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Abstract—In this paper, we present a discrete-time net-
worked SEIR model using population flow, its derivation, and
assumptions under which this model is well defined. We identify
properties of the system’s equilibria, namely the healthy states.
We show that the set of healthy states is asymptotically stable,
and that the value of the equilibria becomes equal across
all sub-populations as a result of the network flow model.
Furthermore, we explore closed-loop feedback control of the
system by limiting flow between sub-populations as a function
of the current infected states. These results are illustrated via
simulation based on flight traffic between major airports in the
United States. We find that a flow restriction strategy combined
with a vaccine roll-out significantly reduces the total number of
infections over the course of an epidemic, given that the initial
flow restriction response is not delayed.

I. INTRODUCTION

Global interconnectivity has proven to be a key factor in
the propagation of infectious diseases [1], [2]. Most recently,
we have seen evidence of such connectivity through the rapid
spread of the COVID-19 pandemic, which propagated from
its origin in Wuhan, China to every major population center
globally in a matter of weeks [3]. Given the implications
of global population flow on disease spread, it becomes
important to accurately model this flow, as reliable modeling
is an essential step to developing effective and efficient
mitigation strategies. Various infection models have been
proposed based on characteristics of individual pathogens
and studied in the literature, including susceptible-infected-
susceptible (SIS), susceptible-infected-removed (SIR), and
susceptible-infected-removed-susceptible (SIRS) [4], [S]. For
this paper, we consider the recent COVID-19 pandemic as
a motivating case for the model selection and construction.
Due to the delay in onset of COVID-19 symptoms [6],
[7] and large asymptomatic populations estimated between
17 — 81% [8]-[11], we choose the susceptible-exposed-
infected-removed (SEIR) model as the foundation of our
model development.

Previous work involving the incorporation of population
flows in epidemic process models include analysis of a
networked SIS model with flows [12] as well as using a
networked SIR model with flows to predict arrival times
for various epidemics using global flight data [13], where
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both models are developed in continuous time. This paper
uses similar derivation techniques to define our discrete-time
epidemic model. However, we contribute to the development
of such models by including the exposed state in our model
formulation, as well as provide analysis of the discrete time
dynamics. While other work has considered capturing the
effect of transportation on the spread of COVID-19 using
the SEIR model, e.g. [14], the key distinction in this work
is that infection propagation over the network is modeled by
the relocation of infected individuals to other sub-populations
rather than assuming direct contact and intermingling be-
tween sub-populations. Furthermore, while previous work
assumes the likelihood of individuals traveling is independent
of their infection state, this work considers the effect of being
infected on the probability of an individual traveling. For
the full version of this work, including all the proofs of the
results, please see [15].

A. Notation

We denote the set of real numbers, positive real numbers,
non-negative integers, and the positive integers as R, R+,
Z>0, and Z>1, respectively. For any positive integer n, we
have [n] = {1,2,...,n}. A diagonal matrix is denoted as
diag(-). The transpose of a vector z € R™ is x'. We use 0
and 1 to denote the vectors whose entries all equal O and
1, respectively. We let G = (V,E, W) denote a weighted
directed graph where V = {vy, v, ..., v, } is the set of nodes,
E CV x V is the set of edges, and W : E — R~ maps to
the real valued edge weights on each edge. We denote the
configuration of edges in a directed graph at time step &k as
Gk = (V,EF, W), where E¥ denotes the set of edges at time
step k. Furthermore, we denote UkZO]E’C as the union of all
non-zero edge configurations on a graph for all £ > 0. We
define a graph G as being strongly connected if there is a
path from every node to every other node in the graph.

II. SEIR MODEL WITH NETWORK FLOWS

In this section, we present a networked SEIR model
incorporating the population flow of individuals between sub-
populations. First, consider a group of n sub-populations in
a graph, where each sub-population i € [n] is represented by
a node in the graph. We use the SEIR model to describe how
susceptible individuals in sub-population ¢ become exposed,
infected, and eventually recover as the result of an infec-
tious disease [16]. We begin with defining the SEIR model
behavior without graph connections for each sub-population
i € [n] where S;, E;, I;, and R; represent the number of
susceptible, exposed, infected, and recovered individuals in
sub-population i, respectively, and their dynamics evolve as
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50 = 5,0 "D, (1
B0 =505 0) ~ B (b
1i(8) = 03 (O Eu(t) — 8:(6) T, (1) (1c)
R;i(t) = 0;(t)1;(t), (1d)

where (3; is the infection rate, o; is transition rate from
exposed to infected, and §; is the healing rate. We assume
Si(t) + Ei(t) + Li(t) + R;(t) = N, for all ¢, i.e., a fixed
population size for each sub-population. We assume fixed
sub-populations as the intended time scale of the model
is such that population change due to birth/death rates
and migration is negligible (e.g. rapid disease propagation
over weeks or months). While all the variables (and model
parameters, except population), will (may) continue to vary
with time, we remove the time-dependence notation for
convenience and ease of reading from this point forward.

To account for the flow of individuals between sub-
populations we expand the model in (1):

S;
S S +Z< z]N ]zN) (23.)
Ji ¢
. I E;
Ez:ﬁzN —oiF; +Z< Z]N ijz> (2b)
J#i
I, =0,E — 5I+Z(”N jf\}) (2¢)
jAi ¢
R;
—5I+Z(”N JZN>, (2d)
i !

where F;; represents the number of individuals flowing from
sub-population j to ¢, with F;; = 0. By making a substi-
tution of variables where s; = S;/N;,e; = E;/N;,x; =
I;/N;,r; = R;/N; we can model the proportion of individ-
uals as follows

. 1
8 = —fiwis; + N Z (Fijsj — Fjisi) (3a)
J#i
1
é; = Pix;s; — oie; + ﬁl Z (Fl'jej‘ - Fjiei) (3b)
J#i
. 1
T = 05e; — 6z + N Z (Fijxj — Fjix;) (3¢)
J#i
. 1
7 = 0;T; + ﬁl ; (F‘,jjT’j — Fji’f’i) s (3d)
JF

where s; + ¢; + x; + r; = 1. Note that both (2) and
(3) assume the sub-populations are well mixed and that
the likelihood of an individual traveling is independent of
their infectious state, that is, whether they are susceptible,
exposed, infected, or recovered. We now extend our model
to include the probability that an individual is traveling, given

their infectious state

. 1
$; = —Bixis; + N Z (FijP(s;|Tj) — FyiP(si|T3))
J#i
(4a)
. 1
€& = Bixis; — oi€; + N Z (Fij P(e;|T;) — Fji P(eil|T3))
A
(4b)
. 1
J#i
(40)
. 1
iy = 0,1 + oA ; (Fij P(r;|Ty) — FjP(ri|T})),  (4d)
JF

where P(q;|T3), ¢; € {si,€i, 2,7} is the probability of an
individual at sub-population 7 being in a certain infectious
state given that they are also traveling. Note that

P(s;|T;) + P(ei|T;) + P(zi|T3) + P(ri|Ti) =1 (5)

for all ¢ € [n]. We can compute the probability that an
individual from sub-population ¢ is traveling given that they
are in state g; using Bayes’ rule,

P(Ti|Qi)PA(Qi)

P(¢:|T:) = PT)

(6)
where P(T;) is the probability of an individual traveling
from sub-population ¢ and P(g;) = ¢; is the probability they
are in state ¢;. We compute the probability of an individual
traveling from a given sub-population ¢ € [n] as
> iz Fii
P(T)) = ~; = =970 7
(Ti) =~ N (7
where ~; is the proportion of the population flowing out of
sub-population ¢ and ; € [0, 1] as it is reasonable to assume
that Zj 2i Fji < Ni (gs > i#i Fj; = N; .would. imply .that
the entire population is traveling at a given time). Since
measuring P(q;|T;) is practically challenging, we instead
parameterize p! := P(Tj|q;), for ¢; € {si,e;,x;, i}, as
follows. Using (5)-(7), we have that

1, .
—(pjsi +piei +pjw; +piri) = 1. ®)
1
Therefore, assuming that p{ = p¢ = pI' = p!, we have
Py (s +ei+1i) + pim; =i
Thus, solving for p! yields

T _ Vi~ Piti
;= 9
L ©))
which allows us to use p? € [0,1] as a parameter to describe
how likely an individual will be traveling given that they
are infected. Furthermore, we can compute the number of
individuals flowing from sub-population j to ¢ as

Fij = vjwi; Ny, (10)
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where w;; is the proportion of traveling individuals flowing
from sub-population j to ¢ computed as

F..
=7 (11)
Zz;ﬁ j £y
with w;; = 0. Thus, we can derive the dynamics for the
susceptible proportion at sub-population ¢ as

wij =

. 1
8 = —Piwis; + A Z (£ P(s|Ty) — FjiP(si]T3))
b
1 pls; pl's;
= —Bivisi + D | wiN; = = i
U i Yi

= _ﬁzm S + Z ( wszJ S5 — wjipzrsi> .

J#i
Using the fact that Z#i wj; = 1, by (11), we have that

(ﬁlxl +p¢ Sq + Z N wzgpj S]
J#i

By similar derivations, we can rewrite (4) as

éi (ﬁzxz + pz si + Z wz]p] Sj (123-)
JF#i
: T Nj o1
& = Biwisi — (0; +p; Jei + Z N, WiaPs € (12b)
J#Z
&y = oie; — (0; + pf )i + Z - WiPj T (12¢)
J#l Ni
T = 0;x; — pl T + Z N, w,Jp] ;. (12d)

J#i

We choose to discretize our model due to the nature of the
collected data on the spread of pandemics, where the highest
resolution data is typically recorded once per day. Using
Euler’s method, we can write (12) in discrete time as

kak
ijPj 55

sith=si b | —(Bier o )s 4 N"
J#i
(13a)

kak

et =l +h (653&585 (o +p; "

JF#i
(13b)

oyt =af +h | ofel — (0F + p) ") JrZﬁwfypfk ;
J#i
(13¢)

=P 4 h (6 af —piFr k—&-zﬁwfjp;‘rk k) , (13d)
J#i

where k € Z>o is a given time step and h € Ry¢ is a
sampling parameter, yielding our discrete time model.

For the model in (13) to be well-defined we require the
following assumptions.

+ZN 7,] J j)

Assumption 1. Let Y, . Ff; =3, FF for all i,j € [n]

and k € ZZO'

This assumption requires that the total flow of individuals
into a given sub-population must be equal to the total flow
out. Furthermore, we impose the following assumption on
the model parameters.

5k ok e

192Y%

Assumption 2. For all i € [n] and k € Z>, let el
P < 1 h(ok +

Roo. hBf,hof,hot € (0,1], h(BE +
pIR) <1, and h(ok +pi) < 1.

Under these assumptions, we can show that given proper
initial conditions the model will always remain well defined.

Lemma 1. Consider the model in (13) under Assumptions 1-
2. Suppose s9,€%, 29 10 € [0,1] and s9+€?+a9+r? = lfor
all i € [n). ThenforallkEOandze[ ] § ek xk rk e

1’ 77 171
[0,1] and sk + ¥ + ¥ +rF = 1.

Remark 1. Assumption 2 requires that the sampling pa-
rameter be small enough in relation to the model spread
parameters such that the model remains well defined. Fur-
thermore, reqmrmg h(BFx¥ —l—pZ ) <1,h(cF +piT’k) <1,
and h(5¥ + pl *Y < 1 can be interpreted as requiring that no
individual can both travel and transition between infectious
states during the same time step k € Z>o, as our model does
not capture infection occurring during travel.

The following are not required for the model to remain
well defined. However, we use them in the next section
to show that the set of healthy states have a homogeneous
structure.

Definition 1. A graph G* = (V,Ug>oE*, W) for k € Z>q is
K -strongly connected if there exist some bound K such that
(v, U’?i',f_lEj W) is strongly connected, for all k € Zx>.

Vv, Uk>0Ek W), where
be K-strongly connected.

Assumptlon 3. Let the graph gk
W : EF — Ry is defined by w”,
III. MODEL ANALYSIS

In this section we analyze the equilibria of the model in
(13), i.e., the healthy states of the system, which we deﬁne as
qf = limy_,00 ¢F for all i € [n] where ¢ € {s}, e}, a},rf}.
We use the following result given in [17] on the conditions
for discrete-time consensus models.

Lemma 2. Let a discrete-time system defined by the tran-
sition matrix L* satisfy the following properties, where lfj
is the corresponding entry in the ith row and jth column at
time step k € Z>q:
(i) The graph G = (V,U>oE"), where the edge weights
at time step k are given by LF, is K-strongly connected.
(ii) There exists a positive constant y € R such that for
all i,j € [n] and k € Z>o we have
(a) I} >
(b) If € {0} Uly. 1]
(c) Z] 1 lfj =L
Then, the system dynamics defined by L* guarantee asymp-
totic consensus.
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We now present results on the asymptotic convergence of the
healthy states for the system in (13).

Theorem 1. Consider the model in (13) under Assumptions
1-3. Given that there exists some i € [n] such that 9 € (0, 1]
or € € (0,1], then there exists a set of asymptotically stable
equilibria of the form (s*,0,0,1 — s*), where s* = al,
a € [0,1].

IV. FEEDBACK CONTROL
We now propose a feedback control strategy for the model
in (13) derived from the current infection states. Given that
¥ represents the unimpeded flow out of sub-population i at
time step k£ € Z>g, we can implement a scheme that restricts
travel between all sub-populations proportionally:

¥ = 0%F, (14)

where 6% € [0,1] is the flow restriction parameter. We
propose a flow restriction parameter that is a function of
the average infection level:

1

0F =1 (z")7, (15)

where " = 537, af is the average proportion of

infected individuals across all sub-populations and 1 € R+
can be viewed as a sensitivity parameter, where n > 1
denotes a higher sensitivity and 7 < 1 denotes a lower
sensitivity to the average infection level in the network.
The magnitude of n can also be viewed as the strength of
the controller in reaction to the overall infection. We now
show that applying the strategy in (14) still maintains the
assumptions imposed in Section II, enforcing that the model
remains well defined. We define (13) as the system with
dynamics in (13) including the control strategy in (14).

Proposition 1. Consider (/1V3) under Assumption 2 and with
0% € [0,1] for all k > 0. If with s9,€2, 29,79 € [0,1] and

sV+ed+2%410 = 1 foralli € [n), then s¥,e¥ x¥ ¥ € [0,1]

and s¥ +e¥ +aF +rF =1, forall k >0 and i € [n].
By restricting v¥, we directly reduce the flow of both
infected and non-infected individuals according to (9) as

o (pH (st ek +rh) +prtal) =0t )

Thus, our controlled flow rates, with respect to the condi-
tional probability parameters, are given by

~q,k _ pk a.k
= ok p?

D a7

where p!"* € {p}"*, p{"*, ", P}

The control strategy in (14)-(15) effectively restricts flow
between all sub-populations proportionally in the presence of
any amount of system infection. Note that by construction
oF = lf(a_:k)% € [0,1] for all £ > 0. Thus, by Proposition 1,
the system is well defined.

It should be noted that while proportional restrictions to
all flow are not the most precise form of control that can be
applied to this model, this approach is not dissimilar to the
travel policies on global and regional flights during the height

of the COVID-19 pandemic [18]. In the following section we
apply this control strategy to a simplified model of a travel
network between populous cities based on median flight data,
and evaluate its effectiveness on mitigating disease spread.

V. SIMULATIONS

In this section, we detail the methods and parameters
used to simulate our model, its limiting behavior, and our
proposed control strategy as described in Sections II-IV.
We construct our simulations using population data from
the US cities of Atlanta, Los Angeles, Chicago, and Dallas,
and the flights between each city’s primary airport (ATL,
LAX, ORD, DFW). The infection starts in Los Angeles
and propagates through the network, reaching an equilibrium
where ¥ = 0 for all i € [n].

To simulate the states for the SEIR model we use
(13) with fixed homogeneous spread parameters (i.e., the
same for every sub-population and static), (53,9, 0, h, p*) =
(0.5,0.34,0.19,0.14, 0.005). The population of each city is
given by (NATLa NLAX7 NORD, NDFW) ~ (057 4, 27, 13) *
10, where the population sizes are approximated from [19]
and [20]. The population traveling between the cities is
approximated by the median number of daily flights between
the airports in March 2021 [21]:

0 15 23 19

15 0 22 21
F=< 23 22 0 23|’

19 21 23 O

where & € R>o is a scaling factor, which is used to
increase or decrease the total volume of population flow.
The initial conditions for the sub-populations are s =
[1,0.99,1,1], ¢ = [0,0.005,0,0], z° = [0,0.005,0,0], and
r?=10,0,0,0].

We simulate the control strategy proposed in Section IV
with and without an additional heuristic for vaccine dis-
tribution. With no vaccine strategy applied, these simula-
tions show that exclusively implementing a control law that
uniformly reduces travel based on z*, namely using (14)-
(15), does not have a significant impact on the total number
of people infected. Furthermore, in many cases increasing
the strength of the controller will cause the total number
of recovered individuals to increase. This phenomenon is
illustrated in the plot at the bottom of Figure 1 by the fact that
as the x-axis increases (recall that the n value corresponds
to the strength of the controller), so does 7* (except for
very small ~ values). This behavior is the consequence of
at least two reasons: 1) the controller does not prevent
infections from occurring inside the sub-populations (i.e. no
lock downs), and 2) the controller in some cases ‘flattens the
curve’ which prolongs the outbreak and increases the integral
under the curve (i.e. a higher number of total infections).

On the other hand, a reduction in the peak infected
population reduces strain on healthcare systems, improving
medical outcomes and decreasing fatality rates [22], and
creates an opportunity for a vaccine to be more impactful.
In Figure 2 we simulate the network with the same initial
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FIGURE 1: System response to the controller in (14)-(15)
with different strength values (1) and flow rates (). (Top)
Plot of ¥ with 7 ranging from 0 to 1000 and ¢ = 100. An
n = 0 means the control strategy is not used. The dotted
lines of corresponding color denote the control parameter
applied to the flow rates in the system with respect to the
total infection level. (Bottom) The average proportion of
recovered individuals #* for a spectrum of equilibria. The
baseline v = 1.0 is when £ = 100.
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conditions and parameters as Figure 1, adding the distribution
of a vaccine, starting at time step k = 500, which, for
each sub-population, moves 0.1% percent of the susceptible
proportion directly to the recovered proportion at each time
step. In the bottom of Figure 2, we show the mean infected
proportion of the system for increasing levels of sensitivity
as well as the total proportion of the recovered population
who were infected by the disease (), Z*). We see that a
combined strategy of restricting flow and vaccine distribution
can have a marked effect on the number of individuals
infected while simultaneously reducing the peak infection
level of the system.

Lastly, we implement the controller in (14) with #* being
strictly binary, that is, 6% is either 0 or 1. In Figure 3, control
strategies 77 = 1,2 shut down all travel after 50 time steps,
imitating a delay in decision making from policymakers
while strategies 7 = 3,4 shut down travel immediately when
the infection is first detected in any sub-population. A critical
note is that even when travel is eventually completely closed,
if it does not happen quickly enough, then there will be
almost no discernible impact on infection levels, as seen by
comparing control strategies n = 1,2. These extreme cases
illustrate that unless the infection is completely eradicated
(z* = 0) prior to reopening travel, it will always spread
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FIGURE 2: Implementation of a vaccine roll-out. Plots mirror
those in Figure 1, with the roll-out starting at £ = 500,
moving 0.1% of s¥ — r¥ until 3 = 0.01. (Top) Plot
of zF with 7 ranging from 0 to 1000 and £ = 100. An
n = 0 means the control strategy is not used. The dotted
lines of corresponding color denote the control parameter
applied to the flow rates in the system with respect to the
total infection level. (Bottom) The average proportion of
recovered individuals due to infection 4, z*, which is
equivalent to 7* when there is no vaccine, for a spectrum
of equilibria. The baseline v = 1.0 is when £ = 100.
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FIGURE 3: System response (solid lines) to the controller in
(14) with an on-off flow parameter (dotted lines). The case
n =0 has 0¥ = 1 for all £ > 0, the cases = 1,2 have
0% =1 for all k € {0,...,49} and set ¥ = 0 starting at
k = 50, the cases 1 = 3,4 have §* = 0 starting from k = 0,
cases 7 = 1,3 re-open travel (set ¥ = 1) for all k after
¥ < 0.001, and cases 7 = 2,4 only re-open travel after
zF ~0.
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FIGURE 4: System response to the controller in (14) with
an on-off flow parameter combined with a vaccine roll-out.
The on-off controller is identical to Figure 3 and the vaccine
roll-out is identical Figure 2.

throughout the network after travel is reopened. When we
tested the binary controller case 1 = 3 reopening travel after
Z* < 1079, there was a second Z* peak around k£ = 7000.
When a vaccine is distributed, this delayed second wave can
be significantly mitigated as shown in Figure 4. While costly,
completely closing all travel between sub-populations can
enable a vaccine to have a tremendous impact but only if
the initial response is not delayed.

VI. CONCLUSION

In this paper, we have constructed a networked discrete-
time SEIR epidemic model that incorporates population
flows, presented conditions under which the model is well-
defined, and shown asymptotic convergence to the healthy
states, the set of equilibria. Additionally, we have proposed
a control policy for restricting population flow which can be
interpreted as implementing travel restrictions/bans, showed
it is well defined, and illustrated its behavior via simulation.
We have found that only restricting the flow of the population
is typically insufficient to reduce the total number of infec-
tions over the course of an epidemic. More severe restrictions
on the population flow can decrease the peak infection
level, which can alleviate stress on healthcare facilities.
Further, applying population flow restrictions together with a
vaccination strategy can significantly reduce the total number
of infections.

For future work we plan to incorporate the possibility
of infections occurring while individuals are traveling (i.e.,
infections occurring on the edges of the graph) as well as
using real travel and infection data from the COVID-19
pandemic to learn the model parameters. Finally, note that
our model does not capture asymptomatic transmission of the
virus, a key component of the infectious behavior of COVID-
19, therefore, developing a similar SAIR formulation remains
open to future work.
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