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Abstract 32 

This study examines the climatology and structure of rainfall associated with tropical cyclones 33 

(TCs) based on the atmosphere-only Coupled Model Intercomparison Project Phase 6 (CMIP6) 34 

HighResMIP runs of the PRocess-based climate sIMulation: AdVances in high resolution 35 

modelling and European climate Risk Assessment (PRIMAVERA) Project during 1979-2014. 36 

We evaluate how the spatial resolution of climate models with a variety of dynamic cores and 37 

parameterization schemes affects the representation of TC rainfall. These HighResMIP 38 

atmosphere-only runs that prescribe historical sea surface temperatures and radiative forcings  39 

can well reproduce the observed spatial pattern of TC rainfall climatology, with high-resolution 40 

models generally performing better than the low-resolution ones. Overall, the HighResMIP 41 

atmosphere-only runs can also reproduce the observed percentage contribution of TC rainfall to 42 

total amounts, with an overall better performance by the high-resolution models. The models 43 

perform better over ocean than over land in simulating climatological total TC rainfall, TC 44 

rainfall proportion and TC rainfall per TC in terms of spatial correlation. All the models in the 45 

HighResMIP atmosphere-only runs underestimate the observed composite TC rainfall structure 46 

over both land and ocean, especially in their lower resolutions. The underestimation of rainfall 47 

composites by the HighResMIP atmosphere-only runs is also supported by the radial profile of 48 

TC rainfall. Overall, the increased spatial resolution generally leads to an improved model 49 

performance in reproducing the observed TC rainfall properties.  50 

  51 
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1. Introduction  52 

Tropical cyclones (TCs) are associated with extreme rainfall and are responsible for 53 

extensive damages and numerous fatalities (e.g., Peduzzi et al. 2012; Rappaport 2014; Czajkowski 54 

et al. 2017; Klotzbach et al. 2018; Bosma et al. 2020). For example, Hurricanes Harvey and 55 

Florence serve to highlight the catastrophes that could be caused by extreme TC rainfall (e.g., 56 

Emanuel 2017; Reed et al. 2018; Risser and Wehner 2017; Van Oldenborgh et al. 2017; Wang et 57 

al. 2018; Zhang et al. 2018) and are just two recent examples of a long list of catastrophic events. 58 

According to the National Oceanic and Atmospheric Administration (NOAA) National Center for 59 

Environmental Information (NCEI) (2020), there have been 44 TCs affecting the United States 60 

causing damage in excess of one billion dollars between 1980 and 2019; in total, these events 61 

caused $945.9B (Consumer Price Index-Adjusted) and 6,502 fatalities.  62 

Rainfall associated with TCs tends to be larger than for non-TC events. For instance, within 63 

the novel statistical framework of the Metastatistical Extreme Value Distribution, Miniussi et al. 64 

(2020) showed that the distribution of TC rainfall is different from the non-TC rainfall in the 65 

Eastern United States, especially for multi-day events, and that these storms tend to result in larger 66 

rainfall values. The impact of the TC rainfall is remarkable not only along the coastline, but also 67 

hundreds of miles inland in terms of flooding (e.g., Villarini et al. 2014a; Khouakhi et al. 2017; 68 

Aryal et al. 2018) and landslides (e.g., Bucknam et al. 2001). Despite these negative effects, they 69 

can also bring water critical for groundwater recharge, water supply and drought mitigation (e.g., 70 

Abdalla and Al-Abri 2011; Kam et al. 2013; Zhang et al. 2017). It is therefore crucial that we 71 

improve our understanding of the processes and characteristics of TC rainfall, which could in turn 72 

lead to an improvement in its simulation and seasonal forecasting (e.g., Barlow 2011; Luitel et al. 73 
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2018; Liu et al. 2019; Prat and Nelson, 2016; Touma et al. 2019; Vecchi et al. 2019; Zhang et al. 74 

2019).  75 

There are several drivers controlling TC rainfall, including low-level vertical wind shear 76 

(Corbosiero and Molinari 2003; Tang et al. 2014), terrain effects (DeHart and Houze Jr 2017; 77 

Nguyen et al. 2017), TC structure (Chen et al. 2006; Hence and Houze Jr 2012; Yu et al. 2017), 78 

sea surface temperature (Langousis and Veneziano 2009; Lin et al. 2015), and atmospheric 79 

aerosols (Wang et al. 2014; Zhao et al. 2018). Over the years and thanks to advances in observing 80 

capabilities, major progress has been made in understanding the temporal and spatial components 81 

of TC rainfall through satellite monitoring (e.g., Rios Gaona et al. 2018; Jiang and Zipser 2010; 82 

Jiang et al. 2011; Prat and Nelson 2013b), radar data (e.g., Villarini et al. 2011; Bao et al. 2017; 83 

Janapati et al. 2020) and rain gauges (e.g., Khouakhi et al. 2017; Villarini and Denniston 2016). 84 

Overall, these studies indicate that TC rainfall substantially contributes to the mean and extreme 85 

precipitation events, particularly along coastal regions (Khouakhi et al. 2017; Shepherd et al. 2007; 86 

Knight et al. 2009; Prat et al. 2013; Villarini et al. 2011; 2014b). In addition to observations, 87 

numerical models with the capability of resolving TCs have been used to examine TC rainfall (e.g., 88 

Daloz et al. 2010; Kim et al. 2018; Liu et al. 2018; 2019; Moon et al. 2020; Scoccimarro et al. 89 

2014; 2017a; Villarini et al. 2014; Zhang et al. 2019). While climate models can well simulate the 90 

overall climatology of TC rainfall (e.g., Zhang et al. 2019), these models have limitations in 91 

simulating individual events and exhibit strong discrepancies in the simulated pattern and 92 

magnitude of TC rainfall (Scoccimarro et al. 2017c; Wright et al. 2015; Zhang et al. 2019).  93 

In the climate modeling community, special attention has been paid to the examination of 94 

the impacts of horizontal resolution on TC simulations (e.g., Zhao et al. 2009; Caron et al. 2011; 95 

Manganello et al. 2012; Wehner et al. 2014; Roberts et al. 2015; 2020; Murakami et al. 2015; 96 
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Zhang et al. 2015; Vecchi et al. 2019). Despite these efforts, it is difficult to generalize the 97 

conclusions of these studies because of the differences in experimental design, tracking algorithm, 98 

and model parameters. While much of the focus has been on the role of resolution in terms of TC 99 

characteristics, recently Zhang et al. (2019) assessed the role of horizontal resolution of two 100 

climate models (i.e., the Geophysical Fluid Dynamics Laboratory (GFDL) Forecast-Oriented Low 101 

Ocean Resolution version of CM2.5 (FLOR, ~50km) and the High-Resolution FLOR (HiFLOR, 102 

~25km)) in simulating TC rainfall and found that the high-resolution model (~25km) outperforms 103 

the low-resolution model (~50km) in reproducing and forecasting TC rainfall.  104 

Based on this overview, numerical models have advanced our understanding of TC rainfall 105 

and provided insights into future projection of TC rainfall; however, there is a very limited number 106 

of climate models that can properly resolve TCs. Although there are individual studies that have 107 

focused on the impacts of horizontal resolution on TCs, there are many differences in the models’ 108 

setups and simulations that would lead to the different behaviors in simulating TC rainfall, 109 

representing a critical obstacle in terms of the generalization of the results from different studies. 110 

Most conclusions drawn on the projection of TC rainfall are based on the fifth phase of the Coupled 111 

Model Intercomparison Project (CMIP5)’s climate models with spatial resolution of ~1-3 degrees, 112 

which are too coarse to properly resolve TCs. To overcome this limitation, the sixth phase of the 113 

Coupled Model Intercomparison Project (CMIP6) High Resolution Model Intercomparison 114 

Project (HighResMIP) provides multi-model and multi-resolution simulations to the scientific 115 

community (Haarsma et al. 2016). Using the CMIP6 HighResMIP protocol, the European Union 116 

Horizon 2020’s PRocess-based climate sIMulation: AdVances in high resolution modelling and 117 

European climate Risk Assessment (PRIMAVERA) project has contributed global atmospheric 118 

general circulation models (AGCM) simulations at a CMIP6-type resolution (i.e., ~100 km) and 119 
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higher (e.g., ~25 km), which allow us to examine TCs and understand the robustness of changes 120 

in TC rainfall across a wide range of numerical models and spatial resolutions (Roberts et al. 2020). 121 

Roberts et al. (2020) examined the roles of horizonal resolution in simulating TCs in terms of 122 

frequency, intensity, structure and accumulated cyclone energy across these models. In addition, 123 

Vanniere et al. (2020) focused on the sensitivity of moisture budget associated with TC rainfall to 124 

different spatial resolution of the climate models in this project. This study will take advantage of 125 

the simulations archived in the PRIMAVERA project to evaluate the fidelity of these climate 126 

models in representing TC rainfall and the dependence of skill on resolution.  127 

The remainder of the manuscript is organized as follows. Section 2 describes data and 128 

methods, followed by Section 3 that presents results based on observations and models. Finally, 129 

Section 4 summarizes the main points and concludes the study.  130 

 131 

2. Data and Methods 132 

TC observations are obtained from the International Best Track Archive for Climate 133 

Stewardship (IBTrACS) version 4 with longitude, latitude, time, intensity (i.e., maximum 134 

sustained wind) and central pressure at the six-hour time scale (Knapp et al. 2010). Rainfall is 135 

obtained from the Multi-Source Weighted-Ensemble Precipitation, version 2 (MSWEP V2) which 136 

is a gridded precipitation dataset available during 1979–2017 with high spatial (0.1°) and temporal 137 

(three-hour) resolution (Beck et al. 2017a,b). TC rainfall is defined as the rainfall at 6-hour 138 

intervals within a 500-km radius of a TC center by accounting for the rainfall covering the inner 139 

core of the TC and the adjacent rainbands (e.g., Dare et al. 2012; Villarini et al. 2014b; Zhang et 140 

al. 2019). Although there might be some uncertainties in extracting TC rainfall using this radius at 141 

each 6-hour time step, the selection of this radius is also supported by the fact that most 142 
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precipitation associated with TCs occurs within 5° (~500km) from the center of the storm for 143 

climate models (Trenberth et al. 2007; Vanniere et al. 2020). The TC-rainfall composites are the 144 

composites of the extracted TC rainfall using the 500-km radius and we process the TC rainfall for 145 

three scenarios: land and ocean, only land and only ocean.    146 

We use the HighResMIP atmosphere-only simulations performed by the Met Office 147 

Hadley Centre’s HadGEM3-GC313-GC31 (Roberts et al. 2019a), the European Centre for 148 

Medium-Range Weather Forecasts Integrated Forecasting System (ECMWF IFS) (Roberts et al. 149 

2018), CNRM-CM6-1 developed by Centre National de Recherches Météorologiques—Groupe 150 

d’études de l’Atmosphère Météorologique/Centre Européen de Recherche et de Formation 151 

Avancée (Voldoire et al. 2019), the Fondazione Centro Euro-Mediterraneo sui Cambiamenti 152 

Climatici Climate Model Version 2 (CMCC-CM2-(V)HR4; Cherchi et al. 2019, Scoccimarro et 153 

al. 2020), the EC-EARTH3 Consortium’s EC-Earth3P (Haarsma et al. 2019), and Max Planck 154 

Institute Earth System Model version 1.2 (MPI-ESM1-2; Gutjahr et al. 2019) (see Table 1 for 155 

details). The atmosphere-only HighResMIP experiments are forced by the historical estimates of 156 

sea surface temperature, sea ice, and radiative forcings (as described in Haarsma et al. 2016). It 157 

should be noted that the atmosphere-only HighResMIP simulations are slightly different from the 158 

CMIP6 (Eyring et al. 2016) AMIP experiments (Gates et al. 1999) in terms of forcing of aerosol, 159 

sea surface temperature and sea ice (Roberts et al. 2020). We obtain the model simulations 160 

archived in the Earth System Grid Federation (ESGF) nodes, including Roberts (HadGEM3-161 

GC31; 2017a, 2017b, 2017c), Roberts et al. (ECMWF-IFS; 2017a, 2017b), Voldoire (CNRM-162 

CM6-1; 2017, 2018), Scoccimarro et al. (CMCC-CM2-(V)HR4; 2017b, 2017c), EC-Earth 163 

Consortium (EC-Earth3P; 2018a, 2018b), and von Storch et al. (MPI-ESM1-2; 2017, 2019). In 164 

addition, the TC tracks obtained from these datasets are available from Roberts (2019b). 165 
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To facilitate the comparison of the simulation of TC rainfall, the climate model outputs are 166 

grouped into high-, medium- and low- spatial-resolution models (Table 1). While ECMWF IFS 167 

data provided to the HighResMIP simulations are based on a reduced-resolution regular grid, the 168 

original ECMWF-IFS output uses the cubic octahedral reduced Gaussian grid, with resolutions of 169 

Tco399 (~25 km) and Tco199 (~50 km) for the HR and LR configurations, respectively. Therefore, 170 

we include ECMWF-IFS-HR/ECMWF-IFS-LR in the high-resolution/middle-resolution group, 171 

respectively (Table 1). TC tracks with latitude, longitude, time and intensity are derived by 172 

applying a tracker called “TRACK” to the simulations performed by these models (Hodges et al. 173 

2017). This tracker uses the 6-hourly relative vorticity at the 850-, 700-, and 600-hPa levels for 174 

tracking TCs and has been widely used in TC studies (Hodges et al. 2017).  175 

We evaluate the performance of these models in simulating TC rainfall across the globe, 176 

and for the basins (Table 2): western North Pacific, eastern North Pacific, North Atlantic, South 177 

Atlantic, North Indian Ocean, South-West Indian Ocean and South Pacific & Australia. We use 178 

spatial correlation and root mean square error (RMSE) as quantitative metrics for the evaluation. 179 

Because there is no named storm in South Atlantic in observations during the study period (Table 180 

S1), we do not include the analysis of spatial correlation and RMSE between observations and 181 

models for this basin.  182 

Beyond the high resolution of these models, a major advantage of the PRIMAVERA 183 

Project is the consistency of the simulations and outputs: all the models were run using the same 184 

forcings, and the tracking of the storms is the same across models, allowing for a direct comparison 185 

in terms of model performance and on the role of resolution.  186 

 187 

3. Results  188 
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3.1 Total TC rainfall  189 

The annual total TC rainfall averaged over 1979-2014 in the observations exhibits regional 190 

differences across ocean basins (Figure 1). For example, the annual TC rainfall is the highest in 191 

the western North Pacific, followed by the eastern North Pacific. The annual TC rainfall in the 192 

North Atlantic is lower than in the eastern North Pacific and little TC rainfall is observed in the 193 

South Atlantic (Figure 1). Qualitatively, the climate models tend to capture the overall spatial 194 

climatological pattern of TC rainfall in the observations; this is particularly true in relation to the 195 

areas in the North Pacific characterized by larger TC rainfall values compared to the rest of the 196 

basins (Figure 2). The GCMs generally produce spurious TC rainfall in the South Atlantic (Figure 197 

2). Specifically, CMCC-CM2-VHR4, EC-Earth3P-HR, ECMWF-IFS-HR, and ECMWF-IFS-LR 198 

reproduce well the total TC rainfall amount across different basins (Figure 2), consistent with 199 

spatial correlation and RMSE between observed and simulated total TC rainfall (Tables 3-4). In 200 

addition, CNRM-CM6-1-HR, CNRM-CM6-1, HadGEM3-GC31-HM, HadGEM3-GC31-MM, 201 

HadGEM3-GC31-LM point to an overestimation of the total TC rainfall, while EC-Earth3P, 202 

MPIESM1-2-XR and MPIESM1-2-HR to an underestimation of the total TC rainfall across all 203 

basins (Figure 2). This is consistent with the results of TC track density (Figure 3), which is also 204 

documented in Roberts et al. (2020) which reported that EC-Earth3P and MPIESM1-2-XR 205 

underestimate TC track density. Vanniere et al. (2020) also found that TC activity/frequency plays 206 

an important role in explaining the differences in total TC rainfall between high-resolution and 207 

low-resolution models. Based on the above results, high-resolution models tend to perform better 208 

in reproducing the observed climatology of TC rainfall. Overall, increase in model resolution tends 209 

to produce a higher amount of total TC rainfall for the CMCC models, EC-Earth3P models, 210 

HadGEM3-GC31 (i.e., HadEM3-GC31-HM and HadGEM3-GC31-LM) and ECMWF-IFS 211 
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models, while TC rainfall shows little to no sensitivity to spatial resolution in CNRM-CM6-1 and 212 

MPIESM1-2 models (Figure 2). Four of the six models exhibit remarkable differences in TC 213 

rainfall between high-resolution and low-resolution models while the other two show similar 214 

results (Figure 2). The low sensitivity to spatial resolution in CNRM-CM6-1 and MPIESM1-2 215 

models may be due to low absolute resolution in the models, the high-resolution version of which 216 

is around ~50km (Table 1).  217 

3.2 Contribution of TC rainfall to Total Rainfall 218 

In addition to total TC rainfall, we also examine the percentage contribution of TC rainfall 219 

to total rainfall. In the observations, the percentage contribution presents remarkable regional 220 

differences with the highest values in the western and eastern North Pacific (Figure 4), consistent 221 

with total TC rainfall (Figure 1). Climate models exhibit strong discrepancies in the capability of 222 

reproducing the observed percentage contribution (Figure 4). Globally, EC-Earth3P-HR, 223 

ECMWF-IFS-HR, ECMWF-IFS-LR, HadGEM3-GC31-HM, HadGEM3-GC31-MM, and 224 

HadGEM3-GC31-LM reproduce well the observed contribution of TC rainfall in terms of RMSE. 225 

CMCC-CM2-VHR4, EC-Earth3P-HR, EC-Earth3P, ECMWF-IFS-HR, ECMWF-IFS-LR, and 226 

HadGEM3-GC31 models produce spatial correlations greater than 0.8, suggesting a good 227 

performance (Table 5). The models exhibit marked regional differences. For example, CNRM-228 

CM6-1-HR and CNRM-CM6-1 reproduce well the observed contribution of TC rainfall in the 229 

western North Pacific, and the performance of these models is not very promising in the North 230 

Indian Ocean (Figure 4 and Tables 5-6). High-resolution models generate a higher contribution, 231 

more similar to the observations except for MPIESM1-2-XR/MPIESM1-2-HR and CNRM-CM6-232 

1-HR/CNRM-CM6-1, which produce similar percentage contributions between high-resolution 233 

and low-resolution models (Figure 4). Therefore, most of the high-resolution models perform 234 
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better than their low-resolution counterparts in reproducing the global fractional contribution 235 

(Figure 4 and Table 5). To further understand the proportion of TC rainfall, we also examine the 236 

bias in the models (Figure 5). Overall, the bias in TCR proportion (Figure 5) is mainly due to the 237 

bias in TC rainfall (Figure 2), rather than total precipitation (Figure 6). 238 

3.3 TC rainfall per track density 239 

All the models in the PRIMAVERA Project underestimate the amount of TC rainfall per 240 

track density (i.e., total TC rainfall divided by track density) in the observations (Figure 7). 241 

Therefore, given that the TC rainfall amounts identified in the models were similar to the 242 

observations, it means that there are generally more storms in the models than in the observational 243 

records. As we compare the results between the different resolutions of the models, some models 244 

(i.e., CMCC-CM2, CNRM and HadGEM3-GC31) have a tendency for lower-resolution versions 245 

to have larger per-TC rainfall amounts. This counter-intuitive results may be due to the fact that 246 

lower TC density is produced by low-resolution simulations than in the high-resolution ones 247 

(Figure 3), consistent with Vanniere et al. (2020) showing that rainfall per TC is biased high in 248 

low-resolution models. The spatial correlation between observed and simulated amount of TC 249 

rainfall per track density (Table S2) is lower than for total TC rainfall or fractional contribution, 250 

with most of the correlation coefficients that are not statistically significant. Among the models 251 

used in this study, the CNRM models perform the best in simulating the rainfall per track density 252 

(Figure 7 and Tables S2-3) and this is consistent with the fact that CNRM performs well in 253 

simulating the strongest TCs (Roberts et al. 2020).  254 

3.4 TC rainfall over Ocean and Land 255 

We also evaluate the performance of the models in simulating climatological TC rainfall 256 

over ocean and land. Overall, the models perform better in simulating total TC rainfall, TC rainfall 257 
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proportion and TC rainfall per TC over ocean than over land in terms of spatial correlation (Tables 258 

S4-6). However, the models generate a larger RMSE for the three metrics over ocean than over 259 

land (Tables S4-6), and this may be due to a large climatology of TC rainfall over ocean (Figure 260 

1).  261 

3.5 Composites and Profile of TC rainfall  262 

We process the composite TC rainfall (within the 500-km radius of TC center) at 6-hour 263 

time step for all the storms, those in the northern hemisphere and those in the southern hemisphere 264 

in observations and climate models (Figure 8). The composite TC rainfall (within the 500-km 265 

radius) at 6-hourly intervals in the observations is higher than model simulations over ocean and 266 

land (Figure 8). CMCC-CM2-VHR4 performs the best in reproducing the composite TC rainfall 267 

over ocean and land, with larger precipitation values closer to the center of circulation of the 268 

storms, even though the size of the TCs tends to be smaller than in the observations and in other 269 

models (e.g., CNRM). There is also a tendency for the storms in the northern hemisphere to exhibit 270 

larger rainfall values compared to those in the southern hemisphere, consistent with the 271 

observations. The high-resolution models produce larger composite TC rainfall rate than low-272 

resolution models, which tend to spread rainfall over larger distances from the center of circulation 273 

of the TCs (Figure 8). In addition, we compare the composite rainfall in the 200 strongest storms 274 

in observations and the low- and high-resolution models. Overall, the composite rainfall rate in the 275 

high-resolution models is larger than in the low-resolution ones except for the MPI-ESM 1-2 276 

models that simulate similar composite TC rainfall (Figure 9). The differences in composite TC 277 

rainfall of the 200 strongest TCs between low-resolution and high-resolution models (Figure 9) 278 

are more remarkable than the results for all TCs (Figure 8), and this may be due to a large portion 279 

of intense TCs in the high-resolution models than low-resolution ones (Roberts et al. 2020). To 280 
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assess whether the models’ skill is different in simulating TC rainfall over ocean or land mass, we 281 

examine the composite TC rainfall over ocean and land, separately. The composite TC rainfall 282 

over the ocean exhibits similar characteristics as those over land & ocean, with a well-defined 283 

center of circulation, albeit presenting a slightly higher magnitude (Figure 10). While almost all 284 

the models underestimate the composite TC rainfall over land compared with observations (Figure 285 

11), CMCC-CM2-VHR4 slightly overestimates the center of composite TC rainfall over land and 286 

HadGEM3-GC31-HM produces a similar magnitude of composite TC rainfall over land (Figure 287 

11). Given the fact that TCs in models have a shorter path on land than the observations (due to 288 

the tracker) and TC rainfall rate over ocean is larger than over land, this suggests that the 289 

underestimation of composite TC rainfall in models might be even more pronounced than the 290 

results here. Based on these results, there are no large differences in the performance of the models 291 

in reproducing composite TC rainfall over ocean or land. Note that the composite rainfall patterns 292 

are consistent with the results in Kim et al. (2018) which examined the composite TC rainfall 293 

across a family of Geophysical Fluid Dynamics Laboratory (GFDL) models.  294 

In addition to the examination of the composite TC rainfall, we compute the radial profile 295 

of TC rainfall across different models grouped by spatial resolution (Table 1) and land/ocean 296 

masks (Figure 12). Consistent with the results in Figures 8-11, the observed rainfall tends to be 297 

higher than what is generated by these models, especially closer to their center of circulation; this 298 

statement is valid regardless of resolution, and whether over land or ocean. The observed TC 299 

rainfall over the oceans tends to peak within 100 km from the center of the storm, and then to 300 

rapidly decrease as we move further away. This feature is generally well captured by the models, 301 

with the CMCC-CM2-VHR4 tending to perform the best among high-resolution groups. Among 302 

the mid-resolution group, HadGEM3-GC31-MM exhibits the highest skill in simulating the radial 303 
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profile of TC rainfall, while CNRM-CM6-1 tends to perform the best among the low-resolution 304 

group (Figure 12). The model performance in terms of TC rainfall when the storms are over land 305 

is similar to that mentioned for the storms over the ocean, even though the rainfall amounts tend 306 

to be smaller and to decrease more slowly as they progress inland. The radial profile of TC rainfall 307 

is consistent with Kim et al. (2018) and Moon et al. (2020) in terms of pattern and magnitude of 308 

TC rainfall across different climate models. 309 

 310 

4. Conclusion 311 

TC rainfall has been a challenge for climate modeling community because this metric is 312 

associated with TC genesis, track, and intensity. By taking advantage of the European Union 313 

Horizon 2020’s PRIMAVERA Project, we have examined the skill of state-of-the-art global 314 

climate models in reproducing several aspects of the rainfall associated with these storms in 315 

HighResMIP atmosphere-only experiments and assessed the dependence of the skill on model 316 

resolution.   317 

In general, high-resolution models perform better than their lower resolution counterparts 318 

in reproducing several characteristics of the TC distribution. They tend to provide a more realistic 319 

representation of the observations both in terms of patterns and amounts, except for average TC 320 

rainfall per track density for which low-resolution models seem better for some models. The 321 

simulation of TC rainfall by these models exhibits remarkable regional differences and 322 

discrepancies. For example, the CMCC-CM2 and ECMWF-IFS models reproduce the total TC 323 

rainfall found in observations, while they slightly underestimate their percentage contribution and 324 

overall amount per track density. By contrast, CNRM-CM6-1 and HadGEM3-GC31 models 325 

overestimate total TC rainfall, but they reproduce the fractional contribution of TC rainfall to total 326 



 

15 

 

rainfall. MPIESM1-2 and EC-Earth3P models underestimate most of the metrics associated with 327 

TC rainfall. Overall, the models perform better in simulating climatological total TC rainfall, TC 328 

rainfall proportion and TC rainfall per TC over ocean than over land in terms of spatial correlation. 329 

However, the models generate larger RMSE for the three metrics over ocean than over land, 330 

probably due to a larger climatology of TC rainfall over ocean. 331 

When we stratified the results of composite TC rainfall across land and ocean, we did not 332 

find any large changes in performance of these models, as they were able to reproduce the overall 333 

patterns albeit with lower rainfall magnitudes. Overall, CMCC-CM2-VHR4 performs the best in 334 

simulating the radial profile of TC rainfall among the high-resolution model group, while 335 

HadGEM3-GC31-MM (CNRM-CM6-1) exhibits the highest skill in simulating the radial profile 336 

of TC rainfall in the mid-resolution (low-resolution) group.  337 

While most models tend to improve their performance as we increase their horizontal 338 

resolution, the CNRM-CM6-1 and MPIESM1-2 models are two exceptions, producing similar 339 

results in their low- and high- resolution versions. Such similar performances between high-340 

resolution and low-resolution climate models need to be further investigated from the perspective 341 

of convection, circulation and TC dynamics. For example, Vanniere et al (2020) investigated 342 

possible mechanisms by examining moisture budget, and found that the distribution of 343 

precipitation per TC averaged in a 5-degree radial cap does not change significantly, which can be 344 

explained by the large-scale balance that shapes the moisture budget of TCs.  345 

In summary, our findings indicate that the investment in performing the high-resolution 346 

simulations with these models has been paid off in terms of the gained realism in reproducing TC 347 

rainfall. As we increase the horizontal resolution and we improve the description of the processes 348 
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at play, we expect to further improve the simulation of these storms, providing basic information 349 

towards our preparation, mitigation and response efforts.  350 

 351 
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 626 

Figure 1 Annual average TC rainfall (unit: mm/year) in observations. 627 
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 629 

Figure 2. Differences in annual average TC rainfall (unit: mm/year) between observations 630 

and climate models archived in the PRIMAVERA Project (model minus observations). 631 
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 632 

Figure 3. Annual average TC track density obtained by binning TC tracks into 2×2 spatial 633 

boxes in observations and climate models archived in the PRIMAVERA Project.  634 

 635 

 636 
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 637 

Figure 4. Percentage contribution of TC rainfall to total rainfall (unit: %) in observations and 638 

climate models archived in the PRIMAVERA Project. 639 
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 640 

Figure 5. Bias (model minus observations) in the percentage contribution of TC rainfall to 641 

total rainfall (unit: %) in the models. 642 

  643 



 

28 

 

 644 

Figure 6. Bias (model minus observations) in total rainfall (unit: mm/year) in the models. 645 
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 648 

 649 

Figure 7. Average rainfall divided by TC track density (unit: mm) in observations and climate 650 

models archived in the PRIMAVERA Project. Average rainfall per TC track density represent 651 

the annual total TC rainfall divided by TC track density obtained by binning TC tracks into 652 

2×2 spatial boxes.  653 

 654 
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 655 

 656 

Figure 8. Composite 6-hour TC Rainfall (unit: mm) over the ocean & land in observations and 657 

climate models archived in the PRIMAVERA Project. The model resolution drops from left 658 

(columns 1-3) to right (columns 4-6 and 7-9). Every group of three columns represents the 659 

composite for all the storms, those in the northern hemisphere and those in the southern 660 

hemisphere.  661 
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 663 

Figure 9. Composite 6-hour TC rainfall (unit: mm) across the 200 TCs with strongest intensity 664 

(sea level pressure) over the land and ocean in observations and climate models archived in the 665 

PRIMAVERA Project during 1980-2010. The model resolution drops from left (columns 1-3) 666 

to right (columns 4-6 and 7-9).   667 
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 669 

Figure 10. Same as Figure 8 but over ocean. 670 
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 671 

Figure 11. Same as Figure 8 but over land. 672 
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 675 

 676 

Figure 12. Radial profile of composite 6-hour TC rainfall (unit: mm) in observations and 677 

models grouped into high-, mid-, and low-resolution climate models. The spatial resolution of 678 

observed TC rainfall is re-gridded to each group (High, Mid and Low resolution) of the models.   679 

 680 
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Table 1. Spatial grids of the climate model outputs in high-, middle- and low-resolution groups 682 

used in this study. While ECMWF IFS data provided to HighResMIP are based on a reduced-683 

resolution regular grid, the original ECMWF-IFS output uses the cubic octahedral reduced 684 

Gaussian grid, with resolutions of Tco399 (~25 km) and Tco199 (~50 km) for the HR and LR 685 

configurations, respectively. 686 

Model High Middle/Medium Low 

CMCC-CM2 1152×768  288×192 

CNRM-CM6-1  720×360 256×128 

EC-Earth3P 1024×512 512×256  

ECMWF-IFS 720×361 360×181  

HadGEM3-GC313 1024×768 432×324 192×144 

MPI-ESM1-2  768×384 384×192 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

Table 2 Definitions of basin boundaries  696 

Basins Boundary  

Western North Pacific (WNP) 0-60°N, 100°E-180 

Eastern North Pacific (ENP) 0-60°N, 180-100°W 

North Atlantic (NA) 0-60°N, 100°W-0 

North Indian Ocean (NI) 0-45°N, 45°E-100°E 

South-West Indian Ocean (SI) 0-40°S, 0-90°E 

South Pacific & Australia (SP) 0-40°S, 90°E-120°W 

South Atlantic (SA) 0-60°S, 60°W-0 

 697 

 698 

 699 

 700 
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Table 3 Correlation between observed and simulated tropical cyclone rainfall across the globe 702 

and in different basins.  703 

 Globe WNP ENP NA NI SI SP 

CMCC-CM2-VHR4 0.77 0.87 0.77 0.68 0.83 0.80 0.76 

CMCC-CM2-HR4 0.54 0.62 0.59 0.41 0.77 0.80 0.61 

CNRM-CM6-1-HR 0.80 0.94 0.29 0.80 0.70 0.84 0.79 

CNRM-CM6-1 0.81 0.89 0.41 0.82 0.74 0.88 0.72 

EC-Earth3P-HR 0.85 0.89 0.37 0.77 0.89 0.86 0.90 

EC-Earth3P 0.83 0.85 0.33 0.78 0.92 0.88 0.89 

ECMWF-IFS-HR 0.87 0.92 0.71 0.79 0.87 0.84 0.85 

ECMWF-IFS-LR 0.86 0.92 0.66 0.80 0.88 0.81 0.85 

HadGEM3-GC31-HM 0.83 0.94 0.74 0.71 0.62 0.86 0.78 

HadGEM3-GC31-MM 0.83 0.93 0.71 0.71 0.70 0.85 0.76 

HadGEM3-GC31-LM 0.83 0.94 0.69 0.75 0.76 0.86 0.71 

MPIESM 1-2-XR 0.67 0.68 0.26 0.64 0.81 0.73 0.81 

MPIESM 1-2-HR 0.71 0.76 0.13 0.75 0.91 0.74 0.82 

 704 

Table 4 Root mean square error (unit: mm) between observed and simulated tropical cyclone 705 

rainfall across the globe and in different basins. 706 

 Globe WNP ENP NA NI SI SP 

CMCC-CM2-VHR4 73.39 97.99 61.43 84.63 151.15 64.61 77.94 

CMCC-CM2-HR4 79.44 152.37 14.90 80.66 140.61 83.06 74.72 

CNRM-CM6-1-HR 95.27 136.22 27.57 46.58 280.06 61.12 67.15 

CNRM-CM6-1 106.18 171.88 31.54 53.07 267.48 82.55 80.14 

EC-Earth3P-HR 50.48 85.67 14.43 53.69 99.63 54.91 50.96 

EC-Earth3P 54.26 125.33 13.08 51.90 40.53 51.50 42.83 

ECMWF-IFS-HR 51.28 75.38 16.20 50.56 90.48 58.20 64.27 

ECMWF-IFS-LR 49.17 75.97 15.91 44.59 93.09 62.63 61.00 

HadGEM3-GC31-HM 129.29 159.11 59.40 161.02 75.63 151.65 143.76 

HadGEM3-GC31-MM 130.32 173.13 56.98 151.07 68.51 145.72 147.59 

HadGEM3-GC31-LM 76.46 96.64 25.58 62.46 45.38 70.04 96.37 

MPIESM 1-2-XR 72.34 171.84 14.29 61.76 43.83 74.66 64.69 

MPIESM 1-2-HR 69.57 167.61 14.15 57.32 31.24 72.98 61.12 

 707 

  708 
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Table 5 Correlation between observed and simulated tropical cyclone rainfall proportion across 709 

the globe and in different basins. 710 

 Globe WNP ENP NA NI SI SP 

CMCC-CM2-VHR4 0.80 0.86 0.88 0.85 0.71 0.79 0.87 

CMCC-CM2-HR4 0.65 0.72 0.71 0.64 0.67 0.79 0.86 

CNRM-CM6-1-HR 0.71 0.92 0.55 0.75 0.64 0.85 0.86 

CNRM-CM6-1 0.75 0.92 0.53 0.73 0.72 0.93 0.88 

EC-Earth3P-HR 0.82 0.91 0.57 0.78 0.80 0.88 0.95 

EC-Earth3P 0.81 0.90 0.53 0.72 0.87 0.89 0.95 

ECMWF-IFS-HR 0.80 0.93 0.83 0.74 0.78 0.85 0.89 

ECMWF-IFS-LR 0.79 0.92 0.79 0.70 0.80 0.82 0.91 

HadGEM3-GC31-HM 0.86 0.93 0.78 0.87 0.84 0.88 0.83 

HadGEM3-GC31-MM 0.85 0.92 0.71 0.86 0.80 0.88 0.82 

HadGEM3-GC31-LM 0.79 0.94 0.67 0.81 0.64 0.90 0.69 

MPIESM 1-2-XR 0.69 0.70 0.08 0.64 0.77 0.77 0.89 

MPIESM 1-2-HR 0.73 0.77 -0.05 0.67 0.83 0.77 0.93 

 711 

 712 

Table 6 Root mean square error (unit: %) between observed and simulated tropical cyclone 713 

rainfall proportion across the globe and in different basins. 714 

 Globe WNP ENP NA NI SI SP 

CMCC-CM2-VHR4 5.10 5.90 3.41 5.32 9.66 7.93 6.43 

CMCC-CM2-HR4 6.58 9.13 2.11 8.61 6.89 9.81 9.88 

CNRM-CM6-1-HR 6.57 4.80 2.42 6.98 18.22 6.28 6.69 

CNRM-CM6-1 6.26 4.85 2.50 6.97 16.71 4.66 6.14 

EC-Earth3P-HR 4.80 6.20 2.41 6.70 7.95 6.47 4.18 

EC-Earth3P 5.44 8.59 2.66 8.08 3.73 7.07 5.34 

ECMWF-IFS-HR 4.99 4.70 1.77 6.78 8.36 7.26 5.79 

ECMWF-IFS-LR 5.03 5.51 1.92 7.49 7.24 7.09 5.03 

HadGEM3-GC31-HM 5.14 5.92 3.29 4.92 5.28 6.48 7.99 

HadGEM3-GC31-MM 5.14 5.75 3.14 5.14 5.21 5.96 8.26 

HadGEM3-GC31-LM 5.10 4.23 2.09 6.82 6.07 5.86 8.78 

MPIESM 1-2-XR 6.87 10.79 2.86 9.43 4.82 9.46 9.41 

MPIESM 1-2-HR 6.68 10.66 2.90 9.42 4.37 9.23 8.10 

 715 

 716 


