’ is at most

k(t—l)(Z_;) < %(Z_D < dp(v),

as n > 2k*t. Hence, v is contained in some edge of Fy — V (M), say e. Now M’ U {e} is
a rainbow matching for {Fi,..., F;}, a contradiction. O

Next, we prove Theorem 1.2 for the case when, for every vertex v, most of the edges
of Hy 3(n,n/3) containing v also lie in H. More precisely, given a > 0, H; 3(n,n/3), and
a (1, 3)-partite 4-graph H with V(H) = V(H; 3(n,n/3)), we say that a vertex v € V(H)
is a-good with respect to Hy3(n,n/3) if [Np, 4(n.n3)(v) \ N (v)] < an®. Otherwise we
say that v is a-bad with respect to Hq 3(n,n/3).

Lemma 2.2. Let n be positive integer and H be a balanced (1,3)-partite 4-graph on 4n/3
vertices, and let o be a constant with 0 < o < 2712, If all vertices of H are a-good with
respect to some Hy s(n,n/3) on V(H), then H has a perfect matching.

Proof. Let @, P be the partition classes of H, and let U U W be partition classes of
H(n,n/3) such that |Q| = |[W|=n/3, |U| = 2n/3, and V(H(n,n/3)) = P.

Let M be a matching in H that only uses edges consisting of two vertices from U
and one vertex from each of @ and W, and choose such M that |M| is maximum. Let
Q =Q\V(M),U =U\V(M),and W =W\ V(M). Then |U'|/2 = |W'| =|Q|.

Note that |M| > n/4. For, otherwise, |U’|/2 = |W'| = |Q'| = n/3 — |[M]| > n/12.
Then, by the maximality of M, we have, for any u € U’,

INH, s(nn/z) (@) \ N (w)] > 1Q|[W/I(U'] = 1) > n?/12° > an?,

a contradiction.

Now suppose M is not a perfect matching in H. Then Q',U’, W’ are all non-empty.
Let v € Q', u1,us € U’ be distinct, and w € W”.

Let {e1,e2,e3} be an arbitrary set of three pairwise distinct edges from M. By the
maximality of M, no matching of size 4 in H is contained in e; Ueg Ues U {v, w,ur,us}
and uses only edges with two vertices from U and one vertex from each of Q and W.
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Hence, there exists S € E(Hy 3(n,n/3))\ E(H) such that S C e3 UeaUesU{v, w,us, us},
|SNe;)| =1forie 3], |SN{v,w ,u,uz}| =1, and S has two vertices from U and one
vertex from each of () and W.

Note that there are (Tg) choices for {e1, 3, €3}, which result in distinct choices for S.
So the number of edges in E(H; 3(n,n/3)) \ E(H) containing exactly one vertex from

(5)> (4w

This implies that for some u € {v,w, x1,x2},

{v,w,u1,us} is at least

INH, 5 (nny3) (W) \ Nu(w)] >n?/(2"%) > an®,
a contradiction. O

Having proved the above two results, we are ready to complete the proof of Theo-
rem 1.2 in the case when H is close to some H 3(n,n/3).

Lemma 2.3. Let n € 3Z be positive and € > 0 sufficiently small, and let H be a balanced
(1,3)-partite 4-graph with partition classes Q, P and 3|Q| = |P| = n. Suppose H is e-
close to some Hyz(n,n/3) with P =V (H(n,n/3)). If dg({u,v}) > (") - (2"2/3) +1
for allu € P and v € Q, then H has a perfect matching.

Proof. Let U, W denote the partition of P = V/(H (n,n/3)) such that |W| = |U|/2 = n/3.
Note that |Q| = n/3. Let B denote the set of y/e-bad vertices of H with respect to
H;i 3(n,n/3). Since H is e-close to Hj 3(n,n/3), we have |B| < 4y/en. Let Q N B =
{v1,..., v} and @ = {v1,...,v,3}, and let W' C W \ B such that [W’'| = n/3 — (¢ +
W N B|) >n/3 —4y/en.

First, we find a matching M{ in H—W' covering QN B. For this, let F; = Ny (v;)—W’
for i € [n/3]. Note that, for i € [n/3], 61(Ng(v;)) = min{dy({u,v;}) : v € P} >
(";1) - (2"2/3) + 1. Hence,

sz () (1)
- <n— \V2V’| - 1) - <2712/3>

_ (n—Vg’l—l) B (n—W’I—(;JJrIWﬂBI))'

Since |B| < 4y/zn, |[W’| > n/3 —4y/zn and ¢+ |[W N B| < (n — |W’])/(2 - 3%). Hence by
Lemma 2.1, {F,..., Fyijwnp|} admits a rainbow matching, say My. Let My = {e; €
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E(F;):i € [qg+|WnNBJ}, and let M = {e; U{v;} : i € [¢+ |W N B|]}. Then M} is a
matching in H and @ N B C V(M}).

Next, we find a matching in Hy := H — V(M) covering B \ V(M}), in two steps.
Since € is very small, we can choose 1 such that /¢ < n < 1. We divide B\ V(M) to
two disjoint sets By, Bs such that, for each x € B\ V(M]), € By if, and only if, Hy
has at least nn? edges each of which contains x and exactly one vertex in W”.

We greedily pick a matching M; in H; such that By C V(M;) and every edge of M;
contains at least one vertex from B; and exactly one vertex from W’. This can be done
since each time we pick an edge e for a vertex x € By, we have at least nn?® choices and
at most 4(4/en)n? (< nn? as /e < 1) of which intersect a previously chosen edge.

Now we find a matching Ms in Hy := Hy — V(M;) such that By C V(Ms). Note that

2n/3

61(Hz) > 61(H) — 4|Mj U My|n® > g ((n; 1) — ( 5

) + 1) — 16+/2n3.

Hence, for any x € Bs, the number of edges containing z and disjoint from W’ is at least

!
st et =101y ) =
as v/ < n < 1land n/3 =|Q| > |W’|. Thus, since \/¢ < n, we greedily find a matching
My in Hy — V(M) such that By C V(Ms), Ms is disjoint from W', and every edge of
M5 contains at least one vertex from Bs.

Thus, M; U M, gives the desired matching in Hy := H — V(M) covering B\ V (M).
Note that |M{UM;UMs| < (¢+|WNBJ|)+|B1|+|B2| < 2|B| < 8y/en. Also note that each
vertex of H — V(MU My U Ms) is \/e-good in H (with respect to Hy 3(n,n/3)). Thus,
for every vertex u € U —V (MyUM; UM,), the number of edges of H—V (M{UM;UMy)
containing u and exactly two vertices of W — V(M{J U M; U Ma) is at least

n

3
3 (né ) —Ven? — 4| MU My U My|n? > nn?,

as y/en < 1. Hence, we may greedily find a matching M} in H — V (M} U M; U M3) such
that |MJ5| = |Ms| and every edge of M) contains exactly two vertices of W'.

Let M = MU M; U Ms U M) and m = |M|. Then m < 8y/en. Let H3 = H — V(M).
Let Hy 3(n—3m,n/3 —m) be obtained from H; 3(n,n/3) by removing V(M). Then, for
any = € V(Hs),

INH, 5(n—3m.n/3—m) () \ Nuy(z)]
< |Nu, 5(nns3)(®) \ Nu ()]
< en?
< 2v/e(n — 3m)>.
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Thus, every vertex of Hjz is 2v/e-good with respect to Hjsz(n — 3m,n/3 —m). By
Lemma 2.2, H3 contains a perfect matching, say Ms. Now M3U M is a perfect matching
in H. 0O

3. Absorbing lemma

Our strategy to prove Theorem 1.2 is to find a small matching M’ in H that can be
used to “absorb” small sets of vertices, find an almost perfect matching M"” in H—V (M),
and then use M’ to absorb V(H)\V(M'UM"). In this section, we prove such an absorbing
lemma for (1, 3)-partite 4-graphs. Our proof follows along the same lines as in [24].

Lemma 3.1. Letn € 3Z be large enough and let H be a (1, 3)-partite 4-graph with partition
classes Q, P such that 3|Q| = |P| and 61(H) > (n/3) (("51) - (2"2/3) + 1), Let p,p’ be
constants such that 0 < p’ < p < 1. Then H has a matching M’ such that |M'| < pn
and, for any subset S C V(H)\V (M') with |S| < p'n and 3|SNQ| = |SNP|, H[SUV (M')]
has a perfect matching.

Proof. We call a balanced 12-element set A C V(H) an absorbing set for a balanced
4-element set T'C V(H) if H[A] has a matching of size 3 and H[A U T] has a matching
of size 4. Denote by L(T') the collection of all absorbing sets for T". Then

(1) for every balanced T € (V(4H)), |L(T)| > 1078n'2 /121

Let T = {ug, u1,us,uz} € (V(4H)) be balanced, with ug € Q and uy,us,u3 € P. We form
an absorbing set for T by choosing four pairwise disjoint 3-sets Uy, Uy, Us, Us in order.

First, we choose a 3-set Uy C P\ T such that Uy U {ug} € E(H). The number of
choices for Uy is at least

dH(uo)—3<n23) >51(H)—3<”21) > g(”Ql).

Now fix a choice of Uy, and let Uy = {w;, w2, w3}. Note that, for each x € P, Ny (z) is
a subset of the union of {{xg,z1,22} : zg € Q, 1,22 € P}. Hence, |Ny(u;) U Ng(w;)| <
2(%)- Thus, for i € [3],

o> (%) - (%) 1) =56) = (")

For i € [3], we choose 3-sets U; from (V(H)\T)\ U;;E U such that U; U {u,;} and
U; U{w;} are both edges of H. For each choice of U}, 0 < j < i—1, the number of choices
for U; is at least

| N (ui) O Nz (wi)] — 13(n/3)n > % (”; 1) ~13n%/3 > 5"—0 <"; 1).
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Let A= U?:o U;. Then {U;U{w;} : i € [3]} is a matching in H[A], and {U;U{u;} : i €
[3]U{0}} is a matching in H[AUT]. Thus A is an absorbing set for T'. Since there are more
than 10~8n'2 choices of (Uy, Uy, Us, U3), there are more than 10~8n'2 /12! absorbing sets
for T

Now, form a family F of subsets of V(H) by selecting each of the ("43) (5) possible
balanced 12-sets independently with probability

m_
2("%) (5)

Then, it follows from Chernoff’s bound that, with probability 1 — o(1) (as n — c0),

p:

(2) |F| < pn, and
(3) |L(T)N F| > p|L(T)|/2 > 107 pn for all balanced T € (V(LLH)).

Furthermore, the expected number of intersecting pairs of sets in F is at most

n/3\ (n n/3—1\ [n n—1\/n/3\] o 15
()G B )E) () ()] <o
Thus, using Markov’s inequality, we derive that, with probability at least 1/2,

(4) F contains at most 2p'-5n intersecting pairs.

Hence, with positive probability, F satisfies (2), (3), and (4). Let 7’ be obtained from
F by removing one set from each intersecting pair and deleting all non-absorbing sets.
Then F’ consists of pairwise disjoint absorbing sets, such that, for each T' € (V(4H )),

1IL(T)N F'| > 10" %n /2.

Since F’ consists only of pairwise disjoint absorbing sets, H[V(F’)] has a perfect
matching, say M’. Then |M’| < pn. To complete the proof, take an arbitrary S C
V(H)\V(M') with |S| < p'n and 3|SN Q| = |SN P|, where p’ < 1071%/2. Note that S
can be partitioned into ¢ balanced 4-sets, say 11, . .., Ty, for some t < p'n/4 < 1071%pn/2.
We can greedily choose distinct absorbing sets A; € F' in order for ¢ = 1,...,t, such
that H[A; UT;] has a perfect matching. Hence, H[S UV (M’)] has a perfect matching as
required. O

4. Perfect fractional matchings
When H is not close to any Hy 3(n,n/3) we will show that H contains a (1, 3)-partite

4-graph H' in which no independent set is too large (see Lemma 4.3) and we then use
this property of H' to show that H' has a perfect fractional matching (see Lemma 4.5).
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To obtain H’, we use the hypergraph container method developed by Balogh, Morris,
and Samotij [7] and, independently, by Saxton and Thomason [25]. A family F of subsets
of a set V' is said to be increasing if, for any A € F and B CV, A C B implies B € F.
Let H be a hypergraph. We use v(H), e(H) to denote the number of vertices, number
of edges in H, respectively. We also use A;(H) to denote the maximum I-degree of H,
and Z(H) to denote the collection of all independent sets in H. Let ¢ > 0 and let F be a
family of subsets of V(H). We say that H is (F,¢)-dense if e(H[A]) > ee(H) for every
A€ F. We use F to denote the family consisting of subsets of V(H) not in F.

Lemma 4.1 (Balogh, Morris, and Samotij, 2015). For every k € N and all positive ¢ and
g, there exists a positive constant C such that the following holds. Let H be a k-graph and
let F be an increasing family of subsets of V(H) such that |A| > ev(H) for all A € F.
Suppose that H is (F,e)-dense and p € (0,1) is such that, for everyl € [K],

1—1e(H)

Ay(H) <cp™ W(H)’

Then there exist a family S C (<C‘7/15ﬂ}1)) and functions f : S — F and g : T(H) — S
such that, for every I € T(H),

gI) S I and T\g(I)C f(g(1)).

In order to apply Lemma 4.1 we need a family F of subsets of V(H) so that H is
(F,e)-dense, which is possible when H is not close to any Hi 3(n,n/3).

Lemma 4.2. Let p,e be reals such that 0 < p < e/4 < 1, let n € 3Z be large, and
let H be a (1,3)-partite 4-graph with partition classes Q, P such that 3|Q| = |P| = n
and dg({u,v}) > (”51) — (2”2/3) —pn? for any v € Q and u € P. If H is not e-
close to any Hy 3(n,n/3) with V(Hy3(n,n/3)) = P, then H is (F,e/6)-dense, where
F={ACV(H):|ANnQ|> (1/3—¢/8)n and |ANP| > (2/3 —¢/8)n}.

Proof. Suppose to the contrary that there exists A C V(H) such that |[ANQ| > (1/3 —
e/8)n, |ANP| > (2/3—¢/8)n, and e(H[A]) < ee(H)/6. Choose such A that [P\ A| > n/3
and let W C P\ A such that [W| = n/3. Let A1 = AN P and Ay = ANQ, and let
By = (P\W)\ A1, Bo = Q\ Ag, and B = B; U Bs. Then |A;| < 2n/3 and, by the choice
of A, |B1| < en/8 and |Bz| < en/8.

Let U = P\ W = A; U By and let Hy denote the Hy 3(n,n/3) with partition classes
Q,U,W. We derive a contradiction by showing that |E(Hy) \ E(H)| < en®. By the
definition of H(n,n/3), each f € E(Hp) \ E(H) intersects U. So

|E(Ho) \ E(H)| < [{f € E(Ho): fN By # 0} + {f € E(Ho) \ E(H) : fN Ay #0}].

Since |B1| < en/8, we have |{f € E(Hp) : fN By # 0} < |B1]|Q||P|?/2 < en*/48. To
bound |{f € E(Hy) \ E(H) : f N Ay # 0}|, we note that, for each fixed u € Ay,
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{feBH):ue f, fnB#0} <|BiPQ|+|B:|P]/2 < en®/8,

and that, for each f € F(H) with u € f, we have fN B # 0, or f C A, or f € E(H,).
So for any u € Ay,
{f e E(H):uef, feE(H)
>dy(u) —[{f € E(H):ue f, fOnB#0} - |{feEH):uef, fCA}
>dp(u) — en® /8 — dpray(w).

Hence,

H{fe€E(H)\EH): fnA #0}
<> {feE(H)\EH):ue f}

u€EA;

< 3" (duy(w) ~ |{f € E(H) - u€ f, f € E(H))

u€Aq
< Z (dH0<’LL) —dg(u) —|—€n3/8 + dH[A](u)) .
u€Ay
Since for u € Ay, dg,(u) = %((”51) - (2n/2371)) and dp(u) = > codu({u,v}) >
5 <(”§1) - (2”2/3) - pn2>, we have dg, (u) — dg(u) < pn3/3 (for large n). Hence,

|E(Ho) \ E(H)| < en*/48 + |A1| (p/3 +32/8)n® + ) dppaj(w)
u€Aq

< (e/48 +4p/9+ €/4) n* + 3e(H[A]) (since |A;] < 2n/3)
< (1/48 +1/9+1/4)en +3en?/6  (since e(H[A]) < ce(H)/6)
&

nt,

A

a contradiction. 0O
We now use Lemma 4.1 to control the independence number of a random subgraph.

Lemma 4.3. Let ¢, &', a1, an be positive reals, let v > 0 with v < min{ay, as}, let k,n be
positive integers with n € 3Z, and let H be a (1,3)-partite 4-graph with partition classes
Q, P such that 3|Q| = |P| = n, e(H) > cn*, and e(H[F)) > ¢’e(H) for all F C V(H)
with |[F'NP| > ayn and |[F N Q| > agn. Let R C V(H) be obtained by taking each
vertex of H uniformly at random with probability n=°°. Then, with probability at least
1—nPWe=2m"") " cvery independent set J in H[R) satisfies |JNP| < (a1 474 o0(1))no!
or |[JNQ| < (ag +v+o(1))noL.
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Proof. Define F := {ACV(H) : e(H[A]) > e'e(H) and |A| > ¢'n}. Then F is an in-
creasing family, and H is (F,e’)-dense. Let p = n~! and v(H) = 4n/3. Then, for | € [4],

in/3

Ay(H) < <4 ' 1) < (4n/3)4 7 < (4/3) e inTle(H) = (4/3) e pl ! e(H)

(H)'

<

~—

V(H)
<c

S — F, such that every independent set in H is contained in some T € T :=
{FUS:F e f(S),5e€S}. Since S C (Vég)), |S| < C(4n/3)¢ and, hence,

Thus by Lemma 4.1, there exist constant C, family S C ('27’), and function f :

71 = ISIIF(S) < |8 < C*(4n/3)*C.

Since for T' € T it is possible that [T N P| < ayn+ C or [T NQ| < agn + C, we
need to make the sets in 7 slightly larger in order to apply Chernoff’s inequality. For
each T € T, let T' be a set obtained from T by adding vertices such that |7/ N P| =
max{|TNP|, [aan+ C1} and |7’ N Q| = max{|T N Q|, [aan + C]}. (We choose one such
T’ for each T.) Let T’ :={T" : T € T}. Then

[T’ <|T| < C?(4n/3)%C.

Note that for each fixed T € 77, we have [RNT" N P| ~ Bi (|T" N P|,n=°?) and
IRNT' NQ| ~ Bi (]T"NQ|,n~°?). Hence, E(|RNT' N P|) = n=%|T" N P| and E(|RN
T'NQ|) = n="9T'NQ|. Applying Chernoff’s bound to |[RNT" N P| and |[RNT' N Q| by
taking A = yn%!, we have,

P (“Rﬂ T/ N P| _ n—0.9|T/ N PH Z /\) S e—Q(}@/(nfo,g‘T/nPl) § e_Q(noa)’ and

P (“R n T/ N Q| _ n—0.9|T/ N QH > )\) < e—Q()\Z/(nfo,s»lT/mQD < e—Q(nOAl)'

So with probability at most 2¢=2""") | |RNT'NP| > n=%9|T'NP|+A > (ay+y+C/n)n’!
and [RNT'NQ|>n T NQ|+ A > (e + v+ C/n)n"1.

Therefore, with probability at most 2Czn2ce_9("0'l), there exists some 7" € T such
that [RNT' N P| > (g +v+ C/n)n and [RNT' N Q| > (az + v+ C/n)n’1. Hence,
with probability at least 1 — 202n2Ce=2(n"") IRNT' N P| < (aq +7+C/n)n’t or
IRNT' NQ| < (g +7+ C/n)n% for all T' € T".

Now let J be an independent set in H[R]. Then J is also an independent set in
H; so there exist T € T and 77 € 7' such that J C T C T’. Thus J C RNT’; so
[JNP| <|RNT'NP|and |[JNQ| < |RNT' NQ|. Hence, with probability at least
1—2C2n2Ce=2n"") for all independent set J in H[R], |J N P| < (a3 +~ + C/n)n’! or
JNQ| < (a2 +v+C/n)n®'. O

To show that a (1,3)-partite 4-graph with no large independent set has a perfect
fractional matching, we need a result from [21] about stable 2-graphs. A 2-graph G is
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stable with respect to a labeling uy,...,u, of its vertices if, for any i,j,k,1 € [n] with
k<iandl<j, uu; € E(G) implies upu; € E(G).

Lemma 4.4 (Lu, Yu, and Yuan 2019). Let ¢,p be constants such that 0 < p < 1 and
0 < ¢ < 1/2, let m,n be positive integers such that n is sufficiently large and cn < m <
n/2 —1, and let G be a 2-graph with v(G) < m. Suppose G is stable with respect to the
ordering of its vertices w1, ..., up. If e(G) > (3) — ("3™) — pn?, then G is 2,/p-close to
the graph with vertex V(G) and edge set {e € (V(QG)) ceN{u; :i € n/3 -1} #0.

We now prove the main result of this section. A fractional matching in a k-graph H is
a function w : £ — [0, 1] such that for any v € V(H), 3 (.cp.pee) w(€) < 1. A fractional
matching w is perfect if ) . pw(e) = |V(H)|/k.

Lemma 4.5. Let p,e be constants with 0 < ¢ < 1 and 0 < p < €'2, and let H be
a (1,3)-partite 4-graph with partition classes Q, P such that 3|Q| = |P| = n. Suppose
di({u,v}) > (";1) —(2"2/3)—pn2 foranyv € Q andu € P. If H contains no independent
set S with |SN Q| > n/3 —e?n and |SN P| > 2n/3 — &?n, then H contains a perfect

fractional matching.

Proof. Let w : V(H) — R* U {0} be a minimum fractional vertex cover of H, i.e.,
Yseew(z) = 1 for e € E(H) and, subject to this, >, () w(z) is minimum. Let
P ={uy,...,un} and Q = {v1,...,vy,/3}, such that w(vy) > --- > w(v,/3) and w(uy) >

- > w(uy,). Let H' be the (1, 3)-partite 4-graph with vertex set V(H) and edge set
E(H') = E', where

E/:{ee <V(4H)) : len@] =1 and Zw(x)Zl}.

reEe

We claim that w is a minimum fractional vertex cover of H’. Since w is fractional
vertex cover of H, e € E(H) implies that e € E(H'); so E(H) C E(H') and w is also a
fractional vertex cover of H'. Let w’ be a minimum fractional vertex cover of H’. Then
w(H) = w'(H'), where w(H) = 3 ey yw(v) and w'(H') := 37 cy gy w'(v). On the
other hand, v’ is also a vertex cover of H; so w'(H') > w(H). Hence, w(H) = w'(H'),
i.e., w is a minimum fractional vertex cover of H'.

Let vy (H) and vy (H') denote the maximum fractional matching numbers of H and H’,
respectively; then by the Strong Duality Theorem of linear programming, v(H) = w(H)
and vy(H') = w(H'). Thus vy(H) = vy(H’) and, hence, it suffices to show that H' has
a perfect matching.

Next, we observe that the edges of H' form a stable family with respect to the above or-
dering of vertices in P and Q: for any e; = {v;,, iy, Uiy, ws, } and ex = {v;,, uj,, sy, Uj, }
with 4, > j; for 1 <1< 4, eo € E(H') implies e; € E(H'). To see this, note that, since
i > ji for 1 <1 < 4, we have w(v;,) > w(v;,) and w(u;,) > w(uy,) for 2 < 1 < 4. If
ez € E(H') then ) ., w(x) > 1580 Y . w(x) > 1and, hence, e; € E(H').
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Let G denote the graph with vertex set P and edge set formed by Ny ({v,/3,un}).
Then G is stable with respect to ui,...,u,. Note that e(G) > ("}') — (2"2/3) — pn?
(by assumption). Since the edges of H' form a stable family, {u,v} Ue € E(H’) for all
u € Pv € Q,and e € E(G). Thus, if G contains a matching M := {ey,...,e,/3} then
let z1,...,2,/3 € P\ V(M); we see that {{v;,z;} Ue; € E(H') : i € [n/3]} is a perfect
matching in H'.

Thus, we may assume v(G) < n/3. Recall that e(G) > (";') — (2”2/3) —pn? and G is
a stable 2-graph. Hence, by Lemma 4.4, G is 2,/p-close to the graph with vertex V(G)
and edge set {e € (V(2G)) ceN{u; i € [n/3—1]}} # 0. Therefore, G has at most |/2,/pn
vertices in {u; : j € [n/3—1]} of degree less than n—1—/2,/pn. Since G is stable with
respect to uy, ..., Uy, we have dg(un/g_\/ﬁn) >n—1—./2\/pn.

Since p < £'2 and H contains no independent set S such that |[SNQ| > n/3 —e%n and
|SNP| > 2n/3—e*n, we may form a matching My of size \/mn in H—{u,...,uy 3}
by greedily choosing edges.

Since dg (U, 3- azmm) = n— 1= /2y/pn, G — V(M) has a matching M of size
n/3— \/ﬁn which can be found by greedily choosing distinct neighbors of u;, 1 < i <
n/3—/2/pn, in V(G)\ V(My). Since {u,v} Ue € E(H') for u € P,v € Q, and e € M,
we may extend M to a matching M’ of size |[M| in H' — My. Then M’ U My gives a
perfect matching in H'. O

5. Almost perfect matchings

In this section, we use Lemmas 4.5 and 5.2 to find a “near regular” spanning subgraph
of H. The discussion here follows that in [4]. We need to find a sequence of random
subgraphs of a balanced (1, 3)-partite 4-graph and use them to find a subgraph on which
a “Rodl nibble” result can be applied.

First, we show how to find such a sequence. The following result is a lemma in [21],
which was essentially the first of the two round randomization in [4].

Lemma 5.1. Let n > k > d > 0 be integers with k > 3 and let H be a k-graph on n
vertices. Take n''! independent copies of R and denote them by R, 1 <1i < n'!, where
R is chosen from V(H) by taking each vertex uniformly at random with probability n~%°
and then deleting less than k vertices uniformly at random so that |R| € kZ. For each
X CV(H), let Yy := |{i: X C R"}| and DEGY := [{e\ X : X Ce ande\ X C R'}|.

Then, with probability at least 1 — o(1), we have

(i) Yipy = (1+0(1))n’2 forv e V(H),
(1) Yiuwy <2 for distinct u,v € V(H),
(#i1) Yo <1 fore € E(H),
(iv) |RY = (14 0(1))n%t fori=1,...,n't and
(v) if p,p' are constants with 0 < p < p/, n/k —pun < m < n/k, and 64(H) >
(Z:g) — (";‘Ejm) — p'n*=L then for any positive real &€ > 2p', we have
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i o (IR=d\ _ (IR —d—|R'|/k ijb—d
DEGD><k_d Py §|IR|

foralli=1,...,n"" and all D € (V).

Since we work with balanced (1, 3)-partite 4-graphs, we need to make sure each random
subgraph taken is also balanced. So we slightly modify the randomization process in the
above lemma. We first fix an arbitrary small set S C V(H). Each time we obtain a
random copy R, we delete some vertices in RN S so that the resulting graph is balanced.
We can do so in a way that, with high probability, all properties in Lemma 5.1 remain
(approximately) true.

Lemma 5.2. Let n be a sufficiently large positive integer, and let H be a (1,3)-partite
4-graph with partition classes Q, P such that 3|Q| = |P| =n. Let S C V(H) be a set of
vertices such that |SNQ| = n%%/3 and |SN P| =n"%. Take n''! independent copies of
Ry and denote them by Ri, 1 <i<n'! where Ry is chosen from V(H) by taking each
vertex uniformly at random with probability n=°°. Define R®. = Ri \S for1<i<nbl

Then, with probability 1 — o(1), for any sequence R, 1 < i < n'' satisfying R C
R C Ri, all of the following hold:

(i) |RY = (4/3 + o(1))n°! for alli=1,...,n*%

(ii) For each X C V(H), let Yx := |{i : X C R'}|, then,
(iia) Yi < (1+0(1))n2 forve V(H),
(iib) Yipy = (1+0(1))n2 forv e V(H)\ S,
(iic) Yiywy <2 for distinct u,v € V(H), and
(tid) Y. <1 fore e E(H). ‘

(#it) For each X € (V(QH)), let DEGY = |Ng(X) N (};)| If p > 0 is a constant and
dg({u,v}) > (”;1) — (2"2/3) —pn? for allv € Q and u € P, then for any constant
& > 5p, we have

DEGZ{u,U} - <|R nP|l— 1) B <2|R nP|/3

. ,VP) - art o,
foralli=1,....n"", v e Q, and u € P.
Proof. Note that E(|R[) = (4n/3) - n~%9 = 4n"!/3, and
E(|R|) = (4n/3 — 4n®/3) - n~= %9 = 4n®1 /3 — 4n"99/3.
By Chernoff’s inequality,

P(|Rz+| - 4n0'1/3 > n0'095) < e—Q(nO'OQ)

and
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IP’(\RH _ (4n0'1/3 _ 4n0‘09/3) < —n0'095) < =)

In particular, (i) holds with probability at least 1 — e=2(n"")

Let Y = |{i : X C R,}| for X C V(H). Then Y{ ~ Bi(n'',n=%9Xl) and
Yx <Yy forall X CV(H), and Yy = Yy for all X C V(H) \ S. Then by Lemma 5.1,
(7ic) and (iid) hold with probability 1 — o(1).

For each v € V(H), ]E(Y{t}) =n%2, thus by Chernoff’s inequality,

n0-15 —Q(no1)
P ([viy -2 za) <e '

Thus (ifa) and (iib) hold with probability at least 1 — e~2""").
Npg(X)n (R;) ‘ To prove (iii), since n is sufficiently large, it suffices to
lve@ and u € P,

i ndt —1 2n0-1/3
degiy, v > ( 5 > - ( 5 / > —&n®2/2,

Conditioning on |RY, | < 4n%!/3 —n%%9 and |R| > (4n%'/3 — 4n%1/3) — n%0% for all
i, we have, for all v € Q and u € P,

Let deg’y =

show that for a

E(degl, ) = du—s({u, v})(n™%7)?

>a-ow) ("5 1) = () o) oo
§ (n0‘12 1) B <2n02‘1 /3) -

where the first inequality holds because |S| = 4n%9/3 (and, hence, dy_s({u,v}) =
(1 —o(1))dg({u,v})). In particular, E (degf{u’v}) = Q(n°?). Next, we apply Janson’s

Inequality (Theorem 8.7.2 in [6]) to bound the deviation of deg?{uyv}. Write deg’:{u’v} =
ZeeNH({u,v}) X., where X, =1 if e C R* and X, = 0 otherwise. Then

oo gz ()

eNf#0

and, thus, A = O(n%?). By Janson’s inequality, for any constant v > 0,
P (degi{u v} < (1 - 'Y)E(degiu v})> < 6772E(degi“’“})/(2+A/E(degi“=“})) = 679(710-1).

Since ¢ > 5p (and taking v sufficiently small), the union bound implies that, with
probability at least 1 — n2+1'16_9("0‘1), for all v € @ and u € P and for all i € [n!-1],
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) ndl —1 2n0-1/3
degl, 3 > ( 9 ) - ( 5 / ) —&n®2/2,

Thus, (i4i) holds with probability at least

(1 _ nl.lefﬂ(no’og))(l _ n2+1'1eig(n0-1)) ~1- n4eig(n0.09)_

Hence, it follows from union bound that, with probability at least 1 — o(1), (i)-(4i7)
hold for any sequence R?, 1 <14 < n''!, satisfying R®. C R C Ri. O

In order to apply Lemma 4.5, we need an additional requirement that the induced
subgraphs R; be balanced.

Lemma 5.3. Let n, H,P,Q,S and R, ,R" , i € [n'], be given as in Lemma 5.2. Then,
with probability 1 — o(1), for every i € [n''], there ewist subgraphs R; such that R* C
R C Ri and R is balanced.

Proof. Recall that |P| =n, |Q| =n/3, |SNP|=n% and |SN Q| =n%%/3, and that
R'_ is formed by taking each vertex of H independently and uniformly at random with
probability n=9%9. So for i € [n!],

E(|R} N PJ)=n"",

E(|R. NnPNS|)=n"",
E(|R. NnQ|)=n""'/3, and
E(|R. nPNS|)=n"/3.

By Chernoff’s inequality,

i 0.1 0.08 —Q(n00%)
- — )
IR, NPl —n"t >n%) <e

P
P
P (||[R. N Q| —n®1/3| > n®%%) < 20 i
P

’I’LO'O7)

(
(HR; NPNS|— n0409| > nO‘OS) < e_Q(no.m)7
(
(

IR, NQN S| —n®0/3] > n08) < =X
Thus, with probability 1 — o(1), for all i € [n!!],

IR:. N P| e [nO! —n008 n01 4 008
IR, N PAS| = (1+0(1))n"%,
IRL. N Q| € [n®'/3 —n®0® n01/3 4 n008]  and
IR NQNS|=(1+0(1))n*".
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Therefore,
[|R\. N P|=3|R, NQ|| < 4n®® < min{|R, N PN S|,|R, nQN S|}
Hence, with probability 1 — o(1), R’ can be taken to be balanced for all i € [n*!]. O

Another small difference between here and [4] is that condition (i) in Lemma 5.2 is
slightly weaker than the corresponding condition in [4]. In [4] all vertices have almost
the same degree, but here a small portion of the vertices could have smaller degree. The
following lemma reflects a slightly weaker conclusion due to this difference, and the proof
mainly follows that of Claim 4.1 in [4].

Lemma 5.4. Let n, H,S, R, i = 1,...,n"! be given as in Lemma 5.3 such that each

H[R] is a balanced (1,3)-partite 4-graph and has a perfect fractional matching w'. Then
1.1 .

there exists a spanning subgraph H" of H' := J;_, H[R'| such that

(3) () < (1+0(1))n02 for u € 8,
(#) dp(v) = (1 —|— 0(1))710'2 forve V(H)\ S, and
(iii) Ag(H") <nP

Proof. Let H' = U?:l'll H[R. By (iid) of Lemma 5.2, each edge of H is contained in at
most one R!. Let i, denote the index i such that e C R (if exists); and let w(e) = 0
when i, is not defined. Let H” be a spanning subgraph of H’ obtained by independently
selecting each edge e at random with probability we (e).

Forve V(H"),let I, ={i: ve R}, E,={e€ H': veEe}, and E! = E, N H[RY.
Then E!, i € I, form a partition of E,. Hence, for v € V(H"),

he)= Y 1= 3 X,

ecE, i€l, e€E}

where X, ~ Be(w'(e)) is the Bernoulli random variable with X, = 1 if e € E(H") and
X, = 0 otherwise. Thus, since Y
in H[RY),

cCEi wi(e) =1 (as w' is a perfect fractional matching

B ) = 3 Y wite) = Y1
i€l, e€E} i€l,
Hence, E(dg~(v)) = (1 + o(1))n%2 for v € V(H) \ S (by (iib) of Lemma 5.2), and

E(dg»(v)) < (1 + o(1))n®2 for v € S (by (iia) of Lemma 5.2). Now by Chernoff’s
inequality, for v € V(H) \ S,

P(‘dH// (’U) _ n0.2| 2 n0,15) S e_Q(nU.l),
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and for v € S,
P(dH”('U) — n0.2 Z nO.15) S e_Q(nO,l).

Thus by taking union bound over all v € V(H), we have that, with probability 1—o(1),
dgr(v) = (1+0(1))n’2 for all v € V(H) \ S and dg~(v) < (1+ 0(1))n’2 for all v € S.
Next, note that for distinct u,v € V(H),

dpr ({u,v}) = o=y Y x

e€E,NE,NE(H") i€l,Nl, e€eELNE}

and E(dpr({u,v})) = Y icr a1, 2eemi np: W'(€). By (iic) in Lemma 5.2, I, N I,| < 2.
So E(dg»({u,v})) < |I, N I,| <2. Thus by Chernoff’s inequality,

P(dgr ({u,v}) > nd1) < 2",

Hence by a union bound Ay (H”) < n®1 with probability 1 — o(1).
Therefore, with probability 1 — o(1), H” satisfies (i), (i), and (#4i). O

We also need the following result attributed to Pippenger [23], stated as Theorem 4.7.1
in [6]. A cover in a hypergraph H is a set of edges whose union is V(H).

Lemma 5.5 (Pippenger and Spencer, 1989). For every integer k > 2 and reals r > 1 and
a > 0, there are v = vy(k,r,a) > 0 and dg = do(k,r,a) such that for every n and D > dy
the following holds: Every k-uniform hypergraph H = (V, E) on a set V of n vertices in
which all vertices have positive degrees and which satisfies the following conditions:

(1) For all vertices x € V' but at most yn of them, d(x) = (1 £ ~)D;
(2) Forallxz eV, d(x) <rD;
(8) For any two distinct x,y € V, d(z,y) < vD;

contains a cover of at most (1 + a)(n/k) edges.

Note that H contains a cover of at most (1+a)(n/k) edges implies that H contains a
matching of size at least (1 — (k — 1)a)(n/k) (see, for example, [23]). Now we are ready
to state and prove the main result of this section, which will be used to find an almost
perfect matching after deleting an absorber.

Lemma 5.6. Let 0 > 0 and 0 < p < e/4 < 1, let n be a sufficiently large positive integer,
and let H be a (1, 3)-partite 4-graph with partition classes Q, P such that 3|Q| = |P| = n.
Suppose H is not e-close to any Hy 3(n,n/3) with V(Hy 3(n,n/3)) and dg({u,v}) >
(ngl) — (2"2/3) —pn? for allv € Q and u € P. Then H contains a matching covering all
but at most on wvertices.
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Proof. By Lemmas 5.2 and 5.3, we have the random subgraphs R!, i € [n
that, with probability 1 — o(1), all R satisfies the properties in Lemmas 5.2 and 5.3. In
particular, H[R;] is balanced with respect to the partition classes @, P.

Next, by Lemma 4.2, H is (F,e/6))-dense, where

F={ACV(H):|ANQ| > (1/3 —¢/8)n and |[AN P| > (2/3 — £/8)n}.

Note that

() = ¥ S dutfuo)/3= 3o (M5 1) = (757) =) = o0,

veEQ ueP

Hence by Lemma 4.3 (and choosing suitable o, ag,7), we see that, with probability
1 —o(1), for all i € [n'!] and for all independent sets J in H[R], |J N P| < (a1 +v +
o(1))n%t <n/3 —e?nor [JNQ| < (az +v+o0(1))n! < 2n/3 — &n.

Moreover, by (i7i) of Lemma 5.2, with probability 1 — o(1), dgyri({u,v}) >
(lRWQP‘_l) — (2|R12P‘/3) — &R N P|? for all u € P and v € Q. Hence, by Lemma 4.5,
H[R'] contains a perfect fractional matching for all i € [n!-1].

Thus by Lemma 5.4, there exists a spanning subgraph H” of U?:l'll H[R] such that
dpr(u) < (14 0(1))n%2 for each u € S, dy(v) = (1 + 0(1))n®2 for each v € V(H) \ S,
and Ag(H") < n%1. Hence, by Lemma 5.5 (by setting D = n°?2), H” contains a cover
of at most (1 + a)(n/3) edges, where a is a constant satisfying 0 < a < 0/3.

Now by greedily deleting intersecting edges, we obtain a matching of size at least
(1 —3a)(n/3). Hence H contains a matching covering all but at most on, provided n is
sufficiently large. O

6. Conclusion

Proof of Theorem 1.2. By Lemma 2.3, we may assume H is not e-close to any
Hj 5(n,n/3), where ¢ < 1. By Lemma 3.1, Hy 3(F) has a matching M’ such that,
for some 0 < p/ < p < e, |[M'| < pn/4 and, for any S C V(Hy 3(F)) with |[S] < p'n and
3[SNQ| = |SNP|, H 3(F)[SUV(M')] has a perfect matching.

Let Hi = H — V(M’). Then dy, {u,v}) > ("/2_1) - (2";/3) — p(n')? for all v €
QNV(Hy) and u € PNV(Hy), and H; is not (2¢)-close to Hy 3(n',n’'/3), where n’ =
(1 =o(1))n.

By Lemma 5.6, H; contains a matching M; covering all but at most on vertices,
where we choose o so that 0 < o < p’. Now H[(V(Hy) \ V(M;)) UV (M)] has a perfect
matching My. Clearly, M7 U M5 forms a perfect matching in H. O
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