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A�ne Beilinson-Bernstein localization
at the critical level for GL2

By Sam Raskin

Abstract

We prove the rank 1 case of a conjecture of Frenkel-Gaitsgory: critical

level Kac-Moody representations with regular central characters localize

onto the a�ne Grassmannian. The method uses an analogue in local geo-

metric Langlands of the existence of Whittaker models for most represen-

tations of GL2 over a non-Archimedean field.
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1. Introduction

1.1. More than a decade ago, Frenkel and Gaitsgory initiated an ambi-
tious program to relate geometric representation theory of (untwisted) a�ne
Kac-Moody algebras at critical level to geometric Langlands, following Beilin-
son-Drinfeld [BD] and [BD04] and Feigin-Frenkel, e.g., [FF92].
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We refer the reader to [FG06] for an introduction to this circle of ideas.
The introduction to [FG09b] and the work [Gai07] may be helpful supplements.

While Frenkel-Gaitsgory were extraordinarily successful in developing rep-
resentation theory at critical level (highlights include [FG04], [FG06], [FG08],
[FG09c], [FG09b], [FG09a]), their ambitious program left many open problems.
Most of these problems are dreams that are not easy to formulate precisely.

In contrast, their conjecture on critical level localization for the a�ne
Grassmannian is a concrete representation theoretic problem. It remains the
major such problem left open by their work. In this paper, we prove the
Frenkel-Gaitsgory localization conjecture for rank 1 groups.

Below, we recall the context for and statement of the Frenkel-Gaitsgory
conjecture, the progress that they made on it, and outline the argument used
in the present paper for GL2.

1.2. Notation. In what follows, G denotes a split reductive group over a
field k of characteristic 0. We fix a choice B ✓ G of Borel subgroup with
unipotent radical N and Cartan T = B/N . We let Ǧ denote the Langlands
dual group to G, and similarly B̌ and so on.

We let G(K), e.g., denote the algebraic loop group of G, which is a group
indscheme of ind-infinite type. We let G(O) ✓ G(K) denote its arc subgroup
and GrG := G(K)/G(O) the a�ne Grassmannian. We refer to [BD] for further
discussion of these spaces and [Ras15b] for definitions of D-modules in this
context.

We follow the notational convention that all categories are assumed de-
rived; e.g., A–mod denotes the DG (derived) category of A-modules. For C

a DG category with a given t-structure, we let C~ denote the corresponding
abelian category.

1.3. A�ne Kac-Moody algebras. Before recalling the Frenkel-Gaitsgory
conjecture, we need to review the representation theory of a�ne Kac-Moody
algebras at critical level.

1.4. Recall that for a level , by which we mean an Ad-invariant sym-
metric bilinear form on g, there is an associated central extension

0 ! k ! bg ! g((t)) := g⌦
k
k((t)) ! 0.

This extension is defined by a standard 2-cocycle that vanishes on g[[t]] :=
g ⌦k k[[t]]; in particular, the embedding g[[t]] ,! g((t)) canonically lifts to an
embedding g[[t]] ,! bg.

1.5. By a representation of bg on a (classical) vector space V 2 Vect
~,

we mean an action of the Lie algebra bg such that every v 2 V is annihilated
by tNg[[t]] for N � 0 and such that 1 2 k ✓ bg acts by the identity.
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For instance, the vacuum module V := indbgg[[t]](k) is such a representation.

Here ind denotes induction, and we are abusing notation somewhat: we really
mean to induce from k � g[[t]] the module k on which k acts by the identity
and g[[t]] acts trivially; since we only consider representations on which k ✓ bg
acts by the identity, we expect this does not cause confusion.

We denote the abelian category of representations of bg by bg–mod
~. The

appropriate DG category bg–mod was defined in [FG09a, §23]; see [Gai14],
[Ras21b, App. A], or [Ras19] for other expositions.

We recall the pitfall that the forgetful functor Oblv : bg–mod ! Vect is
not conservative; i.e., it sends non-zero objects to zero.1

But one key advantage of bg–mod over other possible “derived categories”
of bg-modules is that it admits a level  action of G(K); see [Ras19, §11] for
the construction and definitions.

1.6. We let U(bg) denote the (twisted) topological enveloping algebra of
bg (with the central element 1 2 bg set to the identity). For our purposes,
U(bg) is the pro-representation of bg:

lim
n

indbgtng[[t]](k) 2 Pro(bg–mod
~).

The underlying pro-vector space is naturally an
!
⌦-algebra algebra in the

sense of [Ras19, §3 ]. By construction, its discrete modules (in Vect
~) are the

same as (classical) representations of bg.

1.7. Let D(GrG) denote the DG category of -twisted D-modules on
GrG. There is a global sections functor

�IndCoh(GrG,�) : D(GrG) ! bg–mod.

This functor is a morphism of categories acted on by G(K) and sends the
skyscraper D-module �1 2 D(GrG) to the vacuum module V.

1.8. A�ne Beilinson-Bernstein localization? Recall the finite-dimensional
Beilinson-Bernstein localization theorem:

Theorem 1.8.1 ([BB81]). The functor

�(G/B,�) : D(G/B) ! g–mod0

is a t-exact equivalence of categories. Here D(G/B) is the DG category of D-
modules and �(G/B,�) is the left D-module global sections functor; g–mod0

is the DG category of modules over U(g)⌦Z(g) k for Z(g) is the center of U(g)
and Z(g) ! k the restriction of the augmentation U(g) ! k.

1See [Ras21b, §1.18] for some discussion of this point.
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Almost as soon as Beilinson and Bernstein proved their localization the-
orem, there was a desire for an a�ne analogue that would apply for GrG or
the a�ne flag variety. Results soon emerged in work of Kashiwara-Tanisaki,
beginning with [KT95] for so-called negative levels .

The results of Kashiwara-Tanisaki su�ce for applications to Kazhdan-
Lusztig problems. However, their theorems are less satisfying than Theo-
rem 1.8.1: they do not provide an equivalence of categories, but only a fully
faithful functor. Conceptually, this is necessarily the case because for nega-
tive ; the center of U(bg) consists only of scalars, so it is not possible to define
an analogue of the category g–mod0.2

As observed by Frenkel-Gaitsgory, this objection does not apply at critical
level, as we recall below.

1.9. Critical level representation theory. For the so-called critical value
of , the representation theory of the Kac-Moody algebra behaves quite dif-
ferently from other levels. For completeness, we recall that critical level is
�1
2 times the Killing form. We let crit denote the corresponding symmetric
bilinear form; in particular, we use bgcrit (resp. Vcrit) in place of bg (resp. V).

Theorem 1.9.1 (Feigin-Frenkel).

(1) The (non-derived) center Z of U(bgcrit) is canonically isomorphic to the
commutative pro-algebra of functions on the ind-scheme OpǦ of opers (on
the punctured disc) for the Langlands dual group Ǧ:

OpǦ :=
�
f̌ + b̌((t))

�
dt/Ň(K),

where Ň(K) ✓ Ǧ(K) acts on ǧ((t))dt by gauge transformations and f̌ is
a principal nilpotent element with [⇢̌, f̌ ] = �f̌ .

We recall that, as for the Kostant slice, OpǦ is (somewhat non-canon-
ically) isomorphic to an a�ne space that is infinite-dimensional in both
ind and pro senses (like the a�ne space corresponding to the k-vector space
k((t))).

(2) The natural map

Z ! z := Endbgcrit–mod~(Vcrit)

is surjective and fits into a commutative diagram

Z //

'
✏✏

z

'
✏✏

Fun(OpǦ)
// Fun(Opreg

Ǧ
).

2However, see [Bei06] for some speculations; the suggestion is that bg–mod should be

considered not as decomposing over the spectrum of its center but over a moduli of local

systems on the punctured disc.
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Here Opreg
Ǧ

:= (f̌ + b̌[[t]])dt/Ň(O) is the scheme of regular opers, on the

(non-punctured) disc; we recall that the natural map Opreg
Ǧ

! OpǦ is a
closed embedding.

We refer to [FF92] and [Fre05] for proofs of most of these statements; the
only exception is that the map Fun(OpǦ) ,! Z constructed using [FF92] is an
isomorphism, which is shown as [BD, Th. 3.7.7].3

We refer to [FG06, §1] and [BD, §3] for an introduction to opers. As in loc.
cit., we highlight that OpǦ (resp. Opreg

Ǧ
) is a moduli space of de Rham Ǧ-local

systems on the punctured (resp. non-punctured disc) with extra structure.

Remark 1.9.2. The definition of opers here is slightly di↵erent from the
original one used by Beilinson-Drinfeld and rather follows the definition advo-
cated by Gaitsgory. In this definition, an isogeny of reductive groups induces
an isomorphism on spaces of opers, unlike in [BD]. For Ǧ semisimple, the
definition here coincides with the definition in [BD] for the associated adjoint
group. We refer to [Bar10] for a more geometric discussion.

1.10. Localization at critical level. The functor

�IndCoh(GrG,�) : Dcrit(GrG) ! bgcrit–mod

fails to be an equivalence for two related reasons.
First, recall that �IndCoh(GrG, �1)=Vcrit. As for any skyscraperD-module,

End(�1) = k, while by Theorem 1.9.1, Vcrit has a large endomorphism algebra.
Worse still, Vcrit has large self-Exts by [FT06] and [FG06, §8].

Moreover, there are central character restrictions on the essential image
of �IndCoh. Say M 2 bgcrit–mod

~ is regular if I := Ker(Z ! z) acts on M triv-
ially, and let bgcrit–mod

~
reg ✓ bgcrit–mod

~ denote the corresponding subcategory
(which is not closed under extensions). Then for any F 2 Dcrit(GrG), the co-
homology groups of �IndCoh(GrG,F) 2 bgcrit–mod will be regular, for the same
reason as the analogous statement in the finite-dimensional setting.

1.11. In [FG06], Frenkel and Gaitsgory in e↵ect proposed that these are
the only obstructions. We recall their conjecture now.

First, in [FG09a, §23], an appropriate DG category bgcrit–modreg character
was constructed: we review the construction in Section 6. There is a canonical
action of the symmetric monoidal DG category QCoh(Opreg

Ǧ
) on bgcrit–modreg

commuting with the critical level G(K)-action.4

3In fact, the mere existence of this map (and its good properties) is all we really need.

That the map is an isomorphism is nice, but not strictly necessary.
4There are actually important technical issues involving this G(K)-action that should

probably be overlooked at the level of an introduction; we refer to Sections 1.22 and 6.10 for

further discussion.
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Next, recall that geometric Satake [MV07] gives an action of Rep(Ǧ) =
QCoh(BǦ) on Dcrit(GrG) by convolution.

Moreover, Opreg
Ǧ

has a canonical Ǧ-bundle; indeed, Opreg
Ǧ

is the moduli

of Ǧ-local systems on the formal disc D = Spec(k[[t]]) with extra structure,
giving a map

Opreg
Ǧ

! LocSysǦ(D) = BǦ.

In particular, there is a canonical symmetric monoidal functor

Rep(Ǧ) ! QCoh(Opreg
Ǧ

).

According to Beilinson-Drinfeld’s birth of opers theorem, �IndCoh(GrG,�)
is a canonically morphism of (G(K),Rep(Ǧ))-bimodule categories (cf. Sec-
tion 7).

Conjecture 1.11.1 (Frenkel-Gaitsgory, [FG06, Main conjecture 8.5.2]).
The induced functor

�Hecke : Dcrit(GrG) ⌦
Rep(Ǧ)

QCoh(Opreg
Ǧ

) ! bgcrit–modreg

is a t-exact equivalence of DG categories.

We can now state the following:

Main Theorem (Theorem 7.14.1). Conjecture 1.11.1 is true for G of
semisimple rank 1.

Corollary 1.11.1. For � 2 Opreg
Ǧ

(k) a regular oper (defined over k),

let bgcrit–mod
~
� denote the abelian category of bgcrit-modules on which Z acts

through its quotient Z ⇣ z
�
⇣ k, and let bgcrit–mod� denote the appropriate DG

category.
Then for G = GL2, the functor

Dcrit(GrG) ⌦
Rep(Ǧ)

Vect ! bgcrit–mod�

induced by global sections is a t-exact equivalence, where Vect is a Rep(Ǧ)-

module category via the map Spec(k)
��! Opreg

Ǧ
! BǦ.

Corollary 1.11.2. Let G = GL2, and let �1,�2 2 Opreg
Ǧ

(k) be two

regular opers (defined over k). Then any isomorphism of the underlying Ǧ-local
systems of �1 and �2 gives rise to an equivalence of abelian categories

bgcrit–mod
~
�1

' bgcrit–mod
~
�2
.

Remark 1.11.3. We highlight a wrong perspective on Corollary 1.11.2; this
remark may safely be skipped.
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For G = PGL2, one can show that the group scheme Aut of automor-
phisms of the formal disc acts transitively on Opreg

Ǧ
, giving rise to an elemen-

tary construction of equivalences of categories as in Corollary 1.11.2 in this
case.

However, these are not the equivalences produced by Corollary 1.11.2.
First, at the level of DG categories, the equivalences using the action of Aut are
not G(K)-equivariant: the G(K)-actions di↵er via the action of Aut on G(K).
In contrast, the equivalences produced using Corollary 1.11.1 are manifestly
G(K)-equivariant.

Concretely, this implies that for a k-point g 2 G(K), if g · Vcrit :=

indbgcritAdg(g[[t]])
(k) and g · Vcrit,� := (g · Vcrit) ⌦z,� k, then Corollary 1.11.2 maps

g ·Vcrit,�1 to g ·Vcrit,�2 . For � 2 Aut and �2 = � ·�1, the resulting isomorphism
produced using � (not Corollary 1.11.2) rather sends g ·Vcrit,�1 to �(g) ·Vcrit,�2 .

In addition, one can see that the equivalences produced using the Aut
action depend on isomorphisms of underlying Ǧ^

B̌
-bundles of regular opers (in

this PGL2 case), not merely the underlying Ǧ-bundles.

1.12. Viewpoints. We refer to the introduction and Section 2 of [FG09c]
for a discussion of Conjecture 1.11.1 and its consequences. We highlight some
ways of thinking about it here.

• For the representation theorist, Theorem 7.14.1 provides an a�ne analogue
of Beilinson-Bernstein similar to their original result; cf. the discussion in
Section 1.8. The equivalences of Corollary 1.11.2 provide analogues of trans-
lation functors at critical level. By Theorem 1.13.1, the content of The-
orem 7.14.1 amounts to a structure theorem for regular bgcrit-modules (for
g = sl2).

• For the number theorist, Theorem 7.14.1 provides a first non-trivial test of
Frenkel-Gaitsgory’s proposal [FG06] for local geometric Langlands beyond
Iwahori invariants.

Roughly, Frenkel-Gaitsgory propose that for � a de Rham Ǧ-local sys-
tem on the punctured disc, there should be an associated DG category C�
with an action of G(K).5 This construction should mirror the usual local
Langlands correspondence, leading to many expected properties of this as-
signment; cf. [Gai07].

A striking part of their proposal does not have an arithmetic counterpart.
For � an oper with underlying local system �, Frenkel-Gaitsgory propose
C� = bgcrit–mod� 2 G(K)–modcrit, where we use similar notation to Corol-
lary 1.11.1. We remark that Frenkel-Zhu [FZ10] and Arinkin [Ari16] have

5Most invariantly, this action should have critical level, which is (slightly non-canonically)

equivalent to level 0.
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shown that any Ǧ-local system � on the punctured disc admits an oper struc-
ture (assuming, to simplify the discussion, that � is a field-valued point).

In particular, one expects equivalences as in Corollary 1.11.2 (for any fixed
Ǧ-local system on the punctured disc and pair of oper structures on it), at
least for the corresponding derived categories.

Our results provide the first verification of their ideas beyond Iwahori
invariants.

Remark 1.12.1. We have nothing to o↵er to the combinatorics of repre-
sentations. The previous results of Frenkel-Gaitsgory su�ce6 to treat problems
of Kazhdan-Lusztig nature; cf. [AF12].

1.13. Previously known results. Frenkel-Gaitsgory were able to show the
following results, valid for any reductive G.

We let I=G(O)⇥GB be the Iwahori subgroup of G(O) and I̊=G(O)⇥GN
its prounipotent radical.

Theorem 1.13.1. The functor �Hecke is fully faithful, preserves compact
objects, and is an equivalence on I̊-equivariant categories. Moreover, the re-

striction of �Hecke to the I̊-equivariant category Dcrit(GrG)I̊ ⌦
Rep(Ǧ)

QCoh(Opreg
Ǧ

)

is t-exact.

Remark 1.13.2. The fully faithfulness is [FG06, Th. 8.7.1]; we give a
simpler proof of this result in Appendix B. The existence of the continu-
ous right adjoint LocHecke is proved as in [FG09a, §23.5–6]. The equivalence
on I̊-equivariant categories and t-exactness of the functor is Theorem 1.7 of
[FG09c].7

Remark 1.13.3. Using Kashiwara-Tanisaki localization and the Kazhdan-
Lusztig equivalence as in [AG03, Th. 6.4], the Frenkel-Gaitsgory equivalence on
I̊-equivariant categories connects critical-level Kac–Moody representations to a
number of other objects of study in geometric representation theory: the small
quantum group, as studied extensively in a geometric setting in [ABB+05],
Bezrukavnikov’s non-commutative Springer resolution [BL12], and character-
istic p semi-simple Lie algebras, as in [BM13, §1.7].

1.14. Methods. Below, we outline the proof of Theorem 7.14.1. However,
to motivate this, we highlight a methodological point.

6At least, the known results su�ce up to mild central character restrictions coming from

[FG09a]. These restrictions are understood among experts to be inessential.
7The results we cite here are not formulated in exactly the given form in the cited works.

For the purposes of the introduction, we ignore this issue and address these gaps in the body

of the paper.
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Across their works at critical level, Frenkel and Gaitsgory use remarkably
little about actual critical level representations. Indeed, they rely primarily on
Feigin and Frenkel’s early results, some basic properties of Wakimoto modules,
and the Kac-Kazhdan theorem.

But using the action of G(K) on bgcrit–mod and constructions/results from
geometric Langlands, Frenkel and Gaitsgory were able to prove deep results
about representations at critical level; see, e.g., [FG09a].

In other words, their works highlight an important methodological point:
the theory of group actions on categories provides a bridge:

( Geometry and higher
representation theory of
groups

)
Group actions

on categories (
Representation theory
of Lie algebras

)

For loop groups in particular, a great deal was known at the time about
G(O) and Iwahori invariants; see, e.g., [MV07], [AB09], [ABG04], [ABB+05].

More recently, Whittaker invariants have been added to the list; see
[Ras21b]. As in Appendix B, for example, these can be used to simplify many
arguments from Frenkel-Gaitsgory.

1.15. As we outline below, our methods are in keeping with the above.
The main new idea and starting point of the present paper, Theorem 5.1.1, is
exactly about the higher representation theory of PGL2(K).

1.16. Group actions on categories inherently involve derived categories.
Therefore, one has the striking fact that although Corollary 1.11.2 is about
abelian categories (of modules!), the proof we give involves sophisticated ho-
mological methods and careful analysis of objects in degree �1 in various DG
categories.

1.17. Sketch of the proof. We now give the Platonic ideal of the proof of
the main theorem.

1.18. First, one readily reduces to proving Conjecture 1.11.1 for any fixed
G of semisimple rank 1; for us, it is convenient to focus on G = PGL2.

1.19. The following result is one of the key new ideas of this paper:

Theorem (Theorem 5.1.1). Let G = PGL2, and let C be acted on by
G(K) (perhaps with level ).

Then C is generated under the action of G(K) by its Whittaker category

Whit(C) := CN(K), and its I̊-equivariant category CI̊ .

The relation to the equivalence part of the Frenkel-Gaitsgory conjecture is
immediate: By fully faithfulness of �Hecke (Theorem 1.13.1), Theorem 7.14.1
is reduced to showing essential surjectivity. Applying Theorem 5.1.1 to the
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essential image of �Hecke, one immediately obtains Theorem 7.14.1 from The-
orem 1.13.1 and

Theorem (Theorem 8.3.1). For any reductive G, the functor �Hecke in-
duces an equivalence on Whittaker categories.

The latter result is an essentially immediate consequence of the a�ne
Skryabin theorem from [Ras21b] and the classical work [FGV01].

1.20. Theorem 5.1.1 warrants some further discussion. First, this result
mirrors the fact that for PGL2 over a local, non-Archmidean field, irreducible
representations admit Whittaker models, or else are one of the two 1-dimen-
sional characters trivial on the image of SL2.

We now give an intentionally informal heuristic for Theorem 5.1.1 that
may safely be skipped.

For general reductive G and C 2 G(K)–modcrit, let C0 ✓ C be the subcat-
egory generated under the G(K)-action by Whit(C).

Assuming some form of local geometric Langlands, one expects the local
Langlands parameters of C/C0 to consist only of those � 2 LocSysǦ(D̊) that

lift to a point of LocSysP̌ (D̊) at which the map LocSysP̌ (D̊) ! LocSysǦ(D̊) is

singular; here P̌ is some parabolic subgroup of Ǧ and D̊ = Spec(k((t))) is the
formal punctured disc.

For Ǧ = SL2, the only parabolic we need to consider is the Borel B̌. Then
� 2 LocSysB̌ is the data of an extension

0 ! (L,r) ! (E,r) ! (L_,r) ! 0,

where (L,r) is a line bundle with connection on the punctured disc (and L_

equipped with the dual connection to that of L). At such a point, the cokernel
of the map of tangent spaces induced by LocSysB̌(D̊) ! LocSysǦ(D̊) is

H1
dR(D̊, (ǧ/b̌)�) = H1

dR(D̊, (L_,r)⌦2).

This group will vanish unless (L,r)⌦2 is trivial, i.e., unless (E,r)2LocSysǦ(D̊)
or its quadratic twist has unipotent monodromy.

It is expected that D 2 G(K)–modcrit with local Langlands parameters
having unipotent monodromy (resp. up to twist by a 1-dimensional character)
is generated under the G(K)-action by its Iwahori invariants (resp. its Iwahori
invariants twisted by a suitable character of I trivial on I̊).

This justifies that for G = PGL2, one should expect C/C0 above to be
generated by its I̊-invariants. (In fact, following the above reasoning, one can
refine Theorem 5.1.1 to show that C is even generated by Whit(C) and its
invariants with respect to the Iwahori subgroup of SL2(K).)

1.21. The argument we provide for Theorem 5.1.1 is novel. Its decategori-
fied version gives a new proof of the corresponding result in usual harmonic
analysis.
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We use the perspective of [Ras21b] on Whittaker categories, which al-
lows us to study the Whittaker construction via (finite-dimensional!) algebraic
groups. (We summarize the most relevant parts of [Ras21b] in Section 5.2.)

In Section 3, we introduce a new technique in the finite-dimensional set-
tings suggested by [Ras21b], which we call Whittaker inflation. In that con-
text, Theorem 3.4.1 shows that subcategories generated under group actions
by Whittaker invariants are large in a suitable sense. These ideas apply for a
general reductive group G and have counterparts in the decategorified setting.

In Section 5, we introduce a method of descent that is specific for PGL2.
Combined with the results of Section 3, descent immediately gives Theo-
rem 5.1.1.

1.22. For clarity, we highlight that there is one technical issue in the above
argument: there is not an a priori G(K)-action on bgcrit–modreg, so the above
argument does not apply as is. Instead, there is a closely related but inequiv-
alent category, bgcrit–modreg,naive, with an evident G(K)-action (coming from
[Ras19]). We refer to Section 6.10 for a more technical discussion of this point.

This distinction makes the second half of the paper more technical, and
it requires finer analysis than was suggested in Section 1.19.

1.23. The t-exactness in Theorem 7.14.1 is proved by another instance
of the descent argument highlighted above. The details are in Section 10, with
some auxiliary support in Section 11.

1.24. Finally, we highlight that the vast majority of the intermediate
results in this paper apply to general reductive groups G. In particular, this
includes the results of Section 3, which are a key ingredient in the proof of
Theorem 7.14.1.

The descent arguments discussed above are where we use that G = PGL2;
here the key input is that every element in the Lie algebra g = sl2 is either
regular or 0. The situation strongly suggests that there should be some (more
complicated) generalization of the descent method that applies for higher rank
groups as well.

1.25. Structure of this paper. The first part of the paper is purely geomet-
ric, primarily involving monoidal categories of D-modules on algebraic groups.

In Section 3, we introduce the inflation method discussed above. In Sec-
tion 4, we provide some refinements of these ideas that are needed later in the
paper; this section includes some results on Whittaker models for the finite-
dimensional group G that are of independent interest.

In Section 5, we prove our theorem on the existence of Whittaker models
for most categorical representations of PGL2(K) and introduce the descent
argument discussed above.
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1.26. The second part of the paper applies the above material to critical
level Kac-Moody representations.

In Section 6, we introduce the DG category bgcrit–modreg following [FG09a].
To study this DG category using group actions, we import the main results
from [Ras19] here.

In Section 7, we recall in detail the key constructions from the formulation
of Conjecture 1.11.1. We formulate three lemmas from which we deduce our
main result, Theorem 7.14.1.

The proofs of these lemmas occupy Sections 9–11. Roughly, Section 9
is devoted to showing that the functor �Hecke is essentially surjective, while
Section 10 is devoted to showing that it is t-exact. The final section, Sec-
tion 11, provides additional technical support related to the distinction between
bgcrit–modreg and bgcrit–modreg,naive.

Finally, Section 8 collects results on the behavior of �Hecke on Iwahori
and Whittaker equivariant categories; the former results are due to Frenkel-
Gaitsgory [FG09c], while the latter are original.

1.27. There are two appendices. In Appendix A, we compare our con-
struction of the global sections functor to the more classical one used by
Kashiwara-Tanisaki, Beilinson-Drinfeld and Frenkel-Gaitsgory.

In Appendix B, we reprove the Frenkel-Gaitsgory theorem that �Hecke is
fully faithful.

1.28. Acknowledgements. We thank Dima Arinkin, Sasha Beilinson, Dario
Beraldo, David Ben-Zvi, Roman Bezrukavnikov, Justin Campbell, Vladimir
Drinfeld, Gurbir Dhillon, Ivan Mirkovic, and David Yang for their encourage-
ment and for helpful conversations related to this material.

We especially thank Dennis Gaitsgory for sharing many inspiring ideas on
Kac-Moody algebras and loop group actions over the years. In particular, the
crucial idea of using Heisenberg groups to prove Theorem 3.4.1 was inspired
by his work [Gai08, §2].

2. Preliminary material

2.1. In this section, we collect some notation and constructions that will
be used throughout the paper.

2.2. As in Section 1.2, we always work over a field k of characteristic 0.

2.3. Reductive groups. Throughout the paper, G denotes a split reductive
group, B denotes a fixed Borel with unipotent radical N and Cartan T = B/N .

We let ⇤ = Hom(T,Gm) be the lattice of weights of T and Hom(Gm, T )
the lattice of coweights. Let ⇢ 2 ⇤ ⌦ Q be the half sum of positive roots and
⇢̌ 2 ⇤̌⌦Q be the half sum of positive coroots. We denote the pairing between
⇤ and ⇤̌ by (�,�).
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We let, for example, g denote the Lie algebra of G, b the Lie algebra of B,
and so on.

We let Ǧ denote the Langlands dual group to G, considered as an algebraic
group over k. It naturally comes equipped with a choice Borel B̌ with radical
Ň and Cartan Ť = B̌/Ň .

2.4. Higher categories. Following standard conventions in the area, we
freely use Lurie’s theory [Lur09], [Lur12] of higher category theory. To simplify
the terminology, we use category to mean (1, 1)-category.

2.5. DG categories. We let DGCatcont denote the symmetric monoidal
category of presentable (in particular, cocomplete) DG categories, referring
to [GR17a, Ch. I] for more details. As in loc. cit., the binary product un-
derlying this symmetric monoidal structure is denoted ⌦. We recall that
Vect 2 DGCatcont is the unit for this tensor product.

2.6. For A 2 Alg(DGCatcont) an algebra in this symmetric monoidal cat-
egory, we typically write A–mod for A–mod(DGCatcont), i.e., the category of
modules for A in DGCatcont.

2.7. For C a DG category and F,G 2 C, we use the notation HomC(F,G)
to denote the corresponding object of Vect, as distinguished from the corre-
sponding 1-groupoid HomC(F,G) = ⌦

1HomC(F,G).

2.8. For C,D objects of a 2-category (i.e., (meaning: (1, 2)-category) C,
we use the notation HomC(C,D) 2 Cat to denote the corresponding category
of maps.

When C is enriched over DGCatcont, we use the same notation for the DG
category of maps. For example, this applies for C = DGCatcont or C = A–mod

for A as above.

2.9. We use the notation (�)_ to denote duals of dualizable objects in
symmetric monoidal categories. In particular, for C 2 DGCatcont dualizable
in the sense of [GR17a], we let C_2DGCatcont denote the corresponding dual
category.

2.10. For a DG category C with t-structure, we use cohomological no-
tation C0 denotes the connective objects and C�0 denotes the coconnective
objects. We let C~ = C0 \ C�0 denote the heart of the t-structure.

2.11. Classical objects. Where we wish to say that an object lives in some
traditional (1, 1)-category, we often refer to it as classical. So, e.g., a classical
vector space refers to an object of Vect~, while a classical (ind)scheme is being
distinguished from a DG (ind)scheme.

2.12. D-modules. For an indscheme S of ind-finite type, we let D(S) de-
note the DG category of D-modules on S as defined in [GR17a]. For a map
f : S ! T , we let f ! and f⇤,dR denote the corresponding D-module functors.
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We recall that for S an indscheme of possibly infinite type, there are two
categories of D-modules, denoted D⇤(S) and D!(S). We refer to [Ras15b] for
the definitions in this setting.

2.13. Group actions on categories. We briefly recall some constructions
from the theory of group actions on categories.

2.14. Suppose H is a Tate group indscheme in the sense of [Ras19, §7];
i.e., H is a group indscheme that admits a group subscheme K ✓ H such that
H/K is an indscheme of ind-finite type.

We recall from [Ras15b] that the category D⇤(H) is canonically monoidal.
By definition, we let H–mod denote the category D⇤(H)–mod and refer to
objects of this category as categories with a strong H-action. We typically
omit the adjective strong ; where we refer only to an H-action, we mean a
strong H-action.

For C 2 H–mod and F 2 D⇤(H), we let F ? � : C ! C denote the
(convolution) functor defined by the action.

2.15. For C 2 H–mod, we have the invariants category and coinvariants
categories

CH := HomH–mod(Vect,C), CH := Vect ⌦
D⇤(H)

C.

Here Vect is given the trivial H-action.
We let Oblv : CH ! C denote the forgetful functor. Recall from [Ber13,

§§2, 4] that if H is a group scheme with prounipotent tail, then Oblv : CH ! C

admits a continuous right adjoint Av⇤ = AvH⇤ that is functorial in C. The
composition OblvAv⇤ : C ! C is given by convolution with the constant D-
module kH 2 D⇤(H).

More generally, as in [Ber13, §2.5.4], for any character  : H ! Ga, we
may form the twisted invariants and coinvariants categories

CH, ,CH, .

We use similar notation to the above, though (for H a group scheme) we often

write AvH, 
⇤ = Av ⇤ to emphasize the character.

2.16. For C with a right H-action and D with a left H-action, we let

C
H
⌦D denote the H-invariants for the induced diagonal action on C⌦D.

2.17. Given a central extension “H of H by a torus T and an element
� 2 t_, we have a category H–mod� of categories acted on by H with level �,
and such that for � = 0, we have H–mod0 = H–mod. We refer to [Ras19,
§11.3] and [Ras21b, §1.30] for definitions.

For the loop group H = G(K), ad-invariant symmetric bilinear forms
 : g ⌦ g ! k define the above data; cf. loc. cit. In particular, we obtain
G(K)–mod for any .
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In the presence of a level, we can form invariants and coinvariants for
group indschemes H 0 equipped with a map H 0 ! H and a trivialization8 of
the corresponding central extension of H 0.

For instance, for H = G(K), this applies to N(K) and G(O), or any
subgroup of either. Indeed, the Kac-Moody extension is canonically trivialized
over each of these subgroups.

Where the level is obviously implied, we sometimes allow ourselves simply
to refer to H-actions, H-equivariant functors, and so on.

2.18. We recall from [Ras19] that for H as above, there is a canonical
category h–mod of modules for the Lie algebra h of H and a canonical action
of H on h–mod. We recall that if H is not of finite type, the forgetful functor
h–mod ! Vect is not conservative.

One has similar reasoning in the presence of a level. For instance, we have
a canonical object bg–mod 2 G(K)–mod. We refer to [Ras19, §11] for further
discussion.

2.19. We will sometimes reference the theory of weak actions of Tate
group indschemes. We let H–modweak denote the category of DG categories
with weak H-actions, defined as in [Ras19, §7]. We use the notation C 7!
CH,w,CH,w to denote weak invariants and coinvariants functors.

2.20. We will frequently reference compatibilities between t-structures
and group actions. We refer to [Ras21b, App. B] and [Ras19, §10] for definitions
and basic results.

2.21. Finally, we end with informal remarks.
The theory of loop group actions on DG categories, especially weak ac-

tions, is somewhat involved to set up; cf. [Ras19]. With that said, as a black
box, the theory is fairly intuitive to use and provides quite useful insights.

Therefore, we hope that the sometimes frequent references to [Ras19] and
the more formal parts of [Ras21b] (e.g., Appendix B) will not cause the reader
too much indigestion.

3. Whittaker inflation

3.1. The main result of this section is Theorem 3.4.1, which is one of
the key innovations of this paper. For higher jet groups Gn (see below) of a
reductive group G, this result precisely measures how much information is lost
by the corresponding analogues of the Whittaker model.

The proof uses some constructions with Heisenberg group actions on cate-
gories, which we recall here. This material is a categorical version of the usual

8One can do better: the important thing is to have a specified action of H 0 on Vect with
the given level.
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representation theory of Heisenberg groups over finite fields. Similar ideas were
used in [Gai08], though the application was of di↵erent nature there.

3.2. For H an algebraic group and n � 1, we let Hn denote the algebraic
group of maps from Spec(k[[t]]/tn) to H. In particular, H1 = H.

Let {ei 2 n}i2IG be Chevalley generators of n indexed by IG the set of
simple roots. Let  : Nn ! Ga be defined as the composition

Nn ! Nn/[N,N ]n =
Y

i2IG

(Ga)n · ei
sum��! (Ga)n = (Ga)⌦

k
k[[t]]/tn ! Ga,

where the last map is induced by the functional

k[[t]]/tn ! k,
X

ait
i 7! an�1.

For the remainder of this section, we assume that n is at least 2. The
main result of this section answers the question for C 2 Gn–mod, how much
information do the invariants CNn, remember about C?

3.3. As n � 2, we have a homomorphism

(3.3.1)
g⌦Ga ! Gn,

(⇠ 2 g) 7! exp(tn�1⇠).

This map realizes g ⌦ Ga as a normal subgroup of Gn. Note that the adjoint
action of Gn on this normal subgroup is given by

Gn
ev�! G

adjointy g.

If C is acted on by Gn, it is thus acted on by g ⌦ Ga by restriction, or

using Fourier transform, by D(g_) equipped with the
!
⌦-tensor product. (We

omit the tensoring with Ga because we are not concerned with the additive
structure on g_ here.)

Fix a symmetric, linear G-equivariant identification  : g ' g_ for the

remainder of this section. Therefore, C is acted on by D(g) with its
!
⌦-monoidal

structure. In particular, for S a scheme mapping to g, we may form C|S :=
C⌦D(g) D(S).

Define Creg as C|greg where greg ✓ g is the open subscheme of regular
elements. We have adjoint functors

j! : C � Creg : j⇤,dR

with the right adjoint j⇤,dR being fully faithful; indeed, these properties are
inherited from the corresponding situation j! : D(g) � D(greg) : j⇤,dR for
j : greg ,! g the embedding.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 267

Because greg ✓ g is closed under the adjoint action of G, and since Gn

acts on g_ ' g through the adjoint action of G, it follows that Creg is acted on
by Gn so that the comparison functors with C are Gn-equivariant.

3.4. Main theorem. We have g⌦Ga\Nn = n⌦Ga, and under the Fourier
transform picture above, we have

Cn⌦Ga, |n⌦Ga ' C|f+b.

Here f a principal nilpotent whose image in g/b ' n_ is  |n⌦Ga .
In particular, because f + b ✓ greg, it follows that CNn, ' Creg,Nn, . The

following result states that this is the only loss in (Nn, )-invariants.

Theorem 3.4.1. The functor

Gn–mod
reg C7!CNn, 

������! DGCatcont

is conservative, where Gn–mod
reg ✓ G–mod is the full subcategory consisting

of C with Creg = C.

Here are some consequences.

Corollary 3.4.2. For every C 2 Gn–mod, the convolution functor

D(Gn)
Nn,� ⌦

HNn, 

CNn, ! C

is fully faithful with essential image Creg. Here HNn, = D(Gn)Nn⇥Nn,( ,� )

is the appropriate Hecke category for the pair (Gn, (Nn, )).

Proof. Note that this functor isGn-equivariant and that its essential image
factors through Gn (by the above analysis). Therefore, by Theorem 3.4.1,
it su�ces to show that it is an equivalence on (Nn, )-invariants, which is
clear. ⇤

Corollary 3.4.3. Observe that D(Gn)reg admits a unique monoidal
structure such that the localization functor D(Gn) ! D(Gn)reg is monoidal.

Then D(Gn)reg and HNn, (as defined in the previous corollary) are
Morita equivalent, with bimodule D(Gn)Nn, defining this equivalence.

The remainder of this section is devoted to the proof of Theorem 3.4.1.

3.5. Example: n = 2 case. First, we prove Theorem 3.4.1 in the n = 2
case. This case is simpler than the general case, and it contains one of the
main ideas in the proof of the general case.

Note that by Fourier transform along g⌦Ga ✓ G2, an action of G2 on C

is equivalent to the datum of G on C, and an action of (D(g),
!
⌦) on C as an

object of G–mod (where G acts on D(g) by the adjoint action). In the sheaf
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of categories language [Gai15], we obtain

G2–mod ' ShvCat/(g/G)dR .

The functor of (N2, )-invariants then corresponds to global sections of the
sheaf of categories over (f + b/N)dR, i.e., the de Rham space of the Kostant
slice. Recall that the Kostant slice f + b/N is an a�ne scheme and maps
smoothly to g/G with image greg/G.

As the Kostant slice is a scheme (not a stack), [Gai15, Th. 2.6.3] implies
(f+b/N)dR is 1-a�ne. In particular, its global sections functor is conservative.

Therefore, it su�ces to note that pullback of sheaves of categories along
the map (f + b/N)dR ! (greg/G)dR is conservative. However, in the diagram

f + b/N //

✏✏

greg/G

✏✏
(f + b/N)dR // (greg/G)dR

pullback for sheaves of categories along the vertical maps is conservative for for-
mal reasons (e.g., write de Rham as the quotient by the infinitesimal groupoid),
and conservativeness of pullback along the upper arrow follows from descent of
sheaves of categories along smooth (or more generally fppf) covers; cf. [Gai15,
Th. 1.5.2]. This implies that pullback along the bottom arrow is conservative
as well.

Remark 3.5.1. It follows from the above analysis that the Hecke algebra
H2 (in the notation of Corollary 3.4.2) is equivalent to D-modules on the group
scheme of regular centralizers.

3.6. Heisenberg groups. We will deduce the general case of Theorem 3.4.1
from the representation theory of Heisenberg groups, which we digress to dis-
cuss now.

Let V be a finite-dimensional vector space. In the following discussion,
we do not distinguish between V and the additive group scheme V ⌦k Ga.

Let H = H(V ) denote the corresponding Heisenberg group; by definition,
H is the semidirect product

V n (V _ ⇥Ga),

where V acts on V _ ⇥Ga via

v · (�, c) = (�, c+ �(v)), (v,�, c) 2 V ⇥ V _ ⇥Ga.

Remark 3.6.1. Note that H only depends on the symplectic vector space
W = V ⇥ V _, not on the choice of polarization V ✓ W . But the above
presentation is convenient for our purposes.
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3.7. Observe that Ga ✓ H is central. In particular, D(A1)
Fourier' D(Ga)

maps centrally to H, where we use D(A1) to indicate that we consider the
!
⌦-

monoidal structure and D(Ga) to indicate the convolution monoidal structure.
Let H–mod

reg✓H–mod denote the subcategory where D(A1) acts through
its localization D(A1 \ 0), i.e., where all Fourier coe�cients are non-zero.

Theorem 3.7.1. The functor

H–mod
reg C7!CV

����! D(A1 \ 0)–mod

is an equivalence.

Corollary 3.7.2. The functor

H–mod
reg C7!CV

����! DGCatcont

is conservative.

Proof of Theorem 3.7.1. Note that by duality, V acts on V ⇥A1; explicitly,
this is given by the formula

v · (w, c) := (w � c · v, c).

By Fourier transform along V _⇥Ga ✓ H, we see that an H-action on C is
equivalent to giving a V -action on C (where V is given its natural additive struc-

ture) and an additional (D(V ⇥ A1),
!
⌦)-action on C in the category V –mod.

Using the sheaf of categories language [Gai15], this is equivalent to the
data of a sheaf of categories on (VdR ⇥ A1

dR)/VdR, where we are quotienting
using the above action. The corresponding object of H–mod lies in H–mod

reg

if and only if the sheaf of categories is pushed forward from

(VdR ⇥ A1
dR \ 0)/VdR = A1

dR \ 0.

Therefore, we obtain an equivalence of the above type. Geometrically,
this equivalence is given by taking global sections of a sheaf of categories,
which for (VdR⇥A1

dR)/VdR corresponds to taking (strong) V -invariants for the
corresponding H-module category. ⇤

3.8. Proof of Theorem 3.4.1. We return to the setting of Theorem 3.4.1.
The remainder of this section is devoted to the proof of this result.

In what follows, for h a nilpotent Lie algebra, we let exp(h) denote the
corresponding unipotent algebraic group.

Let Nm
n = exp(tn�mn[[t]]/tnn[[t]]) ✓ Nn for 1  m  n. For example, for

m = 1, we recover the group n⌦Ga ✓ Gn.
We will show by induction on m that the functor of (Nm

n , )-invariants is
conservative on Gn–mod

reg.
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3.9. As a base case, we first show the claim for m = 1.
Here the assertion follows by the argument of Section 3.5. Indeed, we have

a homomorphism G2 ! Gn that identifies G ✓ G2, Gn and g ⌦ Ga ✓ G2, Gn.
Restricting along this homomorphism, we obtain that taking  -invariants for
N ·N1

n ✓ Nn is conservative, and a fortiori, taking (N1
n, )-invariants is as well.

3.10. We9 now observe that the above argument extends to treat any
m  n

2 .
In this case, the subalgebra tn�mg[[t]]/tng[[t]] ✓ g[[t]]/tng[[t]] = Lie(Gn)

is abelian. Clearly this subalgebra is normal; the adjoint action of Gn on it is
given via the representation

Gn ! Gm y Lie(Gm) = g[[t]]/tmg[[t]]
tm·�' tn�mg[[t]]/tng[[t]].

We therefore have a homomorphism

Gn n tn�mg[[t]]/tng[[t]]⌦Ga ! Gn

whose restriction toGn is the identity and whose restriction to tn�mg[[t]]/tng[[t]]
⌦Ga is the exponential of the embedding tn�mg[[t]]/tng[[t]] ,! g[[t]]/tng[[t]].

Considering C as a category acted on by Gn n tn�mg[[t]]/tng[[t]] via the
above map and Fourier transforming as in Example 3.5, we can view this action
as the data of making C into a sheaf of categories on (g[[t]]/tmg[[t]])dR/Gn,dR.
Here we have identified the dual of (tn�mg[[t]]/tng[[t]]) with g[[t]]/tmg[[t]] via
the pairing (⇠1, ⇠2) 7! Res(t�n(⇠1, ⇠2)dt) (for  as above).

Define

(g[[t]]/tmg[[t]])reg = g[[t]]/tmg[[t]]⇥g g
reg.

By the regularity assumption on C, the above sheaf of categories is pushed
forward from

(g[[t]]/tmg[[t]])reg,dR/Gn,dR.

Then (Nm
n , )-invariants correspond to global sections of

(f + b[[t]]/tmb[[t]])dR

with coe�cients in the above sheaf of categories. As the map

(f + b[[t]]/tmb[[t]]) ! (g[[t]]/tmg[[t]])reg/Gm

9The arguments in Sections 3.10 and 3.14 are not needed in the case g = sl2, which is what

we use for our application to the localization theorem. Indeed, for g = sl2, in the argument

in Section 3.13, one only needs to consider (in the notation of loc. cit.) r = 1, in which case

g1�r = t is abelian, hence the last equation in (3.13.1) holds for trivial reasons. Given that

equality, the rest of the argument goes through for m � 2.

In other words, the reader who is only interested in Theorem 7.14.1 can safely skip Sec-

tions 3.10 and 3.14.
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is a smooth cover (as it is obtained by applying jets to a smooth cover), the
same is true of

(f + b[[t]]/tmb[[t]]) ! (g[[t]]/tmg[[t]])reg/Gn.

As f + b[[t]]/tmb[[t]] is a scheme, the reasoning of Section 3.5 gives us the
desired result.

3.11. In Section 3.14, we will give a separate argument to treat the case
n = 2m � 1; of course, this is only possible for n odd. The argument is not
complicated, but a little involved to set up, so we postpone the argument for
the moment.

Combined with Section 3.10, this gives the result for all m  n+1
2 .

3.12. We now perform the induction; we assume the conservativeness
for m � 1 and show it for our given m  n. By the inductive hypothesis
as established above (though postponed in one case to Section 3.14), we may
assume m � n+2

2 .
We will give the argument here by another inductive argument. As above,

let g = �sgs be the principal grading defined by the coweight ⇢̌ : Gm ! Gad

of the adjoint group Gad of G. So, for example, ei 2 g1 and n = �s�1gs. For
r � 1, let n�r := �s�rgs.

Now define

Nm,r
n := exp

�
tn�m+1n[[t]] + tn�mn�r[[t]]/t

nn[[t]]
�
✓ Nm

n ✓ Nn.

We will show by descending induction on r � 1 that taking (Nm,r
n , )-invariants

conservative. Note that this result is clear from our hypothesis on m for r � 0,
since then n�r = 0 and Nm,r

n = Nm�1
n . Moreover, a proof for all r implies the

next step in the induction with respect to m, since Nm,1
n = Nm

n , which would
complete the proof of Theorem 3.4.1.

3.13. For r � 1, assume the conservativeness (in the regular setting) of
(Nm,r+1

n , )-invariants; we will deduce it for Nm,r
n . The idea is to make a

Heisenberg group act on (Nm,r+1
n , )-invariants so that taking invariants with

respect to a Lagrangian gives (Nm,r
n , )-invariants.

Step 1. Define h0 ✓ Lie(Gn) = g[[t]]/tng[[t]] as

tm�1g1�r � Lie(Nm,r
n ).

Observe that h0 is a Lie subalgebra. Indeed,

(3.13.1)

[tm�1g1�r, t
n�m+1g[[t]]] ✓ tng[[t]],

[tm�1g1�r, t
n�mn�r] ✓ tn�1n, and

[tm�1g1�r, t
m�1g1�r] ✓ t2m�2g[[t]] ✓ tng[[t]],

where the last embedding uses the assumption m � n+2
2 .
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In the same way, we see that10 Lie(Nm,r+1
n ) is a normal Lie subalgebra of

h0, and that for ⇠ 2 h0 and ' 2 Lie(Nm,r+1
n ),  ([⇠,']) = 0.

Moreover, h0 is nilpotent, so exponentiates to a group H0 ✓ Gn.11 Com-
bining this with the above, we see that H0 acts on (Nm,r+1

n , )-invariants for
any category with an action of Gn.

Step 2. Let g01�r ✓ g1�r denote Ad2r�1
f (gr). Observe that the pairing

(3.13.2)  ([�,�]) : gr ⌦ g1�r ! k

induces a perfect pairing between gr and g01�r. Indeed, the diagram

gr ⌦ gr
id⌦Ad2r�1

f // gr ⌦ g1�r
id⌦Adf//

 ([�,�])

&&

gr ⌦ g�r

�(�,�)
✏✏
k

commutes,12 and Ad2rf : gr ! g�r is an isomorphism by sl2-representation
theory.

Define h00 ✓ h0 as

tm�1g01�r � Lie(Nm,r
n ).

Again, h00 integrates to a group H 0
0.

Step 3. Finally, recall that the adjoint action of H0 fixes Nm,r+1
n ✓ H0

and preserves its character  to Ga. Let K ✓ Nm,r+1
n be the kernel of  ;

clearly K is normal in H0.
One immediately observes that H := H 0

0/K is a Heisenberg group. The
central Ga is induced by the map

Ga = Nm,r+1
n /K ! H 0

0/K = H.

The vector space defining the Heisenberg group is tn�mgr, and its dual is
embedded as tm�1g01�r = H 0

0/K.

Now observe that our Heisenberg group H acts on CNm,r+1
n , for any C

acted on by Gn, with its central Ga acting through the exponential character.
Now the result follows from Corollary 3.7.2.

3.14. As above, it remains to show the result in the special case that
n = 2m� 1 for some m � 2. We do so below.

10The same is true for r instead of r + 1, but the statement with the character is not.
11The embedding exponentiates because h0 ✓ n+ tg[[t]]/tng[[t]], i.e., the Lie algebra of a

unipotent subgroup of Gn. Here we use that m � 2.
12For the proof, write  (�) as (f,�) and use Ad-invariance of .
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Step 1. We need some auxiliary constructions.
Let ⇠ 2 greg be a k-point (i.e., a regular element of g in the usual sense).

Let z⇠ ✓ g denote the centralizer of ⇠.
Then g/z⇠ carries an alternating form

('1,'2)⇠ := (⇠, ['1,'2]) = ([⇠,'1],'2).

The second equality holds as  is G-invariant and shows that (�,�)⇠ descends
to g/z⇠. Moreover, as  is non-degenerate, we see from the last expression that
(�,�)⇠ is non-degenerate on g/z⇠, hence symplectic.

Step 2. In the above setting, suppose that ⇠ lies in the Kostant slice f+b.
In this case, we claim that the composition n ,! g ⇣ g/z⇠ is injective, and

that n ✓ g/z⇠ is Lagrangian with respect to the symplectic form (�,�)⇠.
Indeed, it is standard that z⇠ \ n = 0 (this is the infinitesimal version of

the freeness of the action of N on f + b), giving the injectivity.
We now claim that n is isotropic for the above form. For '1,'22n, we have

('1,'2)⇠ = (⇠, ['1,'2])

by definition; we claim this inner product is zero. Let g = �sgs be the principal
grading of g, i.e., the grading defined by the coweight ⇢̌ : Gm ! Gad. Then
['1,'2] 2 [n, n] = �s�2gs, while ⇠ 2 f + b ✓ �s��1gs. By invariance of , for
e⇠ 2 gs, e' 2 gr, we have (e⇠, e') = 0 unless r + s = 0, giving the claim.

Finally, 2 dim(n) + dim(z⇠) = dim(n) + dim(n�) + dim(t) = dim(g), so
n ✓ g/z⇠ is in fact Lagrangian.

Step 3. Next, we observe that the above generalizes to the scheme-theoretic
situation in which we allow ⇠ to vary.

More precisely, let ‹W = g ⌦ Ogreg be the constant vector bundle on greg

with fiber g. This bundle carries a subbundle z ✓ fW of regular centralizers;
e.g., the fiber of z at ⇠ 2 g(k) is z⇠.

The quotient

W := ‹W/z

is a vector bundle on greg. Our earlier construction defines a symplectic form
on W. Moreover, after pulling back along the embedding i : f + b ,! greg,
the constant bundle with fiber n defines a Lagrangian subbundle of the vector
bundle i⇤(W).

Step 4. We now record some general results in the above setting.
Let S be a scheme of finite type, and let W be a symplectic vector bundle

on S. We denote the total space of W by the same notation.
Define the Heisenberg group scheme H = H(W) over S as the extension

0 ! Ga,S ! H ! W ! 0,
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where H is defined as a scheme to be W ⇥S Ga,S , and the group law is given
by the formula

(w1,�1) · (w2,�2) = (w1 + w2,�1 + �2 +
1

2
(w1, w2)), (wi,�i) 2 W⇥S Ga,S ,

where the term (w1, w2) denotes the symplectic pairing.

Example 3.14.1. For example, if S = Spec(k) and W = W = V ⇥V _ with
the evident symplectic form, then the above recovers the Heisenberg group
denoted H(V ) earlier.

In the general setting above, let BSH = S/H denote classifying space of
the group scheme H. By a (strong) action of H(W) on a category, we mean
a sheaf of categories on (BSH)dR; by 1-a�neness of SdR and of the morphism
HdR ! SdR ([Gai15, Th. 2.6.3]), this data is equivalent to that of a module
category for D(H) 2 Alg(D(S)–mod) with its natural convolution monoidal
structure. We denote the corresponding 2-category by H–mod.

As when working over a point, we have a subcategoryH–mod
reg ✓ H–mod;

Fourier transform for the central Ga,S ✓ H makes any object of H–mod into a

(D(S ⇥ A1),
!
⌦) module category, and we ask that this action factors through

D(S ⇥ (A1 \ 0)).
Lemma 3.14.2. Suppose N ✓ W is a Lagrangian subbundle. Then the

functor of strong N-invariants defines an equivalence

H–mod
reg '�! D(S ⇥ (A1 \ 0))–mod.

Proof. In the case where W admits a Lagrangian splitting W = N ⇥ N_,
the same argument as over a point applies.

Étale locally, such a splitting exists. Indeed, étale locally, W admits Dar-
boux coordinates (as a torsor for a smooth group scheme is étale locally trivial),
and then by the Bruhat decomposition for the Lagrangian Grassmannian, N
admits a complement after a further Zariski localization.

Therefore, we obtain the result by étale descent for sheaves of categories
on SdR; see [Gai15, Cor. 1.5.4]. ⇤

We also need a mild extension of the above.
Suppose we are given a vector bundle ‹W on S equipped with an epimor-

phism ⇡ : ‹W ⇣ W. We form the group scheme ‹H := H⇥W
‹W, i.e., the pullback

of the extension H of W to ‹W. We can again speak of (strong) ‹H-actions; we
define regularity as for H, i.e., with respect to the central Ga.

Lemma 3.14.3. Suppose N ✓ W is a Lagrangian subbundle, and suppose
we are given a lift N ,! ‹W of this embedding over ⇡. In particular, we obtain
an embedding of the additive group scheme N into ‹H.

Then the functor of (strong) N-invariants is conservative on ‹H–mod
reg.
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Proof. As in the proof of Lemma 3.14.2, we are reduced by Zariski descent
to the case where S is a�ne.

In this case, the embedding N ,! ‹W extends to a map W ! ‹W splitting
the projection (because W/N is a vector bundle). This gives a map H ! ‹H
splitting the canonical projection that is the identity on the centrally embed-
ded Ga,S , and that is compatible with embeddings from N. Therefore, the
result in this case follows from Lemma 3.14.2. ⇤

We remark that ‹W inherits an alternating form from W, and ‹H may be
interpreted as a degenerate version of a Heisenberg group scheme.

Step 5. We can now conclude the argument. We recall that we have as-
sumed n = 2m� 1 for some m � 2.

We have the following extension of Lie algebras, which is between abelian
Lie algebras:

0 // tn�m+1g[[t]]/tng[[t]] // tn�mg[[t]]/tng[[t]] // tmg[[t]]/tm+1g[[t]]

'

✏✏

// 0

tmg[[t]]/tng[[t]] tm�1g[[t]]/tng[[t]] g.

Here we write g to emphasize we are considering the abelian Lie algebra with
vector space g.

As an extension of vector spaces, the above has an obvious splitting (⇠ 2 g)
7! tn�m⇠, so we see that the corresponding Lie algebra is a Heisenberg Lie al-
gebra for the degenerate alternating form

g⌦ g ! tn�1g[[t]]/tng[[t] ✓ tmg[[t]]/tng[[t]]

(⇠1, ⇠2) 7! [tm�1⇠1, t
m�1⇠2].

Passing to algebraic groups, we see that an action of exp(tm�1g[[t]]/tng[[t]])
on C amounts to the following data. First, performing a Fourier transform
along the central exp(tmg[[t]]/tng[[t]]) = tmg[[t]]/tng[[t]] ⌦ Ga, we obtain a
sheaf of categories on

((tmg[[t]]/tng[[t]])_)dR ' (g[[t]]/tn�mg[[t]])dR = (g[[t]]/tm�1g[[t]])dR,

where the ' is constructed as in Section 3.10; we denote the sheaf of cate-
gories corresponding to C by C. The remaining data encoding the full action of
exp(tm�1g[[t]]/tng[[t]]) amounts to an action of a degenerate Heisenberg group
‹H on C. In detail, form a constant vector bundle on (g[[t]]/tm�1g[[t]]) with
fiber g, and equip it with the (degenerate) alternating form whose fiber at
⇠ 2 (g[[t]]/tm�1g[[t]]) is

('1,'2) 2 g⇥ g 7! ([⇠(0),'1],'2),
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where ⇠(0) indicates the image of ⇠ in g obtained by t 7! 0. The corresponding

Heisenberg group scheme ‹H defined by this data acts strongly on C.
In these terms, we calculate CNm�1

n , as global sections of C when restricted
to (f+b[[t]]/tm�1b[[t]])dR; by Section 3.10, the assignment (C 2 Gn–mod

reg) 7!
CNm�1

n , is conservative.
Now observe that the constant vector bundle N on f + b[[t]]/tm�1b[[t]]

with fiber n satisfies the assumptions of Lemma 3.14.3 by Step 3, where the
notation of Step 3 matches that of Lemma 3.14.3 (up to pulling back from
greg or f + b). We obtain CNm

n , by passing to invariants for this Lagrangian
subbundle; by Lemma 3.14.3, that functor is conservative, giving the claim.

4. Convolution for finite Whittaker categories

4.1. In this section, we extend the results from Section 3. These exten-
sions are given in Section 4.7. This material plays technical roles in Sections 10
and 11. The reader may safely skip this section on a first read and refer back
where necessary.

Key roles are played by Theorems 4.2.1 and 4.3.1. The author finds these
results to be of independent interest.13

4.2. Main result. The first main result of this section is the following:

Theorem 4.2.1. For any n � 1 and any C 2 Gn–mod, the convolution
functor

D(Gn)
Nn,� ⌦ CNn, ! C

admits a left adjoint. Here D(Gn)Nn,� is the equivariant category for the
action of Nn on Gn on the right.

Moreover, this left adjoint is isomorphic to the composition

C
coact[�2 dimGn]����������! D(Gn)

Nn
⌦ C

AvNn,� 
⇤ ⌦ idC���������! D(Gn)

Nn,� ⌦ CNn, .

(Because of the diagonal Nn-equivariance and by unipotence of Nn, the functor

AvNn,� 
⇤ ⌦ idC[2 dimNn] may be replaced by AvNn,� 

⇤ ⌦AvNn,� 
⇤ [2 dimNn] or

idD(Gn)⌦AvNn,� 
⇤ [2 dimNn].)

The proof bifurcates into the cases n � 2 and n = 1. In the former case,
the argument is quite similar to the proof of Theorem 3.4.1.

13For instance, using Theorem 4.3.1 and standard arguments (relying on [Ras21a]), one

obtains geometric proofs of [Gin18, Th. 1.6.3] (similarly, Proposition 3.1.2). In particular,

these arguments show that the t-exactness from [Gin18, Th. 1.6.3] applies as well in the

`-adic context in characteristic p (using Artin-Schreier sheaves instead of exponential D-

modules, and needing no special reference to [Ras21a] because “non-holonomic” objects are

meaningless here).
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4.3. Reformulation. First, we begin with a somewhat more convenient
formulation of Theorem 4.2.1.

Theorem 4.3.1. Let n � 1, and let C 2 Gn ⇥ Gn–mod. Then the left
adjoint to14

CNn⇥Nn,( ,� ) Oblv���! C�Nn Av�Gn⇤����! C�Gn

is defined, where � : Gn ! Gn ⇥ Gn is the diagonal embedding. For conve-
nience, we denote this left adjoint by Av ,� ! .

Moreover, the canonical natural transformation

Av ,� ! ! Av ,� ⇤ [2 dimNn] 2 HomDGCatcont(C
�G,CN⇥N,( ,� ))

is an equivalence.

Remark 4.3.2. In the case n = 1 and C = D(G) 2 G ⇥ G–mod, Theo-
rem 4.3.1 is [BBM04, Th. 1.5(2)]. However, even in the n = 1 case, the result
is new, e.g., for C = D(G⌦G).

Remark 4.3.3. In Section 6, we will only need the n > 1 case of The-
orem 4.2.1. We include the proof in the n = 1 case only for the sake of
completeness.

Proof that Theorem 4.3.1 implies Theorem 4.2.1. Suppose C 2 Gn–mod

is given. We form D(Gn)⌦C 2 Gn ⇥Gn–mod. By Theorem 4.3.1 (and chang-
ing  by a sign), the map

�
D(Gn)⌦ C

�Nn⇥Nn,(� , )

= D(Gn)
Nn,� ⌦ CNn, Oblv���! D(Gn)

Nn
⌦ C

Av�Gn⇤����! D(Gn)
Gn
⌦ C

'�! C

admits a left adjoint. By definition, the resulting functor is the convolution
functor, so that convolution functor admits a left adjoint. We similarly obtain
the formula for the left adjoint in Theorem 4.2.1. ⇤

Below we prove Theorem 4.3.1, splitting it up into di↵erent cases.

4.4. Proof of Theorem 4.3.1 for n = 2. We freely use the notation and
observations from Section 3.5.

As in Section 3.5, we have

G2 ⇥G2–mod ' ShvCat/gdR/GdR⇥gdR/GdR
.

14Note that ( ,� ) restricted to the diagonal �Nn is the trivial character.
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Let C 2 G2 ⇥G2–mod, and let C denote the corresponding sheaf of categories
on gdR/GdR ⇥ gdR/GdR. The following commutative diagram provides a dic-
tionary between these two perspectives:

CN2⇥N2,( ,� ) ' �((f + b)dR/NdR ⇥ (�f + b)dR/NdR,C),

C�N2 ' �((b⇥ b+��g)dR/NdR,C),

C�G2 ' �(��gdR/GdR,C).

The averaging functor CN2⇥N2,( ,� ) ! C�G2 corresponds to !-pullback and
then ⇤-pushforward (in the D-module sense, which tautologically adapts to
sheaves of categories on de Rham stacks) along the correspondence

(f + b)/N

%%

��

uu
(f + b)/N ⇥ (�f + b)/N g/G.

The left map �� is a closed embedding because the Kostant slice (f +b)/N is
an a�ne scheme, so !-pullback along it admits a left adjoint. The right map is
smooth, so !-pullback along it equals ⇤-pullback up to shift; in particular, the
relevant ⇤-pushforward admits a left adjoint.

This shows that our ⇤-averaging functor admits a left adjoint in this case.
That the comparison map Av ,� ! ! Av ,� ⇤ [2 dimN2] e↵ects this isomor-
phism follows from the above analysis.

4.5. Proof of Theorem 4.3.1 for n > 2. The argument proceeds as in the
proof of Theorem 3.4.1; we use the notation from that proof in what follows.

First, observe that it is equivalent to show that the left adjoint Av ! =

AvNn, 
! to Av�(Gn)

⇤ : CNn⇥1, ! C�(Gn) is defined, with the natural map

Av ! ! Av ⇤ [2 dimNn] being an isomorphism; indeed, Av�Gn
⇤ factors as

CNn⇥1, Av�Nn⇤����! (CNn⇥1, )�Nn = CNn⇥Nn,( ,� ) Av�Gn⇤����! C�Gn ,

and the first functor admits the fully faithful left adjoint Oblv.
By induction on m, we will show that the appropriate left adjoint

AvN
m
n , 

! : C�Gn ! CNm
n ⇥1, 

is defined and that the natural map

AvN
m
n , 

! ! AvN
m
n , 

⇤ [2 dimNm
n ]

is an equivalence.
As in the proof of Theorem 3.4.1, the base case m = 1 is a consequence of

the n = 2 case proved in Section 3.5. Moreover, as in Section 3.10, essentially
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the same argument applies for m  n
2 . As in Section 3.14, the natural gener-

alization of Lemma 4.5.1 vector bundles with alternating bilinear forms allows
us to deduce the special case where n = 2m � 1; we omit the details, which
are quite similar to Section 3.14.

Now in what follows, we assume m � n+2
2 . By descending induction on r,

we will show that the appropriate left adjoint AvN
m,r
n , 

! : C�Gn ! CNm,r
n ⇥1, 

is defined, and that the natural map AvN
m,r
n , 

! ! AvN
m,r
n , 

⇤ [2 dimNm,r
n ] is an

equivalence. The base case r � 0 amounts to the inductive hypothesis for
m� 1.

To perform the induction, we use the following observation.

Lemma 4.5.1. Let V be a finite-dimensional vector space over k, and let
H = H(V ) be the associated Heisenberg group, as in Section 3.6.

Let C 2 H–mod
reg. Then the functor AvV⇤ : CV _ ! CV is an equivalence.

Moreover, if we (appropriately) denote the inverse functor AvV
_

! , then the
natural map AvV

_
! ! AvV

_
⇤ [2 dimV ] is an equivalence.

Proof. Immediate from the proof of Theorem 3.7.1. ⇤

The relevant Heisenberg group is constructed as follows. Here we use no-
tation parallel to the proof of Theorem 3.4.1, but the meanings are di↵erent
in the present context.

Define h0 as Lie(Nm,r
n ⇥ 1) + �(tm�1g1�r) ✓ Lie(Gn ⇥ Gn). Define h00

similarly, but with g01�r in place of g1�r (in the notation of Section 3.13).
As in the proof of Theorem 3.4.1, these are nilpotent Lie subalgebras

of Lie(Gn ⇥ Gn), and there are associated unipotent subgroups H 0
0 ✓ H0 ✓

Gn ⇥ Gn. Again by the same argument as in loc. cit., (Nm,r+1
n ⇥ 1) ✓ H0 is

normal, and its character is stabilized by the adjoint action of H0. We again
let K ✓ (Nm,r+1

n ⇥ 1) denote the kernel of the character and H := H 0
0/K;

again, H is a Heisenberg group.
By induction, we have a !-averaging functor

AvN
m,r+1
n , 

! = AvN
m,r+1
n

⇤ [2 dimNm,r+1
n ] : C�Gn ! CNm,r+1

n ⇥1, ,

which evidently lifts to invariants for the additive subgroup �(g01�r) ✓ H. By

Lemma 4.5.1, we can !-average (CNm,r+1
n ⇥1, )�(g01�r) ! CNm,r

n ⇥1, , and this co-
incides with ⇤-averaging up to suitable shift. (Moreover, the resulting functor

gives an equivalence (CNm,r+1
n ⇥1, )�(g01�r) '�! CNm,r

n ⇥1, .) This gives the claim.

4.6. Proof of Theorem 4.3.1 for n = 1. Let B� be a Borel opposed to B
with radical N�.

Step 1. We have the functor

 : C�G Oblv���! C�B� Av⇤��! CN�⇥N�·�T .
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This functor admits the left adjoint

⌅ : CN�⇥N�·�T Oblv���! C�B� Av!��! C�G

with Av! = Av⇤[2 dimG/B�] by properness of G/B�.
Recall from [MV88] that the counit map ⌅ ! id splits. Indeed, as in

loc. cit., ⌅ is computed as convolution with the Springer sheaf in D(G)AdG =
D(�G\(G⇥G)/�G), and by an argument in loc. cit. using the decomposition

theorem, the Springer sheaf admits the skyscraper sheaf at 1 2 G
Ad
/ G as a

summand.
In particular, every F 2 C�G is a summand of an object of the form ⌅(F0).

Step 2. Next, we recall a key result of [BBM04]. Theorem 1.1(1) of loc. cit.
implies that we can !-average N�-equivariant objects to be (N, )-equivariant,
and this !-average coincides with the ⇤-averaging after shift by 2 dimN . (Note
that the authors work in the setting of perverse sheaves, but their argument
works in this generality; cf. the proof of [Ras21b, Th. 2.7.1].)

Applying this for G ⇥ G instead, we see that for F 2 CN�⇥N�
(or F 2

CN�⇥N�·�T ), we can form Av( ,� )! F 2 CN⇥N,( ,� ), and the natural map

Av( ,� )! F ! Av( ,� )⇤ F[4 dimN ]

is an isomorphism.

Step 3. Now suppose that F 2 CN�⇥N�·�T . We claim that Av ,� ! F

coincides with Av ,� ! ⌅(F); in particular, the latter term is defined.

By base-change, Av ,� ! ⌅(F) should be computed as follows. We have a
functor

Av! = Av⇤[2 dimG/B�] : D(N\G)
B�

⌦ C ! D(N\G)
G
⌦ C = C�N .

Also, F defines an object eF (i.e., !N\G‹⇥F) in D(N\G)
B�

⌦ C. Finally, the recipe

says that to compute Av ,� ! ⌅(F), we should form Av!(eF) 2 C�N and then
further !-average to CN⇥N,( ,� ).

Observe that eF carries a canonical Bruhat filtration. More precisely, for
w an element of the Weyl group W , let iw denote the locally closed embedding

N\NwB� ,! N\G. Let Fw 2 D(N\NwB�)
B�

⌦ C be the object induced by

F, so eF is filtered with subquotients iw,⇤,dR(Fw).

Let Nw = N \ Adw(B�). Then D(N\NwB�)
B�

⌦ C ' C�Nw
, since

NwB� = N
Nw

⇥ B�, where Nw maps to B� via Adw�1 . The object Fw is then15

15Here g · F is by definition �g ⇤ F, and we are using the diagonal action of G on C.
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w · F, which we note is equivariant for Ad�w(N� ⇥N� ·�T ) ◆ Nw ⇥Nw ◆
�Nw.

Then observe that up to cohomological shift, Av! iw,⇤,dR(Fw) 2 C�N is
obtained by ⇤-averaging w ·F from �Nw to �N , since Av! is !-averaging from
B� to G, and therefore coincides with ⇤-averaging up to shift.

Now for w 6= 1, recall that the character  is non-trivial on N \Adw(N�).
Therefore, !-averaging to (N ⇥N, ( ,� ))-equivariance vanishes on CNw⇥Nw

.
In particular, this !-averaging is defined. (The same applies for ⇤-averaging.)

This vanishing implies

AvN⇥N,( ,� )
! ⌅(F) = AvN⇥N,( ,� )

! F1.

(Here 1 2 W is the unit in the Weyl group.) We note that F1 = OblvF 2 C =

D(NB�)
B�

⌦ C. Since this last !-averaging is defined by [BBM04, Th. 1.1(1)],
we obtain the result.

Step 4. We have now shown Av ,� ! F is defined for F 2 C�G. All that is
left is to check that the natural map

Av ,� ! F ! Av ,� ⇤ F[2 dimN ]

is an isomorphism.
We may assume F = ⌅G for G 2 CN�⇥N�·�T . In this case, the assertion

is a straightforward verification in the above argument.

4.7. Application construction of resolutions. For the remainder of the sec-
tion, we assume n � 2.

For C 2 Gn–mod, let j! : C � Creg : j⇤,dR be as in Section 3.3.
For C = D(Gn), let �1 2 D(Gn) be the skyscraper D-module at the iden-

tity, and let �reg1 := j⇤,dRj!(�1). Note that for any C 2 Gn–mod, the convolution
functor �reg1 ?� is isomorphic to j⇤,dRj! as endofunctors of C.

Lemma 4.7.1. The object �reg1 lies in the full subcategory of D(Gn) gen-
erated by the essential image of the functor

D(Gn)
Nn,� ,+ ⇥D(Gn)

Nn, ,+ ! D(Gn)
Nn,� ⌦D(Gn)

Nn, ! D(Gn)

under finite colimits and direct summands. Here the first factor D(Gn)Nn,� 

has invariants taken on the right, D(Gn)Nn, has invariants on the left, and
both terms are considered with their natural t-structures.

Proof. Suppose C 2 Gn–mod. By Theorem 4.2.1, the convolution functor

D(Gn)
Nn,� ⌦ CNn, ! C
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admits a left adjoint. Moreover, this left adjoint is a morphism in Gn–mod

(where a priori, it is lax). Passing to (Nn, )-invariants, we see that the functor

HNn, ⌦ CNn, ! CNn, 

admits a left adjoint that is a morphism ofHNn, -module categories (forHNn, 

as in Corollary 3.4.2).
By the above remarks and [Gai15, Cor. C.2.3], the morphism

D(Gn)
Nn,� ⌦ CNn, ! D(Gn)

Nn,� ⌦
HNn, 

CNn, 

admits a monadic (discontinuous!) right adjoint. By Corollary 3.4.2, the right-
hand side maps isomorphically onto Creg.

Let conv : D(Gn)Nn,� ⌦ CNn, ! C denote the convolution functor,
let convR denote its (discontinuous!) right adjoint, and let T = conv � convR :
C ! C denote the corresponding monad. Clearly conv factors through Creg, and
convR �j⇤,dR is the right adjoint to the corresponding functor D(Gn)Nn,� ⌦
CNn, ! Creg.

Thus, the monadic conclusion above shows that for any F 2 Creg
j⇤,dR
✓ C,

the geometric realization |T •(F)| 2 C maps isomorphically onto F.
We now specialize to the case C = D(Gn) and F = �reg1 . Note that �reg1 is

holonomic in D(Gn) and therefore compact. Therefore, as

�reg1 = |T •(�reg1 )| = colim
r

|T •(�reg1 )|r

(for |� |r the usual partial geometric realization, i.e., the colimit over �op
r),

we obtain that �reg1 is a direct summand of |T •(�reg1 )|r for some r.
We conclude in noting that T is left t-exact up to shift as conv is both

left and right t-exact up to shift. Any object of D(Gn)Nn,� ⌦D(Gn)Nn, =
D(Gn ⇥Gn)Nn⇥Nn,(� , ) bounded cohomologically from below lies in the full
subcategory generated by the image of D(Gn)Nn,� ,+ ⇥ D(Gn)Nn, ,+, so we
obtain the claim. ⇤

We obtain the following result, which is a sort of e↵ective version of The-
orem 3.4.1.

Corollary 4.7.2. Suppose that n � 2 and C 2 Gn–mod. Then for any
F 2 Creg, F lies in the full subcategory of C generated under finite colimits and
direct summands by the essential image of the convolution functor

D(Gn)
Nn,� ⌦ CNn, ! C.

Moreover, if C has a t-structure compatible with the action of Gn on it, and
if F 2 Creg \ C+, then F lies in the full subcategory of C generated under finite
colimits and direct summands by the essential image of the convolution functor

D(Gn)
Nn,� ,+ ⇥ CNn, ,+ ! D(Gn)

Nn,� ⌦ CNn, ! C.
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Proof. Suppose G1 2 D(Gn)Nn,� ,+ and G2 2 D(Gn)Nn, ,+, with conven-
tions for the actions as in Lemma 4.7.1. Then G2 ?F 2 CNn, , so G1 ?G2 ?F 2 C

lies in the essential image of the convolution functor.
Moreover, in the presence of a t-structure on C as in the second part of

the assertion, G2 ? F 2 CNn, ,+ and G1 ? G2 ? F 2 C+ lie in the essential image
of the functor considered in the second part.

Now we obtain the result by Lemma 4.7.1. ⇤
Corollary 4.7.3. For any C 2 Gn–mod, the functor Av ,� ! : C !

D(Gn)Nn, ⌦ C restricts to a conservative functor on Creg.

Proof. Let F 2 Creg, and assume F is non-zero. We need to show that
Av ,� ! (F) 6= 0.

By Corollary 4.7.2, there exists G 2 D(Gn)Nn, with G ? F 6= 0 in CNn, .
As D(Gn)Nn, is compactly generated, we may assume that G is compact.

Note thatD(Gn)Nn, is canonically dual as a DG category toD(Gn)Nn,� .
Let DG : D(Gn)Nn,� ! Vect denote the functor dual to the compact object
G. (Explicitly, this functor is given as Hom out of the Verdier dual to G.)

Then the convolution G ? F may be calculated by forming Av ,� ⇤ (F) 2
D(Gn)Nn,� ⌦CNn, and then applying DG⌦ idCNn, . In particular, we deduce

that Av ,� ⇤ (F) is non-zero. As Av ,� ⇤ (F) coincides with Av ,� ! (F) up to
shift, we obtain the claim. ⇤

5. Most PGL2-representations are generic

5.1. We now prove the following result.

Theorem 5.1.1. Let G = PGL2, and let C be acted on by G(K) with

level . Then C is generated under the action of G(K) by Whit(C) and CI̊ ,
where I̊ ✓ G(K) is the radical of the Iwahori subgroup. That is, any subcate-

gory of C that is closed under colimits contains Whit(C) and CI̊ and is closed
under the G(K) action is C itself.

Remark 5.1.2. This result is reminiscent of the existence of Whittaker
models for those irreducible smooth representations of GL2 over a locally com-
pact non-Archimedean field with non-trivial restriction to SL2.

However, in Theorem 5.1.1, I̊ cannot16 be replaced by G(K): this can be
seen by applying Bezrukavnikov’s theory [Bez16] to local systems with non-
trivial unipotent monodromy; compare with the ideas of [AG15] in the spher-
ical setting. Note that such local systems are outside the scope of arithmetic
Langlands because they are not semisimple.

16However, I̊ can be strengthened somewhat: one can take invariants with respect to the

Iwahori subgroup of SL2(K), i.e., the canonical degree 2 cover of Iwahori.
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5.2. Review of adolescent Whittaker theory. We prove Theorem 5.1.1 us-
ing the theory of [Ras21b, §2]. For convenience, we review this here.

Let G be an adjoint17 group, and let C 2 G(K)–mod be acted on by G(K)
with some level . We use the notation of Section 3. Let Kn ✓ G(O) ✓ G(K)
denote the n-th congruence subgroup, and observe that Gn acts on CKn .

For n > 0, define Whit
n(C) := (CKn)Nn, . There is a natural functor

Whit
n+1(C) ! Whit

n(C),

F 7! AvKn
⇤ (�⇢̌(t) ? F),

which is denoted ◆!n,n+1 in loc. cit.

Theorem 5.2.1 ([Ras21b, Th. 2.7.1]). The functor ◆!n,n+1 admits a left
adjoint ◆n,n+1,!. This left adjoint is given by convolution with some D-module
on G(K).

Moreover, there is a natural equivalence

colim
n,◆n,n+1,!

Whit
n(C)

'�! Whit(C) 2 DGCatcont.

The structural functors Whit
n(C) ! Whit(C) are left adjoint to the natu-

ral functors AvKn
⇤ �(�n⇢̌(t) ? �) : Whit(C) ! Whit

n(C). In particular, ev-
ery object F 2 Whit(C) is canonically a colimit (in C) of objects Fn with
�⇢̌(tn) ? F 2 Whit

n(C).

5.3. Proof of Theorem 5.1.1. We can now prove the main theorem of this
section. Below, G = PGL2.

Let C0 ✓ C be a G(K)-subcategory containing Whit(C) and CI̊ . We wish
to show that C0 = C.

Recall that C = colimn C
Kn 2 DGCatcont. Therefore, it su�ces to show

that C0 contains CKn for all n � 1. We do this by induction on n.
In the base case n = 1, recall that for any D acted on by18 G, D is the min-

imal cocomplete subcategory of itself closed under the G-action and containing
DN ; indeed, this follows from the main theorem of [BZGO20].19 Applying this

to D = CK1 , we find that CK1 can be generated from CI̊ using the action of
G ✓ G(K).

17This is only for the convenience of using the action of ⇢̌(t) 2 G(K) on C. In fact,

[Ras21b] uses di↵erent indexing conventions than we use here, and which are better adapted

to a general reductive group.
18Finite-dimensional, and here arbitrary reductive is fine.
19Or it follows from usual Beilinson-Bernstein localization theory: by reduction to the case

D = D(G), one finds that DG,w is a colocalization of (DN )T,w. Then use conservativeness of

weak invariants ([Gai15, Th. 2.2.2]).
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Now suppose the claim is true for n; let us show it for n + 1. Note that
n+1 � 2, so we may apply the methods of Section 3 to CKn+1 with its canonical
Gn+1-action. In the notation of loc. cit., we have adjoint functors

j! : CKn+1 � (CKn+1)reg : j⇤,dR.

Note that (CKn+1)reg ✓ C0 by Corollary 3.7.2, as Whit
n+1(C) = (CKn+1)Nn+1, 

✓ C0 by hypothesis on C0 (and Theorem 5.2.1).
Therefore, it su�ces to show that Ker(j!) ✓ C0. Then we observe that

greg = g\0 for g = sl2, so (in the notation of Section 3.3), Ker(j!) = CKn+1 |0 =
CKn as we have the short exact sequence

1 ! g⌦Ga ! Kn+1 ! Kn ! 1.

But CKn ✓ C0 by induction.

Remark 5.3.1. The above is the descent method discussed in the intro-
duction. As this argument plays a key role in the paper, we reiterate the idea:
with notation as above, for C 2 G(K)–mod, Ker(AvKn

⇤ : CKn+1 ! CKn) is the
category (CKn+1)reg, understood in the sense of Section 3.3 for the correspond-
ing Gn+1-action. By Theorems 3.4.1 and 5.2.1, this kernel may therefore be
functorially described in terms of the Whittaker model for C.

One can then try to verify some property of objects of C as follows:

(1) Reduce to showing the property for objects in CKn for some n.
(2) Use the Whittaker model and the above observations to inductively reduce

to the n = 1 case.
(3) Use [BZGO20] to reduce the n = 1 case to a property of objects in CI̊ .

6. Kac-Moody modules with central character

6.1. In this section, we study categories of critical level Kac-Moody rep-
resentations with central character restrictions. We refer back to Section 1.9
for a review of standard notation at critical level.

First, for reductive G and any n � 0, we will introduce a certain category

bgcrit–modordn,naive 2 DGCatcont

with a critical level G(K)-action.
In the above, the subscript ordn indicates that we look at bgcrit-modules

on which the center Z acts through a certain standard quotient Z ⇣ zn, and
in a suitable derived sense. Equivalently, under Feigin-Frenkel, these can be
thought of as representations scheme-theoretically supported on Opn

Ǧ
✓ OpǦ,

where Opn
Ǧ

are opers with singularity of order n; cf. [BD, §3.8] or [FG06, §1].
For n = 0, z0 = z. Here the central character condition is the regularity

assumption from Section 1.10, so we use the notation reg in place of ord0.
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In the spirit of [Ras19], the subscript naive indicates that this is not the
best derived category to consider. For instance, bgcrit–modordn,naive is not com-
pactly generated, and for n = 0, the analogue of Conjecture 1.11.1 fails for it.

Following [FG09a, §23], we introduce a somewhat better renormalized cat-
egory bgcrit–modordn . This category will have a forgetful functor

bgcrit–modordn ! bgcrit–modordn,naive

that is t-exact for suitable t-structures and an equivalence on eventually co-
connective subcategories.

However, this renormalization procedure is somewhat subtle, and there
are many basic questions about bgcrit–modordn that I do not know how to an-
swer. For instance, I cannot generally show that there is a G(K)-action on
bgcrit–modordn compatible with the forgetful functor above. We refer to Sec-
tion 6.10 for further discussion.

The material of this section is technical. Proposition 6.6.1 and Lemma 6.9.3
are the key points. After understanding the statements of these results, the
reader should be equipped to move on to future sections.

Finally, we highlight that the material of this section relies on [Ras19, §11]
and extends the material from loc. cit.

6.2. Notation at critical level. As in [Ras19, §11], we use the following
notation. We refer to [FG06, §1] for background on opers.

First, OpǦ denotes the indscheme of Ǧ-opers on the punctured disc. We

let Opn
Ǧ

✓ OpǦ denote the subscheme of opers with singularities of order  n.

We recall that Opn
Ǧ

is a�ne for every n; we let zn denote the correspond-

ing algebra of functions, so Opn
Ǧ

= Spec(zn). We recall that zn is a polynomial
algebra in infinitely many variables.

We let Z denote the commutative
!
⌦-algebra limn zn 2 ProVect

~, the limit
being taken in ProVect

~; we refer to [Ras19] for the terminology on topological
algebras used here. We remark that OpǦ = Spf(Z).

By Feigin-Frenkel (see [FF92] and [BD, §3]), Z naturally identifies with
U(bgcrit), the twisted topological enveloping algebra of bgcrit.

We let Vcrit,n := indbgcrittng[[t]](k) 2 bgcrit–mod
~.

6.3. Naive categories. We begin with some preliminary notation.
First, if A 2 CoAlg(DGCatcont) and M (resp. N) is a right (resp. left)

comodule for A, we let

M
A
⌦N 2 DGCatcont

denote the cotensor product of these comodules. By definition, this means
we regard A as an algebra in the opposite category DGCat

op
cont and form the

usual tensor product there. This cotensor product may be calculated as a
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totalization in DGCatcont:

M
A
⌦N = Tot

⇣
M⌦N ◆ M⌦A⌦N !!! · · ·

⌘
.

Next, for S a reasonable indscheme in the sense of [Ras19, §6], recall that
we have the compactly generated DG category IndCoh

⇤(S) 2 DGCatcont. This
construction is covariantly functorial in S. In particular, if S is a reasonable
indscheme that is strict,20 then IndCoh

⇤(S) is canonically a cocommutative
coalgebra in DGCatcont.

6.4. Note that OpǦ is a strict, reasonable indscheme. By Theorem 11.18.1
of [Ras19], bgcrit–mod2G(K)–modcrit is canonically an IndCoh

⇤(OpǦ)-comodule
(in G(K)–modcrit).

For n � 0, define

bgcrit–modordn,naive := IndCoh
⇤(Opn

Ǧ
)
IndCoh⇤(OpǦ)

⌦ bgcrit–mod 2 G(K)–modcrit.

Let in denote the embedding Opn
Ǧ

! OpǦ. We abuse notation in letting
in,⇤ : bgcrit–modordn,naive ! bgcrit–mod denote the functor

iIndCohn,⇤
IndCoh⇤(OpǦ)

⌦ idbgcrit–mod .

By [Ras19, Lemma 6.17.1–2], this functor admits a continuous right adjoint

i!n
IndCoh⇤(OpǦ)

⌦ idbgcrit–mod, which we also denote i!n. Note that in,⇤ and i!n are
(by construction) morphisms of IndCoh⇤(OpǦ)-module categories.

Similarly, for m � n, we have a natural adjunction

in,m,⇤ : bgcrit–modordn,naive ! bgcrit–modordm,naive : i
!
n,m

with in,⇤ = im,⇤ � in,m,⇤. Note that in,m,⇤ actually admits a left adjoint
i⇤n,m as well as a right adjoint; this follows because the closed embedding

in,m : Opn
Ǧ

,! Opm
Ǧ

is a finitely presented regular embedding.

Remark 6.4.1. For a reasonable indscheme S, we let IndCoh!(S) denote the
dual DG category to IndCoh

⇤(S); this construction is contravariantly functorial
in S. For strict S, IndCoh!(S) is therefore a symmetric monoidal category.

In these terms, we can reformulate the above definition (to use monoidal
categories instead of “comonoidal” categories) as

bgcrit–modordn,naive = HomIndCoh!(OpǦ)–mod(IndCoh
!(Opn

Ǧ
),bgcrit–mod).

20See loc. cit. for the definition. The relevance here is that this condition implies, e.g.,

that the natural functor IndCoh⇤(S)⌦ IndCoh⇤(S) ! IndCoh⇤(S ⇥ S) is an equivalence.
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6.5. We record what symmetries the above construction provides.
As indicated above, there is an evident critical level G(K)-action on

bgcrit–modordn,naive.

Moreover, bgcrit–modordn,naive is an IndCoh
⇤(Opn

Ǧ
)-comodule category, or

equivalently, an IndCoh
!(Opn

Ǧ
)-module category. Because Opn

Ǧ
is the spec-

trum of a polynomial algebra (on infinitely many generators), the natural
symmetric monoidal functor QCoh(Opn

Ǧ
) ! IndCoh

!(Opn
Ǧ

) is an equiva-
lence. Therefore, we may as well regard bgcrit–modordn,naive as equipped with a

QCoh(Opn
Ǧ

)-action commuting with the critical level G(K)-action.
In our notation, we regard G(K) as acting on the left on bgcrit–modordn,naive

by convolution � ?�, and we regard QCoh(Opn
Ǧ

) as acting on the right by an
action functor

bgcrit–modordn,naive ⌦ QCoh(Opn
Ǧ

)

� ⌦
Op

n
Ǧ

�

�����! bgcrit–modordn,naive.

6.6. The following result summarizes the basic properties of the above
construction.

Proposition 6.6.1.

(1) The functor in,⇤ : bgcrit–modordn,naive ! bgcrit–mod is comonadic, and in
particular, conservative.

(2) bgcrit–modordn,naive admits a unique t-structure for which in,⇤ is t-exact.
(3) The natural map

colim
m�n

i!n,min,m,⇤ ! i!nin,⇤

is an isomorphism.
(4) The natural functor

colim
n,in,m,⇤

bgcrit–modordn,naive ! bgcrit–mod 2 DGCatcont

is an equivalence.

Proof. Let A1 := colimr Ar, i.e., the ind-finite type indscheme version
of infinite-dimensional a�ne space. Using standard choices of coordinates on
OpǦ, one find an isomorphism OpǦ = Opn

Ǧ
⇥A1 so that the diagram

Opn
Ǧ

in

✏✏

id⇥0

&&

OpǦ
' // Opn

Ǧ
⇥A1

commutes.
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We then have21

HomIndCoh!(A1)–mod(Vect,bgcrit–mod) = Vect

IndCoh⇤(A1)
⌦ bgcrit–mod

'�! bgcrit–modordn,naive 2 G(K)–modcrit.

Take A := IndCoh
!(A1) as a monoidal category. Note that the monoidal

product

�
!
⌦� : A⌦A

'�! IndCoh
!(A1 ⇥ A1)

�!

�! IndCoh
!(A1) = A

admits a left adjoint �IndCoh
⇤ that is a morphism of A-bimodule categories (by

the projection formula). It is easy to see in this setting that for any A-module
category M, the action functor

act : A⌦M ! M

admits a continuous left adjoint actL that is a morphism of A-module cate-
gories, where the left-hand side is regarded as an A-module via the action on
the first factor. It follows that for any pair of A-module categories M,N, the
cosimplicial category

HomDGCatcont(M,N) ◆ HomDGCatcont(A⌦M,N) !!! · · ·
satisfies the comonadic Beck-Chevalley conditions.22 Applying this for M =
Vect and N = bgcrit–mod, we obtain (1).

Next, we show (4). We calculate

colim
n,in,m,⇤

bgcrit–modordn,naive

= lim
n,i!n,m

bgcrit–modordn,naive

= lim
n

⇣
IndCoh

⇤(Opn
Ǧ

)
IndCoh⇤(OpǦ)

⌦ bgcrit–mod

⌘

= lim
n

Tot
⇣
IndCoh

⇤(Opn
Ǧ

)⌦ IndCoh
⇤(OpǦ)

⌦• ⌦ bgcrit–mod

⌘

= Tot lim
n

⇣
IndCoh

⇤(Opn
Ǧ

)⌦ IndCoh
⇤(OpǦ)

⌦• ⌦ bgcrit–mod

⌘

?
= Tot

⇣�
lim
n

IndCoh
⇤(Opn

Ǧ
)
�
⌦ IndCoh

⇤(OpǦ)
⌦• ⌦ bgcrit–mod

�

= Tot
⇣
IndCoh

⇤(OpǦ)
�
⌦ IndCoh

⇤(OpǦ)
⌦• ⌦ bgcrit–mod

⌘

= IndCoh
⇤(OpǦ)

IndCoh⇤(OpǦ)
⌦ bgcrit–mod = bgcrit–mod

21Of course, IndCoh!(A1) and IndCoh⇤(A1) coincide with usual IndCoh as A1 is locally

of finite type. We include the notation to clarify whether this category is being viewed as an

algebra or coalgebra in DGCatcont.
22See [Lur12, §4.7.6] or [Gai15, §C] for background on the Beck-Chevalley theory; our

terminology here is taken from the latter source. We especially note [Gai15, Lemma C.2.2],

which is essentially dual to the present assertion.
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as desired; here the only non-trivial manipulations are the first, which expresses
that a colimit in DGCatcont under left adjoints is canonically isomorphic to the
limit under right adjoints, and the one labeled ?, where the limit past tensor
products is justified because we are tensoring with compactly generated, hence
dualizable, DG categories.

We deduce (3) immediately from (4) and [Gai12, Lemma 1.3.6].
It remains to show (2). Given (1), a standard argument reduces us to

checking that in,⇤i!n is left t-exact.
By the above Beck-Chevalley analysis, in,⇤i!n may be calculated by apply-

ing the composition

bgcrit–mod
coact���! IndCoh

⇤(OpǦ)⌦ bgcrit–mod
⇡IndCoh
⇤ ⌦id������! IndCoh

⇤(A1)⌦ bgcrit–mod

and then applying the right adjoint to this composition; here ⇡ : OpǦ ! A1

denotes the projection. It su�ces to show the composition is t-exact (for the
tensor product t-structure on the right-hand side); we will show each of the
functors appearing here is t-exact. The functor coact is t-exact by [Ras19,
Lemma 11.13.1]. Then ⇡IndCoh⇤ is t-exact because ⇡ is a�ne, and similarly for
⇡IndCoh⇤ ⌦ id by [Ras21b, Lemma B.6.2]. ⇤

6.7. We continue our study of bgcrit–modordn,naive.

Lemma 6.7.1. Suppose that F 2 bgcrit–mod
~. Then the adjunction map

H0(in,⇤i!n(F)) ! F 2 bgcrit–mod
~ is a monomorphism with image the maximal

submodule of F on which Z acts through zn.

Proof. The forgetful functor bgcrit–mod ! Vect admits a unique lift

bgcrit–mod
Oblvenh

�����! IndCoh
⇤(OpǦ) = Z–modren

Oblv���! Vect

with Oblvenh a morphism of IndCoh⇤(OpǦ)-comodule categories. By [Ras19,
Lemma 11.13.1], Oblvenh is t-exact, and on the hearts of the t-structure cor-
responds to restriction of modules along the homomorphism Z ,! U(bgcrit).

As Oblvenh is a map of IndCoh⇤(OpǦ)-comodule categories, it intertwines
in,⇤i!n with the similar functor on IndCoh

⇤(OpǦ). It is clear that H0 of that
functor extracts the maximal submodule on which Z acts through zn, giving
the claim. ⇤

Corollary 6.7.2. The map bgcrit–mod
~
ordn,naive

! bgcrit–mod
~ is fully

faithful. Its essential image is the full subcategory of the target consisting of
modules on which Z acts through zn.

Proof. Immediate from Lemma 6.7.1 and Proposition 6.6.1(1). ⇤

6.8. We use the notation

P := lim
m

Vcrit,m 2 Pro(bgcrit–mod
~) ✓ Pro(bgcrit).
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Here the limit is over the natural structure maps Vcrit,m+1 ! Vcrit,m, and we
emphasize that the limit occurs in the pro-category (or rather, in either pro-
category). We remark that the pro-object P corepresents the forgetful functor
Oblv : bgcrit–mod ! Vect; this is clear of its restriction to bgcrit–mod

+, and then
the claim follows generally as the objects Vcrit,m are compact in bgcrit–mod.

Clearly Oblv(P) 2 Pro(Vect~) is U(bgcrit); its
!
⌦-algebra structure may be seen

using [Ras19, Prop. 3.7.1].
For m � 0, let Vordn,m 2 bgcrit–mod

~
ordn,naive

denote the minimal quotient

of Vcrit,m lying in bgcrit–mod
~
ordn,naive

✓ bgcrit–mod
~, i.e., Vordn,m = Vcrit,m/In.

Define

Pordn := lim
m

Vordn,m 2 Pro(bgcrit–mod
~
ordn,naive

) ✓ Pro(bgcrit–modordn,naive)

to be the corresponding pro-object; we again emphasize that the displayed
limit occurs in the pro-category.

There is an evident canonical morphism

⇡ : P ! in,⇤Pordn 2 Pro(bgcrit–mod
~) ✓ Pro(bgcrit).

Lemma 6.8.1. As an object of Pro(bgcrit–mod
+
ordn,naive

), Pordn corepresents
the composition

bgcrit–mod
+
ordn,naive

in,⇤��! bgcrit–mod
+ Oblv���! Vect.

More precisely, for F 2 bgcrit–mod
+
ordn,naive

, the composite map

HomPro(bgcrit–modordn,naive)(Pordn ,F) ! HomPro(bgcrit–mod)(in,⇤Pordn , in,⇤F)
��⇡��!

HomPro(bgcrit–mod)(P, in,⇤F) ' Oblv(in,⇤F)

is an isomorphism.

Proof.

Step 1. First, suppose G 2 bgcrit–mod
�0
ordn,naive

has the property that in,⇤G
is compact in bgcrit–mod. Then we claim that for any r � 0, G is compact as
an object of the category bgcrit–mod

��r
ordn,naive

.
Indeed, this is standard from Proposition 6.6.1(1)–(2); see the proof of

[Ras19, Lemma 6.11.2].

Step 2. Suppose G as above, and let F 2 bgcrit–mod
+
ordn,naive

. Then we
claim that the natural map
(6.8.1)

colim
m�n

Hombgcrit–modordm,naive
(in,m,⇤G, in,m,⇤F) ! Hombgcrit–mod(in,⇤G, in,⇤F)

is an isomorphism.



292 SAM RASKIN

Indeed, we have

colim
m�n

Hombgcrit–modordm,naive
(in,m,⇤G, in,m,⇤F)

= colim
m�n

Hombgcrit–modordn,naive
(G, i!n,min,m,⇤F)

Step 1
= Hombgcrit–modordn,naive

(G, colim
m�n

i!n,min,m,⇤F)

Prop. 6.6.1 (3)
= Hombgcrit–modordn,naive

(G, i!nin,⇤F) = Hombgcrit–mod(in,⇤G, in,⇤F).

We remark that if F is in cohomological degrees � �r, then each i!n,min,m,⇤(F)
is as well (because the functors in,m,⇤ are t-exact); this justifies the reference
to Step 1. We also note that the composite identification here is easily seen to
be given by the map considered above.

Step 3. Next, recall the functors i⇤n,m from Section 6.4. We claim that
i⇤n,m(Vcrit,m) = Vordn,m. Clearly the right-hand side is the top (= degree 0)
cohomology of the left-hand side, so this amounts to arguing that the lower
cohomology groups vanish.

As in the argument for Lemma 6.7.1, we have a commutative diagram23

bgcrit–modordm,naive

✏✏

i⇤n,m // bgcrit–modordn,naive

✏✏

IndCoh
⇤(Opm

Ǧ
)

i⇤n,m // IndCoh⇤(Opn
Ǧ

).

The vertical arrows are the natural restriction maps. They arise from Oblvenh

(from the proof of Lemma 6.7.1) and the evident identification

IndCoh
⇤(Opn

Ǧ
) = IndCoh

⇤(Opn
Ǧ

)
IndCoh⇤(OpǦ)

⌦ IndCoh
⇤(OpǦ),

and similarly for m. These vertical arrows are t-exact and conservative on
bounded below subcategories as this is true for Oblvenh.

23To be explicit, we recall that by the definition from [Ras19, §6], IndCoh⇤(Opn
Ǧ

) is

Ind(Coh(Opn
Ǧ

)). As Opn
Ǧ

is the spectrum of a (infinitely generated) polynomial algebra,

Coh(Opn
Ǧ

) = Perf(Opn
Ǧ

). Therefore, IndCoh⇤ in the bottom row may be replaced by the

more familiar QCoh. The functor i
⇤
n,m in that bottom row is then the standard pullback

functor.
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The functor i⇤n,m : bgcrit–modordm,naive ! bgcrit–modordn,naive is easily24 seen
to be left t-exact up to shift. Therefore, it su�ces to see that the underlying
object of IndCoh⇤(Opn

Ǧ
) defined by i⇤n,m(Vcrit,m) lies in cohomological degree 0.

This follows from the commutativity of the above diagram and the fact
that Vcrit,m 2 IndCoh

⇤(Opm
Ǧ

)~ defines a flat sheaf by [FG06, Lemma 7.2.2]
(which is based on [Mus01]).

Step 4. We now deduce the claim.
In what follows, we consider Vcrit,m as an object of bgcrit–mod

~
ordm,naive; we

let im,⇤Vcrit,m denote the corresponding object of bgcrit–mod
~.

For F 2 bgcrit–mod
+
ordn,naive

, we calculate

HomPro(bgcrit–modordn,naive)(Pordn ,F)

= colim
m�n

Hombgcrit–modordn,naive
(Vordn,m,F)

Step 3
= colim

m�n
Hombgcrit–modordn,naive

(i⇤n,mVcrit,m,F)

= colim
m�n

Hombgcrit–modordm,naive
(Vcrit,m, in,m,⇤F)

= colim
m�n

colim
r�m

Hombgcrit–modordr,naive
(im,r,⇤Vcrit,m, in,r,⇤F)

Step 2
= colim

m�n
Hombgcrit–mod(im,⇤Vcrit,m, in,⇤F) = HomPro(bgcrit–mod)(P, in,⇤F)

as desired. ⇤

In what follows, we let Oblv : bgcrit–modordn,naive ! Vect denote the for-
getful functor considered above, i.e., Oblv in,⇤.

Corollary 6.8.2. The (non-cocomplete) DG category bgcrit–mod
+
ordn,naive

is the bounded below derived category of its heart.

Proof. Note that U(bgcrit)ordn := Oblv(Pordn) 2 Pro(Vect~) by construc-
tion. Therefore, the result follows from [Ras19, Prop. 3.7.1]. ⇤

It follows that bgcrit–mod
+
ordn,naive

identifies with the similar category con-
sidered in the works of Frenkel-Gaitsgory, e.g., in [FG06, §23].

24For one, it is (non-canonically) isomorphic to i
!
n,m up to shift. Alternatively, in,m,⇤i

⇤
n,m

is calculated as the composition

bgcrit–modordm,naive
coact���! IndCoh⇤(Opm

Ǧ
)⌦ bgcrit–modordm,naive

in,m,⇤i
⇤
n,m⌦id

����������!

IndCoh⇤(Opm
Ǧ

)⌦ bgcrit–modordm,naive

�IndCoh(Opm
Ǧ

,�)⌦id
�������������! bgcrit–modordm,naive

giving the claim by considering the standard finite Koszul filtration on the endofunctor

in,m,⇤i
⇤
n,m of IndCoh⇤(Opm

Ǧ
).
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6.9. Renormalization. We now introduce a renormalized version of the
above categories following [FG09a, §23].

Define bgcrit–mod
c
ordn ✓ bgcrit–modordn,naive as the full subcategory of ob-

jects F such that in,⇤(F) is compact in bgcrit–mod. By Proposition 6.6.1 and
the similar fact for bgcrit–mod, bgcrit–mod

c
ordn ✓ bgcrit–mod

+
ordn,naive

.

Example 6.9.1. For m � n, Koszul resolutions for the finitely presented
regular embedding Opn

Ǧ
,! Opm

Ǧ
imply that the functors i!n,m and i⇤n,m map

bgcrit–mod
c
ordm to bgcrit–mod

c
ordn .

Example 6.9.2. The objects Vordn,m lie in bgcrit–mod
c
ordn . Indeed, for 0 

m  n, in,⇤Vordn,m = Vcrit,m, clearly giving the claim in this case. In gen-
eral, for m � n, we have i⇤n,mVcrit,m = Vordn,m as in Step 3 from the proof of
Lemma 6.8.1, clearly giving the claim.

Define bgcrit–modordn = Ind(bgcrit–mod
c
ordn), and define a t-structure on

bgcrit–modordn by taking bgcrit–mod
0
ordn

to be generated under colimits by ob-

jects in bgcrit–mod
c
ordn \ bgcrit–mod

0
ordn,naive

.
We have a canonical functor ⇢ : bgcrit–modordn ! bgcrit–modordn,naive; this

is the unique continuous functor with ⇢|bgcrit–modcordn
the canonical embedding.

Lemma 6.9.3 (Cf. [FG09a, §23.2.2]). The functor ⇢ is t-exact and induces
an equivalence on eventually coconnective subcategories.

Proof.

Step 1. We collect some observations we will need later.
Note that for any m, Vordn,m 2 bgcrit–mod

c
ordn ✓ bgcrit–modordn lies in the

heart of the t-structure; indeed, it is connective by definition, and it is clear
that any object in bgcrit–mod

c
ordn that is coconnective in bgcrit–modordn,naive is

also coconnective in bgcrit–modordn .
In addition, the canonical map Vordn,m+1 ! Vordn,m is an epimorphism

in bgcrit–mod
~
ordn

. Indeed, it su�ces to show that the (homotopy) kernel of this
map is in cohomological degree 0, and the above logic applies just as well to
see this.

Step 2. Define Oblv : bgcrit–modordn ! Vect as Oblv �⇢. We claim that
Oblv |bgcrit–mod+ordn

is conservative and t-exact.

Suppose F 2 bgcrit–mod
�0
ordn

with Oblv(F) = 0; it su�ces to show that

H0(F) = 0. To this end, it su�ces to show that any morphism ⌘ : G ! F is
nullhomotopic for a connective object G 2 bgcrit–mod

c
ordn .

Note that the top cohomology group H0(G) is finitely generated as a
module over U(bgcrit), say by v1, . . . , vN 2 Hr(G). By Lemma 6.8.1, for each



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 295

i = 1, . . . , N , we can find mi � 0 and a map ↵i : Vordn,mi ! G such that
H0(↵i) maps the vacuum vector in Vordn,mi to vi.

Let ↵ : �N
i=1Vordn,mi ! G be the induced map; ↵ is surjective on H0 by

design, so Coker(↵) is in cohomological degrees  �1. It follows that G ! F

is nullhomotopic if and only if its composition with ↵ is. Therefore, it su�ces
to show that any map Vordn,m ! F is nullhomotopic.

The map

H0�Hombgcrit–modordn
(Vordn,m,F)

�

= Hombgcrit–mod~ordn
(Vordn,m, H0(F)) ! Hombgcrit–mod~ordn

(Vordn,m+1, H
0(F))

= H0�Hombgcrit–modordn
(Vordn,m+1,F)

�
2 Vect

~

is injective by Step 1. But we have

colim
m

Hombgcrit–modordn
(Vordn,m,F) = Oblv(F) = 0

by Lemma 6.8.1 (and compactness of Vordn,m), giving the claim.

Step 3. We now show t-exactness of ⇢. Right t-exactness follows immedi-
ately from the construction, so we show left t-exactness.

Let m � n be fixed. It what follows, we regard Vcrit,m as an object of
bgcrit–mod

c
ordm ✓ bgcrit–modordm,naive.

As r � m varies, we have natural maps

· · · ! i⇤n,r+1im,r+1,⇤(Vcrit,m) ! i⇤n,rim,r,⇤Vcrit,m

! · · · ! i⇤n,mVcrit,m 2 bgcrit–mod
c
ordn .

We claim that for F 2 bgcrit–modordn , the natural map
(6.9.1)
colim

r
Hombgcrit–modordn

(i⇤n,rim,r,⇤Vcrit,m,F) ! Hombgcrit–mod(Vcrit,m, in,⇤⇢(F))

is an isomorphism. Indeed, both sides commute with colimits in F by com-
pactness, so we are reduced to the case where F 2 bgcrit–mod

c
ordn . For such F,

the claim follows from (6.8.1).
Now suppose that F 2 bgcrit–mod

�0
ordn

. As each object i⇤n,rim,r,⇤Vcrit,m is
connective in bgcrit–modordn , (6.9.1) implies that Hombgcrit–mod(Vcrit,m, in,⇤⇢(F))

2 Vect
�0. As the objects Vcrit,m generate bgcrit–mod under colimits, this implies

that in,⇤⇢(F) lies in bgcrit–mod
�0, i.e., in,⇤⇢ is left t-exact.

Finally, as in,⇤ is t-exact and conservative by Proposition 6.6.1, ⇢ itself
must be left t-exact.

Step 4. Finally, we show that ⇢ induces an equivalence on eventually co-
connective subcategories.
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By t-exactness of ⇢, we have a commutative diagram

bgcrit–mod
+
ordn

⇢
//

&&

bgcrit–mod
+
ordn,naive

ww
Vect

+

with the diagonal arrows being the forgetful functors. Each of these functors
is conservative.

Moreover, the forgetful functor bgcrit–modordn ! Vect is corepresented by
the pro-object

lim
m

Vordn,m 2 Pro(bgcrit–mod
c
ordn) ✓ Pro(bgcrit–modordn).

Indeed, this follows immediately from Lemma 6.8.1 and compactness of Vordn,m

2 bgcrit–modordn .
Applying Lemma 6.8.1 again, we see that

⇢ : bgcrit–mod
+
ordn

! bgcrit–mod
+
ordn,naive

intertwines the pro-left adjoints to the forgetful functors in the above diagram.

Therefore, it induces an equivalence on the corresponding
!
⌦-algebras, so we

obtain the claim from [Ras19, Prop. 3.7.1]. ⇤

Remark 6.9.4. Unlike bgcrit–mod, we are not aware of an explicit descrip-
tion of compact generators of bgcrit–modordn . For instance, does bgcrit–modordn

admit compact generators that admit weakly G(O)-equivariant structures?
Does it admit compact generators lying in bgcrit–mod

~
ordn

? (For G = PGL2

and n = 0, the answer to both questions is yes by Theorem 7.14.1.)
This general issue is closely related to the technical problems highlighted

in Section 6.10.

6.10. Equivariant renormalization. We now highlight a technical problem:
there is not an evident critical level G(K)-action on bgcrit–modordn . (Similarly,
we cannot construct a weak G(K)-action in the sense of [Ras19].)

Conjecture 6.10.1. For any F 2 D⇤
crit(G(K)) compact, define a functor

�F : bgcrit–modordn ! bgcrit–modordn

whose restriction to bgcrit–mod
c
ordn is calculated as the composition

bgcrit–mod
c
ordn ✓ bgcrit–mod

+
ordn,naive

F?���! bgcrit–mod
+
ordn,naive

' bgcrit–mod
+
ordn

✓ bgcrit–modordn .

Then we conjecture that �F is left t-exact up to shift.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 297

Remark 6.10.1. Assuming Conjecture 6.10.1 if K is prounipotent, say,
then we obtain bgcrit–mod

K
ordn ✓ bgcrit–modordn as the essential image of ��K .

Without assuming the conjecture, we are not otherwise aware of a good defi-
nition of bgcrit–mod

K
ordn .

Remark 6.10.2. In the language of [Ras19, §4.4], Conjecture 6.10.1 asserts
that the functor F ?� : bgcrit–modordn,naive!bgcrit–modordn,naive renormalizes.

Remark 6.10.3. Suppose Conjecture 6.10.1 holds for a reductive group G
and an integer n � 0. Then there exists a unique critical level G(K)-action on
bgcrit–modordn such that

• The functor ⇢ upgrades to a morphism of categories with critical level G(K)-
actions.

• The (critical level) G(K)-action on bgcrit–modordn is strongly compatible with
the t-structure in the sense of [Ras19, §10.12].

Indeed, this is essentially immediate from [Ras19, Lemma 8.16.4].

Remark 6.10.4. The technical issue associated with the above conjecture
appears implicitly in [FG09a].

In Section 4.1.4 of loc. cit., Frenkel and Gaitsgory suggest a definition of
bgcrit–mod

K
ordn (adapted to their particular setting). But their definition is not

clearly a good one; for example, it is not clear that their category carries the
expected Hecke symmetries. This issue is discussed somewhat in the remark
in that same section. Related to that discussion, Main Theorem 2 from loc.
cit. in e↵ect verifies the above conjecture in a special case.

Combined with our proof of Theorem 6.10.5, it may be fair to expect
verifying Conjecture 6.10.1 in a given instance requires substantial input from
local geometric Langlands.

As an immediate consequence of our main theorem, Theorem 7.14.1, we
may deduce the following:

Theorem 6.10.5. Suppose G=PGL2 and n=0. Then Conjecture 6.10.1
holds.

Conversely, if we a priori knew Theorem 6.10.5, then the proof that the
functor in Theorem 7.14.1 is an equivalence could be substantially simplified:
the proof of Lemma 7.17.1 would be applicable and would directly give the
essential surjectivity of �Hecke (cf. the outline from Section 1.17).

7. The localization theorem

7.1. This section begins our study of the Frenkel-Gaitsgory conjecture.
First, we recall the constructions underlying the Frenkel-Gaitsgory local-

ization conjecture, following [FG06]. We include more attention to derived
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issues than loc. cit., so our discussion distinguishes between naive and renor-
malized categories of regular Kac-Moody modules.

We then formulate our main result, Theorem 7.14.1.
Next, we recall the main results of Frenkel-Gaitsgory. We include some

details on how to deduce the corresponding results in the DG framework from
the exact results that they showed.

Finally, in Section 7.17, we formulate three lemmas from which we de-
duce Theorem 7.14.1. The proofs of these lemmas occupy the remainder of the
paper.

7.2. Regular Kac-Moody representations. In the setting of Section 6, for
n = 0, we prefer the notation reg to ord0. So we let

bgcrit–modreg,naive := bgcrit–modord0,naive,

bgcrit–modreg := bgcrit–modord0 .

We highlight that the subscript reg is being used in a completely di↵erent
way than the superscript reg was in Section 3. In the present Kac-Moody con-
text, this terminology rather follows [FG04], where regular central characters
mean that the center Z acts through its quotient z. Previously, the superscript
reg was used in reference to regular elements of the Lie algebra g. Again, we
emphasize that there is no relationship between these two usages. (We believe
that this point should not cause confusion in navigating the paper.)

Finally, we let Vcrit :=V0,crit denote the critical level vacuum representation.

7.3. Notation regarding geometric Satake. Let Hsph := Dcrit(GrG)G(O)

denote the critical level spherical Hecke category, considered as a monoidal
category via convolution. Recall that for any C 2 G(K)–modcrit, there is a
canonical action of Hsph on CG(O) coming from the identifications Hsph =
EndG(K)–modcrit(Dcrit(GrG)) and CG(O) = HomG(K)–modcrit(Dcrit(GrG),C).

In particular, Hsph acts canonically on Dcrit(GrG) = Dcrit(G(K))G(O).
Next, recall that there is a canonical monoidal functor Rep(Ǧ) ! Hsph.

This functor is characterized by the fact that it is t-exact and the monoidal
equivalence on abelian categories defined by [MV07]. As in [GL18], this func-
tor is actually more naturally defined when the critical twisting is included,
unlike in [MV07].

We refer to the above functor as the geometric Satake functor and denote
it by V 7! SV .

In what follows, whenever we consider Dcrit(GrG) as a Rep(Ǧ)-module
category, it is via this construction.

7.4. The canonical torsor. Let POpreg
Ǧ

denote the canonical Ǧ-bundle on

Opreg
Ǧ

; by definition, it corresponds to the forgetful map Opreg
Ǧ

! LocSysǦ(D)

= BǦ.
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We obtain a symmetric monoidal functor Rep(Ǧ) ! QCoh(Opreg
Ǧ

). We de-

note this functor V 7! VPOp
reg
Ǧ

. Note that for V 2 Rep(Ǧ)~ finite-dimensional,

VPOp
reg
Ǧ

is a vector bundle on Opreg
Ǧ

.

Throughout this section, whenever we consider QCoh(Opreg
Ǧ

) as a Rep(Ǧ)-
module category, it is via this construction.

7.5. Hecke D-modules. Define DHecke,z
crit (GrG) as

DHecke,z
crit (GrG) := Dcrit(GrG) ⌦

Rep(Ǧ)
QCoh(Opreg

Ǧ
).

By construction,DHecke,z
crit (GrG) is canonically aDcrit(G(K))⌦QCoh(Opreg

Ǧ
)-

module category.

Remark 7.5.1. The above may be considered as a variant of the category

DHecke
crit (GrG) := Dcrit(GrG) ⌦

Rep(Ǧ)
Vect

that is suitably parametrized by regular opers. The category DHecke
crit (GrG)

is the category of Hecke eigenobjects in Dcrit(GrG); its Iwahori equivariant
subcategory was studied in detail in [ABB+05].

7.6. There is a natural functor

indHecke,z : Dcrit(GrG) ! DHecke,z
crit (GrG)

defined as the composition

Dcrit(GrG) = Dcrit(GrG) ⌦
Rep(Ǧ)

Rep(Ǧ) ! Dcrit(GrG) ⌦
Rep(Ǧ)

QCoh(Opreg
Ǧ

)

= DHecke,z
crit (GrG).

Because Opreg
Ǧ

! BǦ is a�ne, Rep(Ǧ) ! QCoh(Opreg
Ǧ

) admits a contin-

uous, conservative, right adjoint that is a morphism of Rep(Ǧ)-module cate-
gories. By functoriality, the same is true of indHecke,z; we denote this right
adjoint by OblvHecke,z.

In particular, we deduce that DHecke,z
crit (GrG) is compactly generated with

compact generators of the form indHecke,z(F) for F 2 Dcrit(GrG) compact.

7.7. The DG category DHecke,z
crit (GrG) carries a canonical t-structure that

plays an important role.
We construct the t-structure by setting connective objects to be generated

under colimits by objects of the form indHecke,z(F) for F 2 Dcrit(GrG)0.
By construction, the composition OblvHecke,z indHecke,z : Dcrit(GrG) !

Dcrit(GrG) is given by convolution with a spherical D-module in the heart
of the t-structure, namely, the object corresponding under Satake to functions
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on POpreg
Ǧ

(considered as an object of Rep(Ǧ) in the obvious way). Therefore,

by [Gai01] (or [FG06, §8.4]), this monad is t-exact on Dcrit(GrG).
One deduces by standard methods that OblvHecke,z and indHecke,z are

t-exact. In particular, because OblvHecke,z is t-exact, conservative, and G(K)-

equivariant, we find that the t-structure on DHecke,z
crit (GrG) is strongly compat-

ible with the (critical level) G(K)-action in the sense of [Ras19, §10.12].

7.8. In Sections 7.9–7.12, following Frenkel-Gaitsgory, we will construct
canonical global sections functors

DHecke,z
crit (GrG)

�Hecke

✏✏

�Hecke,naive

((
bgcrit–modreg

⇢
// bgcrit–modreg,naive

that are our central objects of study. Here we recall that ⇢ is the canonical
renormalization functor from Section 6.9.

7.9. The Hecke property of the vacuum representation. The construction
of global sections functors as above is based on the following crucial construc-
tion of Beilinson-Drinfeld.

Theorem 7.9.1 (Beilinson-Drinfeld). For

Vcrit 2 bgcrit–mod
~
reg ✓ bgcrit–modreg,naive 2 G(K)–modcrit,

the vacuum representation and V 2 Rep(Ǧ)~ finite-dimensional, the convolu-

tion SV ? Vcrit 2 bgcrit–mod
G(O)
reg,naive lies in the heart of the t-structure.

Moreover, there is a canonical isomorphism

�V : SV ? Vcrit
'�! Vcrit ⌦

Opreg
Ǧ

VPOp
reg
Ǧ

2 bgcrit–mod
G(O),~
reg .

For V,W 2 Rep(Ǧ)~ finite-dimensional, the diagram

SW ? SV ? Vcrit SW ? Vcrit ⌦
Opreg

Ǧ

VPOp
reg
Ǧ

Vcrit ⌦
Opreg

Ǧ

WPOp
reg
Ǧ

⌦
Opreg

Ǧ

VPOp
reg
Ǧ

SW⌦V ? Vcrit Vcrit ⌦
Opreg

Ǧ

(W ⌦ V )POp
reg
Ǧ

(SW ?�)(�V )

'

(� ⌦
Op

reg
Ǧ

VP
Op

reg
Ǧ

)(�W )

�W⌦V

commutes in bgcrit–mod
G(O),~
reg ✓ bgcrit–mod

G(O)
reg,naive. Here the left isomorphism

comes from geometric Satake.
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We refer to [BD, §§5.5–6] and [Ras12] for proofs and further discussion.

7.10. Let us reformulate the Hecke property more categorically.
For any C 2 G(K)–modcrit, Rep(Ǧ) acts on CG(O) via the monoidal func-

tor Rep(Ǧ) ! Hsph y CG(O), where the first functor is the geometric Satake
functor.

For C = bgcrit–modreg,naive, we have an aditional action of Rep(Ǧ) on
bgcrit–modreg,naive via the (symmetric) monoidal functor Rep(Ǧ) ! QCoh(Opreg

Ǧ
)

defined by POpreg
Ǧ
. By construction, this action commutes with the G(K)-

action.
Therefore, bgcrit–mod

G(O)
reg,naive is canonically a Rep(Ǧ)-bimodule category.

Corollary 7.10.1. There is a unique morphism

� : Rep(Ǧ) ! bgcrit–mod
G(O)
reg,naive 2 Rep(Ǧ)–bimod

of Rep(Ǧ)-bimodule categories sending the trivial representation k 2 Rep(Ǧ)
to Vcrit and such that for any finite-dimensional representation V 2 Rep(Ǧ)~,
the isomorphism

SV ? Vcrit = �(V ⌦ k) = �(k ⌦ V ) = Vcrit ⌦
Opreg

Ǧ

VPOp
reg
Ǧ

is the isomorphism �V of Theorem 7.9.1.

Proof. Suppose H1 ✓ H2 are a�ne algebraic groups with H2/H1 a�ne,
and let C 2 Rep(H2)–mod. Then the functor

HomRep(H2)–mod(Rep(H1),C) ! C

of evaluation on the trivial representation is monadic, with the corresponding
monad on C being given by Fun(H2/H1) 2 ComAlg(Rep(H2)).25

We apply the above to H1 = Ǧ diagonally embedded into H2 = Ǧ ⇥ Ǧ.
We then have Fun((Ǧ⇥ Ǧ)/Ǧ) = Fun(Ǧ) 2 Rep(Ǧ⇥ Ǧ)~, where we consider
Ǧ as equipped with its left and right Ǧ-actions. We are trying to show that

Vcrit 2 bgcrit–mod
G(O)
reg,naive admits a unique Fun(Ǧ)-module structure satisfying

the stated compatibility. In particular, this structure corresponds to certain

maps in the abelian category bgcrit–mod
G(O),~
reg,naive, so there are no homotopical

issues.
From here, the claim is standard. For example, for V a finite-dimensional

representation of Ǧ, we have a map µV : V ⌦ V _ ! Fun(Ǧ) of Ǧ-bimodules.
The composition of µV with the action map for the Fun(Ǧ)-module structure

25This construction extends for H2/H1 quasi-a�ne as well as long as Fun(H2/H1) is

replaced by the (derived) global sections �(H2/H1,OH2/H1).
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on Vcrit is given by the map

SV ? Vcrit ⌦
Opreg

Ǧ

V _
POp

reg
Ǧ

' SV ? SV _ ? Vcrit = SV⌦V _ ? Vcrit ! Vcrit,

where the first isomorphism is induced by �V _ and the second isomorphism
and the last map is induced by the pairing V ⌦ V _ ! k 2 Rep(Ǧ) (for k
the trivial representation). It is straightforward from Theorem 7.9.1 that this
defines an action of Fun(Ǧ) as desired. ⇤

7.11. Construction of the naive functor. For any C 2 G(K)–modcrit, we
have a canonical identification

HomG(K)–modcrit(Dcrit(GrG),C)
'�! CG(O)

given by evaluation on �1 2 Dcrit(GrG)G(O). (Explicitly, the functor Dcrit(GrG)
! C corresponding to an object F 2 CG(O) is given by convolution with F.)

For C = bgcrit–modreg,naive and Vcrit 2 bgcrit–modreg,naive, we denote the cor-
responding functor by �IndCoh(GrG,�) : Dcrit(GrG) ! bgcrit–modreg,naive. Note
that the composition with the forgetful functor bgcrit–modreg,naive ! bgcrit–mod

is the usual (IndCoh-)global sections functor by Appendix A.
Now observe that Dcrit(GrG) and bgcrit–modreg,naive are each D⇤

crit(G(K))⌦
Rep(Ǧ)-module categories. We claim that Corollary 7.10.1 naturally upgrades
�IndCoh(GrG,�) to a morphism of D⇤

crit(G(K))⌦ Rep(Ǧ)-module categories.
Indeed, suppose more generally that C is a D⇤

crit(G(K))⌦Rep(Ǧ)-module
category. We then have

HomD⇤
crit(G(K))⌦Rep(Ǧ)–mod(Dcrit(GrG),C)

= HomRep(Ǧ)–bimod(Rep(Ǧ),HomG(K)–modcrit(Dcrit(GrG),C))

= HomRep(Ǧ)–bimod(Rep(Ǧ),CG(O)).

Therefore, Corollary 7.10.1 has the claimed e↵ect.
Because the action of Rep(Ǧ) on bgcrit–modreg,naive comes from an action

of QCoh(Opreg
Ǧ

), we obtain an induced functor

DHecke,z
crit (GrG) = Dcrit(GrG) ⌦

Rep(Ǧ)
QCoh(Opreg

Ǧ
) ! bgcrit–modreg,naive

2 D⇤
crit(G(K))⌦ QCoh(Opreg

Ǧ
)–mod.

In what follows, we denote26 this functor by

�Hecke,naive = �Hecke,naive(GrG,�).

26A comment on the notation: We use Hecke, z rather than Hecke in D
Hecke,z
crit (GrG) to

distinguish this category from D
Hecke
crit (GrG). But the global sections functor is defined only

on D
Hecke,z
crit (GrG), not on D

Hecke
crit (GrG), so we simplify the notation here by omitting the

subscript z.
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7.12. Construction of the renormalized functor. Next, we construct a func-
tor �Hecke valued in bgcrit–modreg.

First, we need the following observation:

Lemma 7.12.1. Suppose H is a Tate group indscheme (see Section 2.14)
and K ✓ H is a polarization (i.e., a compact open subgroup with H/K ind-
proper). Let F 2 D(H/K) be compact. Then for any C 2 H–mod, the functor

F ?� : CK ! C

admits a continuous right adjoint.

Proof. Let DF 2 D(H/K) denote the Verdier dual to F, and let invDF 2
D(K\H) denote the pullback along the inversion map. As in Proposition
22.10.1 of [FG06], the functor

invDF ?� : C ! CK

canonically identifies with the desired right adjoint.
Alternatively, we may write convolution as a composition

D(H)K ⌦ CK ! D(H)
K
⌦ C ! C.

Each of these functors admits a continuous right adjoint (the former because K
is a group scheme, and the latter because H/K is ind-proper). This formally
implies the claim. ⇤

By Lemma 7.12.1, the composition

Dcrit(GrG)
�IndCoh����! bgcrit–modreg,naive ! bgcrit–mod

preserves compact objects; indeed, it is given as convolution with Vcrit 2
bgcrit–mod

G(O), which is compact.
Therefore, the functor �IndCoh(GrG,�) maps Dcrit(GrG)c to bgcrit–mod

c
reg.

From Section 7.6, we deduce that �Hecke,naive maps compact objects in
DHecke,z

crit (GrG) into bgcrit–mod
c
reg.

We now define

�Hecke = �Hecke(GrG,�) : DHecke,z
crit ! bgcrit–modreg

as the ind-extension of

�Hecke,naive|
DHecke,z

crit (GrG)c
: DHecke,z

crit (GrG))
c ! bgcrit–mod

c
reg.

7.13. By abuse of notation, we let �IndCoh(GrG,�) denote the induced
functor �Hecke � indHecke,z, so we have a commutative diagram

Dcrit(GrG)
�IndCoh(GrG,�)

//

�IndCoh(GrG,�) **

bgcrit–modreg

⇢

✏✏
bgcrit–modreg,naive.
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As we are using �IndCoh(GrG,�) in multiple ways, we will always take care to
indicate the target category. We also remark that abusing notation in this set-
ting is more mild than �Hecke vs. �Hecke,naive because of Corollary 7.15.2 below.

7.14. Main result. We can now state the main theorem of this paper in
its precise form.

Theorem 7.14.1. For G of semisimple rank 1, the functor �Hecke is a
t-exact equivalence.

In the remainder of this section, we review some general results of Frenkel-
Gaitsgory on �Hecke and then formulate some intermediate results in this case
from which we will deduce Theorem 7.14.1. The proofs of those intermediate
results occupy the remainder of the paper.

7.15. Review of some results of Frenkel-Gaitsgory. The following exact-
ness result was essentially shown in [FG04].

Theorem 7.15.1 ([FG04, Th. 1.2]). The functor

�IndCoh(GrG,�) = �Hecke,naive � indHecke,z : Dcrit(GrG) ! bgcrit–modreg,naive

is t-exact.

Since there is something to do to properly deduce this from the Frenkel-
Gaitsgory result, we include a few comments.

BecauseDcrit(GrG) is compactly generated and compact objects are closed
under truncations, it su�ces to show that compact objects in Dcrit(GrG) lying
in the heart of the t-structure map into bgcrit–mod

~
reg,naive.

By Proposition 6.6.1, we are reduced to verifying this result after compos-
ing with the functor bgcrit–modreg,naive ! bgcrit–mod.

By Lemma 9.2.2, for F 2 Dcrit(GrG) compact, �IndCoh(GrG,F) = F?Vcrit 2
bgcrit–mod is eventually coconnective. Therefore, it su�ces to show that when
considered as an object of Vect, �IndCoh(GrG,F) lies in Vect

~.
Now the result follows from [FG04, Th. 1.2] and the comparison results

of Appendix A.27

Note. Formally, [FG04, Th. 1.2] only asserts that the non-derived global
sections functor is exact on Dcrit(GrG)~, not exactly that higher cohomology
groups vanish. As the argument is missing in the literature, we indicate the
details here.

For any formally smooth @0-indscheme S of ind-finite type, we claim that
ifH0�IndCoh(S,�) : D(S)~ ! Vect

~ is exact, then �IndCoh(S,�) : D(S) ! Vect

is t-exact, and similarly for twisted D-modules.

27In fact, that �IndCoh(GrG,�) as a functor Dcrit(GrG)
~ ! Vect coincides with the stan-

dard global sections functor is one of the easier results in Appendix A; it is shown directly

in Section A.9.
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Indeed, we are reduced to showing that the restriction to D(S)+ is t-exact.
This category is the bounded below derived category of its heart by [Ras21b,
Lemma 5.4.3] and the corresponding assertion for finite type schemes. Thus, it
su�ces to show that �IndCoh(S,�) is the derived functor of H0�IndCoh(S,�), or
equivalently, that �IndCoh(S,�) a priori maps injective objects in D(S)~ into
Vect

~.
Formal smoothness of S implies that ind : IndCoh(S) ! D(S) is t-exact,

so its t-exact right adjoint Oblv : D(S) ! IndCoh(S) preserves injective ob-
jects. Therefore, we are reduced to showing that �IndCoh(S,�) maps injective
objects in IndCoh(S)~ into Vect

~.
As S is a classical indscheme by [GR14b], an argument along the lines of

the proof of [Ras21b, Lemma 5.4.3] reduces us to the corresponding assertion
for finite type classical schemes. As IndCoh(S)~ = QCoh(S)~ with �IndCoh

corresponding to �, the assertion here is standard.

Corollary 7.15.2. The functor

�IndCoh(GrG,�) : Dcrit(GrG) ! bgcrit–modreg

is t-exact.

Proof. For F 2 Dcrit(GrG)~ compact, and hence compact in Dcrit(GrG),
�IndCoh(GrG,F) is compact in bgcrit–modreg by construction, and so it lies in
bgcrit–mod

+
reg. Therefore, by Theorem 7.15.1, we deduce that �IndCoh(GrG,F) 2

bgcrit–mod
~
reg.

Because Dcrit(GrG)~ is compactly generated and our t-structures are com-
patible with filtered colimits, we obtain the claim. ⇤

Corollary 7.15.3. The functor �Hecke : DHecke,z
crit (GrG) ! bgcrit–modreg

is right t-exact.

Proof. By construction, DHecke,z
crit (GrG)0 is generated under colimits by

objects of the form indHecke,z(F) for F 2 Dcrit(GrG)0. Then it follows that
⇢�Hecke(indHecke,z(F)) = �IndCoh(GrG,F) lies in degrees  0 by Theorem 7.15.1,
so �Hecke(indHecke,z(F)) lies in degrees  0 and we obtain the claim. ⇤

7.16. Fully faithfulness. Next, we review the following key property of
�Hecke, which was essentially shown in [FG06, Th. 8.7.1].

Theorem 7.16.1 (Modified Frenkel-Gaitsgory). For any reductive G, the
functor �Hecke is fully faithful.

This result can be deduced from [FG06, Th. 8.7.1]. As the argument in
loc. cit. is quite involved, we present a simpler one in Appendix B based on
the ideas of the current paper (especially the use of Whittaker categories).



306 SAM RASKIN

7.17. Intermediate results. We now formulate three results whose proofs
we defer to subsequent sections.

For each of the following results, we assume G has semisimple rank 1; we
do not do not know how to prove any of these lemmas for GL3.

Lemma 7.17.1. Let bgcrit–̂modreg,naive ✓ bgcrit–modreg,naive be the full sub-
category generated by bgcrit–mod

+
reg,naive under colimits.28

Then the essential image of �Hecke,naive lies in bgcrit–̂modreg,naive and gen-
erates it under colimits.

Lemma 7.17.2. The functor �Hecke,naive is t-exact.

Lemma 7.17.3. For every K ✓ G(O) a compact open subgroup, the com-
position

DHecke,z
crit (GrG)

K ! DHecke,z
crit (GrG)

�Hecke

����! bgcrit–modreg

is left t-exact up to shift.

Assuming these results, let us show Theorem 7.14.1.

Proof of Theorem 7.14.1.

Step 1. First, we show that �Hecke is t-exact.
By Theorem 7.15.1 and the definition of the t-structure on DHecke,z

crit (GrG),
�Hecke is right t-exact.

To see left t-exactness, it su�ces to see that for any compact open sub-
group K ✓ G(O), �Hecke|

DHecke,z
crit (GrG)K

is left t-exact. Indeed, for any F 2
DHecke,z

crit (GrG), F = colimK OblvAvK⇤ (F), and OblvAvK⇤ is left t-exact by the
discussion of Section 7.7.

By Lemma 7.17.3, �Hecke|
DHecke,z

crit (GrG)K
is left t-exact up to shift. Be-

cause ⇢ : bgcrit–mod
+
reg ! bgcrit–mod

+
reg,naive is a t-exact equivalence, it su�ces

to see that ⇢ � �Hecke|
DHecke,z

crit (GrG)K
is left t-exact. But this is immediate from

Lemma 7.17.2.

Step 2. By Theorem 7.16.1, it su�ces to show that �Hecke is essentially
surjective.

First, the composition

(7.17.1) DHecke,z
crit (GrG)

�Hecke,naive

�������! bgcrit–̂modreg,naive
⌧�0

��! bgcrit–mod
�0
reg,naive

28This is a technical distinction. It may perfectly well be the case that bgcrit–̂modreg,naive
coincides with bgcrit–modreg,naive. But we do not see an argument and do not need to consider

this question for the application to Theorem 7.14.1.
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generates the target under colimits. Indeed, the first functor generates un-
der colimits by Lemma 7.17.1, and the second functor is essentially surjective

because bgcrit–̂modreg,naive contains bgcrit–mod
�0
reg,naive by definition.

By the previous step, if we identify bgcrit–mod
�0
reg,naive with bgcrit–mod

�0
reg

via ⇢, then (7.17.1) factors through DHecke,z
crit (GrG)�0, where it coincides with

�Hecke|
DHecke,z

crit (GrG)�0 .

It therefore follows that the essential image of �Hecke contains bgcrit–mod
�0
reg.

Because bgcrit–modreg is compactly generated with compact objects lying in
bgcrit–mod

+
reg, we deduce that the essential image of �Hecke is all of bgcrit–modreg.

⇤

8. Equivariant categories

8.1. In this section, we collect some results about �Hecke,naive and �Hecke

in the presence of I̊ and Whittaker invariants. These results will be used to
establish the results formulated in Section 7.17.

We emphasize that we have nothing new to say about I̊-invariants; our
proofs here consist only of references to [FG09c].

Remark 8.1.1. All of the results of this section are valid for a general
reductive group G.

8.2. Iwahori equivariance. The main result in this setting is the following.

Theorem 8.2.1 (Frenkel-Gaitsgory [FG09c, Th. 1.7]). The functor

�Hecke,naive : DHecke,z
crit (GrG)

I̊ ! bgcrit–mod
I̊,+
reg,naive

induces a t-exact equivalence

DHecke,z
crit (GrG)

I̊,+ '�! bgcrit–mod
I̊,+
reg,naive

on eventually coconnective I̊-equivariant categories.

Proof. Because our setting is slightly di↵erent from that of [FG09c], es-
pecially as regards derived categories and derived functors, we indicate the
deduction from the results of loc. cit.

First, we show t-exactness. By [FG09c, Lemma 3.6 and Prop. 3.18],

every object F 2 DHecke,z
crit (GrG)I̊,~ can be written as a filtered colimit F =

colimi Fi for Fi 2 DHecke,z
crit (GrG)I̊,~ admitting a finite filtration with subquo-

tients of the form indHecke,z(Fi,j)⌦Opreg
Ǧ
Hi,j for Fi,j 2 DHecke,z

crit (GrG)I̊,~ and

Hi,j 2 QCoh(Op~
Ǧ
).

We then have

�Hecke,naive(indHecke,z(Fi,j) ⌦
Opreg

Ǧ

Hi,j) = �
IndCoh(GrG,Fi,j) ⌦

Opreg
Ǧ

Hi,j .
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By [FG09c, Prop. 3.17], �IndCoh(GrG,Fi,j) is flat as an z-module, so the dis-
played tensor product is concentrated in cohomological degree 0. This shows
that �Hecke,naive(F) is in degree 0 as well, providing the t-exactness.

Next, observe that fully faithfulness follows from Theorem 7.16.1.
Finally, we show essential surjectivity. By [FG09c, Th. 1.7, Lemma 3.6,

Props. 3.17, 3.18], any G 2 bgcrit–mod
I̊,~
reg,naive can be written as a filtered col-

imit G = colimi Gi with Gi 2 bgcrit–mod
I̊,~
reg,naive and such that Gi admits a finite

filtration with associated graded terms of the form

�IndCoh(GrG, eG) ⌦
Opreg

Ǧ

H

for eG 2 Dcrit(GrG)I̊,~ and H 2 QCoh(Opreg
Ǧ

)~ (and where we are using the no-
tation of Section 6.5), and where the displayed (derived) tensor product is con-
centrated in cohomological degree 0. Clearly each associated graded term lies
in the essential image of �Hecke,naive, so G does as well. This implies the essential

image of �Hecke,naive contains bgcrit–mod
I̊,~
reg,naive, so all of bgcrit–mod

I̊,+
reg,naive. ⇤

We include one other result in a similar spirit.

Proposition 8.2.2. The functor

�Hecke|
DHecke,z

crit (GrG)I̊
: DHecke,z

crit (GrG)
I̊ ! bgcrit–modreg

is t-exact.

Proof. By Corollary 7.15.3, the functor is right t-exact. Therefore, we need
to show left t-exactness. By Theorem 8.2.1, it su�ces to show that objects in

DHecke,z
crit (GrG)I̊,~ map to eventually coconnective objects.

Suppose F 2 DHecke,z
crit (GrG)I̊,~. As in the proof of Theorem 8.2.1, the re-

sults of [FG09c] imply that F can be written as a filtered colimit F = colimi Fi

for Fi 2 DHecke,z
crit (GrG)I̊,~ admitting a finite filtration with subquotients of

the form indHecke,z(Fi,j)⌦Opreg
Ǧ
Hi,j for Fi,j and Hi,j as in the proof of Theo-

rem 8.2.1.
Therefore, we are reduced to showing that

(8.2.1) �IndCoh(GrG,F) ⌦
Opreg

Ǧ

H 2 bgcrit–modreg

is eventually coconnective for any F 2 Dcrit(GrG)I̊,~ and H 2 QCoh(Opreg
Ǧ

)~.

If F is compact, then �IndCoh(GrG,F) 2 bgcrit–modreg is compact by con-
struction of the functor. In particular, this object is eventually coconnec-
tive. By Theorem 8.2.1, we deduce �IndCoh(GrG,F) 2 bgcrit–mod

~
reg in this case.

As the t-structures are compatible with filtered colimits, and every object of

Dcrit(GrG)I̊,~ is a filtered colimit of objects in Dcrit(GrG)I̊,~ that are compact
in Dcrit(GrG), we obtain the claim for general F and H being the structure
sheaf.
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Now if H is coherent,29 then because Opreg
Ǧ

= Spec(z) with z an (infinite)
polynomial algebra, H is perfect. Therefore, the object (8.2.1) is eventually
coconnective for general F and coherent H. Applying Theorem 8.2.1 again,
we deduce that (8.2.1) lies in the heart of the t-structure under these same
assumptions. Finally, the general case follows as any H 2 QCoh(Opreg

Ǧ
)~ is a

filtered colimit of coherent objects. ⇤

8.3. Whittaker equivariance. We now study the behavior of �Hecke,naive

under the Whittaker functor, following [Ras21b] and [Ras19].
Our main result is the following.

Theorem 8.3.1.

(1) The functor �Hecke,naive induces an equivalence

Whit(DHecke,z
crit (GrG))

'�! Whit(bgcrit–modreg,naive).

(2) For n > 0, the functor

�Hecke,naive : Whit
n(DHecke,z

crit (GrG)) ! Whit
n(bgcrit–modreg,naive)

is a t-exact equivalence for the natural30 t-structures on both sides.

We will verify the above result in what follows after recalling some results
on Whittaker categories in this setting.

8.4. We recall the following result, which appears as [Ras19, Th. 11.19.1]
and is an enhancement of the a�ne Skryabin theorem [Ras21b, Th. 5.1.1].

Theorem 8.4.1. There is a canonical equivalence

Whit(bgcrit–mod) ' IndCoh
⇤(OpǦ)

of IndCoh⇤(OpǦ)-comodule categories. Under this equivalence, the full subcate-
gory (cf. Section 5.2) Whit

m(bgcrit–mod) ✓ Whit(bgcrit–mod) identifies with the
full subcategory IndCoh

⇤
Opm

Ǧ

(OpǦ) ✓ IndCoh
⇤(OpǦ) generated under colimits

by pushforwards from QCoh(OpǦ) ' IndCoh
⇤(Opm

Ǧ
) ! IndCoh

⇤(OpǦ).

Corollary 8.4.2. For any n, there is a canonical equivalence

Whit(bgcrit–modordn,naive) ' QCoh(Opm
Ǧ

)

of QCoh(Opn
Ǧ

)-module categories. Moreover, for any positive m with m � n,
the embedding

Whit
m(bgcrit–modordn,naive) ! Whit(bgcrit–modordn,naive)

is an equivalence.

29That is, H corresponds to a finitely presented z-module.
30We recall that Whitn is defined as equivariance against a character for a compact open

subgroup. For our two categories, the t-structures are compatible with the G(K)-action, so

there are natural t-structures on such equivariant categories.
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Proof. By [Ras21b, Th. 2.1.1] (or its refinement Theorem 2.7.1, which

we recalled above as Theorem 5.2.1), the functor G(K)–modcrit
C7!Whit(C)�������!

DGCatcont is a morphism of DGCatcont-module categories that commutes with
limits and colimits.

Therefore, from the definitions, we have

Whit(bgcrit–modordn,naive)

= IndCoh
⇤(Opn

Ǧ
)
IndCoh⇤(OpǦ)

⌦ Whit(bgcrit–mod)

Theorem 8.4.1' IndCoh
⇤(Opn

Ǧ
)
IndCoh⇤(OpǦ)

⌦ IndCoh
⇤(OpǦ)

' IndCoh
⇤(Opn

Ǧ
) ' QCoh(Opn

Ǧ
).

The stabilization of adolescent Whittaker models is proved similarly. For
m positive, we have

Whit
m(bgcrit–modordn,naive) = IndCoh

⇤(Opn
Ǧ

)
IndCoh⇤(OpǦ)

⌦ Whit
m(bgcrit–mod)

Theorem 8.4.1' IndCoh
⇤(Opn

Ǧ
)
IndCoh⇤(OpǦ)

⌦ IndCoh
⇤
Opm

Ǧ

(OpǦ)

✓ IndCoh
⇤(Opn

Ǧ
)
IndCoh⇤(OpǦ)

⌦ IndCoh
⇤(OpǦ)

' IndCoh
⇤(Opn

Ǧ
) ' QCoh(Opn

Ǧ
).

The functor at the end of the second line is indeed fully faithful because
IndCoh

⇤
Opm

Ǧ

(OpǦ) ! IndCoh
⇤(OpǦ) is fully faithful (by definition) and ad-

mits a right adjoint that is a morphism of IndCoh⇤(OpǦ)-module categories.
Clearly this functor is essentially surjective for m � n. ⇤

8.5. Before proceeding, we recall that for C 2 G(K)–modcrit, the functor

Whit(C)
Oblv���! C

Av⇤��! CG(O)

admits a left adjoint, which we denote Av ! in what follows. That this left
adjoint is defined is the special case n = 0, m = 1 of [Ras21b, Th. 2.7.1].

8.6. We now recall the following result.

Theorem 8.6.1 (Frenkel-Gaitsgory-Vilonen, [FGV01]). The composition

Rep(Ǧ)
V 7!SV����! Hsph = Dcrit(GrG)

G(O) Av !���! Whit(Dcrit(GrG))

is an equivalence.

Remark 8.6.2. Formally, the setting of [FGV01] is somewhat di↵erent. We
refer to [Gai20] for the necessary comparison results.
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8.7. We now can prove the main result on Whittaker categories.

Proof of Theorem 8.3.1.We begin with (1). We first construct some equiv-
alence, and then we show that �Hecke,naive induces the corresponding functor.

By Corollary 8.4.2 (for n = 0), we have

Whit(bgcrit–modreg,naive) ' QCoh(Opreg
Ǧ

).

Moreover, as Whittaker invariants coincide with coinvariants by [Ras21b,
Th. 2.1.1], we can calculate

Whit(DHecke,z
crit (GrG)) = Whit(Dcrit(GrG)) ⌦

Rep(Ǧ)
QCoh(Opreg

Ǧ
).

By Theorem 8.6.1, Whit(Dcrit(GrG)) identifies canonically with Rep(Ǧ) as a
Rep(Ǧ)-module category. Therefore, we obtain

Whit(DHecke,z
crit (GrG)) = Rep(Ǧ) ⌦

Rep(Ǧ)
QCoh(Opreg

Ǧ
) = QCoh(Opreg

Ǧ
).

We now show that �Hecke,naive induces the evident equivalence on Whit-
taker categories. By construction, �Hecke,naive is a morphism of QCoh(Opreg

Ǧ
)-

module categories. Therefore, it su�ces to show that it sends the structure
sheaf OOpreg

Ǧ
to itself.

This follows from the following diagram, which is commutative by func-
toriality:

Dcrit(GrG)G(O)

Av !
✏✏

�Hecke,naive
// bgcrit–mod

G(O)
reg,naive

Av !
✏✏ ))

Whit(Dcrit(GrG))
�Hecke,naive

// Whit(bgcrit–modreg,naive) QCoh(Opreg
Ǧ

).

By construction of the equivalence of Theorem 8.4.1, the diagonal arrow in the
diagram above is the Drinfeld-Sokolov functor  . Therefore, if we consider the
� D-module �1 2 Dcrit(GrG)G(O) supported at the origin 1 2 GrG, apply Hecke
induction and the above diagram, we find

�Hecke,naive(Av ! indHecke,z �1) =  (�
IndCoh(GrG, �1)) =  (Vcrit).

Clearly Av ! indHecke,z �1 2 Whit(DHecke,z
crit (GrG)) corresponds to the structure

sheaf OOpreg
Ǧ

2 QCoh(Opreg
Ǧ

). Moreover,  (Vcrit) corresponds to the structure

sheaf OOpreg
Ǧ

by design.

We now verify (2). For n > 0, we have natural functors

(8.7.1)
Whit

n(DHecke,z
crit (GrG)) ! Whit(DHecke,z

crit (GrG)),

Whit
n(bgcrit–modreg,naive) ! Whit(bgcrit–modreg,naive)
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as in Theorem 5.2.1, and that we claim are equivalences. In the second case,
this assertion is part of Corollary 8.4.2. In the first case, this follows from the
fact that

Whit
1(Dcrit(GrG)) ! Whit(Dcrit(GrG))

is an equivalence; see [Ras14, Th. 7.3.1] for a stronger assertion.
It now follows by functoriality and (1) that �Hecke,naive is an equivalence

on Whit
n for all n > 0.

Finally, we need to show that �Hecke,naive is t-exact on Whit
n for all n.

In [Ras21b], the functors

◆n,n+1,![�2(⇢̌, ⇢)] : Whit
n(bgcrit–mod) ! Whit

n+1(bgcrit–mod)

were shown to be t-exact. Moreover, by the proof of the a�ne Skryabin
theorem Theorem 8.4.1, the resulting t-structure on Whit(bgcrit–mod) identi-
fies with the canonical one on IndCoh

⇤(OpǦ). We deduce parallel results for
bgcrit–modreg,naive in place of bgcrit–mod in the setting of Corollary 8.4.2.

Similarly, the functors

◆n,n+1,![�2(⇢̌, ⇢)] : Whit
n(Dcrit(GrG)) ! Whit

n+1(Dcrit(GrG))

are t-exact. The resulting t-structure on Whit(Dcrit(GrG)) identifies with the
canonical one on Rep(Ǧ) under Theorem 8.6.1; indeed, the geometric Satake

functor Rep(Ǧ) ! Hsph is t-exact by construction, and Av ! is t-exact by
[Ras21b, Rem. B.7.1]. As OblvHecke,z is t-exact, we obtain similar results for

DHecke,z
crit (GrG).

Finally, we deduce t-exactness. Indeed, we have equivalences

Whit
n(DHecke,z

crit (GrG)) ' QCoh(Opreg
Ǧ

) ' Whit
n(bgcrit–modreg,naive)

with the t-structures on the left and right-hand sides corresponding to the
canonical t-structure on QCoh(Opreg

Ǧ
), and the composition being given by

�Hecke,naive. ⇤

8.8. Exactness of renormalized global sections. We will also need the fol-
lowing parallel to Proposition 8.2.2.

Proposition 8.8.1.

(1) For any n � 1, the functor

�Hecke|
Whitn(DHecke,z

crit (GrG))
: Whit

n(DHecke,z
crit (GrG)) ! bgcrit–modreg

is t-exact.
(2) More generally, suppose G 2 Dcrit(G(K)) has the following properties :

• For m � 0, G is right Km-equivariant (where Km ✓ G(O) is the m-th
congruence subgroup).
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• There exists a Km-stable closed subscheme S ✓ G(K) such that G is
supported on S.

• As an object of D(S/Km), G is eventually coconnective.

Then for every F 2 Whit
n(DHecke,z

crit (GrG))+,

�Hecke(GrG,G ? F) 2 bgcrit–mod
+
reg.

Proof. We begin with (1). As above, we have a t-exact equivalence

(8.8.1) Whit
n(DHecke,z

crit (GrG)) ' QCoh(Opreg
Ǧ

).

As Opreg
Ǧ

is the spectrum of a polynomial algebra (however infinitely gener-

ated), we deduce that every object of Whit
n(DHecke,z

crit (GrG))~ is a filtered

colimit of objects that are compact in Whit
n(DHecke,z

crit (GrG)), and hence in

DHecke,z
crit (GrG).

By construction, �Hecke maps compact objects to compact objects and, in
particular, maps compact objects to bgcrit–mod

+
reg. By Theorem 8.3.1, we deduce

that it maps compact objects of Whit
n(DHecke,z

crit (GrG)) that lie in the heart of

the t-structure into bgcrit–mod
~
reg. As every object of Whit

n(DHecke,z
crit (GrG))~

is a filtered colimit of such (by the above), we obtain the result.
We now proceed to (2). We begin by noting that our assumptions imply

that for any C 2 G(K)–modcrit equipped with a t-structure that is strongly
compatible with the G(K)-action (in the sense of [Ras19, §10.12]), the functor
G ? � : C ! C is left t-exact up to shift; see the proof of Lemma 9.2.2 below.
This is the key property we will use about G. By [Ras19, Lemma 10.14.1], this
property is true for C = bgcrit–mod.

Next, if F is the object corresponding under (8.8.1) to the structure sheaf
on Opreg

Ǧ
, then F = indHecke,z(�n) for �n 2 Whit

n(Dcrit(GrG))~ ' Rep(Ǧ)~

corresponding to the trivial representation (by construction of (8.8.1)). There-
fore, �Hecke(GrG,G ? F) = �IndCoh(GrG,G ? �n). As G ? �n 2 Dcrit(GrG) is
eventually coconnective by the above, the resulting object of bgcrit–modreg is
eventually coconnective as well by Corollary 7.15.2.

We deduce from (8.8.1) that �Hecke(GrG,G ?F) is eventually coconnective
for F 2 Whit

n(Dcrit(GrG)) compact. We claim that in fact there is a universal
integer r such that for compact F lying in Whit

n(Dcrit(GrG))�0, we have

�Hecke(GrG,G ? F) 2 bgcrit–mod
��r
reg .

Indeed, choose r such that G ?� maps bgcrit–mod
�0 into bgcrit–mod

��r. As
we know the above object is eventually coconnective, it su�ces to verify the
boundedness after applying ⇢. Then the resulting object is

G ? �Hecke,naive(GrG,F),

which lies in degrees � �r by construction of r and Theorem 8.3.1.
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Finally, the same claim for general (possibly non-compact) object F 2
Whit

n(Dcrit(GrG))�0 follows by the same argument as in (1): such F is
a filtered colimit of objects of Whit

n(Dcrit(GrG))�0 that are compact in
Whit

n(Dcrit(GrG)). ⇤

9. Generation under colimits

9.1. In this section, we prove Lemma 7.17.1.

9.2. Preliminary observations. We begin with the following basic result.

Lemma 9.2.1. The subcategory bgcrit–̂modreg,naive ✓ bgcrit–modreg,naive is a
D⇤

crit(G(K))-submodule category.

Proof. By definition of bgcrit–̂modreg,naive, we need to show that for F 2
D⇤

crit(G(K)), the functor F ? � maps bgcrit–mod
+
reg,naive into bgcrit–̂modreg,naive.

As D⇤
crit(G(K)) is compactly generated, we are reduced to the case where F is

compact. In that case, we claim that F ?� maps bgcrit–mod
+
reg,naive into itself.

Indeed, this follows from Lemma 9.2.2 and the observation that the action
of G(K) on bgcrit–modreg,naive is strongly compatible with the t-structure; the
latter claim reduces via Lemma 6.9.3 to the same claim for bgcrit–mod, which
is shown as [Ras19, Lemma 10.14.1(3)]. ⇤

Above, we used the following result.

Lemma 9.2.2. Let H be a Tate group indscheme with prounipotent tail
acting strongly on C 2 DGCatcont. Suppose C is equipped with a t-structure
strongly compatible with the H-action in the sense of [Ras19, §10.12]. Then
for any F 2 D⇤(H) compact, the functor F?� : C ! C is left t-exact up to shift.

Proof. Because F is compact and H has a prounipotent tail, F 2 D⇤(H)K

' D(H/K) for some prounipotent compact open subgroup K ✓ H. Again
because F is compact, as an object of D(H/K), it is supported on a closed sub-
scheme S ✓ H/K. By [DG13], F has a bounded resolution by compact objects
of the form ind(iIndCoh⇤ (G)) for i : S ! H/K the embedding, G 2 IndCoh(S)
compact, and ind the functor of (right) D-module induction. Therefore, we
may consider F of this form.

The functor F ?� then factors as

C
AvK⇤���! CK Oblv���! CK,w iIndCoh⇤ (G)

K0,w
? ����������! C,

where �
K0,w
? � indicates the appropriate relative convolution functor

IndCoh(H/K)K0/K,w ⌦ CK0,w = IndCoh(H/K0)⌦ CK0,w ! C.
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As the H-action on C is compatible with the t-structure, CK ✓ C is closed
under truncations; it follows that AvK⇤ is left t-exact. By [Ras19, §10.13], CK,w

has a canonical t-structure for which Oblv : CK ! CK,w is t-exact. Finally, the
functor of convolution with G is left t-exact by [Ras19, Prop. 10.16.1].31 ⇤

Corollary 9.2.3. The functor �Hecke,naive factors through the subcate-

gory bgcrit–̂modreg,naive.

Proof. By Section 7.6, it su�ces to show �IndCoh = �Hecke,naive � indHecke

factors through bgcrit–̂modreg,naive. This functor is given by convolution with

Vcrit 2 bgcrit–mod
~
reg,naive ✓ bgcrit–̂modreg,naive, and so the claim follows from

Lemma 9.2.1. ⇤

Corollary 9.2.4. Let K ✓ G(O) be a prounipotent32 group subscheme.

Then bgcrit–̂mod
K

reg,naive is the subcategory of bgcrit–mod
K
reg,naive generated under

colimits by bgcrit–mod
K,+
reg,naive.

Proof. We have a commutative diagram

bgcrit–mod
+
reg,naive

� � //

AvK⇤
✏✏

bgcrit–̂modreg,naive

AvK⇤✏✏

bgcrit–mod
K,+
reg,naive

� � // bgcrit–̂mod
K

reg,naive.

The top and right functors generate under colimits, so the same is true of their
composition. This implies that the bottom arrow generates under colimits, as
desired. ⇤

9.3. Proof for PGL2. To simplify the discussion, we first assume G =
PGL2. We indicate the necessary modifications for general G of semisimple
rank 1 in Section 9.4.

By construction, �Hecke,naive is a G(K)-equivariant functor (at critical

level). In particular, the subcategory of bgcrit–̂modreg,naive generated under co-
limits by its essential image is closed under the G(K)-action.

Therefore, by Theorem 5.1.1, in order to prove Lemma 7.17.1 it su�ces

to show that the essential image of �Hecke,naive contains both bgcrit–̂mod
I̊

reg,naive

31There is a polarizability assumption at this point in loc. cit. that we have omitted here.

This assumption is only needed in loc. cit. to deduce a stronger result. The beginning of

that argument from loc. cit. is all that is needed here, and for that the polarizability is not

needed. (Regardless, we only apply this result to G(K), which is polarizable.)
32This assumption can be omitted, but the argument requires some additional details.



316 SAM RASKIN

and Whit(bgcrit–̂modreg,naive). The former follows from Theorem 8.2.1, while the
latter follows from Theorem 8.3.1.33

9.4. Generalization to groups of semisimple rank 1. We briefly indicate
the argument for general G of semisimple rank 1.

First, for ' : G1 ! G2 an isogeny of reductive groups, the natural functor

DHecke,z
crit (GrG1) ! DHecke,z

crit (GrG2)

is an equivalence. Indeed, this follows as

Dcrit(GrG1) ⌦
Rep(Ǧ1)

Rep(Ǧ2) ! Dcrit(GrG2)

and

Opreg
Ǧ2

! Opreg
Ǧ1

are equivalences (the latter being a consequence of Remark 1.9.2).

In particular, we see that G(K) acts (with critical level) on DHecke,z
crit (GrG)

through Gad(K); e.g., it is easy to see directly that the action is trivial for G a
torus. The same is evidently true for the action on bgcrit–modreg,naive. Moreover,
�Hecke,naive is Gad(K)-equivariant.

Next, one observes that theWhittaker category with respect to theGad(K)
action coincides with the Whittaker category for the G(K) action, and simi-
larly for the radical of Iwahori. For later reference, we also highlight that for
n > 0, the invariants for the n-th subgroup of G(K) coincide with the similar
invariants for the Gad(K)-action.

Finally, we observe that for G of semisimple rank 1, Gad = PGL2, so we
can apply the above observations and Theorem 5.1.1.

10. Exactness

10.1. In this section, we prove Lemma 7.17.2. The main idea is Propo-
sition 10.4.1.

10.2. t-structures on quotient categories. We will need the following con-
struction.

Suppose C 2 DGCatcont is equipped with a t-structure that is compatible
with filtered colimits. Let i⇤ : C0 ,! C be a fully faithful functor admitting a
continuous right adjoint i!. We suppose the full subcategory C0 ✓ C is closed
under truncation functors for the t-structure; in particular, C0 admits a unique
t-structure for which i⇤ is t-exact.

33In the latter case, it is shown that �Hecke,naive even induces an equivalence on Whittaker

categories with bgcrit–modreg,naive, i.e., the distinction with bgcrit–̂modreg,naive is not necessary

for the Whittaker part of the argument.
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Define C̊ as Ker(i! : C ! C0). We denote the embedding of C̊ into C by j⇤.
This embedding admits a left adjoint F 7! Coker(i⇤i!F ! F), which we denote
by j⇤ : C ! C̊.

Lemma 10.2.1. Suppose that the functor j⇤j⇤ : C ! C is left t-exact.
Then there is a unique t-structure on C̊ such that j⇤ : C ! C̊ is t-exact.

Remark 10.2.2. The hypothesis of the lemma is equivalent to the assertion
that for F 2 C~, the map H0(i⇤i!F) ! F is a monomorphism in the abelian
category C~. In turn, this assertion is well known to be equivalent to C~

0 ✓ C~

being closed under subobjects.

Proof of Lemma 10.2.1. Define C̊>0 ✓ C̊ as the full subcategory of F 2 C̊

with j⇤(F) 2 C>0. Define C̊0 ✓ C̊ as the left orthogonal to C>0.
The functor j⇤ : C ! C̊ maps C0 to C̊0 immediately from the definition,

and it maps C>0 to C̊>0 by our assumption that j⇤j⇤ is left t-exact.
In particular, for F 2 C̊, j⇤⌧>0j⇤(F) 2 C̊>0 and j⇤⌧0j⇤(F) 2 C̊0. As

j⇤j⇤(F)
'�! F, we see that we have in fact defined a t-structure on C̊. By the

previous paragraph, the functor j⇤ is t-exact as desired. ⇤

10.3. Subobjects in equivariant categories. To apply the previous material,
we use the following result.

Proposition 10.3.1. Suppose H is a connected, a�ne algebraic group
acting strongly on C 2 DGCatcont. Suppose that C is equipped with a t-structure
compatible with the H-action.

Then the functor CH,~ ! C~ is fully faithful and the resulting subcategory
is closed under subobjects.

Proof. In what follows, we let ◆ : Spec(k) ! H denote the unit for the
group structure, and we let H̊ := H \ 1 be the complementary open with
embedding | : H̊ ! H.

We let �1 = ◆⇤,dR(k) 2 D(H) denote the � D-module on G supported

at 1 2 H, and we let kH 2 D(H) (resp. kH̊ 2 D(H̊)) denote the constant
D-module (i.e., the ⇤-dR pullback of k 2 D(Spec(k)) = Vect).

Step 1. We begin with reductions.
First, that CH,~ ! C~ is fully faithful for H connected is well known.34

34We recall the argument for the reader’s convenience. For F 2 CH,~, we need to show

that F ! AvH
⇤ Oblv(F) gives an isomorphism after applying H

0. Moreover, it su�ces to do

so after applying Oblv.

The resulting map is obtained by (H-equivariant) convolution with the canonical map

kH ! kH ? kH 2 D(H)H . Under the identification D(H)H = Vect with k 2 Vect corre-

sponding to kH 2 D(H)H , the resulting map corresponds to k ! �dR(H, kH). Because H is
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By Remark 10.2.2, it su�ces to show that for F 2 CH,~, the map

OblvAvH⇤ (F) ! F

induces a monomorphism on H0, or equivalently, the (homotopy) cokernel of
this map is coconnective. As the above map is obtained by convolution with the
map kH ! �1 2 D(H), it su�ces to show that convolution with its cokernel,
which is |!(kH̊)[1], is left t-exact.

Step 2. Let F 2 D(H) be given. Suppose the functor F ? � : D(H) !
D(H) is left t-exact. We claim that the functor F ?� : C ! C is left t-exact.

Indeed, by definition of the t-structure on C being compatible with the
H-action, the functor coact : C ! D(H)⌦C is t-exact up to shift. The functor
coact is H-equivariant for the H-action on D(H)⌦ C on the first factor alone.
Moreover, coact is conservative: its composition with !-restriction along the
origin Spec(k) ,! H is the identity functor for C.

Therefore, the claim follows from [Ras21b, Lemma B.6.2].

Step 3. By Step 2, we are reduced to showing that convolution with
|!(kH̊)[1] defines a left t-exact functor D(H) ! D(H). By the reasoning
of Step 1, it is equivalent to say that the essential image of the functor
D(H)H,~ = Vect

~ ,! D(H)~ is closed under subobjects, which is evident:
a sub D-module of a constant one is itself constant. ⇤

10.4. An exactness criterion. We begin with a scheme for checking that
a functor between categories with (finite jets into) PGL2-actions is t-exact.

Proposition 10.4.1. Let G = PGL2, and let Gn be as in Section 3.2.
Let C,D 2 Gn–mod be equipped with t-structures compatible with the Gn-

actions.
Suppose F : C ! D is a Gn-equivariant functor.
Then F is left t-exact if and only if the functors

CNn, ! DNn, and

(
CN ! DN n = 1,

Cg⌦Ga ! Dg⌦Ga n � 2

are left t-exact, where g⌦Ga is embedded into Gn via (3.3.1).

Below, we give the proofs separately for n = 1 and n � 2. We remark
that in both cases, the “only if” direction is obvious.

Proof of Proposition 10.4.1 for n = 1. As we will see, in this case we only
need the action of the Borel B = T nN = Gm nGa of G = PGL2.

connected (hence, geometrically connected), this map is an isomorphism in degree 0, giving

the claim.
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Define C̊ as Ker(C
AvGa⇤���! CGa). The embedding C̊ ,! C admits a left

adjoint calculated as F 7! Coker(OblvAvGa
⇤ (F) ! F). By Lemma 10.2.1 and

Proposition 10.3.1, C̊ admits a unique t-structure such that this functor C ! C̊

is t-exact.
The action functor act : D(Gm)⌦C ! C maps D(Gm)⌦CGa, into C̊, and

the resulting functor is an equivalence (by Fourier transforming; cf. [Ber13]).
We claim that this equivalence is t-exact, where D(Gm) ⌦ CGa, is given the
tensor product t-structure.

To verify this, we will need the following commutative diagram:

(10.4.1)

D(Gm)⌦ CGa, act //

idD(Gm) ⌦Oblv
✏✏

C̊

✏✏

D(Gm)⌦ C̊ // D(Gm)⌦ C̊

with morphisms as follows. The top arrow is induced by the action functor
from above. The left arrow is idGm tensored with the embedding CGa, ,! C̊

(✓ C). For the right arrow, note that C̊ ✓ C is closed under the Ga-action, and
the corresponding coaction functor coact : C̊ ! D(Ga)⌦ C̊ composed with the
Fourier transform D(Ga) ' D(A1) (tensored with idC) maps into D(A1\0)⌦C̊;
we have identified A1\0 with Gm here. Finally, the bottom arrow is the unique
map of D(Gm)-comodule categories whose composition with �dR(Gm,�)⌦ idC̊
is act (the action functor for the Gm-action on C̊); here D(Gm) is a coalgebra in
DGCatcont via diagonal pushforwards, and both sides are considered as cofree
comodules coinduced from C̊. (That the diagram commutes is immediate.)

Now in (10.4.1), the bottom arrow is t-exact by [Ras21b, Lemma B.6.2].
By [Ras21b, Lemma B.6.2], the left arrow is t-exact because CGa, ,! C̊ is
(as this functor coincides with the composition CGa, ,! C ! C̊ of t-exact
functors). The right functor is t-exact because the t-structure on C is compati-
ble with the Ga-action. As the vertical arrows are fully faithful and the bottom
arrow is an equivalence, we obtain that the top arrow is a t-exact equivalence
as well.

We can now conclude the argument. By assumption and [Ras21b, Lemma
B.6.2], the functor

C̊ ' D(Gm)⌦ CGa, ! D(Gm)⌦DGa, ' D̊

is left t-exact.
Suppose F 2 C�0. Then OblvAvGa

⇤ (F) 2 CGa,�0, so F (OblvAvGa
⇤ (F)) 2

DGa,�0. Moreover, defining

F̊ := Coker(OblvAvGa
⇤ (F) ! F) 2 C̊,
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we have F̊ 2 C̊�0 by definition of the t-structure on C̊. Therefore, F (F̊) 2 D̊�0.
Because the embedding D̊ ,! D is left t-exact (being right adjoint to a t-exact
functor), we obtain

OblvAvGa
⇤ F (F), Coker(OblvAvGa

⇤ F (F) ! F (F)) 2 D�0

implying F (F) 2 D�0. ⇤

Proof of Proposition 10.4.1 for n � 2. Let Creg ✓ C be defined as in Sec-
tion 3.3. The embedding Creg ,! C admits a left adjoint j! as in loc. cit.
Moreover, because G = PGL2, the argument from Section 5.3 shows that
Ker(j!) = Cg⌦Ga . Applying Lemma 10.2.1 and Proposition 10.3.1, we find that
Creg admits a unique t-structure for which j! is t-exact.

By Theorem 4.2.1, the convolution functor

D(Gn)
Nn, ⌦ CNn, ! C

admits a left adjoint Av ,� ! = Av ,� ⇤ [2 dimNn]. By [Ras21b, Lemma B.6.1],

Av ,� ! [� dimNn] = Av ,� ⇤ [dimNn] is t-exact.

Because the above convolution functor factors through Creg, Av ,� ! : C !
D(Gn)Nn, ⌦ CNn, coincides with Av ,� ! j⇤,dRj!. By the above, we find that

Av ,� ! �j⇤,dR is t-exact. Moreover, by Corollary 4.7.3, Av ,� ! �j⇤,dR is con-
servative.

Therefore, as

D(Gn)
Nn, ⌦ CNn, id⌦F���! D(Gn)

Nn, ⌦DNn, 

is left t-exact by assumption and [Ras21b, Lemma B.6.2], the resulting functor
Creg ! Dreg is left t-exact.

As Cg⌦Ga ! Dg⌦Ga is left t-exact by assumption, the argument concludes
as in the n = 1 case. ⇤

10.5. Exactness of �Hecke,naive. We can now show t-exactness.

Proof of Lemma 7.17.2. For simplicity, we take G = PGL2; the argument
for general G of semisimple rank 1 follows by the considerations of Section 9.4.

By Corollary 7.15.3, it remains to show left t-exactness. It su�ces to show
that for every n � 1, the functor

�Hecke,naive : DHecke,z
crit (GrG)

Kn ! bgcrit–mod
Kn
reg,naive

is left t-exact; here Kn ✓ G(O) is the n-th congruence subgroup. We show
this by induction on n.
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First, we treat the n = 1 case. By Proposition 10.4.1, it su�ces to show
(left) t-exactness for the corresponding functors

DHecke,z
crit (GrG)

I̊ ! bgcrit–mod
I̊
reg,naive,

Whit
1(DHecke,z

crit (GrG)) ! Whit
1(bgcrit–modreg,naive).

These results follow from Theorems 8.2.1 and 8.3.1.
We now proceed by induction; we suppose the result is true for n � 1 and

deduce it for n+1. By Proposition 10.4.1, it su�ces to show that the functors

DHecke,z
crit (GrG)

Kn ! bgcrit–mod
Kn
reg,naive,

Whit
n+1(DHecke,z

crit (GrG)) ! Whit
n+1(bgcrit–modreg,naive)

are (left) t-exact. The former is the inductive hypothesis and the latter is
Theorem 8.3.1. ⇤

11. The renormalized category

11.1. In this section, we prove Lemma 7.17.3. The argument is quite
similar to the proof of Lemma 7.17.2.

11.2. A boundedness criterion. The following result is a cousin of Propo-
sition 10.4.1.

Proposition 11.2.1. Let G = PGL2, and let Gn be as in Section 3.2.
Let C 2 Gn–mod be equipped with a t-structure compatible with the Gn-

action. Suppose that D is equipped with a t-structure compatible with filtered
colimits. Suppose F : C ! D 2 DGCatcont is given.

Then F is left t-exact up to shift if and only if(
F |CN n = 1,

F |Cg⌦Ga n � 2

is left t-exact up to shift, and F (G ? F) 2 D+ for every

G 2 D(Gn)
+, F 2 CNn, ,+.

Remark 11.2.2. We emphasize that there is no assumption here that Gn

acts on D, in contrast to Proposition 10.4.1.

Remark 11.2.3. The “only if” direction of Proposition 11.2.1 is clear, as
G ?� : C ! C is left t-exact up to shift for G 2 D(Gn)+.

Proof of Proposition 11.2.1 for n = 1. As the t-structures on C and D are
compatible with filtered colimits, F is left t-exact up to shift if and only if
F (C+) ✓ D+. We verify the result in this form.

Suppose that F 2 C+. Then OblvAvN⇤ F 2 CN,+, and so by assumption
F (OblvAvN⇤ F) 2 D+. Therefore, setting F̊ := Coker(OblvAvN⇤ F ! F), it
su�ces to show that F (F̊) 2 D+.
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As in the proof of Proposition 10.4.1 (for n = 1), F̊ is in the essential image
of the fully faithful, t-exact convolution functor D(T )⌦ CN, ! C. Therefore,
it su�ces to show that the composition

D(T )⌦ CN, ! C
F�! D

is left t-exact up to shift. For convenience, in what follows, we identify F̊ with
the correpsonding object of D(T )⌦ CN, .

For this, we observe that any object F̊ 2 D(T )⌦ CN, lies in the full sub-
category of D(T )⌦ CN, generated under finite colimits and direct summands
by objects of the form DT ⇥ (�(T,�)⌦ id)(F̊), where DT 2 D(T )~ is the sheaf
of di↵erential operators; cf. Lemma 11.2.4 below. Then by [Ras21b, Lemma
B.6.2], for F̊ 2 D(T )⌦ CN, , we have

(�(T,�)⌦ id)(F̊) 2 CN, ,+.

Therefore, by assumption, F (DT ? (�(T,�) ⌦ id)(F̊)) 2 D+, so we find that
the same is true of F (F̊). ⇤

Above, we used the following result.

Lemma 11.2.4. Let S be a smooth a�ne scheme (over Spec(k)).

As is standard, let Oblv : D(S) ! IndCoh(S)
 ' QCoh(S) denote the

“right” D-module forgetful functor from [GR17b] and let ind : QCoh(S) !
D(S) denote its left adjoint. Let DS := ind(OS) 2 D(S)~. Let �(S,�) :
D(S) ! Vect denote the composition of Oblv with the usual global sections
functor on QCoh(S).

Then for any C 2 DGCatcont and any F 2 D(S) ⌦ C, F lies in the full
subcategory of D(S) ⌦ C generated under finite colimits and direct summands
by objects of the form

DS ⇥ (�(S,�)⌦ idC)(F).

Proof. As S is a�ne, D(S ⇥ S) is compactly generated by objects of the
form DS ⇥ DS . As �dR,⇤(!S) is compact and connective, it lies in the full
subcategory generated under finite colimits and direct summands by objects
of the form DS ⇥DS .

IdentifyingD(S⇥S) in the usual way with EndDGCatcont(D(S)) (cf. [GR17b]),
the object �dR,⇤(!S) corresponds to the identity functor, while DS ⇥DS cor-
responds to DS ⌦ �(S,�).

Therefore, idD(S)⌦C lies in the full subcategory of EndDGCatcont(D(S)⌦ C)
generated under finite colimits and direct summands by endofunctors of the
form (DS ⌦ �(S,�)) ⌦ idC. Applying such a resolution to the object F, we
obtain the claim. ⇤

We now turn to the higher n case.
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Proof of Proposition 11.2.1 for n � 2. Suppose F 2 C+. Then it follows
that OblvAvg⌦Ga

⇤ F 2 Cg⌦Ga,+, so by assumption, F (OblvAvg⌦Ga
⇤ F) 2 D+.

Therefore, setting F̊ := Coker(OblvAvg⌦Ga
⇤ F ! F), it su�ces to show that

F (F̊) 2 D+.
As G = PGL2, F̊ 2 Creg, hence in Creg,+. Now the claim follows as in the

n = 1 case from our assumption and Corollary 4.7.2. ⇤

11.3. Boundedness of �Hecke. We now verify boundedness of the non-naive
version of the Hecke global sections functor.

Proof of Lemma 7.17.3. We again assume G = PGL2 for simplicity, refer-
ring to Section 9.4 for indications on general G of semisimple rank 1.

It su�ces to show the result for K being the n-th congruence subgroup of
G(O) for some n � 1. We proceed by induction on n.

For F 2 DHecke,z
crit (GrG)I̊,+, �Hecke(GrG,F) 2 bgcrit–mod

+
reg; this follows from

Proposition 8.2.2.
Next, suppose that G 2 D(G)+ and F 2 Whit

1(DHecke,z
crit (GrG))+. Then

�Hecke(GrG,G ? F) 2 bgcrit–mod
+
reg by Proposition 8.8.1.

Therefore, Proposition 11.2.1 implies the n = 1 case of the claim.
We now suppose the result is true for some n and deduce it for n + 1.

The inductive hypothesis states that �Hecke(GrG,G ? F) is eventually cocon-

nective for F 2 DHecke,z
crit (GrG)Kn,+, while Proposition 8.8.1 implies the result if

F 2 Whit
n+1(DHecke,z

crit (GrG))+. Therefore, Proposition 11.2.1 gives the result

for general F 2 DHecke,z
crit (GrG)Kn+1,+. ⇤

Appendix A. The global sections functor

A.1. Let  be a level for g. In this appendix we define a global sections
functor

�(G(K),�) : D⇤
(G(K)) ! bg–mod⌦ bg�+2·crit–mod.

Moreover, we show the following basic property:

Proposition A.1.1. The functor �(G(K),�) is t-exact for the natural
t-structure on D⇤(G(K)).

To define both � and the “natural” t-structure mentioned above, there
is an implicit choice of compact open subgroup of G(K) (or rather, its Tate
extension) that goes into the definitions. For definiteness, we choose G(O) in
what follows.

Abelian categorically, this construction is well known from [AG02]. Our
setup is a little di↵erent from loc. cit., so we indicate basic definitions and
properties. We compare our construction to theirs in Proposition A.10.1.
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A.2. Definition of the functor. By [Ras19, §11.9], we have a canonical
isomorphism

bg–mod
_ ' bg�+2·crit–mod.

Here the left-hand side is the dual in DGCatcont. This isomorphism depends
(mildly) on our choice G(O) of compact open subgroup of G(K). This isomor-
phism is a refinement of the usual semi-infinite cohomology construction; more
precisely, by loc. cit., the pairing

bg–mod⌦ bg�+2·crit–mod ! Vect

is calculated by tensoring Kac-Moody representations and then taking semi-
infinite cohomology for the diagonal action.

In addition, by [Ras19, §8], we have a level  G(K)-action on bg–mod.
Therefore, we obtain a functor

D⇤
(G(K)) ! EndDGCatcont(bg–mod) ' bg–mod⌦ bg�+2·crit–mod.

By definition, the resulting functor is �(G(K),�).

A.3. Definition of the t-structure. The choice of G(O) also defines a t-
structure on D⇤

(G(K)). We write D⇤
(G(K)) as colimnD(G(K)/Kn) under

⇤-pullback functors; the structure functors are t-exact up to shift by smooth-
ness of the structure maps, so there is a unique t-structure such that the pull-
back functor ⇡⇤,dRn [� dimG(O)/Kn] : D(G(K)/Kn) ! D⇤

(G(K)) is t-exact
for all n.

A.4. t-exactness. Below, we prove Proposition A.1.1.

A.5. Since compact objects in D⇤
(G(K)) are bounded in the t-structure

and closed under truncations, it su�ces to show that for F 2 D⇤
(G(K))~

compact in D⇤
(G(K)), �(G(K),F) 2 (bg–mod⌦ bg�+2·crit–mod)~.

We fix such an F in what follows.

A.6. Because F is compact, there exists a positive integer r such that F is
Kr-equivariant on the right. Moreover, by compactness again, F is supported
on some closed subscheme S ✓ G(K), which we may assume is preserved under
the right Kr-action.

Note that S is necessarily a�ne as G(K) is ind-a�ne. We have S =
limS/Kr+r0 , so by Noetherian approximation, S/Kr+r0 is a�ne for some r0 � 0.
Up to replacing r by r + r0, we may assume S/Kr itself is a�ne.

A.7. For any two integers m1,m2 > 0, we have
Hombg–mod⌦bg�+2·crit–mod(V,m1 ⇥ V�+2·crit,m2 ,�(G(K),F))

= Hombg–mod(V,m1 ,F ? DV�+2·crit,m2)

by definition of �. Here D : (bg�+2·crit–mod
c)op ' bg–mod

c is the isomorphism
defined by the (semi-infinite) duality bg–mod ' bg–mod

_ used above.
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To see that �(G(K),F) is in degrees � 0, it su�ces to see that the above
complex is in degrees � 0 for all m1,m2. Moreover, it su�ces to check this for
all su�ciently large m1,m2; we will do so for m1,m2 � r.

Then to see that �(G(K),F) is in degree 0, it su�ces to show that when
we pass to the limits m1,m2 ! 1 (using the standard structure maps between
our modules as we vary these parameters), we obtain a complex in degree 0.
In fact, we will see that already F ? F ? DV�+2·crit,m2 is in the heart of the
t-structure (for m2 � r), which clearly su�ces.

A.8. By [Ras19, Lemma 9.17.1], DV�+2·crit,m2 ' V,m2 [dimG(O)/Km2 ]
= V,m2 [m2 · dimG]. We then have F ? V,r = �IndCoh(G(K)/Kr,F); here we
have descended F by Kr-equivariance to a D-module on G(K)/Kr and then
we have calculated its IndCoh-global sections.

Putting these together, we find

Hombg–mod(V,m1 ,F ? DV,m2)

= Hombg–mod(V,m1 ,F ? V,r[m2 · dimG� (m2 � r) dimG])

= Hombg–mod(V,m1 ,F ? V,r[r · dimG]).

By Lemma 9.2.2 (and [Ras19, Prop. 10.16.1], F ?V,r 2 bg–mod
+. More-

over, by Section A.9 below, F ? V,r maps under the forgetful functor to Vect

to �IndCoh(G(K)/Kr,F) 2 Vect (i.e., descend F to G(K)/Kr and take IndCoh-
global sections).

As F 2 D⇤
(G(K))~, when we consider F as an object of D(G(K)/Kr), it

lies in cohomological degree dim(G(O)/Kr) = r ·dimG. Therefore, the same is
true when we forget to IndCoh(G(K)/Kr), as that forgetful functor is t-exact
(cf. [GR17b]). Finally, as F is supported on an a�ne subscheme of G(K)/Kr

by construction, �IndCoh(G(K)/Kr,F) is in cohomological degree r · dimG.
Combining this with the above, we find that F?V,r[r·dimG]) 2 bg–mod

~.
This gives the desired claims, proving Proposition A.1.1 modulo the above as-
sertion.

A.9. Above, we needed the following observation: Suppose that F 2
D⇤
(G(K))Kr . We claim that Oblv(F ? V,r) = �IndCoh(G(K)/Kr,F) 2 Vect,

where we implicitly descend F to G(K)/Kr through equivariance.
To simplify the notation, we omit the level  and work with a general

Tate group indscheme H and a compact open subgroup K. (Then the level
may easily be reincorporated in a standard way by taking H to be the Tate
extension of G(K); cf. [Ras19, §11.3].)

For any C 2 H–modweak, suppose G 2 CK,w and F 2 D(H/K). As in
[Ras19, §8], D(H/K) is canonically isomorphic to IndCoh

⇤(H/K)H^
K
, with H^

K

the formal completion of H along K. Moreover, the functor Oblv : CH^
K ,w !

CK,w admits a left adjoint, which we denote by Avw! .
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Then we claim that we have isomorphisms

F
H^

K ,w
? Avw! (G) = Oblv(F)

K,w
? G 2 C

functorial in F and G (i.e., an isomorphism of functors D(H/K)⌦ CK,w ! C).
Here for the convolution on the left, we regard F as an object of IndCoh⇤(H)H^

K

as above. The notation
H^

K ,w
? means we convolve (in the setting of weak actions)

over H^
K , and similarly on the right-hand side. Then Avw! (G) = !H^

K/K
K,w
? G,

and F
H^

K ,w
? !H^

K/K = Oblv(F), so we obtain the claim.

Now taking C = Vect and G = k the trivial representation in Vect
K,w =

Rep(K), we obtain

F ? indhk (k) = Oblv(F) ? k 2 Vect.

The right-hand side calculates �IndCoh(H/K,Oblv(F)) as desired.

A.10. Comparison with Arkhipov-Gaitsgory. To conclude, we observe that
our construction above recovers the one given by Arkhipov-Gaitsgory.

More precisely, D⇤(G(K))~ manifestly coincides with the abelian category
denoted D–mod(G((t))) in Section 6.10 of [AG02], and similarly with a level
 included (which they discuss only in passing).

Below, we outline the proof of the following comparison result.

Proposition A.10.1. The functor

�(G(K),�) : D⇤
(G(K))~ ! (bg–mod⌦ bg�+2·crit–mod)~

= [g⇥ g(,�+2·crit)–mod
~

constructed above coincides with the one constructed in [AG02].

Proof.

Step 1. Let us define CDOG, 2 Vect as �(G(K), �G(O)), where �G(O) 2
D⇤
(G(K)) is the ⇤-pullback of �1 2 D(GrG).

As �G(O) 2 D⇤(G(K))~, CDOG, 2 Vect
~.

The object �G(O) manifestly upgrades to a factorization algebra in the
factorization category with fiber D⇤

(G(K)) (defined using the standard uni-
tal factorization structure on G(K); cf. [Ras14, §2]). Therefore, by [BD04],
CDOG, has a natural vertex algebra structure.

Note that CDOG, has commuting bg and bg�+2·crit-actions.
There is a tautological map Fun(G(O)) ! CDOG, 2 Vect

~, which is
compatible with factorization and is a morphism of g[[t]]-bimodules. Regard-
ing CDOG, as a bg-module, we obtain an induced map

indbgg[[t]](Fun(G(O))) ! CDOG, 2 Vect
~.
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In [AG02], a natural vertex algebra structure is defined on the left-hand side.
We claim that this map is an isomorphism of vertex algebras.

Indeed, the construction of the vertex algebra structure from [AG02] ex-
actly uses factorization geometry, showing that the map above is a map of
vertex algebras.

This map is an isomorphism because both sides have standard filtrations
and the map is an isomorphism at the associated graded level.

Step 2. Next, [AG02] constructs a bg�+2·crit-action on indbgg[[t]](Fun(G(O))).

We claim that the above isomorphism is an isomorphism of bg�+2·crit-modules
as well.

We regard both sides as objects of

(bg–mod⌦ bg�+2·crit–mod)~ ✓ bg–mod⌦ bg�+2·crit–mod

' EndDGCatcont(bg–mod).

By construction, CDOG, corresponds to the endofunctor OblvAvG(O)
⇤ :

bg–mod ! bg–mod.
By [Ras19, Th. 9.16.1], the functor

bg–mod
+ ! bg–mod

corresponding to an object

M 2 (bg–mod⌦ bg�+2·crit–mod)~

is the functor
N 7! C

1
2 (g((t)), g[[t]];M ⌦N).

Here the right-hand side is the functor of G(O)-integrable semi-infinite coho-
mology, which is defined because M ⌦ N is a Kac-Moody module with level
2 · crit.

By [AG02, Th. 5.5], we have

C
1
2 (g((t)), g[[t]]; indbgg[[t]](Fun(G(O)))⌦N) = OblvAvG(O)

⇤ (N)

as desired. (More precisely, one needs to upgrade [AG02] a bit; this is done in
[FG06, Lemma 22.6.2], where we note that the definition of convolution in loc.
cit. involves tensoring and forming semi-infinite cohomology.)

This gives the desired isomorphism of modules with two commuting Kac-
Moody symmetries; this isomorphism is readily seen to coincide with the one
constructed earlier.

Step 3. The functor

�(G(K),�) : D⇤
(G(K)) ! bg–mod⌦ bg�+2·crit–mod

canonically upgrades to a functor between factorization categories. This in-
duces a canonical morphism of vertex algebras

Vg, ⌦ Vg,�+2·crit ! CDOG, .
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This map coincides with the one constructed in [AG02]; indeed, both are
given by acting on the unit vector 1 2 Fun(G(O)) ✓ CDOG, using the Kac-
Moody action, and we have shown that our Kac-Moody action coincides with
the one in [AG02].

Step 4. Now suppose F 2 D⇤
(G(K))~. By construction, �(G(K),F) 2

Vect
~ carries an action of bg and of Fun(G(K)) (considered as a topological

algebra).
These two actions coincide with the ones considered in [AG02]. Indeed,

this is tautological for Fun(G(K)).
For bg, we are reduced to showing that for Kn ✓ G(O) the n-th congru-

ence subgroup and F 2 D(G(K)/Kn)~ a D-module, the two actions of bg on
H0(�(G(K)/Kn,F)) coincide.

This is a general assertion about Tate Lie algebras for H a Tate group
indscheme and S a classical indscheme with an action of H. The above logic
defines �IndCoh(S,�) : D(S) ! h–mod, and we claim that F 2 D(S)~. This
action of h on H0�(S,F) coincides with the standard one. This can be checked
element by element in h, so it reduces to the case where h is 1-dimensional.
There it follows by the construction of the comparison results in [GR14a].

Step 5. Because �G(O) is the unit object in the unital factorization cate-
gory D⇤

(G(K)) (see [Ras14, §2]), [Ras15a, Prop. 8.14.1] shows that � upgrades
to a functor

�(G(K),�) : D⇤
(G(K)) ! CDOG, –mod

fact
un .

Here we use the notation from [BD04], and are not distinguishing in the nota-
tion between our factorization algebra and its fiber at a point.

Comparing with the construction in [AG02] and applying Step 4, we find
that on abelian categories that the functor

D⇤
(G(K))~ ! CDOG, –mod

fact,~
un ' indbgg[[t]](Fun(G(O)))–mod

fact,~
un

coincides with the one constructed in loc. cit.
Now the assertion follows from Step 3. ⇤

Corollary A.10.2. For every F 2 D⇤
(G(K))~ compact, the functor

F ?� : bg–mod
+ ! bg–mod

+

coincides with the similarly-named functor constructed in [FG06, §22].
Proof. By construction of �(G(K),�), the following diagram commutes:

D⇤
(G(K))⌦ bg–mod

�(G(K),�)⌦id
//

�?�
,,

bg–mod⌦ bg�+2·crit–mod⌦ bg–mod

id⌦h�,�i
✏✏

bg–mod.
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By [Ras19, Th. 9.16.1], this means that for M 2 bg–mod
+, we have

F ?M ' C
1
2 (g((t)), g[[t]];�(G(K),F)⌦M) 2 bg–mod.

Here we tensor and use the diagonal action mixing the level �+2 · crit action
on �(G(K),F) and the given level  action on M , and then we form the semi-
infinite cochain complex, which retains a level  action from the corresponding
action on �(G(K),F).

By Proposition A.10.1, the latter amounts to the definition of convolution
given in [FG06, §22.5] (see also loc. cit., Section 22.7). ⇤

One can similarly show that this isomorphism is compatible with the as-
sociativity isomorphisms constructed in loc. cit., Section 22.9.

Appendix B. Fully faithfulness

B.1. In this appendix, we present a di↵erent proof of Theorem 7.16.1
(fully faithfulness of �Hecke) than the one given in [FG06].

B.2. We have the following general criterion.

Proposition B.2.1. Suppose Ci 2 G(K)–modcrit are given for i = 1, 2.
Suppose that each Ci is equipped with a t-structure such that

• The t-structure that is strongly compatible with the G(K)-action.

• The functor Av ! : CG(O)
i ! Whit(Ci) is t-exact for Av ! as in Section 8.5.

Here Whit(Ci) is equipped with the t-structure coming from [Ras21b, Th. 2.7.1
and §B.7].

• The functor Av ! : CG(O),~
i ! Whit(Ci)~ is conservative.

Suppose that F : C1 ! C2 2 G(K)–modcrit is given. We suppose that the

induced functor C
G(O)
1 ! C

G(O)
2 is t-exact.

Then if the induced functor Whit(C1) ! Whit(C2) is a t-exact equivalence,

the functor C
G(O),+
1 ! C

G(O),+
2 is as well.

Proof. For i = 1, 2, the functor Av ! : CG(O),+
i ! Whit(Ci)+ is t-exact

and conservative by assumption. Moreover, this functor admits the right ad-

joint AvG(O)
⇤ . By [Ras19, Lemma 3.7.2], the functor C

G(O),+
i ! Whit(Ci)+ is

comonadic. Being G(K)-equivariant, the functor F intertwines the comonads

Av ! AvG(O)
⇤ on Whit(C1) and Whit(C2). Therefore, as we have assumed F

induces an equivalence Whit(C1)+
'�! Whit(C2)+, we obtain the result. ⇤

B.3. We now deduce the following result:

Corollary B.3.1. The functor

�Hecke,naive : DHecke,z
crit (GrG)

G(O),+ ! bgcrit–mod
G(O),+
reg,naive

is a t-exact equivalence.
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Proof. We apply Proposition B.2.1 with

C1 = DHecke,z
crit (GrG), C2 = bgcrit–modreg,naive, and F = �Hecke,naive.

It remains to check the hypotheses.
Both t-structures are strongly compatible with t-structures by [Ras19].

The functor Av ! : Dcrit(GrG)G(O) ! Whit(Dcrit(GrG)) is t-exact and an
equivalence (in particular, conservative) on the hearts of the t-structures by

Theorem 8.6.1. We deduce the same for DHecke,z
crit (GrG) by Sections 7.6 and 7.7.

The functor Av ! : bgcrit–mod
G(O) ! Whit(bgcrit–mod) is t-exact by [Ras21b,

Th. 7.2.1]. We immediately deduce the same for bgcrit–modreg,naive. The functor

Av ! : bgcrit–mod
G(O),~
reg,naive ! Whit(bgcrit–modreg,naive)

~ Cor. 8.4.2
= QCoh(Opreg

Ǧ
)~

is an equivalence by [FG04, Th. 5.3].

Finally, �Hecke,naive restricted to DHecke,z
crit (GrG)G(O) is t-exact by Theo-

rem 8.2.1, and similarly for Whit(DHecke,z
crit (GrG)) by Theorem 8.3.1. ⇤

B.4. We now prove Theorem 7.16.1. The reductions follow [FG06]; only
the last step di↵ers.

Proof of Theorem 7.16.1.

Step 1. Recall from Section 7.6 that DHecke
crit (GrG) is compactly generated

by objects of the form indHecke,z(F) for F 2 Dcrit(GrG) compact. Moreover,
�Hecke preserves compact objects by construction. Therefore, it su�ces to show
that the map

Hom
DHecke,z

crit (GrG)
(indHecke,z(F), indHecke,z(G))

! Hombgcrit–modreg(�
IndCoh(F),�IndCoh(G))

is an equivalence for F,G 2 Dcrit(GrG) compact.
As �IndCoh(F) 2 bgcrit–mod

c
reg ✓ bgcrit–mod

+
reg, it su�ces to show that if we

apply ⇢, then the induced map

Hom
DHecke,z

crit (GrG)
(indHecke,z(F), indHecke,z(G))

! Hombgcrit–modreg,naive(�
IndCoh(F),�IndCoh(G))

is an equivalence.
We will show this below with the weaker assumption that G 2 Dcrit(GrG)+.

Step 2. By Lemma 7.12.1 (and its proof), we can rewrite the above terms
as

Hom
DHecke,z

crit (GrG)G(O)(ind
Hecke,z(�1), ind

Hecke,z(invD(F) ? G))

! Hombgcrit–modG(O)
reg,naive

(�IndCoh(�1),�
IndCoh(invD(F) ? G)).
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Noting that all the terms appearing here are eventually coconnective in
the relevant t-structures, the claim follows from Corollary B.3.1. ⇤

References

[AF12] T. Arakawa and P. Fiebig, On the restricted Verma modules
at the critical level, Trans. Amer. Math. Soc. 364 no. 9 (2012),
4683–4712. MR 2922606. Zbl 1352.17025. https://doi.org/10.1090/
S0002-9947-2012-05467-5.

[Ari16] D. Arinkin, Irreducible connections admit generic oper structures, 2016.
arXiv 1602.08989.

[AG15] D. Arinkin and D. Gaitsgory, Singular support of coherent
sheaves and the geometric Langlands conjecture, Selecta Math.
(N.S.) 21 no. 1 (2015), 1–199. MR 3300415. Zbl 1423.14085.
https://doi.org/10.1007/s00029-014-0167-5.

[ABB+05] S. Arkhipov, A. Braverman, R. Bezrukavnikov, D. Gaitsgory, and
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