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Abstract

This study examines the climatology and structure of rainfall associated with tropical cyclones
(TCs) based on the atmosphere-only Coupled Model Intercomparison Project Phase 6 (CMIP6)
HighResMIP runs of the PRocess-based climate sIMulation: AdVances in high resolution
modelling and European climate Risk Assessment (PRIMAVERA) Project during 1979-2014.
We evaluate how the spatial resolution of climate models with a variety of dynamic cores and
parameterization schemes affects the representation of TC rainfall. These HighResMIP
atmosphere-only runs that prescribe historical sea surface temperatures and radiative forcings
can well reproduce the observed spatial pattern of TC rainfall climatology, with high-resolution
models generally performing better than the low-resolution ones. Overall, the HighResMIP
atmosphere-only runs can also reproduce the observed percentage contribution of TC rainfall to
total amounts, with an overall better performance by the high-resolution models. The models
perform better over ocean than over land in simulating climatological total TC rainfall, TC
rainfall proportion and TC rainfall per TC in terms of spatial correlation. All the models in the
HighResMIP atmosphere-only runs underestimate the observed composite TC rainfall structure
over both land and ocean, especially in their lower resolutions. The underestimation of rainfall
composites by the HighResMIP atmosphere-only runs is also supported by the radial profile of
TC rainfall. Overall, the increased spatial resolution generally leads to an improved model

performance in reproducing the observed TC rainfall properties.
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1. Introduction

Tropical cyclones (TCs) are associated with extreme rainfall and are responsible for
extensive damages and numerous fatalities (e.g., Peduzzi et al. 2012; Rappaport 2014; Czajkowski
et al. 2017; Klotzbach et al. 2018; Bosma et al. 2020). For example, Hurricanes Harvey and
Florence serve to highlight the catastrophes that could be caused by extreme TC rainfall (e.g.,
Emanuel 2017; Reed et al. 2018; Risser and Wehner 2017; Van Oldenborgh et al. 2017; Wang et
al. 2018; Zhang et al. 2018) and are just two recent examples of a long list of catastrophic events.
According to the National Oceanic and Atmospheric Administration (NOAA) National Center for
Environmental Information (NCEI) (2020), there have been 44 TCs affecting the United States
causing damage in excess of one billion dollars between 1980 and 2019; in total, these events
caused $945.9B (Consumer Price Index-Adjusted) and 6,502 fatalities.

Rainfall associated with TCs tends to be larger than for non-TC events. For instance, within
the novel statistical framework of the Metastatistical Extreme Value Distribution, Miniussi et al.
(2020) showed that the distribution of TC rainfall is different from the non-TC rainfall in the
Eastern United States, especially for multi-day events, and that these storms tend to result in larger
rainfall values. The impact of the TC rainfall is remarkable not only along the coastline, but also
hundreds of miles inland in terms of flooding (e.g., Villarini et al. 2014a; Khouakhi et al. 2017;
Aryal et al. 2018) and landslides (e.g., Bucknam et al. 2001). Despite these negative effects, they
can also bring water critical for groundwater recharge, water supply and drought mitigation (e.g.,
Abdalla and Al-Abri 2011; Kam et al. 2013; Zhang et al. 2017). It is therefore crucial that we
improve our understanding of the processes and characteristics of TC rainfall, which could in turn

lead to an improvement in its simulation and seasonal forecasting (e.g., Barlow 2011; Luitel et al.
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2018; Liu et al. 2019; Prat and Nelson, 2016; Touma et al. 2019; Vecchi et al. 2019; Zhang et al.
2019).

There are several drivers controlling TC rainfall, including low-level vertical wind shear
(Corbosiero and Molinari 2003; Tang et al. 2014), terrain effects (DeHart and Houze Jr 2017;
Nguyen et al. 2017), TC structure (Chen et al. 2006; Hence and Houze Jr 2012; Yu et al. 2017),
sea surface temperature (Langousis and Veneziano 2009; Lin et al. 2015), and atmospheric
aerosols (Wang et al. 2014; Zhao et al. 2018). Over the years and thanks to advances in observing
capabilities, major progress has been made in understanding the temporal and spatial components
of TC rainfall through satellite monitoring (e.g., Rios Gaona et al. 2018; Jiang and Zipser 2010;
Jiang et al. 2011; Prat and Nelson 2013b), radar data (e.g., Villarini et al. 2011; Bao et al. 2017;
Janapati et al. 2020) and rain gauges (e.g., Khouakhi et al. 2017; Villarini and Denniston 2016).
Overall, these studies indicate that TC rainfall substantially contributes to the mean and extreme
precipitation events, particularly along coastal regions (Khouakhi et al. 2017; Shepherd et al. 2007,
Knight et al. 2009; Prat et al. 2013; Villarini et al. 2011; 2014b). In addition to observations,
numerical models with the capability of resolving TCs have been used to examine TC rainfall (e.g.,
Daloz et al. 2010; Kim et al. 2018; Liu et al. 2018; 2019; Moon et al. 2020; Scoccimarro et al.
2014; 2017a; Villarini et al. 2014; Zhang et al. 2019). While climate models can well simulate the
overall climatology of TC rainfall (e.g., Zhang et al. 2019), these models have limitations in
simulating individual events and exhibit strong discrepancies in the simulated pattern and
magnitude of TC rainfall (Scoccimarro et al. 2017c; Wright et al. 2015; Zhang et al. 2019).

In the climate modeling community, special attention has been paid to the examination of
the impacts of horizontal resolution on TC simulations (e.g., Zhao et al. 2009; Caron et al. 2011;

Manganello et al. 2012; Wehner et al. 2014; Roberts et al. 2015; 2020; Murakami et al. 2015;
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Zhang et al. 2015; Vecchi et al. 2019). Despite these efforts, it is difficult to generalize the
conclusions of these studies because of the differences in experimental design, tracking algorithm,
and model parameters. While much of the focus has been on the role of resolution in terms of TC
characteristics, recently Zhang et al. (2019) assessed the role of horizontal resolution of two
climate models (i.e., the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low
Ocean Resolution version of CM2.5 (FLOR, ~50km) and the High-Resolution FLOR (HiFLOR,
~25km)) in simulating TC rainfall and found that the high-resolution model (~25km) outperforms
the low-resolution model (~50km) in reproducing and forecasting TC rainfall.

Based on this overview, numerical models have advanced our understanding of TC rainfall
and provided insights into future projection of TC rainfall; however, there is a very limited number
of climate models that can properly resolve TCs. Although there are individual studies that have
focused on the impacts of horizontal resolution on TCs, there are many differences in the models’
setups and simulations that would lead to the different behaviors in simulating TC rainfall,
representing a critical obstacle in terms of the generalization of the results from different studies.
Most conclusions drawn on the projection of TC rainfall are based on the fifth phase of the Coupled
Model Intercomparison Project (CMIP5)’s climate models with spatial resolution of ~1-3 degrees,
which are too coarse to properly resolve TCs. To overcome this limitation, the sixth phase of the
Coupled Model Intercomparison Project (CMIP6) High Resolution Model Intercomparison
Project (HighResMIP) provides multi-model and multi-resolution simulations to the scientific
community (Haarsma et al. 2016). Using the CMIP6 HighResMIP protocol, the European Union
Horizon 2020’s PRocess-based climate sIMulation: AdVances in high resolution modelling and
European climate Risk Assessment (PRIMAVERA) project has contributed global atmospheric

general circulation models (AGCM) simulations at a CMIP6-type resolution (i.e., ~100 km) and
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higher (e.g., ~25 km), which allow us to examine TCs and understand the robustness of changes
in TC rainfall across a wide range of numerical models and spatial resolutions (Roberts et al. 2020).
Roberts et al. (2020) examined the roles of horizonal resolution in simulating TCs in terms of
frequency, intensity, structure and accumulated cyclone energy across these models. In addition,
Vanniere et al. (2020) focused on the sensitivity of moisture budget associated with TC rainfall to
different spatial resolution of the climate models in this project. This study will take advantage of
the simulations archived in the PRIMAVERA project to evaluate the fidelity of these climate
models in representing TC rainfall and the dependence of skill on resolution.

The remainder of the manuscript is organized as follows. Section 2 describes data and
methods, followed by Section 3 that presents results based on observations and models. Finally,

Section 4 summarizes the main points and concludes the study.

2. Data and Methods

TC observations are obtained from the International Best Track Archive for Climate
Stewardship (IBTrACS) version 4 with longitude, latitude, time, intensity (i.e., maximum
sustained wind) and central pressure at the six-hour time scale (Knapp et al. 2010). Rainfall is
obtained from the Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) which
is a gridded precipitation dataset available during 1979-2017 with high spatial (0.1°) and temporal
(three-hour) resolution (Beck et al. 2017a,b). TC rainfall is defined as the rainfall at 6-hour
intervals within a 500-km radius of a TC center by accounting for the rainfall covering the inner
core of the TC and the adjacent rainbands (e.g., Dare et al. 2012; Villarini et al. 2014b; Zhang et
al. 2019). Although there might be some uncertainties in extracting TC rainfall using this radius at

each 6-hour time step, the selection of this radius is also supported by the fact that most
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precipitation associated with TCs occurs within 5° (~500km) from the center of the storm for
climate models (Trenberth et al. 2007; Vanniere et al. 2020). The TC-rainfall composites are the
composites of the extracted TC rainfall using the 500-km radius and we process the TC rainfall for
three scenarios: land and ocean, only land and only ocean.

We use the HighResMIP atmosphere-only simulations performed by the Met Office
Hadley Centre’s HadGEM3-GC313-GC31 (Roberts et al. 2019a), the European Centre for
Medium-Range Weather Forecasts Integrated Forecasting System (ECMWF IFS) (Roberts et al.
2018), CNRM-CM6-1 developed by Centre National de Recherches Météorologiques—Groupe
d’études de I’ Atmosphere Météorologique/Centre Européen de Recherche et de Formation
Avancée (Voldoire et al. 2019), the Fondazione Centro Euro-Mediterraneo sui Cambiamenti
Climatici Climate Model Version 2 (CMCC-CM2-(V)HR4; Cherchi et al. 2019, Scoccimarro et
al. 2020), the EC-EARTH3 Consortium’s EC-Earth3P (Haarsma et al. 2019), and Max Planck
Institute Earth System Model version 1.2 (MPI-ESM1-2; Gutjahr et al. 2019) (see Table 1 for
details). The atmosphere-only HighResMIP experiments are forced by the historical estimates of
sea surface temperature, sea ice, and radiative forcings (as described in Haarsma et al. 2016). It
should be noted that the atmosphere-only HighResMIP simulations are slightly different from the
CMIP6 (Eyring et al. 2016) AMIP experiments (Gates et al. 1999) in terms of forcing of aerosol,
sea surface temperature and sea ice (Roberts et al. 2020). We obtain the model simulations
archived in the Earth System Grid Federation (ESGF) nodes, including Roberts (HadGEM3-
GC31; 2017a, 2017b, 2017c), Roberts et al. (ECMWEF-IFS; 2017a, 2017b), Voldoire (CNRM-
CM6-1; 2017, 2018), Scoccimarro et al. (CMCC-CM2-(V)HR4; 2017b, 2017¢), EC-Earth
Consortium (EC-Earth3P; 2018a, 2018b), and von Storch et al. (MPI-ESM1-2; 2017, 2019). In

addition, the TC tracks obtained from these datasets are available from Roberts (2019b).
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To facilitate the comparison of the simulation of TC rainfall, the climate model outputs are
grouped into high-, medium- and low- spatial-resolution models (Table 1). While ECMWF IFS
data provided to the HighResMIP simulations are based on a reduced-resolution regular grid, the
original ECMWEF-IFS output uses the cubic octahedral reduced Gaussian grid, with resolutions of
Tco399 (~25 km) and Tco199 (~50 km) for the HR and LR configurations, respectively. Therefore,
we include ECMWEF-IFS-HR/ECMWEF-IFS-LR in the high-resolution/middle-resolution group,
respectively (Table 1). TC tracks with latitude, longitude, time and intensity are derived by
applying a tracker called “TRACK?” to the simulations performed by these models (Hodges et al.
2017). This tracker uses the 6-hourly relative vorticity at the 850-, 700-, and 600-hPa levels for
tracking TCs and has been widely used in TC studies (Hodges et al. 2017).

We evaluate the performance of these models in simulating TC rainfall across the globe,
and for the basins (Table 2): western North Pacific, eastern North Pacific, North Atlantic, South
Atlantic, North Indian Ocean, South-West Indian Ocean and South Pacific & Australia. We use
spatial correlation and root mean square error (RMSE) as quantitative metrics for the evaluation.
Because there is no named storm in South Atlantic in observations during the study period (Table
S1), we do not include the analysis of spatial correlation and RMSE between observations and
models for this basin.

Beyond the high resolution of these models, a major advantage of the PRIMAVERA
Project is the consistency of the simulations and outputs: all the models were run using the same
forcings, and the tracking of the storms is the same across models, allowing for a direct comparison

in terms of model performance and on the role of resolution.

3. Results
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3.1 Total TC rainfall

The annual total TC rainfall averaged over 1979-2014 in the observations exhibits regional
differences across ocean basins (Figure 1). For example, the annual TC rainfall is the highest in
the western North Pacific, followed by the eastern North Pacific. The annual TC rainfall in the
North Atlantic is lower than in the eastern North Pacific and little TC rainfall is observed in the
South Atlantic (Figure 1). Qualitatively, the climate models tend to capture the overall spatial
climatological pattern of TC rainfall in the observations; this is particularly true in relation to the
areas in the North Pacific characterized by larger TC rainfall values compared to the rest of the
basins (Figure 2). The GCMs generally produce spurious TC rainfall in the South Atlantic (Figure
2). Specifically, CMCC-CM2-VHR4, EC-Earth3P-HR, ECMWF-IFS-HR, and ECMWF-IFS-LR
reproduce well the total TC rainfall amount across different basins (Figure 2), consistent with
spatial correlation and RMSE between observed and simulated total TC rainfall (Tables 3-4). In
addition, CNRM-CM6-1-HR, CNRM-CM6-1, HadGEM3-GC31-HM, HadGEM3-GC31-MM,
HadGEM3-GC31-LM point to an overestimation of the total TC rainfall, while EC-Earth3P,
MPIESM1-2-XR and MPIESM1-2-HR to an underestimation of the total TC rainfall across all
basins (Figure 2). This is consistent with the results of TC track density (Figure 3), which is also
documented in Roberts et al. (2020) which reported that EC-Earth3P and MPIESM1-2-XR
underestimate TC track density. Vanniere et al. (2020) also found that TC activity/frequency plays
an important role in explaining the differences in total TC rainfall between high-resolution and
low-resolution models. Based on the above results, high-resolution models tend to perform better
in reproducing the observed climatology of TC rainfall. Overall, increase in model resolution tends
to produce a higher amount of total TC rainfall for the CMCC models, EC-Earth3P models,

HadGEM3-GC31 (i.e., HadEM3-GC31-HM and HadGEM3-GC31-LM) and ECMWEF-IFS
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models, while TC rainfall shows little to no sensitivity to spatial resolution in CNRM-CM6-1 and
MPIESM1-2 models (Figure 2). Four of the six models exhibit remarkable differences in TC
rainfall between high-resolution and low-resolution models while the other two show similar
results (Figure 2). The low sensitivity to spatial resolution in CNRM-CM6-1 and MPIESM1-2
models may be due to low absolute resolution in the models, the high-resolution version of which
is around ~50km (Table 1).
3.2 Contribution of TC rainfall to Total Rainfall

In addition to total TC rainfall, we also examine the percentage contribution of TC rainfall
to total rainfall. In the observations, the percentage contribution presents remarkable regional
differences with the highest values in the western and eastern North Pacific (Figure 4), consistent
with total TC rainfall (Figure 1). Climate models exhibit strong discrepancies in the capability of
reproducing the observed percentage contribution (Figure 4). Globally, EC-Earth3P-HR,
ECMWEF-IFS-HR, ECMWEF-IFS-LR, HadGEM3-GC31-HM, HadGEM3-GC31-MM, and
HadGEM3-GC31-LM reproduce well the observed contribution of TC rainfall in terms of RMSE.
CMCC-CM2-VHR4, EC-Earth3P-HR, EC-Earth3P, ECMWF-IFS-HR, ECMWF-IFS-LR, and
HadGEM3-GC31 models produce spatial correlations greater than 0.8, suggesting a good
performance (Table 5). The models exhibit marked regional differences. For example, CNRM-
CM6-1-HR and CNRM-CM6-1 reproduce well the observed contribution of TC rainfall in the
western North Pacific, and the performance of these models is not very promising in the North
Indian Ocean (Figure 4 and Tables 5-6). High-resolution models generate a higher contribution,
more similar to the observations except for MPIESM1-2-XR/MPIESM1-2-HR and CNRM-CM6-
1-HR/CNRM-CM6-1, which produce similar percentage contributions between high-resolution

and low-resolution models (Figure 4). Therefore, most of the high-resolution models perform
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better than their low-resolution counterparts in reproducing the global fractional contribution
(Figure 4 and Table 5). To further understand the proportion of TC rainfall, we also examine the
bias in the models (Figure 5). Overall, the bias in TCR proportion (Figure 5) is mainly due to the
bias in TC rainfall (Figure 2), rather than total precipitation (Figure 6).
3.3 TC rainfall per track density

All the models in the PRIMAVERA Project underestimate the amount of TC rainfall per
track density (i.e., total TC rainfall divided by track density) in the observations (Figure 7).
Therefore, given that the TC rainfall amounts identified in the models were similar to the
observations, it means that there are generally more storms in the models than in the observational
records. As we compare the results between the different resolutions of the models, some models
(i.e., CMCC-CM2, CNRM and HadGEM3-GC31) have a tendency for lower-resolution versions
to have larger per-TC rainfall amounts. This counter-intuitive results may be due to the fact that
lower TC density is produced by low-resolution simulations than in the high-resolution ones
(Figure 3), consistent with Vanniere et al. (2020) showing that rainfall per TC is biased high in
low-resolution models. The spatial correlation between observed and simulated amount of TC
rainfall per track density (Table S2) is lower than for total TC rainfall or fractional contribution,
with most of the correlation coefficients that are not statistically significant. Among the models
used in this study, the CNRM models perform the best in simulating the rainfall per track density
(Figure 7 and Tables S2-3) and this is consistent with the fact that CNRM performs well in
simulating the strongest TCs (Roberts et al. 2020).
3.4 TC rainfall over Ocean and Land

We also evaluate the performance of the models in simulating climatological TC rainfall

over ocean and land. Overall, the models perform better in simulating total TC rainfall, TC rainfall
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proportion and TC rainfall per TC over ocean than over land in terms of spatial correlation (Tables
S4-6). However, the models generate a larger RMSE for the three metrics over ocean than over
land (Tables S4-6), and this may be due to a large climatology of TC rainfall over ocean (Figure
1).
3.5 Composites and Profile of TC rainfall

We process the composite TC rainfall (within the 500-km radius of TC center) at 6-hour
time step for all the storms, those in the northern hemisphere and those in the southern hemisphere
in observations and climate models (Figure 8). The composite TC rainfall (within the 500-km
radius) at 6-hourly intervals in the observations is higher than model simulations over ocean and
land (Figure 8). CMCC-CM2-VHR4 performs the best in reproducing the composite TC rainfall
over ocean and land, with larger precipitation values closer to the center of circulation of the
storms, even though the size of the TCs tends to be smaller than in the observations and in other
models (e.g., CNRM). There is also a tendency for the storms in the northern hemisphere to exhibit
larger rainfall values compared to those in the southern hemisphere, consistent with the
observations. The high-resolution models produce larger composite TC rainfall rate than low-
resolution models, which tend to spread rainfall over larger distances from the center of circulation
of the TCs (Figure 8). In addition, we compare the composite rainfall in the 200 strongest storms
in observations and the low- and high-resolution models. Overall, the composite rainfall rate in the
high-resolution models is larger than in the low-resolution ones except for the MPI-ESM 1-2
models that simulate similar composite TC rainfall (Figure 9). The differences in composite TC
rainfall of the 200 strongest TCs between low-resolution and high-resolution models (Figure 9)
are more remarkable than the results for all TCs (Figure 8), and this may be due to a large portion

of intense TCs in the high-resolution models than low-resolution ones (Roberts et al. 2020). To
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assess whether the models’ skill is different in simulating TC rainfall over ocean or land mass, we
examine the composite TC rainfall over ocean and land, separately. The composite TC rainfall
over the ocean exhibits similar characteristics as those over land & ocean, with a well-defined
center of circulation, albeit presenting a slightly higher magnitude (Figure 10). While almost all
the models underestimate the composite TC rainfall over land compared with observations (Figure
11), CMCC-CM2-VHR4 slightly overestimates the center of composite TC rainfall over land and
HadGEM3-GC31-HM produces a similar magnitude of composite TC rainfall over land (Figure
11). Given the fact that TCs in models have a shorter path on land than the observations (due to
the tracker) and TC rainfall rate over ocean is larger than over land, this suggests that the
underestimation of composite TC rainfall in models might be even more pronounced than the
results here. Based on these results, there are no large differences in the performance of the models
in reproducing composite TC rainfall over ocean or land. Note that the composite rainfall patterns
are consistent with the results in Kim et al. (2018) which examined the composite TC rainfall
across a family of Geophysical Fluid Dynamics Laboratory (GFDL) models.

In addition to the examination of the composite TC rainfall, we compute the radial profile
of TC rainfall across different models grouped by spatial resolution (Table 1) and land/ocean
masks (Figure 12). Consistent with the results in Figures 8-11, the observed rainfall tends to be
higher than what is generated by these models, especially closer to their center of circulation; this
statement is valid regardless of resolution, and whether over land or ocean. The observed TC
rainfall over the oceans tends to peak within 100 km from the center of the storm, and then to
rapidly decrease as we move further away. This feature is generally well captured by the models,
with the CMCC-CM2-VHR4 tending to perform the best among high-resolution groups. Among

the mid-resolution group, HadGEM3-GC31-MM exhibits the highest skill in simulating the radial
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profile of TC rainfall, while CNRM-CM6-1 tends to perform the best among the low-resolution
group (Figure 12). The model performance in terms of TC rainfall when the storms are over land
is similar to that mentioned for the storms over the ocean, even though the rainfall amounts tend
to be smaller and to decrease more slowly as they progress inland. The radial profile of TC rainfall
is consistent with Kim et al. (2018) and Moon et al. (2020) in terms of pattern and magnitude of

TC rainfall across different climate models.

4. Conclusion

TC rainfall has been a challenge for climate modeling community because this metric is
associated with TC genesis, track, and intensity. By taking advantage of the European Union
Horizon 2020’s PRIMAVERA Project, we have examined the skill of state-of-the-art global
climate models in reproducing several aspects of the rainfall associated with these storms in
HighResMIP atmosphere-only experiments and assessed the dependence of the skill on model
resolution.

In general, high-resolution models perform better than their lower resolution counterparts
in reproducing several characteristics of the TC distribution. They tend to provide a more realistic
representation of the observations both in terms of patterns and amounts, except for average TC
rainfall per track density for which low-resolution models seem better for some models. The
simulation of TC rainfall by these models exhibits remarkable regional differences and
discrepancies. For example, the CMCC-CM2 and ECMWF-IFS models reproduce the total TC
rainfall found in observations, while they slightly underestimate their percentage contribution and
overall amount per track density. By contrast, CNRM-CM6-1 and HadGEM3-GC31 models

overestimate total TC rainfall, but they reproduce the fractional contribution of TC rainfall to total
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rainfall. MPIESM1-2 and EC-Earth3P models underestimate most of the metrics associated with
TC rainfall. Overall, the models perform better in simulating climatological total TC rainfall, TC
rainfall proportion and TC rainfall per TC over ocean than over land in terms of spatial correlation.
However, the models generate larger RMSE for the three metrics over ocean than over land,
probably due to a larger climatology of TC rainfall over ocean.

When we stratified the results of composite TC rainfall across land and ocean, we did not
find any large changes in performance of these models, as they were able to reproduce the overall
patterns albeit with lower rainfall magnitudes. Overall, CMCC-CM2-VHR4 performs the best in
simulating the radial profile of TC rainfall among the high-resolution model group, while
HadGEM3-GC31-MM (CNRM-CM6-1) exhibits the highest skill in simulating the radial profile
of TC rainfall in the mid-resolution (low-resolution) group.

While most models tend to improve their performance as we increase their horizontal
resolution, the CNRM-CM6-1 and MPIESM1-2 models are two exceptions, producing similar
results in their low- and high- resolution versions. Such similar performances between high-
resolution and low-resolution climate models need to be further investigated from the perspective
of convection, circulation and TC dynamics. For example, Vanniere et al (2020) investigated
possible mechanisms by examining moisture budget, and found that the distribution of
precipitation per TC averaged in a 5-degree radial cap does not change significantly, which can be
explained by the large-scale balance that shapes the moisture budget of TCs.

In summary, our findings indicate that the investment in performing the high-resolution
simulations with these models has been paid off in terms of the gained realism in reproducing TC

rainfall. As we increase the horizontal resolution and we improve the description of the processes
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at play, we expect to further improve the simulation of these storms, providing basic information

towards our preparation, mitigation and response efforts.
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627  Figure 1 Annual average TC rainfall (unit: mm/year) in observations.
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631 and climate models archived in the PRIMAVERA Project (model minus observations).
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Figure 9. Composite 6-hour TC rainfall (unit: mm) across the 200 TCs with strongest intensity
(sea level pressure) over the land and ocean in observations and climate models archived in the
PRIMAVERA Project during 1980-2010. The model resolution drops from left (columns 1-3)
to right (columns 4-6 and 7-9).
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Figure 12. Radial profile of composite 6-hour TC rainfall (unit: mm) in observations and
models grouped into high-, mid-, and low-resolution climate models. The spatial resolution of
observed TC rainfall is re-gridded to each group (High, Mid and Low resolution) of the models.
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Table 1. Spatial grids of the climate model outputs in high-, middle- and low-resolution groups
used in this study. While ECMWEF IFS data provided to HighResMIP are based on a reduced-
resolution regular grid, the original ECMWF-IFS output uses the cubic octahedral reduced
Gaussian grid, with resolutions of Tco399 (~25 km) and Tco199 (~50 km) for the HR and LR

configurations, respectively.

Model High Middle/Medium Low
CMCC-CM2 1152x768 288x192
CNRM-CM6-1 720%360 256x128
EC-Earth3P 1024%x512 512x256

ECMWE-IFS 720%361 360x181

HadGEM3-GC313 1024x768 432x324 192x144
MPI-ESM1-2 768%x384 384x192
Table 2 Definitions of basin boundaries

Basins Boundary

Western North Pacific (WNP)
Eastern North Pacific (ENP)
North Atlantic (NA)

North Indian Ocean (NI)
South-West Indian Ocean (SI)
South Pacific & Australia (SP)
South Atlantic (SA)

0-60°N, 100°E-180
0-60°N, 180-100°W
0-60°N, 100°W-0
0-45°N, 45°E-100°E
0-40°S, 0-90°E
0-40°S, 90°E-120°W
0-60°S, 60°W-0
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702  Table 3 Correlation between observed and simulated tropical cyclone rainfall across the globe
703  and in different basins.

Globe WNP ENP NA NI SI SP
CMCC-CM2-VHR4 0.77 0.87 0.77 0.68 0.83 0.80 0.76
CMCC-CM2-HR4 0.54 0.62 0.59 041 077 0.80 0.61
CNRM-CM6-1-HR 0.80 0.94 029 0.80 0.70 0.84 0.79
CNRM-CM6-1 0.81 0.89 041 082 074 0.88 0.72
EC-Earth3P-HR 0.85 0.89 0.37 0.77 0.89 0.86 0.90
EC-Earth3P 0.83 0.85 033 078 092 0.88 0.89
ECMWFEF-IFS-HR 0.87 0.92 0.71 0.79 0.87 0.84 0.85
ECMWEF-IFS-LR 0.86 0.92 0.66 080 0.88 0.81 0.85
HadGEM3-GC31-HM 0.83 0.94 0.74 0.71 0.62 0.86 0.78
HadGEM3-GC31-MM 0.83 0.93 0.71 071 0770 0.85 0.76
HadGEM3-GC31-LM 0.83 0.94 0.69 0.75 0.76 0.86 0.71
MPIESM 1-2-XR 0.67 0.68 026 064 081 0.73 0.81
MPIESM 1-2-HR 0.71 0.76 0.13 075 091 0.74 0.82

704

705  Table 4 Root mean square error (unit: mm) between observed and simulated tropical cyclone
706  rainfall across the globe and in different basins.

Globe WNP ENP NA NI SI SP
CMCC-CM2-VHR4 7339 9799 61.43 84.63 151.15 64.61 77.94
CMCC-CM2-HR4 79.44 15237 1490 80.66 140.61 83.06 74.72
CNRM-CM6-1-HR 95.27 136.22 27.57 46.58 280.06 61.12 67.15
CNRM-CM6-1 106.18 171.88 31.54 53.07 267.48 82.55 80.14
EC-Earth3P-HR 50.48 85.67 1443 53.69 99.63 54091 50.96
EC-Earth3P 5426 12533 13.08 5190 4053 51.50 42.83
ECMWFEF-IFS-HR 51.28 7538 16.20 50.56 90.48  58.20 64.27
ECMWEF-IFS-LR 49.17 7597 1591 4459 93.09 62.63 61.00

HadGEM3-GC31-HM  129.29 159.11 59.40 161.02 75.63 151.65 143.76
HadGEM3-GC31-MM 13032 173.13 56.98 151.07 6851 145.72 147.59
HadGEM3-GC31-LM 76.46  96.64 2558 62.46 4538 70.04 96.37
MPIESM 1-2-XR 72.34 171.84 1429 61.76 43.83 74.66 64.69
MPIESM 1-2-HR 69.57 167.61 14.15 5732 31.24 7298 61.12

707
708

36



709  Table 5 Correlation between observed and simulated tropical cyclone rainfall proportion across
710  the globe and in different basins.

Globe WNP ENP NA NI SI SP
CMCC-CM2-VHR4 0.80 0.86 0.88 085 0.71 0.79 0.87
CMCC-CM2-HR4 0.65 0.72 0.71 0.64 0.67 0.79 0.86
CNRM-CM6-1-HR 0.71 0.92 0.55 075 0.64 0.85 0.86
CNRM-CM6-1 0.75 0.92 0.53 0.73 0.72 093 0.88
EC-Earth3P-HR 0.82 0.91 0.57 078 0.80 0.88 0.95
EC-Earth3P 0.81 0.90 0.53 0.72 087 0.89 0.95
ECMWFEF-IFS-HR 0.80 0.93 083 074 0.78 0.85 0.89
ECMWF-IFS-LR 0.79 0.92 0.79 0.70 0.80 0.82 0.91
HadGEM3-GC31-HM 0.86 0.93 0.78 087 0.84 0.88 0.83
HadGEM3-GC31-MM 0.85 0.92 0.71 086 080 0.88 0.82
HadGEM3-GC31-LM 0.79 0.94 0.67 081 0.64 0.90 0.69
MPIESM 1-2-XR 0.69 0.70 0.08 064 0.77 0.77 0.89
MPIESM 1-2-HR 0.73 0.77 -0.05 0.67 083 0.77 0.93

711

712

713 Table 6 Root mean square error (unit: %) between observed and simulated tropical cyclone
714 rainfall proportion across the globe and in different basins.

Globe WNP ENP NA NI SI SP

CMCC-CM2-VHR4 5.10 5.90 341 532 9.66 793 6.43
CMCC-CM2-HR4 6.58 9.13 211 861 6.89 9.8l 9.88
CNRM-CM6-1-HR 6.57 4.80 242 698 18.22 6.28 6.69
CNRM-CM6-1 6.26 4.85 250 697 1671 4.66 6.14
EC-Earth3P-HR 4.80 6.20 241 670 795 647 4.18
EC-Earth3P 5.44 8.59 266 808 373 7.07 5.34
ECMWEF-IFS-HR 4.99 4.70 1.77  6.78 836  7.26 5.79
ECMWFEF-IFS-LR 5.03 5.51 1.92 749 724  7.09 5.03
HadGEM3-GC31-HM 5.14 5.92 329 492 528 648 7.99
HadGEM3-GC31-MM 5.14 5.75 3.14 514 521 5096 8.26
HadGEM3-GC31-LM 5.10 4.23 209 682 6.07 586 8.78
MPIESM 1-2-XR 6.87 10.79 286 943 482 946 9.41
MPIESM 1-2-HR 6.68 1066 290 942 437 9.23 8.10

715
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