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Affine Beilinson-Bernstein localization
at the critical level for GLs

By SAM RASKIN

Abstract

We prove the rank 1 case of a conjecture of Frenkel-Gaitsgory: critical
level Kac-Moody representations with regular central characters localize
onto the affine Grassmannian. The method uses an analogue in local geo-
metric Langlands of the existence of Whittaker models for most represen-
tations of GL2 over a non-Archimedean field.
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1.1. More than a decade ago, Frenkel and Gaitsgory initiated an ambi-
tious program to relate geometric representation theory of (untwisted) affine
Kac-Moody algebras at critical level to geometric Langlands, following Beilin-

son-Drinfeld [BD] and [BD04] and Feigin-Frenkel, e.g., [FF92].
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We refer the reader to [FGO06] for an introduction to this circle of ideas.
The introduction to [FG09b] and the work [Gai07] may be helpful supplements.

While Frenkel-Gaitsgory were extraordinarily successful in developing rep-
resentation theory at critical level (highlights include [FG04], [FG06], [FGO§],
[FG09c], [FGO9b], [FG09a]), their ambitious program left many open problems.
Most of these problems are dreams that are not easy to formulate precisely.

In contrast, their conjecture on critical level localization for the affine
Grassmannian is a concrete representation theoretic problem. It remains the
major such problem left open by their work. In this paper, we prove the
Frenkel-Gaitsgory localization conjecture for rank 1 groups.

Below, we recall the context for and statement of the Frenkel-Gaitsgory
conjecture, the progress that they made on it, and outline the argument used
in the present paper for GLo.

1.2. Notation. In what follows, G denotes a split reductive group over a
field k of characteristic 0. We fix a choice B C G of Borel subgroup with
unipotent radical N and Cartan T = B/N. We let G denote the Langlands
dual group to G, and similarly B and so on.

We let G(K), e.g., denote the algebraic loop group of G, which is a group
indscheme of ind-infinite type. We let G(O) C G(K) denote its arc subgroup
and Grg = G(K)/G(O) the affine Grassmannian. We refer to [BD] for further
discussion of these spaces and [Rasl5b] for definitions of D-modules in this
context.

We follow the notational convention that all categories are assumed de-
rived; e.g., A-mod denotes the DG (derived) category of A-modules. For €
a DG category with a given t-structure, we let ¥ denote the corresponding
abelian category.

1.3. Affine Kac-Moody algebras. Before recalling the Frenkel-Gaitsgory
conjecture, we need to review the representation theory of affine Kac-Moody
algebras at critical level.

1.4. Recall that for a level k, by which we mean an Ad-invariant sym-
metric bilinear form on g, there is an associated central extension

0=k—=9:.—9((t) =g % E((t)) — 0.

This extension is defined by a standard 2-cocycle that vanishes on gl[t]] =
g Qg k[[t]]; in particular, the embedding g[[t]] < g((¢)) canonically lifts to an
embedding g[[t]] < g&-

1.5. By a representation of g, on a (classical) vector space V € Vect”,
we mean an action of the Lie algebra g, such that every v € V is annihilated
by tNg][t]] for N > 0 and such that 1 € k C g, acts by the identity.
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For instance, the vacuum module V,; = indgﬁt” (k) is such a representation.
Here ind denotes induction, and we are abusing notation somewhat: we really
mean to induce from k @ g[[t]] the module k on which k acts by the identity
and g[[t]] acts trivially; since we only consider representations on which k C g,
acts by the identity, we expect this does not cause confusion.

We denote the abelian category of representations of g, by ’g\,fmodo. The
appropriate DG category gx—mod was defined in [FG09a, §23|; see [Gail4],
[Ras21b, App. A], or [Ras19] for other expositions.

We recall the pitfall that the forgetful functor Oblv : g,—mod — Vect is
not conservative; i.e., it sends non-zero objects to zero.!

But one key advantage of g.—mod over other possible “derived categories”
of gx-modules is that it admits a level k action of G(K); see [Ras19, §11] for
the construction and definitions.

1.6. We let U(g,) denote the (twisted) topological enveloping algebra of
9 (with the central element 1 € g, set to the identity). For our purposes,
U(gx) is the pro-representation of g,:

1iTan indg,’fg[[t”(k) € Pro(g,—mod®).

.

The underlying pro-vector space is naturally an ®-algebra algebra in the
sense of [Ras19, §3 |. By construction, its discrete modules (in Vect”) are the
same as (classical) representations of g,.

1.7. Let Dy(Grg) denote the DG category of k-twisted D-modules on
Grg. There is a global sections functor

rndeeh(Grq, —) : Do (Grg) — g, mod.

This functor is a morphism of categories acted on by G(K) and sends the
skyscraper D-module §; € Dy (Grg) to the vacuum module V.

1.8. Affine Beilinson-Bernstein localization? Recall the finite-dimensional
Beilinson-Bernstein localization theorem:

THEOREM 1.8.1 ([BB81]). The functor
I'(G/B,—): D(G/B) — g-mod

is a t-exact equivalence of categories. Here D(G/B) is the DG category of D-
modules and T'(G /B, —) is the left D-module global sections functor; g—mody
is the DG category of modules over U(g) ®z(q) k for Z(g) is the center of U(g)
and Z(g) — k the restriction of the augmentation U(g) — k.

!See [Ras21b, §1.18] for some discussion of this point.



254 SAM RASKIN

Almost as soon as Beilinson and Bernstein proved their localization the-
orem, there was a desire for an affine analogue that would apply for Grg or
the affine flag variety. Results soon emerged in work of Kashiwara-Tanisaki,
beginning with [KT95] for so-called negative levels k.

The results of Kashiwara-Tanisaki suffice for applications to Kazhdan-
Lusztig problems. However, their theorems are less satisfying than Theo-
rem 1.8.1: they do not provide an equivalence of categories, but only a fully
faithful functor. Conceptually, this is necessarily the case because for nega-
tive k; the center of U(g,) consists only of scalars, so it is not possible to define
an analogue of the category g—mody.?

As observed by Frenkel-Gaitsgory, this objection does not apply at critical
level, as we recall below.

1.9. Critical level representation theory. For the so-called critical value
of k, the representation theory of the Kac-Moody algebra behaves quite dif-
ferently from other levels. For completeness, we recall that critical level is
_71 times the Killing form. We let crit denote the corresponding symmetric
bilinear form; in particular, we use gerit (resp. Veig) in place of g, (resp. V).

THEOREM 1.9.1 (Feigin-Frenkel).

(1) The (non-derived) center 3 of U(@erit) 18 canonically isomorphic to the
commutative pro-algebra of functions on the ind-scheme Opg of opers (on
the punctured disc) for the Langlands dual group G:
Opg == (f + b(1)))dt/N (K),
where N(K) C G(K) acts on §((t))dt by gauge transformations and f is
a principal nilpotent element with [p, f] = —f.

We recall that, as for the Kostant slice, Opg is (somewhat non-canon-
ically) isomorphic to an affine space that is infinite-dimensional in both
ind and pro senses (like the affine space corresponding to the k-vector space
k((2)))-

(2) The natural map
3—53=Endg .40 (Verit)
1s surjective and fits into a commutative diagram

Fun(Opg) — Fun(Opgg).

ZHowever, see [Bei06] for some speculations; the suggestion is that g.—mod should be
considered not as decomposing over the spectrum of its center but over a moduli of local
systems on the punctured disc.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 255

Here Opereg = (f + b[[t]])dt/N(O) is the scheme of regular opers, on the
(non-punctured) disc; we recall that the natural map Opx?

G
closed embedding.

We refer to [FF92] and [Fre05] for proofs of most of these statements; the
only exception is that the map Fun(Opx) < 3 constructed using [FF92] is an
isomorphism, which is shown as [BD, Th. 3.7.7].3

We refer to [FGO06, §1] and [BD, §3] for an introduction to opers. As in loc.
cit., we highlight that Opg (resp. Opgfg) is a moduli space of de Rham G-local

— Opg is a

systems on the punctured (resp. non-punctured disc) with extra structure.

Remark 1.9.2. The definition of opers here is slightly different from the
original one used by Beilinson-Drinfeld and rather follows the definition advo-
cated by Gaitsgory. In this definition, an isogeny of reductive groups induces
an isomorphism on spaces of opers, unlike in [BD]. For G semisimple, the
definition here coincides with the definition in [BD] for the associated adjoint
group. We refer to [Barl0] for a more geometric discussion.

1.10. Localization at critical level. The functor
4N (Gra, =) 1 Deis (Gra) = Gerig-mod

fails to be an equivalence for two related reasons.

First, recall that T'"°"(Grg, ;) = Vit As for any skyscraper D-module,
End(d1) = k, while by Theorem 1.9.1, V¢, has a large endomorphism algebra.
Worse still, Vi has large self-Exts by [FT06] and [FGO06, §8].

Moreover, there are central character restrictions on the essential image
of T'dCoh  Say M € Geit-mod” is regular if T := Ker(3 — 3) acts on M triv-
ially, and let ﬁcritfmodzg C Gerit—mod” denote the corresponding subcategory
(which is not closed under extensions). Then for any F € D¢t (Grg), the co-
homology groups of I'"M4N (Grg, F) € Gerie-mod will be regular, for the same
reason as the analogous statement in the finite-dimensional setting.

1.11. In [FGO6], Frenkel and Gaitsgory in effect proposed that these are
the only obstructions. We recall their conjecture now.

First, in [FG09a, §23], an appropriate DG category gerit—modyeg character
was constructed: we review the construction in Section 6. There is a canonical

action of the symmetric monoidal DG category QCoh(OprG?g) oI Gerit—MOdyeg

commuting with the critical level G(K)-action.

3In fact, the mere existence of this map (and its good properties) is all we really need.
That the map is an isomorphism is nice, but not strictly necessary.

“There are actually important technical issues involving this G(K)-action that should
probably be overlooked at the level of an introduction; we refer to Sections 1.22 and 6.10 for
further discussion.
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Next, recall that geometric Satake [MV07] gives an action of Rep(G) =
QCoh(IB%G) on Dt (Grg) by convolution.

Moreover, Opgg has a canonical G-bundle; indeed, Opereg is the moduli
of G-local systems on the formal disc D = Spec(k[[t]]) with extra structure,
giving a map

Ops® — LocSys(D) = BG.
In particular, there is a canonical symmetric monoidal functor

Rep(G) — QCoh(Op.®).

According to Beilinson-Drinfeld’s birth of opers theorem, T'"4CP (Grg, —)

is a canonically morphism of (G(K),Rep(G))-bimodule categories (cf. Sec-
tion 7).
CONJECTURE 1.11.1 (Frenkel-Gaitsgory, [FG06, Main conjecture 8.5.2]).

The induced functor

rHecke s Dot (Grg) ® QCoh(Op®) = Gerit MOGreg
Rep(G)

is a t-exact equivalence of DG categories.
We can now state the following:

MAIN THEOREM (Theorem 7.14.1). Conjecture 1.11.1 is true for G of
semisimple rank 1.
reg
o~ G ~
let gcritfmodi denote the abelian category of Gerit-modules on which 3 acts

COROLLARY 1.11.1. For x € Op:°(k) a regular oper (defined over k),

through its quotient 3 — 3 % k, and let Geris—mod,, denote the appropriate DG
category.

Then for G = GLsg, the functor

Dait(Grg) ® Vect — Gerit—-mod,
Rep(G)

induced by global sections is a t-exact equivalence, where Vect is a Rep(G)-
module category via the map Spec(k) BN Opereg — BG.

COROLLARY 1.11.2. Let G = GLa, and let x1,Xx2 € Opgfg(k:) be two

regular opers (defined over k). Then any isomorphism of the underlying G-local
systems of x1 and x2 gives rise to an equivalence of abelian categories

~ VIS v
Herit 7m0dX1 = Yerit 7m0dx2 .

Remark 1.11.3. We highlight a wrong perspective on Corollary 1.11.2; this
remark may safely be skipped.
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For G = PGL,, one can show that the group scheme Aut of automor-

phisms of the formal disc acts transitively on Opereg
tary construction of equivalences of categories as in Corollary 1.11.2 in this

, giving rise to an elemen-

case.

However, these are not the equivalences produced by Corollary 1.11.2.
First, at the level of DG categories, the equivalences using the action of Aut are
not G(K)-equivariant: the G(K)-actions differ via the action of Aut on G(K).
In contrast, the equivalences produced using Corollary 1.11.1 are manifestly
G(K)-equivariant.

- Concretely, this implies that for a k-point ¢ € G(K), if g - Vaip =
ind?féigt(g“t”)(k) and g - Vit = (9 - Vait) ®;,¢ k, then Corollary 1.11.2 maps
9 Veritya 10 9 Ve v, For v € Aut and x2 = - x1, the resulting isomorphism
produced using vy (not Corollary 1.11.2) rather sends g- Verit,y; t0 Y(9) - Verit,yo-

In addition, one can see that the equivalences produced using the Aut
action depend on isomorphisms of underlying G’%-bundles of regular opers (in
this PGLg case), not merely the underlying G-bundles.

1.12. Viewpoints. We refer to the introduction and Section 2 of [FG09c]
for a discussion of Conjecture 1.11.1 and its consequences. We highlight some
ways of thinking about it here.

e For the representation theorist, Theorem 7.14.1 provides an affine analogue
of Beilinson-Bernstein similar to their original result; cf. the discussion in
Section 1.8. The equivalences of Corollary 1.11.2 provide analogues of trans-
lation functors at critical level. By Theorem 1.13.1, the content of The-
orem 7.14.1 amounts to a structure theorem for regular geit-modules (for
g = 5[2).

e For the number theorist, Theorem 7.14.1 provides a first non-trivial test of
Frenkel-Gaitsgory’s proposal [FG06] for local geometric Langlands beyond
Iwahori invariants.

Roughly, Frenkel-Gaitsgory propose that for ¢ a de Rham G-local sys-
tem on the punctured disc, there should be an associated DG category C,
with an action of G(K).> This construction should mirror the usual local
Langlands correspondence, leading to many expected properties of this as-
signment; cf. [Gai07].

A striking part of their proposal does not have an arithmetic counterpart.
For y an oper with underlying local system o, Frenkel-Gaitsgory propose
Co = Gait-mod, € G(K)-modyit, where we use similar notation to Corol-
lary 1.11.1. We remark that Frenkel-Zhu [FZ10] and Arinkin [Aril6] have

®Most invariantly, this action should have critical level, which is (slightly non-canonically)
equivalent to level 0.
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shown that any G-local system ¢ on the punctured disc admits an oper struc-
ture (assuming, to simplify the discussion, that o is a field-valued point).
In particular, one expects equivalences as in Corollary 1.11.2 (for any fixed
G-local system on the punctured disc and pair of oper structures on it), at
least for the corresponding derived categories.
Our results provide the first verification of their ideas beyond Iwahori
invariants.

Remark 1.12.1. We have nothing to offer to the combinatorics of repre-
sentations. The previous results of Frenkel-Gaitsgory suffice® to treat problems
of Kazhdan-Lusztig nature; cf. [AF12].

1.13. Previously known results. Frenkel-Gaitsgory were able to show the
following results, valid for any reductive G.

We let I =G(0) x ¢ B be the Iwahori subgroup of G(0) and I =G(0)xgN
its prounipotent radical.

THEOREM 1.13.1. The functor THeke 45 fully faithful, preserves compact
objects, and is an equivalence on I-equivariant categories. Moreover, the re-

striction of THeke 1o the [-equivariant category Dait(Crg)! ® QCOh(Opgg)
Rep(G)
18 t-exact.

Remark 1.13.2. The fully faithfulness is [FG06, Th. 8.7.1]; we give a
simpler proof of this result in Appendix B. The existence of the continu-
ous right adjoint Loct®® is proved as in [FG09a, §23.5-6]. The equivalence
on I -equivariant categories and t-exactness of the functor is Theorem 1.7 of
[FG09c].”

Remark 1.13.3. Using Kashiwara-Tanisaki localization and the Kazhdan-
Lusztig equivalence as in [AG03, Th. 6.4], the Frenkel-Gaitsgory equivalence on
I -equivariant categories connects critical-level Kac—-Moody representations to a
number of other objects of study in geometric representation theory: the small
quantum group, as studied extensively in a geometric setting in [ABBT05],
Bezrukavnikov’s non-commutative Springer resolution [BL12|, and character-
istic p semi-simple Lie algebras, as in [BM13, §1.7].

1.14. Methods. Below, we outline the proof of Theorem 7.14.1. However,
to motivate this, we highlight a methodological point.

S At least, the known results suffice up to mild central character restrictions coming from
[FG09a]. These restrictions are understood among experts to be inessential.

"The results we cite here are not formulated in exactly the given form in the cited works.
For the purposes of the introduction, we ignore this issue and address these gaps in the body
of the paper.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 259

Across their works at critical level, Frenkel and Gaitsgory use remarkably
little about actual critical level representations. Indeed, they rely primarily on
Feigin and Frenkel’s early results, some basic properties of Wakimoto modules,
and the Kac-Kazhdan theorem.

But using the action of G(K) on gerit—mod and constructions/results from
geometric Langlands, Frenkel and Gaitsgory were able to prove deep results
about representations at critical level; see, e.g., [FG09a).

In other words, their works highlight an important methodological point:
the theory of group actions on categories provides a bridge:

Group actions
Geometry and higher on categories
{ representation theory of } 0000000000000 {

Representation theory }
groups

of Lie algebras

For loop groups in particular, a great deal was known at the time about
G(0) and Iwahori invariants; see, e.g., [MVO07], [AB09], [ABG04], [ABB105].

More recently, Whittaker invariants have been added to the list; see
[Ras21b]. As in Appendix B, for example, these can be used to simplify many
arguments from Frenkel-Gaitsgory.

1.15. As we outline below, our methods are in keeping with the above.
The main new idea and starting point of the present paper, Theorem 5.1.1, is
exactly about the higher representation theory of PGLa(K).

1.16. Group actions on categories inherently involve derived categories.
Therefore, one has the striking fact that although Corollary 1.11.2 is about
abelian categories (of modules!), the proof we give involves sophisticated ho-
mological methods and careful analysis of objects in degree —oo in various DG
categories.

1.17. Sketch of the proof. We now give the Platonic ideal of the proof of
the main theorem.

1.18. First, one readily reduces to proving Conjecture 1.11.1 for any fixed
G of semisimple rank 1; for us, it is convenient to focus on G = PGLs.

1.19. The following result is one of the key new ideas of this paper:

THEOREM (Theorem 5.1.1). Let G = PGLa, and let C be acted on by
G(K) (perhaps with level k).

Then C is generated under the action of G(K) by its Whittaker category
Whit(C) = CNEY gnd its Io—equivam'ant category CL.

The relation to the equivalence part of the Frenkel-Gaitsgory conjecture is
immediate: By fully faithfulness of THe%® (Theorem 1.13.1), Theorem 7.14.1
is reduced to showing essential surjectivity. Applying Theorem 5.1.1 to the
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FHecke

essential image of , one immediately obtains Theorem 7.14.1 from The-

orem 1.13.1 and

THEOREM (Theorem 8.3.1). For any reductive G, the functor THecke jp_
duces an equivalence on Whittaker categories.

The latter result is an essentially immediate consequence of the affine
Skryabin theorem from [Ras21b] and the classical work [FGVO01].

1.20. Theorem 5.1.1 warrants some further discussion. First, this result
mirrors the fact that for PGLgy over a local, non-Archmidean field, irreducible
representations admit Whittaker models, or else are one of the two 1-dimen-
sional characters trivial on the image of SL,.

We now give an intentionally informal heuristic for Theorem 5.1.1 that
may safely be skipped.

For general reductive G and € € G(K)-modit, let €' C € be the subcat-
egory generated under the G(K)-action by Whit(C).

Assuming some form of local geometric Langlands, one expects the local

o

Langlands parameters of C/C€" to consist only of those o € LocSyss(D) that
lift to a point of LocSysP(ﬁ) at which the map LocSySP(ﬁ) — LocSysG(@) is
singular; here P is some parabolic subgroup of G and D = Spec(k((t))) is the
formal punctured disc.

For G = SLs, the only parabolic we need to consider is the Borel B. Then

o € LocSys is the data of an extension

0— (L,V) = (&,V) = (L£LY,V) =0,
where (£,V) is a line bundle with connection on the punctured disc (and £
equipped with the dual connection to that of £). At such a point, the cokernel

o o

of the map of tangent spaces induced by LocSys;(D) — LocSyss(D) is
Hig(D,(8/6)s) = Hin(D, (£, V)%?).

This group will vanish unless (£,V)®? is trivial, i.e., unless (§,V) € LocSysG(ﬁ)

or its quadratic twist has unipotent monodromy.

It is expected that D € G(K)-modi with local Langlands parameters
having unipotent monodromy (resp. up to twist by a 1-dimensional character)
is generated under the G(K)-action by its Iwahori invariants (resp. its Iwahori
invariants twisted by a suitable character of I trivial on I ).

This justifies that for G = PGLg, one should expect €/€" above to be
generated by its [-invariants. (In fact, following the above reasoning, one can
refine Theorem 5.1.1 to show that € is even generated by Whit(C) and its
invariants with respect to the Iwahori subgroup of SLa(K).)

1.21. The argument we provide for Theorem 5.1.1 is novel. Its decategori-
fied version gives a new proof of the corresponding result in usual harmonic
analysis.
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We use the perspective of [Ras21b] on Whittaker categories, which al-
lows us to study the Whittaker construction via (finite-dimensional!) algebraic
groups. (We summarize the most relevant parts of [Ras21b] in Section 5.2.)

In Section 3, we introduce a new technique in the finite-dimensional set-
tings suggested by [Ras21b], which we call Whittaker inflation. In that con-
text, Theorem 3.4.1 shows that subcategories generated under group actions
by Whittaker invariants are large in a suitable sense. These ideas apply for a
general reductive group G and have counterparts in the decategorified setting.

In Section 5, we introduce a method of descent that is specific for PGLs.
Combined with the results of Section 3, descent immediately gives Theo-
rem 5.1.1.

1.22. For clarity, we highlight that there is one technical issue in the above
argument: there is not an a priori G(K)-action on ﬁcritfmodreg, so the above
argument does not apply as is. Instead, there is a closely related but inequiv-
alent category, Gerit—Modyeg naive, With an evident G(K)-action (coming from
[Ras19]). We refer to Section 6.10 for a more technical discussion of this point.

This distinction makes the second half of the paper more technical, and
it requires finer analysis than was suggested in Section 1.19.

1.23. The t-exactness in Theorem 7.14.1 is proved by another instance
of the descent argument highlighted above. The details are in Section 10, with
some auxiliary support in Section 11.

1.24. Finally, we highlight that the vast majority of the intermediate
results in this paper apply to general reductive groups G. In particular, this
includes the results of Section 3, which are a key ingredient in the proof of
Theorem 7.14.1.

The descent arguments discussed above are where we use that G = PGLo;
here the key input is that every element in the Lie algebra g = sl is either
regular or 0. The situation strongly suggests that there should be some (more
complicated) generalization of the descent method that applies for higher rank
groups as well.

1.25. Structure of this paper. The first part of the paper is purely geomet-
ric, primarily involving monoidal categories of D-modules on algebraic groups.

In Section 3, we introduce the inflation method discussed above. In Sec-
tion 4, we provide some refinements of these ideas that are needed later in the
paper; this section includes some results on Whittaker models for the finite-
dimensional group G that are of independent interest.

In Section 5, we prove our theorem on the existence of Whittaker models
for most categorical representations of PGLg(K) and introduce the descent
argument discussed above.
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1.26. The second part of the paper applies the above material to critical
level Kac-Moody representations.

In Section 6, we introduce the DG category gerit—mod;eg following [FG09a].
To study this DG category using group actions, we import the main results
from [Ras19] here.

In Section 7, we recall in detail the key constructions from the formulation
of Conjecture 1.11.1. We formulate three lemmas from which we deduce our
main result, Theorem 7.14.1.

The proofs of these lemmas occupy Sections 9-11. Roughly, Section 9
is devoted to showing that the functor I'Heke is essentially surjective, while
Section 10 is devoted to showing that it is t-exact. The final section, Sec-
tion 11, provides additional technical support related to the distinction between
/g\critmedreg and /g\critmedreg,naive-

Finally, Section 8 collects results on the behavior of T'Heke on Iwahori
and Whittaker equivariant categories; the former results are due to Frenkel-
Gaitsgory [FG09c|, while the latter are original.

1.27. There are two appendices. In Appendix A, we compare our con-
struction of the global sections functor to the more classical one used by
Kashiwara-Tanisaki, Beilinson-Drinfeld and Frenkel-Gaitsgory.

In Appendix B, we reprove the Frenkel-Gaitsgory theorem that I'Hecke jg

fully faithful.

1.28. Acknowledgements. We thank Dima Arinkin, Sasha Beilinson, Dario
Beraldo, David Ben-Zvi, Roman Bezrukavnikov, Justin Campbell, Vladimir
Drinfeld, Gurbir Dhillon, Ivan Mirkovic, and David Yang for their encourage-
ment and for helpful conversations related to this material.

We especially thank Dennis Gaitsgory for sharing many inspiring ideas on
Kac-Moody algebras and loop group actions over the years. In particular, the
crucial idea of using Heisenberg groups to prove Theorem 3.4.1 was inspired
by his work [Gai08, §2].

2. Preliminary material

2.1. In this section, we collect some notation and constructions that will
be used throughout the paper.

2.2.  Asin Section 1.2, we always work over a field k of characteristic 0.

2.3. Reductive groups. Throughout the paper, G denotes a split reductive
group, B denotes a fixed Borel with unipotent radical N and Cartan "= B/N.

We let A = Hom(T, G,,,) be the lattice of weights of 7" and Hom(G,,,T")
the lattice of coweights. Let p € A ® Q be the half sum of positive roots and
p € A®Q be the half sum of positive coroots. We denote the pairing between
A and A by (—, —).
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We let, for example, g denote the Lie algebra of GG, b the Lie algebra of B,
and so on.

We let G denote the Langlands dual group to G, considered as an algebraic
group over k. It naturally comes equipped with a choice Borel B with radical
N and Cartan T = B/N.

2.4. Higher categories. Following standard conventions in the area, we
freely use Lurie’s theory [Lur09], [Lurl2] of higher category theory. To simplify
the terminology, we use category to mean (0o, 1)-category.

2.5. DG categories. We let DGCatcoyt denote the symmetric monoidal
category of presentable (in particular, cocomplete) DG categories, referring
to [GR17a, Ch. I] for more details. As in loc. cit., the binary product un-
derlying this symmetric monoidal structure is denoted ®. We recall that
Vect € DGCatcopt is the unit for this tensor product.

2.6. For A € Alg(DGCatcont) an algebra in this symmetric monoidal cat-
egory, we typically write A-mod for A-mod(DGCatcopt), i-€., the category of
modules for A in DGCatcgpt-

2.7. For C a DG category and F, G € C, we use the notation Home(F, G)
to denote the corresponding object of Vect, as distinguished from the corre-
sponding co-groupoid Home(F, §) = Q*°Home(F, 9).

2.8. For €, D objects of a 2-category (i.e., (meaning: (oo, 2)-category) C,
we use the notation Homc (€, D) € Cat to denote the corresponding category
of maps.

When C is enriched over DGCatcopt, we use the same notation for the DG
category of maps. For example, this applies for C = DGCatcont or C = A-mod
for A as above.

2.9. We use the notation (—)V to denote duals of dualizable objects in
symmetric monoidal categories. In particular, for € € DGCatcont dualizable
in the sense of [GR17a], we let € € DGCatcont denote the corresponding dual
category.

2.10. For a DG category € with t-structure, we use cohomological no-
tation C=Y denotes the connective objects and CZ? denotes the coconnective
objects. We let €V = €=0 N €29 denote the heart of the t-structure.

2.11. Classical objects. Where we wish to say that an object lives in some
traditional (1, 1)-category, we often refer to it as classical. So, e.g., a classical
vector space refers to an object of Vect”, while a classical (ind)scheme is being
distinguished from a DG (ind)scheme.

2.12. D-modules. For an indscheme S of ind-finite type, we let D(S) de-
note the DG category of D-modules on S as defined in [GR17a]. For a map
f:8 =T, welet f' and f+.ar denote the corresponding D-module functors.



264 SAM RASKIN

We recall that for S an indscheme of possibly infinite type, there are two
categories of D-modules, denoted D*(S) and D'(S). We refer to [Ras15b] for
the definitions in this setting.

2.13. Group actions on categories. We briefly recall some constructions
from the theory of group actions on categories.

2.14. Suppose H is a Tate group indscheme in the sense of [Ras19, §7];
i.e., H is a group indscheme that admits a group subscheme K C H such that
H/K is an indscheme of ind-finite type.

We recall from [Ras15b] that the category D*(H) is canonically monoidal.
By definition, we let H-mod denote the category D*(H)-mod and refer to
objects of this category as categories with a strong H-action. We typically
omit the adjective strong; where we refer only to an H-action, we mean a
strong H-action.

For € € H-mod and F € D*(H), we let Fx — : € — € denote the
(convolution) functor defined by the action.

2.15. For C € H—mod, we have the invariants category and coinvariants

categories
C = Homy noq(Vect,€), €y :=Vect ® C.
D*(H)

Here Vect is given the trivial H-action.

We let Oblv : @7 — € denote the forgetful functor. Recall from [Berl3,
§§2, 4] that if H is a group scheme with prounipotent tail, then Oblv : 7 — @
admits a continuous right adjoint Av, = Av! that is functorial in €. The
composition Oblv Av, : € — € is given by convolution with the constant D-
module ky € D*(H).

More generally, as in [Ber13, §2.5.4], for any character ¢ : H — G, we
may form the twisted invariants and coinvariants categories

GH’w, C Hyup-
We use similar notation to the above, though (for H a group scheme) we often
write AV*H’¢ = Avf to emphasize the character.

2.16. For C with a right H-action and D with a left H-action, we let
H
C ® D denote the H-invariants for the induced diagonal action on € ® D.

2.17. Given a central extension H of H by a torus T and an element
A € tV, we have a category H-mod), of categories acted on by H with level \,
and such that for A = 0, we have H-mody = H—mod. We refer to [Rasl19,
§11.3] and [Ras21b, §1.30] for definitions.

For the loop group H = G(K), ad-invariant symmetric bilinear forms
K :g®g — k define the above data; cf. loc. cit. In particular, we obtain
G(K)-mod, for any k.
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In the presence of a level, we can form invariants and coinvariants for
group indschemes H’ equipped with a map H' — H and a trivialization® of
the corresponding central extension of H'.

For instance, for H = G(K), this applies to N(K) and G(O), or any
subgroup of either. Indeed, the Kac-Moody extension is canonically trivialized
over each of these subgroups.

Where the level is obviously implied, we sometimes allow ourselves simply
to refer to H-actions, H-equivariant functors, and so on.

2.18. We recall from [Rasl9] that for H as above, there is a canonical
category h—mod of modules for the Lie algebra h of H and a canonical action
of H on h—mod. We recall that if H is not of finite type, the forgetful functor
h—mod — Vect is not conservative.

One has similar reasoning in the presence of a level. For instance, we have
a canonical object g,—mod € G(K)-mod,. We refer to [Ras19, §11] for further
discussion.

2.19. We will sometimes reference the theory of weak actions of Tate
group indschemes. We let H-modyea denote the category of DG categories
with weak H-actions, defined as in [Ras19, §7]. We use the notation € —
cHw @ H,w to denote weak invariants and coinvariants functors.

2.20. We will frequently reference compatibilities between t-structures
and group actions. We refer to [Ras21b, App. B] and [Ras19, §10] for definitions
and basic results.

2.21. Finally, we end with informal remarks.

The theory of loop group actions on DG categories, especially weak ac-
tions, is somewhat involved to set up; cf. [Ras19]. With that said, as a black
box, the theory is fairly intuitive to use and provides quite useful insights.

Therefore, we hope that the sometimes frequent references to [Ras19] and
the more formal parts of [Ras21b] (e.g., Appendix B) will not cause the reader
too much indigestion.

3. Whittaker inflation

3.1. The main result of this section is Theorem 3.4.1, which is one of
the key innovations of this paper. For higher jet groups G, (see below) of a
reductive group G, this result precisely measures how much information is lost
by the corresponding analogues of the Whittaker model.

The proof uses some constructions with Heisenberg group actions on cate-
gories, which we recall here. This material is a categorical version of the usual

80ne can do better: the important thing is to have a specified action of H' on Vect with
the given level.
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representation theory of Heisenberg groups over finite fields. Similar ideas were
used in [Gai08], though the application was of different nature there.

3.2. For H an algebraic group and n > 1, we let H,, denote the algebraic
group of maps from Spec(k|[[t]]/t") to H. In particular, H; = H.

Let {e; € n}iez, be Chevalley generators of n indexed by Zg the set of
simple roots. Let ¥ : N,, = G, be defined as the composition

Now = No/IN.Nlo = T[] Ga)n - e ™ (Ga)n = (Ga) ® K{[H]/1" = G,
i€la k
where the last map is induced by the functional

k[[E]/¢" =k,

Z aiti — Ap_1-

For the remainder of this section, we assume that n is at least 2. The
main result of this section answers the question for € € G,—mod, how much
information do the invariants VN> remember about €7

3.3. Asn > 2, we have a homomorphism
g® G = Gy,
(€ € g) = exp(t"1E).

This map realizes g ® G, as a normal subgroup of GG,,. Note that the adjoint
action of G, on this normal subgroup is given by

(3.3.1)

adjoint
%

Gn = G

If € is acted on by G,, it is thus acted on by g ® G, by restriction, or
|

using Fourier transform, by D(g") equipped with the ®-tensor product. (We
omit the tensoring with G, because we are not concerned with the additive
structure on g here.)
Fix a symmetric, linear G-equivariant identification x : g ~ g" for the
|

remainder of this section. Therefore, @ is acted on by D(g) with its ®-monoidal
structure. In particular, for S a scheme mapping to g, we may form C|g =
€ ®@p(g) D(S).

Define C™# as C|gree where g™® C g is the open subscheme of regular
elements. We have adjoint functors

j! = 8. j*,dR

with the right adjoint j, 4z being fully faithful; indeed, these properties are
inherited from the corresponding situation j' : D(g) = D(g™#) : J,dr for
7 : g — g the embedding.
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Because g™® C g is closed under the adjoint action of GG, and since G,
acts on gV ~ g through the adjoint action of G, it follows that €8 is acted on
by G, so that the comparison functors with € are G,-equivariant.

3.4. Main theorem. We have g® G, NN, = n® G, and under the Fourier
transform picture above, we have

C"®Ga, Y nwGa ~ Clto-

Here f a principal nilpotent whose image in g/b ~ n" is ¢|uec, -
In particular, because f +b C g™8, it follows that CNn¥ ~ @re&:Nn¥  The
following result states that this is the only loss in (N, ¢)-invariants.

THEOREM 3.4.1. The functor

C—CNn¥
G,,—mod™® ——~—— DGCatcont

is conservative, where G,-mod"® C G-mod is the full subcategory consisting
of € with G = C.

Here are some consequences.
COROLLARY 3.4.2. For every C € Gp,—mod, the convolution functor

D(Gn)Nny_w ® GN7L7¢ N e
Hp
is fully faithful with essential image C™%. Here Hpy, = D(Gn)N"XNm(w’_l/’)
is the appropriate Hecke category for the pair (G, (Np,)).

Proof. Note that this functor is G,-equivariant and that its essential image
factors through G,, (by the above analysis). Therefore, by Theorem 3.4.1,
it suffices to show that it is an equivalence on (N,,1)-invariants, which is
clear. (]

COROLLARY 3.4.3. Observe that D(G,)"® admits a unique monoidal
structure such that the localization functor D(Gr) — D(Gy)"™® is monoidal.

Then D(Gpn)*® and Hy,  (as defined in the previous corollary) are
Morita equivalent, with bimodule D(Gy,)N™¥ defining this equivalence.

The remainder of this section is devoted to the proof of Theorem 3.4.1.

3.5. Example: n = 2 case. First, we prove Theorem 3.4.1 in the n = 2
case. This case is simpler than the general case, and it contains one of the
main ideas in the proof of the general case.

Note that by Fourier transform along g ® G, C G2, an action of G2 on €

|

is equivalent to the datum of G on C, and an action of (D(g),®) on € as an
object of G-mod (where G acts on D(g) by the adjoint action). In the sheaf
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of categories language [Gail5|, we obtain
G2-mod =~ ShvCat/(g/q) -

The functor of (N2, ¥)-invariants then corresponds to global sections of the
sheaf of categories over (f + b/N)gg, i.e., the de Rham space of the Kostant
slice. Recall that the Kostant slice f + b/N is an affine scheme and maps
smoothly to g/G with image g"*¢/G.

As the Kostant slice is a scheme (not a stack), [Gail5, Th. 2.6.3] implies
(f+b/N)gg is 1-affine. In particular, its global sections functor is conservative.

Therefore, it suffices to note that pullback of sheaves of categories along
the map (f +b/N)ar — ("¢ /G)ar is conservative. However, in the diagram

f+b/N gt /G

| |

(f +b6/N)ap — (§"¢/G)ar

pullback for sheaves of categories along the vertical maps is conservative for for-
mal reasons (e.g., write de Rham as the quotient by the infinitesimal groupoid),
and conservativeness of pullback along the upper arrow follows from descent of
sheaves of categories along smooth (or more generally fppf) covers; cf. [Gail5,
Th. 1.5.2]. This implies that pullback along the bottom arrow is conservative
as well.

Remark 3.5.1. It follows from the above analysis that the Hecke algebra
JH; (in the notation of Corollary 3.4.2) is equivalent to D-modules on the group
scheme of regular centralizers.

3.6. Heisenberg groups. We will deduce the general case of Theorem 3.4.1
from the representation theory of Heisenberg groups, which we digress to dis-
CUSS NOW.

Let V be a finite-dimensional vector space. In the following discussion,
we do not distinguish between V' and the additive group scheme V ®j G,.

Let H = H(V') denote the corresponding Heisenberg group; by definition,
H is the semidirect product

Vx (VY xG,),
where V acts on VY x G, via
v-(Ne)= A e+ Aw), (v,\c) eV x VY x G,

Remark 3.6.1. Note that H only depends on the symplectic vector space
W =V x VV, not on the choice of polarization V' C W. But the above
presentation is convenient for our purposes.
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Fout
3.7. Observe that G, C H is central. In particular, D(A!) o D(G,)
!
maps centrally to H, where we use D(A!) to indicate that we consider the ®-
monoidal structure and D(G,) to indicate the convolution monoidal structure.
Let H-mod™8 C H-mod denote the subcategory where D(A!) acts through
its localization D(A! \ 0), i.e., where all Fourier coefficients are non-zero.

THEOREM 3.7.1. The functor

e—eV

H-mod™& "~ D(A'\ 0)-mod
s an equivalence.

COROLLARY 3.7.2. The functor

e—eVv
H-mod™® =~ DGCateont

1S conservative.

Proof of Theorem 3.7.1. Note that by duality, V acts on V x Al; explicitly,
this is given by the formula

v (w,c) = (w—c-v,c).

By Fourier transform along V¥ x G, C H, we see that an H-action on € is
equivalent to giving a V-action on € (where V is given its natural additive struc-

ture) and an additional (D(V x Al), é{))—action on € in the category V-mod.

Using the sheaf of categories language [Gail5], this is equivalent to the
data of a sheaf of categories on (Vyr x Alp)/Vir, where we are quotienting
using the above action. The corresponding object of H-mod lies in H-mod™®
if and only if the sheaf of categories is pushed forward from

(Var x Aclm \0)/Vir = Aclm \ 0.

Therefore, we obtain an equivalence of the above type. Geometrically,
this equivalence is given by taking global sections of a sheaf of categories,
which for (Vzg x AlR)/Var corresponds to taking (strong) V-invariants for the
corresponding H-module category. U

3.8. Proof of Theorem 3.4.1. We return to the setting of Theorem 3.4.1.
The remainder of this section is devoted to the proof of this result.

In what follows, for b a nilpotent Lie algebra, we let exp(h) denote the
corresponding unipotent algebraic group.

Let N, = exp(t"~™n[[t]]/t"n[[t]]) € N, for 1 < m < n. For example, for
m = 1, we recover the group n® G, C G,,.

We will show by induction on m that the functor of (N;*,)-invariants is
conservative on G,—mod™®.
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3.9. As a base case, we first show the claim for m = 1.

Here the assertion follows by the argument of Section 3.5. Indeed, we have
a homomorphism G, — G, that identifies G C G2,G,, and g ® G, C Ga, G,,.
Restricting along this homomorphism, we obtain that taking w-invariants for
N-N} C N, is conservative, and a fortiori, taking (NN}, v)-invariants is as well.

3.10. We” now observe that the above argument extends to treat any

In this case, the subalgebra t"~™gl[t]]/t"g][[t]] C ¢[[t]/t"0[[t]] = Lie(Gn)
is abelian. Clearly this subalgebra is normal; the adjoint action of G,, on it is
given via the representation

: m tm— n—m n
Gn = G ~ Lie(Gr) = gl[t]]/t"gllt]] =~ " ™g[[t]/t"al[t]].
We therefore have a homomorphism
G x " "g[[t]]/t"gl[t]] ® Ga — Gn

whose restriction to Gy, is the identity and whose restriction to ¢~ ™g][[t]] /t"g[[t]]
® Gy, is the exponential of the embedding t"~™g[[t]]/t"g[[t] < g[[t]/t"9l[t]]-

Considering € as a category acted on by Gy, x t"~™gl[t]]/t"g[[t]] via the
above map and Fourier transforming as in Example 3.5, we can view this action
as the data of making C into a sheaf of categories on (g[[t]]/t™g][[t]])ar/Gn,dr-
Here we have identified the dual of (t"~™g[[t]]/t"g[[t]]) with g[[t]]/t"g][[t]] via
the pairing (&1,&2) — Res(t "k (&1, &2)dt) (for k as above).

Define

(allt]] /e gl[t]])™™® = allt]/t™ gl[t]] x4 g™*.

By the regularity assumption on €, the above sheaf of categories is pushed
forward from

(allt]) /™ gllt]) 8"/ G ar-

Then (N, )-invariants correspond to global sections of

(f + bl[e]/¢™b[[t])ar

with coefficients in the above sheaf of categories. As the map

(f + blie]l/e™6[[]) — (alltl] /¢ ol[t])™*/ Gn

9The arguments in Sections 3.10 and 3.14 are not needed in the case g = slz, which is what
we use for our application to the localization theorem. Indeed, for g = slz, in the argument
in Section 3.13, one only needs to consider (in the notation of loc. cit.) » = 1, in which case
g1—r = t is abelian, hence the last equation in (3.13.1) holds for trivial reasons. Given that
equality, the rest of the argument goes through for m > 2.

In other words, the reader who is only interested in Theorem 7.14.1 can safely skip Sec-
tions 3.10 and 3.14.
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is a smooth cover (as it is obtained by applying jets to a smooth cover), the
same is true of

(f + o[[e] /¢ b[[E]]) — (allt]] /1™ gl[t]])™**/ G-
As f + b[[t]]/t™b[[t]] is a scheme, the reasoning of Section 3.5 gives us the
desired result.

3.11. In Section 3.14, we will give a separate argument to treat the case
n = 2m — 1; of course, this is only possible for n odd. The argument is not
complicated, but a little involved to set up, so we postpone the argument for
the moment.

Combined with Section 3.10, this gives the result for all m < ’%rl

3.12. We now perform the induction; we assume the conservativeness
for m — 1 and show it for our given m < n. By the inductive hypothesis
as established above (though postponed in one case to Section 3.14), we may
assume m > ”T”

We will give the argument here by another inductive argument. As above,
let g = @,gs be the principal grading defined by the coweight p : G, — G4
of the adjoint group G®1 of G. So, for example, €; € g; and n = Ds>19s. For
r > 1, let n>, = B>, Ps-

Now define

N o= exp (8" n[t] + s [[#] /£ 0[[E]) © N C N

We will show by descending induction on 7 > 1 that taking (N, "", ¢)-invariants
conservative. Note that this result is clear from our hypothesis on m for r > 0,
since then n>, = 0 and N;,"" = N1, Moreover, a proof for all r implies the
next step in the induction with respect to m, since Ny" 1= N, which would
complete the proof of Theorem 3.4.1.

3.13. For r > 1, assume the conservativeness (in the regular setting) of
(N7 p)-invariants; we will deduce it for Nj". The idea is to make a
Heisenberg group act on (N, ’TH, ¥)-invariants so that taking invariants with
respect to a Lagrangian gives (N;,"", 1)-invariants.

Step 1. Define by C Lie(G,,) = g[[t]]/t"g][t] as
t" gy, ® Lie(N/™™).
Observe that by is a Lie subalgebra. Indeed,
[t gay, 7 g [[1)]) C g [2]),
(3.13.1) " g1y, t" s, ] C " Mn, and
[t g1, 7 g1 © P[] C " g[2]],

where the last embedding uses the assumption m > "T‘*'Q
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In the same way, we see that'? Lie(Ny" ’TH) is a normal Lie subalgebra of
ho, and that for £ € by and ¢ € Lie(Ng"" 1), 4 ([¢, ¢]) = 0.

Moreover, b is nilpotent, so exponentiates to a group Hy C G,,.'' Com-
bining this with the above, we see that Hy acts on (Ng* !, )-invariants for

any category with an action of G,.

Step 2. Let gj_, C gi—r denote Ad?f‘l(gr). Observe that the pairing

(3.13.2) V(= -] g @g1—r — k

induces a perfect pairing between g, and g}_,. Indeed, the diagram

id®Ady ! id® Ady
9GR8 —0r Q01— —> 0 gy

w —-—
(o) i*”(*’*)

k

commutes,'? and Ad?f : g§r — g_r is an isomorphism by sls-representation
theory.
Define bj, C by as

" gi_, © Lie(N;™).
Again, b, integrates to a group H).

Step 3. Finally, recall that the adjoint action of Hy fixes Ni" ™' C Hy
and preserves its character ¢ to G,. Let K C Ny be the kernel of ;
clearly K is normal in Hy.

One immediately observes that H := H|/K is a Heisenberg group. The
central G, is induced by the map

Gy =N /K - H)/K = H.

The vector space defining the Heisenberg group is t"~"g,, and its dual is
embedded as t"™"1g]_ = H|/K.
m,r+1
Now observe that our Heisenberg group H acts on GV % for any C
acted on by G, with its central G, acting through the exponential character.
Now the result follows from Corollary 3.7.2.

3.14. As above, it remains to show the result in the special case that
n = 2m — 1 for some m > 2. We do so below.

10The same is true for r instead of 7 + 1, but the statement with the character is not.

" The embedding exponentiates because ho C n + tg[[t]/t"g[[t]], i.e., the Lie algebra of a
unipotent subgroup of G,,. Here we use that m > 2.

12For the proof, write ¥(—) as x(f, —) and use Ad-invariance of &.
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Step 1. We need some auxiliary constructions.

Let £ € g™ be a k-point (i.e., a regular element of g in the usual sense).
Let 3¢ C g denote the centralizer of .

Then g/3¢ carries an alternating form

(p1,92)e = K(E, @1, 02]) = K€, p1], P2).

The second equality holds as & is G-invariant and shows that (—, —)¢ descends
to g/3¢. Moreover, as k is non-degenerate, we see from the last expression that
(—, —)¢ is non-degenerate on g/3¢, hence symplectic.

Step 2. In the above setting, suppose that & lies in the Kostant slice f+b.

In this case, we claim that the composition n < g — g/3¢ is injective, and
that n C g/3¢ is Lagrangian with respect to the symplectic form (—, —)¢.

Indeed, it is standard that 3¢ N n = 0 (this is the infinitesimal version of
the freeness of the action of N on f + b), giving the injectivity.

We now claim that n is isotropic for the above form. For (1, o2 €n, we have

(1, p2)e = K(&, [1, p2])

by definition; we claim this inner product is zero. Let g = ®gs be the principal
grading of g, i.e., the grading defined by the coweight p : G,, — G?d. Then
[p1,p2] € [n,n] = Bs>20s, while £ € f+b C By>_19s. By invariance of x, for
EE gs, Y € gr, we have /{(g, ) = 0 unless r + s = 0, giving the claim.

Finally, 2dim(n) 4+ dim(3¢) = dim(n) 4+ dim(n™) + dim(t) = dim(g), so
n C g/3¢ is in fact Lagrangian.

Step 3. Next, we observe that the above generalizes to the scheme-theoretic
situation in which we allow £ to vary.

More precisely, let W = g ® Ogree be the constant vector bundle on g*°®
with fiber g. This bundle carries a subbundle 3 C W of regular centralizers;
e.g., the fiber of 3 at £ € g(k) is 3¢.

The quotient

W = \7\7/3

is a vector bundle on g™&. Our earlier construction defines a symplectic form
on W. Moreover, after pulling back along the embedding ¢ : f + b — g8,
the constant bundle with fiber n defines a Lagrangian subbundle of the vector
bundle i*(W).

Step 4. We now record some general results in the above setting.

Let S be a scheme of finite type, and let W be a symplectic vector bundle
on S. We denote the total space of W by the same notation.

Define the Heisenberg group scheme H = H(W) over S as the extension

0—=Ggs —+H—=-W=0,
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where H is defined as a scheme to be W xg G, g, and the group law is given
by the formula

1
(w1, A1) - (w2, A2) = (w1 + wa, A1 + Ao + §(w1,w2)), (wi, Ai) € W x5 Gg g,

where the term (w1, ws) denotes the symplectic pairing.

Ezample 3.14.1. For example, if S = Spec(k) and W =W =V x V" with
the evident symplectic form, then the above recovers the Heisenberg group
denoted H (V') earlier.

In the general setting above, let BgH = S/H denote classifying space of
the group scheme H. By a (strong) action of H(W) on a category, we mean
a sheaf of categories on (BgH)4r; by l-affineness of Syg and of the morphism
Har — Saqr ([Gailb, Th. 2.6.3]), this data is equivalent to that of a module
category for D(H) € Alg(D(S)-mod) with its natural convolution monoidal
structure. We denote the corresponding 2-category by H-mod.

As when working over a point, we have a subcategory H-mod"® C H-mod;
Fourier transform for the central G, s C H makes any object of H-mod into a

!
(D(S x A'),®) module category, and we ask that this action factors through
D(S x (A'\ 0)).

LEMMA 3.14.2. Suppose N C W s a Lagrangian subbundle. Then the
functor of strong N-invariants defines an equivalence

H-mod™ = D(S x (A \ 0))-mod.

Proof. In the case where W admits a Lagrangian splitting W = N x NV,
the same argument as over a point applies.

Etale locally, such a splitting exists. Indeed, étale locally, W admits Dar-
boux coordinates (as a torsor for a smooth group scheme is étale locally trivial),
and then by the Bruhat decomposition for the Lagrangian Grassmannian, N
admits a complement after a further Zariski localization.

Therefore, we obtain the result by étale descent for sheaves of categories
on Syg; see [Gails, Cor. 1.5.4]. O

We also need a mild extension of the above.

Suppose we are given a vector bundle W on S equipped with an epimor-
phism 7 : W — W. We formihe group scheme =K XWV\?, Le., the pullback
of the extension H of W to W. We can again speak of (strong) H-actions; we
define regularity as for X, i.e., with respect to the central G,.

LEMMA 3.14.3. Suppose N C W is a Lagrangian subbundle, and suppose
we are given a lift N — W of this embedding over w. In particular, we obtain
an embedding of the additive group scheme N into .

Then the functor of (strong) N-invariants is conservative on FC-mod™®.



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 275

Proof. As in the proof of Lemma 3.14.2, we are reduced by Zariski descent
to the case where S is affine. N N

In this case, the embedding N < W extends to a map W — W splitting
the projection (because W/N is a vector bundle). This gives a map H — H
splitting the canonical projection that is the identity on the centrally embed-
ded Gg,5, and that is compatible with embeddings from N. Therefore, the
result in this case follows from Lemma 3.14.2. (]

We remark that W inherits an alternating form from W, and K may be
interpreted as a degenerate version of a Heisenberg group scheme.

Step 5. We can now conclude the argument. We recall that we have as-
sumed n = 2m — 1 for some m > 2.

We have the following extension of Lie algebras, which is between abelian
Lie algebras:

0 — "= Hg[[t] /i g[[t]) — ¢ g[[t]] /" gl[t] — ™[] /™ g[[t]] — O

~

21/t [[t]] tmtg[[t]] /¢ g[] g

Here we write g to emphasize we are considering the abelian Lie algebra with
vector space g.

As an extension of vector spaces, the above has an obvious splitting (£ € g)
— t"E so we see that the corresponding Lie algebra is a Heisenberg Lie al-
gebra for the degenerate alternating form

g®g— " g[[t]]/t"al[t] C t™a[[t]/t"al[t]
(&,&) = [t ).

Passing to algebraic groups, we see that an action of exp(t™'g[[t]] /t"g[[t])
on C amounts to the following data. First, performing a Fourier transform
along the central exp(t™gl[t]]/t"g[[t]) = t™g[[t]]/t"g[[t]] ® G4, we obtain a
sheaf of categories on

(@™ lltl /" ollt))ar = (alle))/t" " ollt])ar = (allt]]/t" " allt])ar

where the ~ is constructed as in Section 3.10; we denote the sheaf of cate-
gories corresponding to € by C. The remaining data encoding the full action of
exp(t™g[[t]]/t"¢[[t]]) amounts to an action of a degenerate Heisenberg group
H on C. In detail, form a constant vector bundle on (a[[t]]/t™ tg][t]]) with
fiber g, and equip it with the (degenerate) alternating form whose fiber at

& € (gllt]] /e g[[t]) is
(p1,902) € g x g — &([£(0), p1], 02),
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where £(0) indicates the image of £ in g obtained by ¢ — 0. The corresponding
Heisenberg group scheme H defined by this data acts strongly on C.

In these terms, we calculate V7' Y as global sections of C when restricted
to (f+b[[t]]/t™106[[t])ar; by Section 3.10, the assignment (C € G,,—mod"8)
eNZ I s conservative.

Now observe that the constant vector bundle N on f + b[[t]]/t™ 1b[[t]]
with fiber n satisfies the assumptions of Lemma 3.14.3 by Step 3, where the
notation of Step 3 matches that of Lemma 3.14.3 (up to pulling back from
g"& or f + b). We obtain CV='¥ by passing to invariants for this Lagrangian
subbundle; by Lemma 3.14.3, that functor is conservative, giving the claim.

4. Convolution for finite Whittaker categories

4.1. In this section, we extend the results from Section 3. These exten-
sions are given in Section 4.7. This material plays technical roles in Sections 10
and 11. The reader may safely skip this section on a first read and refer back
where necessary.

Key roles are played by Theorems 4.2.1 and 4.3.1. The author finds these

results to be of independent interest.'?

4.2. Main result. The first main result of this section is the following:

THEOREM 4.2.1. For any n > 1 and any C € G,—mod, the convolution
functor

admits a left adjoint. Here D(G)N»~Y is the equivariant category for the
action of N, on G, on the right.
Moreover, this left adjoint is isomorphic to the composition

coact[—2dim Gy ](\ér)z e AV TV gide
—_— AL S

e D(G,) D(Gp)Nm =¥ © @Ne¥,

(Because of the diagonal N, -equivariance and by unipotence of Ny, the functor
AV Y 2ide [2dim N,,] may be replaced by AvinTV g Aviv”’_w[2 dim N,,] or
idp(a,) ® Avi™ Y [2dim N,,].)

The proof bifurcates into the cases n > 2 and n = 1. In the former case,
the argument is quite similar to the proof of Theorem 3.4.1.

13For instance, using Theorem 4.3.1 and standard arguments (relying on [Ras21a]), one
obtains geometric proofs of [Ginl8, Th. 1.6.3] (similarly, Proposition 3.1.2). In particular,
these arguments show that the ¢-exactness from [Ginl8, Th. 1.6.3] applies as well in the
f-adic context in characteristic p (using Artin-Schreier sheaves instead of exponential D-
modules, and needing no special reference to [Ras2la] because “non-holonomic” objects are
meaningless here).
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4.3. Reformulation. First, we begin with a somewhat more convenient
formulation of Theorem 4.2.1.

THEOREM 4.3.1. Let n > 1, and let C € G,, X G,—mod. Then the left
adjoint to'*
GN"XN”’(Q/)’_W Oblv GAN” AvAGn GAGn

is defined, where A : G, — G, X G, is the diagonal embedding. For conve-
nience, we denote this left adjoint by AV?/)’_w.
Moreover, the canonical natural transformation

Av{ ™Y = AvPT¥[2dim N,] € Hompecate,, (GAF, @V XN:(4:=0))

18 an equivalence.

Remark 4.3.2. In the case n = 1 and € = D(G) € G x G—mod, Theo-
rem 4.3.1 is [BBMO04, Th. 1.5(2)]. However, even in the n = 1 case, the result
is new, e.g., for € = D(G ® G).

Remark 4.3.3. In Section 6, we will only need the n > 1 case of The-
orem 4.2.1. We include the proof in the n = 1 case only for the sake of
completeness.

Proof that Theorem 4.3.1 implies Theorem 4.2.1. Suppose € € G,—mod
is given. We form D(G,,) ® C € G,, x G,—mod. By Theorem 4.3.1 (and chang-
ing ¢ by a sign), the map

(D(Gn) ® G)NnXNna(_"/’vd’)

AV*AG"

v Ny, Gn _ ~
= D(G) NP et DY pg) @ e DG, @ e S e

admits a left adjoint. By definition, the resulting functor is the convolution
functor, so that convolution functor admits a left adjoint. We similarly obtain
the formula for the left adjoint in Theorem 4.2.1. O

Below we prove Theorem 4.3.1, splitting it up into different cases.

4.4. Proof of Theorem 4.3.1 for n = 2. We freely use the notation and
observations from Section 3.5.
As in Section 3.5, we have

G9 X Go—mod ~ Sthat/ng/GdRngR/GdR~

“Note that (1, —1) restricted to the diagonal AN, is the trivial character.
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Let € € G2 x Ge—mod, and let C denote the corresponding sheaf of categories
on gqr/Gar X 8ar/Gar. The following commutative diagram provides a dic-
tionary between these two perspectives:

GNQXN%("/)»_'L)[}) ~ F((f —+ b)dR/NdR X (_f + b)dR/NdR7 C)7
GANQ ~ F((b X b+ A_g)dR/NdR’ C),
CAC2 ~ (A~ gar/Gar, C).

The averaging functor @V2*N2:(¥:=¥) _y @AG2 corresponds to !-pullback and
then *-pushforward (in the D-module sense, which tautologically adapts to
sheaves of categories on de Rham stacks) along the correspondence

(f+b)/N
/ \
(f+b)/N x(=f+b)/N g9/G.

The left map A~ is a closed embedding because the Kostant slice (f +b)/N is
an affine scheme, so !-pullback along it admits a left adjoint. The right map is
smooth, so !-pullback along it equals *-pullback up to shift; in particular, the
relevant x-pushforward admits a left adjoint.

This shows that our *-averaging functor admits a left adjoint in this case.

That the comparison map Av, TV AV TY[2dim Ny] effects this isomor-
phism follows from the above analysis.

4.5. Proof of Theorem 4.3.1 for n > 2. The argument proceeds as in the
proof of Theorem 3.4.1; we use the notation from that proof in what follows.
First, observe that it is equivalent to show that the left adjoint Av," =

AV!N"’w to AV*A(G”) : CNnx1¥ _y @A(GY) s defined, with the natural map
Av!w — Av?[2dim N,,] being an isomorphism; indeed, Av2%" factors as

ANp AGn
ENux Ly AV (@Nu XLy ) ANy _ @NaxNuy($,—9) AV", 0AG:

)

and the first functor admits the fully faithful left adjoint Oblv.
By induction on m, we will show that the appropriate left adjoint

R I
is defined and that the natural map
AV!N’T’w — AvpY [2 dim N}
is an equivalence.

As in the proof of Theorem 3.4.1, the base case m = 1 is a consequence of
the n = 2 case proved in Section 3.5. Moreover, as in Section 3.10, essentially



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 279

the same argument applies for m < 5. As in Section 3.14, the natural gener-
alization of Lemma 4.5.1 vector bundles with alternating bilinear forms allows
us to deduce the special case where n = 2m — 1; we omit the details, which
are quite similar to Section 3.14.

"T“. By descending induction on r,
T . EAGH _y eNIMTX1Y

Now in what follows, we assume m >

we will show that the appropriate left adjoint Av,
is defined, and that the natural map Avamr’w o Ay [2dim Np,""] is an
equivalence. The base case r > 0 amounts to the inductive hypothesis for
m — 1.

To perform the induction, we use the following observation.

LEMMA 4.5.1. Let V be a finite-dimensional vector space over k, and let
H = H(V) be the associated Heisenberg group, as in Section 3.6.

Let C € H-mod™8. Then the functor AvY : @€V — @V is an equivalence.

Moreover, if we (appropriately) denote the inverse functor AV!VV, then the
natural map Av!" — AvY " [2dim V] is an equivalence.

Proof. Immediate from the proof of Theorem 3.7.1. O

The relevant Heisenberg group is constructed as follows. Here we use no-
tation parallel to the proof of Theorem 3.4.1, but the meanings are different
in the present context.

Define by as Lie(N,"" x 1) + A(t™ 1g;_,) C Lie(G, x Gy). Define b
similarly, but with g}_,. in place of g;_, (in the notation of Section 3.13).

As in the proof of Theorem 3.4.1, these are nilpotent Lie subalgebras
of Lie(Gy, x G,), and there are associated unipotent subgroups Hj C Hp C
Gy X Gp. Again by the same argument as in loc. cit., (Ng*' ™' x 1) C Hy is
normal, and its character is stabilized by the adjoint action of Hy. We again
let K C (N"""' x 1) denote the kernel of the character and H = H}/K;
again, H is a Heisenberg group.

By induction, we have a !-averaging functor

m,r+1 m,r+1 . m,r+1
Av," Y= AV [2dim N @AGR —y @NeTTT X LY

which evidently lifts to invariants for the additive subgroup A(g}_,) € H. By

Lemma 4.5.1, we can !-average (GN’T’TH“W)A(Q/PT) — @Nn""X1L¥ and this co-

incides with s-averaging up to suitable shift. (Moreover, the resulting functor
m,r+1 ’ ~ m,r . . .

gives an equivalence (CVr i xLyAle—,) = @' x1% ) This gives the claim.

4.6. Proof of Theorem 4.3.1 for n = 1. Let B~ be a Borel opposed to B
with radical N~.

Step 1. We have the functor

Obl - Av. - —-.
U - GAG v GAB v eN XN AT'
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This functor admits the left adjoint

= . N XNTAT Oblv EAB~ Av, EAG

with Av) = Av,[2dim G/B~] by properness of G/B~.
Recall from [MV88] that the counit map Z¥ — id splits. Indeed, as in
loc. cit., EV is computed as convolution with the Springer sheaf in D(G)A4¢ =

D(AG\(G x G)/AG), and by an argument in loc. cit. using the decomposition
Ad
theorem, the Springer sheaf admits the skyscraper sheaf at 1 € G /G as a

summand.
In particular, every F € CA% is a summand of an object of the form Z(F7).

Step 2. Next, we recall a key result of [BBM04]. Theorem 1.1(1) of loc. cit.
implies that we can !-average N ~-equivariant objects to be (N, )-equivariant,
and this !-average coincides with the x-averaging after shift by 2dim N. (Note
that the authors work in the setting of perverse sheaves, but their argument
works in this generality; cf. the proof of [Ras21b, Th. 2.7.1].)

Applying this for G x G instead, we see that for 5 € N *N™ (or F €
N XNT-AT) 'wwe can form Av!w’_w) F e @NXN.(¥,=¥) "and the natural map

AV 5 5 AT 4 dim N
is an isomorphism.
Step 3. Now suppose that F € CN *N"AT We claim that Av, Vg

coincides with Av, Y 2(F); in particular, the latter term is defined.

By base-change, Av, Y =(F) should be computed as follows. We have a
functor

. _ B~ G AN
Avy = Av,[2dimG/B™]: D(N\G) ® € — D(N\G) ® C = C=".

Also, F defines an object F (i.e., wN\Ggfrr) in D(N\G)% C. Finally, the recipe
says that to compute AV;/}’_tb =(9), we should form AVg(g") € €AY and then
further l-average to CN*N:(¥,=¥)

Observe that F carries a canonical Bruhat filtration. More precisely, for
w an element of the Weyl group W, let ., denote the locally closed embedding

B
N\NwB™ < N\G. Let ¥ € D(N\NwB™) ® C be the object induced by
F, so JF is filtered with subquotients iy, « gr(F™).

B~ w
Let N¥ = N N Ady(B~). Then D(N\NwB~) ® € ~ CAN"_ since
NU/
NwB~ = N x B~, where N¥ maps to B~ via Ad,-1. The object % is then'?

5Here g - F is by definition §, * F, and we are using the diagonal action of G on C.
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w - F, which we note is equivariant for Ada, (N~ x N7 - AT) D N¥ x N* D
AN™.

Then observe that up to cohomological shift, Avyiy . r(F¥) € €AV is
obtained by *-averaging w-F from AN™ to AN, since Av, is !-averaging from
B~ to G, and therefore coincides with *-averaging up to shift.

Now for w # 1, recall that the character v is non-trivial on NNAd,(N7).
Therefore, l-averaging to (N x N, (1), —1)))-equivariance vanishes on @NV"“*N*,
In particular, this l-averaging is defined. (The same applies for *-averaging.)

This vanishing implies

AN 5(3) ANV 1

(Here 1 € W is the unit in the Weyl group.) We note that ' = OblvF € € =

B
D(NB™) ® C. Since this last l-averaging is defined by [BBM04, Th. 1.1(1)],
we obtain the result.

Step 4. We have now shown Av;p’_¢ F is defined for F € CACG. All that is
left is to check that the natural map

Av, TV F 5 AvP Y F[2dim N)

is an isomorphism.
We may assume F = Z2G for G € GV *N7"-AT 1 this case, the assertion
is a straightforward verification in the above argument.

4.7. Application construction of resolutions. For the remainder of the sec-
tion, we assume n > 2.

For € € G,,—mod, let j': C = Cre8 : J«,dr be as in Section 3.3.

For € = D(G,,), let 51 € D(G,,) be the skyscraper D-module at the iden-
tity, and let 6;° := j, 4rj'(61). Note that for any € € G;,—mod, the convolution
functor §;° * — is isomorphic to j. 4rj ' as endofunctors of C.

LEMMA 4.7.1. The object §)°® lies in the full subcategory of D(G,) gen-
erated by the essential image of the functor

D(Gp)Vm 7T x D(G,) Nt — D(Gp) V™Y @ D(G)"" — D(G)

under finite colimits and direct summands. Here the first factor D(G,,)Nm=%
has invariants taken on the right, D(G,)N»% has invariants on the left, and
both terms are considered with their natural t-structures.

Proof. Suppose € € G,,—mod. By Theorem 4.2.1, the convolution functor

D(Gp)M Y g ey e
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admits a left adjoint. Moreover, this left adjoint is a morphism in G,—mod
(where a priori, it is lax). Passing to (N, 1)-invariants, we see that the functor

:}(’-Nn,l/) ® ewa N eNnﬂZ)

admits a left adjoint that is a morphism of Hy;, y-module categories (for Hy;,
as in Corollary 3.4.2).
By the above remarks and [Gail5, Cor. C.2.3|, the morphism
D(Gp)" ¥ @ N 5 D(G,)N Y @ N
Hiy, o
admits a monadic (discontinuous!) right adjoint. By Corollary 3.4.2, the right-
hand side maps isomorphically onto C*®8.

Let conv : D(Gp)V % ® €M% — @ denote the convolution functor,
let conv’® denote its (discontinuous!) right adjoint, and let 7" = conv o conv’® :
€ — € denote the corresponding monad. Clearly conv factors through C*%, and
conv? oj, 4 is the right adjoint to the corresponding functor D(G,)N» =% @
CNn¥ s @ree,

Thus, the monadic conclusion above shows that for any F € €8 j*élR G,
the geometric realization |7*(J)| € € maps isomorphically onto J.

We now specialize to the case € = D(G),) and F = §;°®. Note that 6;® is
holonomic in D(Gy,) and therefore compact. Therefore, as

5% = [T*(67%)] = colim |T*(5}%) <

(for | — |<, the usual partial geometric realization, i.e., the colimit over AZ),
we obtain that 6;® is a direct summand of |T*(5;°®)|<, for some 7. -
We conclude in noting that T is left t-exact up to shift as conv is both
left and right ¢-exact up to shift. Any object of D(G,,)VN» =% @ D(G,)N¥ =
D(Gp, x Gp)Nn>*Nno(=¥9) bounded cohomologically from below lies in the full
subcategory generated by the image of D(G,)N» =%+ x D(G,)N»¥*, so we

obtain the claim. O

We obtain the following result, which is a sort of effective version of The-
orem 3.4.1.

COROLLARY 4.7.2. Suppose that n > 2 and C € G,-mod. Then for any
F € C'8, F lies in the full subcategory of C generated under finite colimits and
direct summands by the essential image of the convolution functor

D(Gp)Nm¥ @ ¥ 5 e
Moreover, if € has a t-structure compatible with the action of Gy, on it, and

if F € G NECT, then F lies in the full subcategory of € generated under finite
colimits and direct summands by the essential image of the convolution functor

D(Gy) N8t x Nt D(G,) MY @ @Y e
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Proof. Suppose G1 € D(G,)VN» =%+ and Gy € D(G,,)V»¥*, with conven-
tions for the actions as in Lemma 4.7.1. Then GoxF € CV¥ 50 G1xGoxF € €
lies in the essential image of the convolution functor.

Moreover, in the presence of a t-structure on € as in the second part of
the assertion, Go * F € CNn¥'+ and Gy % Go « F € CF lie in the essential image
of the functor considered in the second part.

Now we obtain the result by Lemma 4.7.1. O

COROLLARY 4.7.3. For any € € Gp-mod, the functor Av?b’fw G =
D(Gn)Nn’w ® € restricts to a conservative functor on C8.

Proof. Let F € €8, and assume JF is non-zero. We need to show that
AV (F) # 0.

By Corollary 4.7.2, there exists G € D(G,,)N»¥ with GxF # 0 in CNw?,
As D(G,,)N»¥ is compactly generated, we may assume that G is compact.

Note that D(G,,)¥»¥ is canonically dual as a DG category to D(G,,)N» ¥,
Let DS : D(G,,)N»~% — Vect denote the functor dual to the compact object
9. (Explicitly, this functor is given as Hom out of the Verdier dual to G.)

Then the convolution § x F may be calculated by forming Av*’fw(ﬁ') €
D(Gp)N=% @ CNe¥ and then applying DG ®iden,.s. In particular, we deduce
that AvY"Y(F) is non-zero. As AvY ¥ (F) coincides with Av, ~Y(F) up to
shift, we obtain the claim. O

5. Most PGLs-representations are generic
5.1. 'We now prove the following result.

THEOREM 5.1.1. Let G = PGLy, and let C be acted on by G(K) with
level k. Then @ is generated under the action of G(K) by Whit(€) and CT,
where I C G(K) is the radical of the Twahori subgroup. That is, any subcate-

gory of C that is closed under colimits contains Whit(C) and el and is closed
under the G(K) action is C itself.

Remark 5.1.2. This result is reminiscent of the existence of Whittaker
models for those irreducible smooth representations of GLg over a locally com-
pact non-Archimedean field with non-trivial restriction to SLo.

However, in Theorem 5.1.1, I cannot'® be replaced by G(K): this can be
seen by applying Bezrukavnikov’s theory [Bezl16] to local systems with non-
trivial unipotent monodromy; compare with the ideas of [AG15] in the spher-
ical setting. Note that such local systems are outside the scope of arithmetic
Langlands because they are not semisimple.

SHowever, I can be strengthened somewhat: one can take invariants with respect to the
Iwahori subgroup of SL2(K), i.e., the canonical degree 2 cover of Iwahori.
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5.2. Review of adolescent Whittaker theory. We prove Theorem 5.1.1 us-
ing the theory of [Ras21b, §2]. For convenience, we review this here.

Let G be an adjoint!” group, and let € € G(K)-mod,, be acted on by G(K)
with some level k. We use the notation of Section 3. Let K,, C G(O) C G(K)
denote the n-th congruence subgroup, and observe that G,, acts on CX».

For n > 0, define Whit="(C) := (CK»)Nn¥ There is a natural functor
Whit="T1(@) — Whit="(C),

I Avfn(_ﬁ(t) * gj)a

which is denoted ¢}, ,, 41 in loc. cit.

THEOREM 5.2.1 ([Ras21b, Th. 2.7.1]). The functor i\, ., admits a left

n,n-+
adjoint vy n11,. This left adjoint is given by convolution with some D-module

on G(K).

Moreover, there is a natural equivalence

colim Whit="(€) = Whit(€) € DGCatcons.

MNylp,n41,!

The structural functors Whit="(€) — Whit(C) are left adjoint to the natu-
ral functors AvEr o(Onpe) * —) = Whit(€) — Whit<"(@). In particular, ev-
ery object § € Whit(C) is canonically a colimit (in C) of objects F, with
S5(imy * F € Whit="(C).

5.3. Proof of Theorem 5.1.1. We can now prove the main theorem of this
section. Below, G = PGLs. )

Let € C € be a G(K)-subcategory containing Whit(C) and Cf. We wish
to show that ¢’ = C.

Recall that € = colim,, @%» € DGCateont. Therefore, it suffices to show
that € contains CX» for all n > 1. We do this by induction on n.

In the base case n = 1, recall that for any D acted on by'® G, D is the min-
imal cocomplete subcategory of itself closed under the G-action and containing
DN indeed, this follows from the main theorem of [BZGOQQO].19 Applying this
to D = K1 we find that CX1 can be generated from C! using the action of
G C G(K).

'"This is only for the convenience of using the action of 5(t) € G(K) on C. In fact,
[Ras21b] uses different indexing conventions than we use here, and which are better adapted
to a general reductive group.

18Finite-dimensional, and here arbitrary reductive is fine.

90r it follows from usual Beilinson-Bernstein localization theory: by reduction to the case
D = D(@), one finds that D" is a colocalization of (D™)?**. Then use conservativeness of
weak invariants ([Gail5, Th. 2.2.2]).



AFFINE BEILINSON-BERNSTEIN LOCALIZATION 285

Now suppose the claim is true for n; let us show it for n + 1. Note that
n+1 > 2, so we may apply the methods of Section 3 to @%n+1 with its canonical
Gri1-action. In the notation of loc. cit., we have adjoint functors

.l .
I CEnt1 = (eKnH)reg L JudR-

Note that (CEnr+1)re&8 C @ by Corollary 3.7.2, as Whit="*1(@) = (CKn+1)Nnt1.¥
C €' by hypothesis on €’ (and Theorem 5.2.1).

Therefore, it suffices to show that Ker(j!) C €. Then we observe that
g8 = g\ 0 for g = sly, so (in the notation of Section 3.3), Ker(j') = €Kn+1]g =
CHEn as we have the short exact sequence

1-2g0G, - Kpy1 — K, — 1.
But €%~ C @ by induction.

Remark 5.3.1. The above is the descent method discussed in the intro-
duction. As this argument plays a key role in the paper, we reiterate the idea:
with notation as above, for € € G(K)-mod,, Ker(AvEn : @Knt1 — @Kn) is the
category (CKn+1)8 understood in the sense of Section 3.3 for the correspond-
ing Gp4i1-action. By Theorems 3.4.1 and 5.2.1, this kernel may therefore be
functorially described in terms of the Whittaker model for C.

One can then try to verify some property of objects of € as follows:

(1) Reduce to showing the property for objects in €%» for some n.

(2) Use the Whittaker model and the above observations to inductively reduce
to the n =1 case. )

(3) Use [BZGO20] to reduce the n = 1 case to a property of objects in €.

6. Kac-Moody modules with central character

6.1. In this section, we study categories of critical level Kac-Moody rep-
resentations with central character restrictions. We refer back to Section 1.9
for a review of standard notation at critical level.

First, for reductive G and any n > 0, we will introduce a certain category

gcrit*mOdordn,naive € DGCateont

with a critical level G(K)-action.

In the above, the subscript ord,, indicates that we look at gei-modules
on which the center 3 acts through a certain standard quotient 3 — 3,, and
in a suitable derived sense. Equivalently, under Feigin-Frenkel, these can be
thought of as representations scheme-theoretically supported on Opé" C Opgs
where Opén are opers with singularity of order < n; cf. [BD, §3.8] or [FGO06, §1].

For n = 0, 30 = 3. Here the central character condition is the regularity
assumption from Section 1.10, so we use the notation reg in place of ordg.
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In the spirit of [Ras19], the subscript naive indicates that this is not the
best derived category to consider. For instance, ﬁcrirmodordmnaive is not com-
pactly generated, and for n = 0, the analogue of Conjecture 1.11.1 fails for it.

Following [FG09a, §23], we introduce a somewhat better renormalized cat-
egory gerit-modorq, - This category will have a forgetful functor

gcrit*mOdordn — gcritmedordn ,naive

that is t-exact for suitable t-structures and an equivalence on eventually co-
connective subcategories.

However, this renormalization procedure is somewhat subtle, and there
are many basic questions about gerit—moderg, that I do not know how to an-
swer. For instance, I cannot generally show that there is a G(K)-action on
Gerit—modorg, compatible with the forgetful functor above. We refer to Sec-
tion 6.10 for further discussion.

The material of this section is technical. Proposition 6.6.1 and Lemma 6.9.3
are the key points. After understanding the statements of these results, the
reader should be equipped to move on to future sections.

Finally, we highlight that the material of this section relies on [Ras19, §11]
and extends the material from loc. cit.

6.2. Notation at critical level. As in [Rasl9, §11], we use the following
notation. We refer to [FGO06, §1] for background on opers.

First, Op denotes the indscheme of G-opers on the punctured disc. We
let Opé" C Opg denote the subscheme of opers with singularities of order < n.

We recall that Opgn is affine for every n; we let 3, denote the correspond-

ing algebra of functions, so Opé" = Spec(3n). We recall that 3,, is a polynomial
algebra in infinitely many variables.

We let 3 denote the commutative @!z)—algebra limy, 3, € ProVect”, the limit
being taken in ProVect”; we refer to [Ras19] for the terminology on topological
algebras used here. We remark that Ops = Spf(3).

By Feigin-Frenkel (see [FF92] and [BD, §3]), 3 naturally identifies with
U(gerit), the twisted topological enveloping algebra of Gerit -

— 3 cri =~ Q@
We let Vg == mdtgngf[t”(k:) € Perit—mod .

6.3. Naive categories. We begin with some preliminary notation.
First, if A € CoAlg(DGCateont) and M (resp. N) is a right (resp. left)
comodule for A, we let

A
M @ N € DGCateont

denote the cotensor product of these comodules. By definition, this means
we regard A as an algebra in the opposite category DGCatc> . and form the
usual tensor product there. This cotensor product may be calculated as a
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totalization in DGCateopt:
A
MEN=Tot (MeNZM@ASNF ).

Next, for S a reasonable indscheme in the sense of [Ras19, §6], recall that
we have the compactly generated DG category IndCoh*(S) € DGCatcont. This
construction is covariantly functorial in S. In particular, if S is a reasonable
indscheme that is strict,’’ then IndCoh*(S) is canonically a cocommutative
coalgebra in DGCatcont.

6.4. Note that Op is a strict, reasonable indscheme. By Theorem 11.18.1
of [Ras19], gerit—mod € G(K)-modei; is canonically an IndCoh*(Opz)-comodule
(in G(K)—modgyit ).

For n > 0, define

N . <n IndCoh™(Opg)
gcrit*mOdordn,naive = IndCoh (Opé ) ® gcritmed S G(K)*mOdcrit-

Let 4,, denote the embedding Opén — Opg. We abuse notation in letting
in%  Gerit—MOdord,, naive — Gerit—mod denote the functor
;IndCoh '"dc°g(0pé)

T,* ldacritmed :

By [Ras19, Lemma 6.17.1-2], this functor admits a continuous right adjoint
\ IndCoh™ (Op) .

i, idg_ . ~mod, Which we also denote it,. Note that i, . and 4., are
(by construction) morphisms of IndCoh™(Op)-module categories.

Similarly, for m > n, we have a natural adjunction

. ~ ~ .1
tnm,x - gcritmedordn,naive — gcritmedordm,naive : Znym

with 4p« = Zm« O inmx. Note that i,,,. actually admits a left adjoint

*

inm as well as a right adjoint; this follows because the closed embedding

inm Opén — Opgm is a finitely presented regular embedding.

Remark 6.4.1. For a reasonable indscheme S, we let IndCoh'(S) denote the
dual DG category to IndCoh*(.S); this construction is contravariantly functorial
in S. For strict S, IndCoh!(S ) is therefore a symmetric monoidal category.

In these terms, we can reformulate the above definition (to use monoidal
categories instead of “comonoidal” categories) as

acrit*mOdordn,naive = H0m|ndcoh!(opé),mod(IndCOh!(Opén)aﬁcrit*mOd)-

20Gee loc. cit. for the definition. The relevance here is that this condition implies, e.g.,
that the natural functor IndCoh*(S) ® IndCoh*(S) — IndCoh™(S x S) is an equivalence.
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6.5. We record what symmetries the above construction provides.

As indicated above, there is an evident critical level G(K)-action on
acrit*mOdordn,naive-

Moreover, Gerit—mModord,, naive 1S an IndCoh*(Opg")—comodule category, or
equivalently, an IndCoh!(Opgn)—module category. Because Opén is the spec-
trum of a polynomial algebra (on infinitely many generators), the natural
symmetric monoidal functor QCoh(Opén) — IndCoh!(Opgn) is an equiva-
lence. Therefore, we may as well regard ﬁcritfmodordmnawe as equipped with a
QCoh(Opén)—action commuting with the critical level G(K)-action.

In our notation, we regard G(K) as acting on the left on ﬁcrit—modordmnaive
by convolution —x —, and we regard QCoh(Opgn) as acting on the right by an
action functor

- ® —
<n

Op=
I~ <n G ~
gcritmedordn,naive ® QCOh(Opa ) ? gcritmedordn,naive-

6.6. The following result summarizes the basic properties of the above
construction.

PROPOSITION 6.6.1.

(1) The functor ins : Gerit—MOdord, naive — Berit—mod is comonadic, and in
particular, conservative.

(2) Gerit—MOdord,, naive admits a unique t-structure for which iy s is t-exact.

(3) The natural map

. . .
colim d,, 1 in mx — Tyl x
m>n

18 an isomorphism.
(4) The natural functor

COhm Herit 7m0dordn,naive — Yerit -mod € DGcatcont

Tytn,m,*

s an equivalence.

Proof. Let A*® := colim, A", i.e., the ind-finite type indscheme version
of infinite-dimensional affine space. Using standard choices of coordinates on
Opg, one find an isomorphism Ops = Opén xA® so that the diagram

Opé"

id x0

~

Opén x A

commutes.
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We then have?!
IndCoh* (A>) _

Homlndcoh;(Aw)fmod (Vect, gerit—mod) = Vect ® Gerit—mod
— acritmedordn,naive S G(K)medcrit-

Take A = IndCoh!(A‘x’) as a monoidal category. Note that the monoidal
product ' ‘
—®—:A®A S IndCoh'(A® x A®) 25 IndCoh!(A™®) = A
admits a left adjoint A€M that is a morphism of A-bimodule categories (by
the projection formula). It is easy to see in this setting that for any A-module
category M, the action functor

act : AQM — M

admits a continuous left adjoint act” that is a morphism of A-module cate-
gories, where the left-hand side is regarded as an A-module via the action on
the first factor. It follows that for any pair of A-module categories M, N, the
cosimplicial category
HompGCatogn (M, N) = Hompacateon (A @ M, N) = - -
satisfies the comonadic Beck-Chevalley conditions.?? Applying this for M =
Vect and N = geit—mod, we obtain (1).
Next, we show (4). We calculate

Cth gcritmedordn ,naive

Nyln,m,*
= hm gcrit*mOdordn,naive
ln,m
IndCoh™(Opg) )

= lim (IndCoh*(Opén) ® Gerit—mod

— lim Tot (lnchh*(opg") ® IndCoh*(Op)®* ®§Cﬁrmod)
— Tot hm(lndcoh*(opgn) ® IndCoh*(Opg)®* ® ﬁcmfmod>
£ Tot ((hm IndCoh*(OpZ")) ® IndCoh*(Opg)®* ® Geriemod)

— Tot <IndCoh*(Opé)) ® IndCoh*(Opg)®* ®ﬁcritfmod>

. IndCoh*(Op) N .
= IndCoh*(Opy) ® gerit—mod = gerit—mod

2LOf course, IndCoh'(A°°) and IndCoh*(A*) coincide with usual IndCoh as A is locally
of finite type. We include the notation to clarify whether this category is being viewed as an
algebra or coalgebra in DGCatcont-

228ce [Lurl2, §4.7.6] or [Gail5, §C] for background on the Beck-Chevalley theory; our
terminology here is taken from the latter source. We especially note [Gail5, Lemma C.2.2],
which is essentially dual to the present assertion.
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as desired; here the only non-trivial manipulations are the first, which expresses
that a colimit in DGCat,oyt under left adjoints is canonically isomorphic to the
limit under right adjoints, and the one labeled x, where the limit past tensor
products is justified because we are tensoring with compactly generated, hence
dualizable, DG categories.

We deduce (3) immediately from (4) and [Gail2, Lemma 1.3.6].

It remains to show (2). Given (1), a standard argument reduces us to
checking that zn*z'n is left t-exact.

By the above Beck-Chevalley analysis, zn*z'n may be calculated by apply-
ing the composition

coact mindCoh i

Gerit—mod —— IndCoh™(Opg) @ Gerit—mod ———— IndCoh™(A™) ® Gerig—mod

and then applying the right adjoint to this composition; here 7 : Opgs — A
denotes the projection. It suffices to show the composition is t-exact (for the
tensor product t-structure on the right-hand side); we will show each of the
functors appearing here is t-exact. The functor coact is t-exact by [Rasl9,
Lemma 11.13.1]. Then 7i"4%°h is t-exact because 7 is affine, and similarly for
mindCoh & id by [Ras21b, Lemma B.6.2]. O

6.7.  We continue our study of gerit—modord,, naive-

LEMMA 6.7.1. Suppose that F € ﬁcritfmodo. Then the adjunction map
HO(i 414 (F)) = F € Geric-mod® is a monomorphism with image the mazimal
submodule of F on which 3 acts through 3.

Proof. The forgetful functor geit—mod — Vect admits a unique lift

Gerit—mod M IndCoh™(Opg) = 3-mod,en OV, Vect
with Oblv*™ a morphism of IndCoh*(Op)-comodule categories. By [Ras19,
Lemma 11.13.1], Oblv®™" is t-exact, and on the hearts of the t-structure cor-
responds to restriction of modules along the homomorphism 3 < U (@erit)-

As Oblv*™ is a map of IndCoh*(Op;)-comodule categories, it intertwines
in iy, with the similar functor on IndCoh*(Opg). It is clear that H? of that
functor extracts the maximal submodule on which 3 acts through 3,, giving
the claim. (]

COROLLARY 6.7.2. The map ﬁcrit*mod(,@rdn aive — Berig-mod” s fully

faithful. Its essential image is the full subcategory of the target consisting of
modules on which 3 acts through 3.

Proof. Immediate from Lemma 6.7.1 and Proposition 6.6.1(1). O
6.8. We use the notation

P= liranVcrimm € Pro(/g\critmed@) c Pro(/g\crit)-
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Here the limit is over the natural structure maps Verit m+1 — Verit,m, and we
emphasize that the limit occurs in the pro-category (or rather, in either pro-
category). We remark that the pro-object P corepresents the forgetful functor
ODblv : gerit—mod — Vect; this is clear of its restriction to geit—mod™, and then
the claim follows generally as the objects Vit are compact in gerit—mod.

Clearly Oblv(P) € Pro(Vect”) is U(Geit); its g—algebra structure may be seen
using [Ras19, Prop. 3.7.1].

For m > 0, let Vora, m € Berit—mod
Q

ordy, ,naivi

Q@

ordy,,naive

—~ Q .
© - gcrit_mOd , 1.6, Vordmm = Vcrit,m/In-

denote the minimal quotient
of Verit,m lylng in gerig—mod
Define

:Pordn = li%nxlordn,m € Pro(/g\crit_mOd(()?rdmnaive) C Pro(/g\crit_mOdordn,naive)
to be the corresponding pro-object; we again emphasize that the displayed
limit occurs in the pro-category.
There is an evident canonical morphism

TP = ipPord, € Pro(ﬁcritfmodo) C Pro(gerit)-

LEMMA 6.8.1. As an object of Pro(gerit —mod;rrdn naive)s Pord, corepresents
the composition

+ in,* ~

~ Oblv
gcrirmodommIlaive % Gerie—mod T — Vect.

+

ordy,naive’

More precisely, for F € gerit—mod the composite map

—OoT

1’107111Pm( )(Tordn7 EF) — @Pro(ﬁcmfmod) (in,*ﬂ)ordna Zn,*gr) —

Jerit ’mOdordn ,naive

H07rnPro(§cm -mod) (fP7 in,*?) = Oblv(im*g:)

s an isomorphism.
Proof.

gr%mnaive has the property that i, .5

is compact in geic—mod. Then we claim that for any » > 0, G is compact as
an object of the category ﬁcritfmodgr;: Haive-

Indeed, this is standard from Proposition 6.6.1(1)-(2); see the proof of
[Ras19, Lemma 6.11.2].

Step 1. First, suppose § € gerit—mod

Step 2. Suppose G as above, and let F € ﬁcrit*mc’d;«dn,naive,' Then we
claim that the natural map
(6.8.1)
CT21>11771:1 7Homacrit*m0dordm,naive (in’m7*97 in7m7*g) - 7H0m§crit*m0d (in7*97 /Ln7*gj)

is an isomorphism.
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Indeed, we have

C,r%l;r’r? 7H0mﬁcrit7m0dordm ,naive (/Ln’m’* 9’ Zn’m’*:}‘)
- C79Ll>1£1n 7H0m§crit7m0dordn ,naive (9 ’ 2n7m2n7m7* 3')
Step 1

. .l .
Hom/g\critfm()dordn ,naive (9 ’ C7?11>117§1 ln,mznvmy* St)

Prop. 6.6.1 (3) g . .
= Hom/g\critmedordn,naive (97 anﬂ”*g:) = 7Hom/g\crit7m°d (7171,*9, Zn’*gr)'

We remark that if F is in cohomological degrees > —r, then each z'nmznm*(ff)
is as well (because the functors i, ., « are t-exact); this justifies the reference
to Step 1. We also note that the composite identification here is easily seen to
be given by the map considered above.

Step 3. Next, recall the functors ij, ,,, from Section 6.4. We claim that
in.m(Verityn) = Vord,,m- Clearly the right-hand side is the top (= degree 0)
cohomology of the left-hand side, so this amounts to arguing that the lower

cohomology groups vanish.

As in the argument for Lemma 6.7.1, we have a commutative diagram??

%
n,m

gcritmedordm,naive > gcritmedordn,naive

-k
n,m

IndCoh*(OpZ™)

IndCoh*(OpZ").

The vertical arrows are the natural restriction maps. They arise from Oblv¢™"

(from the proof of Lemma 6.7.1) and the evident identification

< < IndCoh*(Op)
IndCoh™(Opz") = IndCoh™(Op,") ® IndCoh*(Opg),

and similarly for m. These vertical arrows are t-exact and conservative on
bounded below subcategories as this is true for Oblve™.

%To be explicit, we recall that by the definition from [Ras19, §6], IndCoh*(Opg") is
Ind(Coh(Opé”)). As Opé” is the spectrum of a (infinitely generated) polynomial algebra,
Coh(Opé") = Perf(Opé"). Therefore, IndCoh™ in the bottom row may be replaced by the
more familiar QCoh. The functor i}, ,,, in that bottom row is then the standard pullback
functor.
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The functor iy, ,,, * Gerit—MOdord,, maive — Gerit~MOord,, naive 1 easily?? seen
to be left t-exact up to shift. Therefore, it suffices to see that the underlying
object of IndCoh*(Opén) defined by 4, ,,,(Vesit,im ) lies in cohomological degree 0.

This follows from the commutativity of the above diagram and the fact
that Veyit m € IndCoh*(Opém)QQ defines a flat sheaf by [FG06, Lemma 7.2.2]
(which is based on [Mus01]).

Step 4. We now deduce the claim.

In what follows, we consider Vi, as an object of ﬁcritfmodo

ord,, ,naive’ we

let @y« Verit,m denote the corresponding object of ﬁcritfmod@.

=~ oqt
For ¥ € gerit modordmnaive, we calculate

iPordn ) ?)

= CWO,LI;IHI:I 7H0m§crit7m°dordn ,naive (Vord”’m’ g:’)

Step 3 . -k
- Cgl;gl I—Ioim/gxcritfmc’dordn ,naive (’anm

(Vcrit,nw Z‘n,m,*?)

MPro(ﬁcrit*mOdordn naive) (

Vcrit,ma 9:)

= CWO.LI;? I_Ioimﬁcrit*m‘)dordm ,naive

- C7911>1’rrlrl C7’O>1%r¥zn Hom;g\critfmc’dordr,naive (Zm,’r,*VCrit,mu Zn’r’*g:)

Step 2 . . . .
- C7911>1£ln 7H0m§mrmod (Zm7*VCFit7m7 Z’Vl,*‘rf) = 7H0mPro(§critfmod)((‘P7 Zm*g:)

as desired. O

In what follows, we let Oblv : Gerit—modord,, naive — Vect denote the for-
getful functor considered above, i.e., Oblv i, ..

+

ordy, ,naive

COROLLARY 6.8.2. The (non-cocomplete) DG category gerit —mod
1s the bounded below derived category of its heart.

Proof. Note that U(Gerit)ord, = ObIv(Pora,) € Pro(Vect”) by construc-
tion. Therefore, the result follows from [Rasl9, Prop. 3.7.1]. O

It follows that ﬁcritfmodjrdn naive 1dentifies with the similar category con-

sidered in the works of Frenkel-Gaitsgory, e.g., in [FG06, §23].

24For one, it is (non-canonically) isomorphic to lem up to shift. Alternatively, in m, %5, m
is calculated as the composition

coact

~ * <m ~
gcritmedordm,naive —_— IndCOh (OP(T; ) ® gcritmedordm,naive

in,m,* by m,®id

~

FIndCoh(Opéﬁlyi)@id
gcritmedordm ,naive

IndCoh™ (Opém) & ﬁcrit*mOdordm,naivc

giving the claim by considering the standard finite Koszul filtration on the endofunctor
in,m,«ip,m of IndCoh*(OpZ™).
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6.9. Renormalization. We now introduce a renormalized version of the
above categories following [FG09a, §23|.
Define gerit-modg,q C Berit~MOdord,, naive as the full subcategory of ob-

jects F such that 4, .(F) is compact in gerig—mod. By Proposition 6.6.1 and

+

.. 5y ~ . ~
the similar fact for gerit—mod, gerit—modg,q € @erit—mod ordy, naive-

Ezxample 6.9.1. For m > n, Koszul resolutions for the finitely presented
regular embedding Opé" — Opém imply that the functors ’L;lm and iy, ,, map

-~ C
Jerit—mod

-~ c
ord, to gcritmedordn'

Ezample 6.9.2. The objects Vg4, m lie in ﬁcritfmodgrdn. Indeed, for 0 <
m < N, insVordy,m = VYerit,m, clearly giving the claim in this case. In gen-
eral, for m > n, we have i;,mVCm,m = Vord,,m as in Step 3 from the proof of
Lemma 6.8.1, clearly giving the claim.

Define gerit~modord, = Ind(Geris—mod(,.q ), and define a t-structure on
Gerit—modeorq, by taking ﬁcrirmodi%n to be generated under colimits by ob-

. Lo~ c ~ <0
jects in gerig—modg g N gcrit*m(’dordn,naive'

We have a canonical functor p : gerit—modord, — Gerit—MOdord,, naive; this
is the unique continuous functor with plg_. ~modc . the canonical embedding.
ordn

LEMMA 6.9.3 (Cf. [FG09a, §23.2.2]). The functor p is t-exact and induces
an equivalence on eventually coconnective subcategories.

Proof.

Step 1. We collect some observations we will need later.

Note that for any m, Vg, m € ﬁcrirmOdgrdn C Gerit—moderg, lies in the
heart of the t-structure; indeed, it is connective by definition, and it is clear
that any object in gei-modg, that is coconnective in Gerit-modord,, naive 1S
also coconnective in ﬁcmfmodordn.

In addition, the canonical map Vrq, m+1 — Vord,,m is an epimorphism
2 4,- Indeed, it suffices to show that the (homotopy) kernel of this

map is in cohomological degree 0, and the above logic applies just as well to
see this.

in acrit*mOd

Step 2. Define Oblv : gerit—moderg, — Vect as Oblvop. We claim that
Oblv |-
g

—mod-+ is conservative and t-exact.
Crl

ordn

Suppose F € ﬁcrit—modfr%n with Oblv(F) = 0; it suffices to show that
H°(F) = 0. To this end, it suffices to show that any morphism 7 : § — J is
nullhomotopic for a connective object G € ﬁcrit—modf)rdn.

Note that the top cohomology group HY(G) is finitely generated as a
module over U(geit), say by v1,...,uvxy € H'(G). By Lemma 6.8.1, for each
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i =1,...,N, we can find m; > 0 and a map «; : Vguq, m, — G such that
H(a;) maps the vacuum vector in Vord,,,m; t0 vj.

Let o : @ﬁlvordn,mi — G be the induced map; « is surjective on H? by
design, so Coker(a) is in cohomological degrees < —1. It follows that § — &F
is nullhomotopic if and only if its composition with « is. Therefore, it suffices
to show that any map V.q,, ,» — J is nullhomotopic.

The map

HO (HOHlﬁmt,modordn (Vordn,mv ?))

. 0
= Homﬁcrirmodgdn (Vordn,mv H (ff)) — Homﬁcripmodfrdn

(Vordn,m+la HO(SF))

= HO (Homacrit*mOdordn (Vordmm+1, St)) S VeC‘tQQ

is injective by Step 1. But we have

Co,rlém 7Hom§crit*m°dordn

(Vordy,m,F) = Oblv(F) =0

by Lemma 6.8.1 (and compactness of V4, ), giving the claim.

Step 3. We now show t-exactness of p. Right t-exactness follows immedi-
ately from the construction, so we show left t-exactness.

Let m > n be fixed. It what follows, we regard Vi, as an object of
ﬁcrit*mOdgrdm - acritmedordm,naive'

As r > m varies, we have natural maps

T by g 1 tmr L (Vcrit,m) — Zn7rzm,r,*vcr1t,m

» ~ c
. s Zn,mvcrit,m S gcritmedordn'

We claim that for F € gepit-modoq,,, the natural map
(6.9.1)

COlrlm 7Homﬁcrit*m0dordn (Zn,rzm,r,*vcrit,ma EF) — 7H0m’g\cmfmod (Vcrit,ma Zn,*p(?))

is an isomorphism. Indeed, both sides commute with colimits in F by com-
pactness, so we are reduced to the case where F € ﬁcritfmodgrdn. For such &,
the claim follows from (6.8.1).

Now suppose that F € fjcrit—modi?jn. As each object i;7rim,r7*Vcrit,m is
connective in gerit—modq, , (6.9.1) implies that Homg .~ od (Verit ms in«p(F))
€ Vect=". As the objects Verit,m generate gerit—mod under colimits, this implies
that 4, .p(JF) lies in Gerit—mod=?, i.e., in«p is left t-exact.

Finally, as i, + is t-exact and conservative by Proposition 6.6.1, p itself
must be left t-exact.

Step 4. Finally, we show that p induces an equivalence on eventually co-
connective subcategories.
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By t-exactness of p, we have a commutative diagram

P +

ordy, ,naive

~ + ~
Elcrit*m()dordn gerit—mod

~

Vect™

with the diagonal arrows being the forgetful functors. Each of these functors
is conservative.

Moreover, the forgetful functor gerit—moderq, — Vect is corepresented by
the pro-object

lirlrrln Vordn,m € Pro(@ait—modg,q, ) € Pro(gerit-modera,, )-

Indeed, this follows immediately from Lemma 6.8.1 and compactness of Vo4, m
€ /g\crit*mOdordn .
Applying Lemma 6.8.1 again, we see that

+

ordn,,naive

p - gcrit*mOd;rrdn — @erit—mod

intertwines the pro-left adjoints to the forgetful functors in the above diagram.

o
Therefore, it induces an equivalence on the corresponding ®-algebras, so we
obtain the claim from [Ras19, Prop. 3.7.1]. O

Remark 6.9.4. Unlike gerit—mod, we are not aware of an explicit descrip-
tion of compact generators of gerit—moderq, . For instance, does gerit—modorq,,
admit compact generators that admit weakly G(O)-equivariant structures?
Does it admit compact generators lying in ﬁcrirmodgdn? (For G = PGLy
and n = 0, the answer to both questions is yes by Theorem 7.14.1.)

This general issue is closely related to the technical problems highlighted
in Section 6.10.

6.10. Equivariant renormalization. We now highlight a technical problem:
there is not an evident critical level G(K)-action on gerit~modorg, . (Similarly,
we cannot construct a weak G(K)-action in the sense of [Ras19].)

CONJECTURE 6.10.1. For any F € D! ..(G(K)) compact, define a functor

crit

XF * Yerit 7m0d0rdn — Ycrit 7m0dordn

C

ord, 8 calculated as the composition

whose restriction to Gerit—mod

+ Fx—

L T — +
ordy, ,naive Yerit mod

ordy, ,naive

C

gcrit*mOdordn - gcrit*mOd
~ ™~ + I~
= Yerit 7m0dordn C Gerit—modorq,, -

Then we conjecture that x5 is left t-exact up to shift.
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Remark 6.10.1. Assuming Conjecture 6.10.1 if K is prounipotent, say,
then we obtain ’g\critfmodgdn C Gerit—modorq, as the essential image of x5, .

Without assuming the conjecture, we are not otherwise aware of a good defi-

K
ordy *

Remark 6.10.2. In the language of [Ras19, §4.4], Conjecture 6.10.1 asserts
that the functor F x — : Gerit—mM0dord,, naive — Jerit—MOdord,, naive T€NOTMAliZES.

nition of gerit—mod

Remark 6.10.3. Suppose Conjecture 6.10.1 holds for a reductive group G
and an integer n > 0. Then there exists a unique critical level G(K)-action on
Gerit—modorg, such that
e The functor p upgrades to a morphism of categories with critical level G(K)-

actions.
e The (critical level) G(K)-action on gerit—moderq, is strongly compatible with
the t-structure in the sense of [Ras19, §10.12].

Indeed, this is essentially immediate from [Ras19, Lemma 8.16.4].

Remark 6.10.4. The technical issue associated with the above conjecture
appears implicitly in [FG09a].

In Section 4.1.4 of loc. cit., Frenkel and Gaitsgory suggest a definition of
ﬁcrirmodgdn (adapted to their particular setting). But their definition is not
clearly a good one; for example, it is not clear that their category carries the
expected Hecke symmetries. This issue is discussed somewhat in the remark
in that same section. Related to that discussion, Main Theorem 2 from loc.
cit. in effect verifies the above conjecture in a special case.

Combined with our proof of Theorem 6.10.5, it may be fair to expect
verifying Conjecture 6.10.1 in a given instance requires substantial input from

local geometric Langlands.

As an immediate consequence of our main theorem, Theorem 7.14.1, we
may deduce the following:

THEOREM 6.10.5. Suppose G=PGLo and n=0. Then Conjecture 6.10.1
holds.

Conversely, if we a priori knew Theorem 6.10.5, then the proof that the
functor in Theorem 7.14.1 is an equivalence could be substantially simplified:
the proof of Lemma 7.17.1 would be applicable and would directly give the
essential surjectivity of T'Hecke (cf. the outline from Section 1.17).

7. The localization theorem

7.1.  This section begins our study of the Frenkel-Gaitsgory conjecture.
First, we recall the constructions underlying the Frenkel-Gaitsgory local-
ization conjecture, following [FG06]. We include more attention to derived
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issues than loc. cit., so our discussion distinguishes between naive and renor-
malized categories of regular Kac-Moody modules.

We then formulate our main result, Theorem 7.14.1.

Next, we recall the main results of Frenkel-Gaitsgory. We include some
details on how to deduce the corresponding results in the DG framework from
the exact results that they showed.

Finally, in Section 7.17, we formulate three lemmas from which we de-
duce Theorem 7.14.1. The proofs of these lemmas occupy the remainder of the

paper.

7.2. Regular Kac-Moody representations. In the setting of Section 6, for

n = 0, we prefer the notation reg to ordg. So we let
/g\critmedreg,naive = /g\critmedordo,naivm
ﬁcritmedreg = /g\critmedordo-

We highlight that the subscript reg is being used in a completely different
way than the superscript reg was in Section 3. In the present Kac-Moody con-
text, this terminology rather follows [FGO04], where regular central characters
mean that the center 3 acts through its quotient 3. Previously, the superscript
reg was used in reference to reqular elements of the Lie algebra g. Again, we
emphasize that there is no relationship between these two usages. (We believe
that this point should not cause confusion in navigating the paper.)

Finally, we let Vit ==V crit denote the critical level vacuum representation.

7.3. Notation regarding geometric Satake. Let Hgp, = Dcrit(Gr(;)G(o)

denote the critical level spherical Hecke category, considered as a monoidal
category via convolution. Recall that for any € € G(K)-modsit, there is a
canonical action of Hgp, on eG(0) coming from the identifications Hgpn =

Endg(50)-modey (Derit (Gra)) and €Y = Homg k) -modey, (Derit (Grg), €).
G(0).

crit

In particular, Hspp acts canonically on Derit(Grg) = Derit(G(K))

Next, recall that there is a canonical monoidal functor Rep(@) — Hgph-
This functor is characterized by the fact that it is t-exact and the monoidal
equivalence on abelian categories defined by [MVO07]. As in [GL18], this func-
tor is actually more naturally defined when the critical twisting is included,
unlike in [MVO07].

We refer to the above functor as the geometric Satake functor and denote
it by V — Sy.

In what follows, whenever we consider Dgi(Grg) as a Rep(G)-module
category, it is via this construction.

7.4. The canonical torsor. Let fPOpréeg denote the canonical G-bundle on

Oprcfjg; by definition, it corresponds to the forgetful map Op]foan — LocSysx(D)

= BG.
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We obtain a symmetric monoidal functor Rep(G) — QCoh(Opreg) We de-
note this functor V +— Vi res - Note that for V € Rep(G)? finite-dimensional,

ny pree is a vector bundle on Oprve 8.

Throughout this section, whenever we consider QCoh(Op Gg) as a Rep(G)-
module category, it is via this construction.

7.5. Hecke D-modules. Define D23 (Grg) as

crit
DR (Grg) = Derit(Gra) ®  QCoh(Opfse).
Rep(G)

By construction, Dgic ke (Grg) is canonically a Dt (G(K ))®QCoh(Opreg)
module category.

Remark 7.5.1. The above may be considered as a variant of the category

D5 (Grg) = Dexit(Grg) ® Vect
Rep(G)

that is suitably parametrized by regular opers. The category DI¢ke(Grg)
is the category of Hecke eigenobjects in Dgyit(Grg); its Iwahori equivariant

subcategory was studied in detail in [ABB105].
7.6. There is a natural functor

indHecke,z, . Dcrit(GrG’) N DHecke,é(Gr )

crit

defined as the composition

Dcrit(GrG) = Dcrit(GrG) & Rep(é) — Dcrit(GrG) & QCOh(Opreg)
Rep(G) Rep(G)

_ DHecke,3 (GI_G) .

crit

Because Ops® — BG is affine, Rep(G) — QCoh(Op}3®) admits a contin-

uous, conservative, right adjoint that is a morphism of Rep((})—module cate-

dfeckes. we denote this right

gories. By functoriality, the same is true of in
adjoint by Oblyeckes,

In particular, we deduce that D' ecke3

it (Grg) is compactly generated with
compact generators of the form ind"®3(F) for F € Dy (Grg) compact.

7.7. The DG category Dgff ke"ﬁ’(Grg) carries a canonical ¢-structure that
plays an important role.

We construct the t-structure by setting connective objects to be generated
under colimits by objects of the form ind™°®3(F) for F € Dy (Grg)=C.

By construction, the composition OblyHecke:s jpgHeckes . Deit(Grg) —
D¢it(Grg) is given by convolution with a spherical D-module in the heart
of the t-structure, namely, the object corresponding under Satake to functions
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on ZPOpreg (considered as an object of Rep(G) in the obvious way). Therefore,

by [Galol] (or [FGO6, §8.4]), this monad is t-exact on Dt (Grg).

One deduces by standard methods that Oblveke3 and ind"ekes are
Heckes ig t-exact, conservative, and G(K)-
equivariant, we find that the ¢-structure on Dgff k%3 (Grg) is strongly compat-

ible with the (critical level) G(K)-action in the sense of [Ras19, §10.12].

t-exact. In particular, because Oblv

7.8. In Sections 7.9-7.12, following Frenkel-Gaitsgory, we will construct
canonical global sections functors

Dchke,g (GI“G)

crit

FHecke,naive
THecke

~ P~
gcrit_mOdreg > gcrit_mOdreg,naive

that are our central objects of study. Here we recall that p is the canonical
renormalization functor from Section 6.9.

7.9. The Hecke property of the vacuum representation. The construction
of global sections functors as above is based on the following crucial construc-
tion of Beilinson-Drinfeld.

THEOREM 7.9.1 (Beilinson-Drinfeld). For
Vcrlt S gcrlt mOdreg = gcrlt mOdreg naive S G( ) mOdcritn

the vacuum representation and V € Rep(G ) finite-dimensional, the convolu-

G(0)

tion Sy * Verit € Gerit modreg aive li€s in the heart of the t-structure.
Moreover, there is a canonical isomorphism

G(0),©.

ﬁV SV *Vcrlt _> Vcmt O® V? reg S gcrlt mOdreg
p

G

For V,W € Rep(G)" finite-dimensional, the diagram

Sy % Sy % Veri M
fe

S[/[/ * Verit & ! P reg
reg Op
Op &

l(_o%gv‘?opgg )(ﬁW)

1

Vcrit O?eg WTO reg ® VfPopreg

P~ reg 5
& G & G
Bweav
SI/V(X)V *Vcrlt B VCI‘lt ® (W ® V)TPO reg
Opg>g Pe
d%OY C Goie-mod® Q) Here the left i hi
commutes in Geriy —MO reg GeritMOd o aive-  Here the left isomorphism

comes from geometric Satake.
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We refer to [BD, §§5.5-6] and [Ras12] for proofs and further discussion.

7.10. Let us reformulate the Hecke property more categorically.

For any C € G(K)-modeit, Rep(G) acts on €%(©) via the monoidal func-
tor Rep(G) — Hepn ~ CFO)) where the first functor is the geometric Satake
functor.

For € = Qerit—MOdreg naive, we have an aditional action of Rep(G) on
Gerit—MOdreg naive Via the (symmetric) monoidal functor Rep(é) — QCoh(Opgg)
defined by ?Opréeg. By construction, this action commutes with the G(K)-
action.

4¢(©0) <

Therefore, gerit—mo reg naive 1S canonically a Rep(G)-bimodule category.

COROLLARY 7.10.1. There is a unique morphism

G(O) .

A :Rep(G) — Gerit-Mod g e € Rep(G)-bimod

of Rep(G)-bimodule categories sending the trivial representation k € Rep(G)
to Veix and such that for any finite-dimensional representation V € Rep(G)O,

the isomorphism

Sy *Vauit = AV k) =Ak®V) = Vi @eg Vgaop{eg

Opé e}
18 the isomorphism By of Theorem 7.9.1.

Proof. Suppose Hy C Hy are affine algebraic groups with Hy/H; affine,
and let € € Rep(Hz)-mod. Then the functor

HomRep(Hg)fmod(Rep(Hl)a e) —C

of evaluation on the trivial representation is monadic, with the corresponding
monad on € being given by Fun(Hy/H;) € ComAlg(Rep(Hs)).?

We apply the above to H, = G diagonally embedded into Hy = G x G.
We then have Fun((G x G)/G) = Fun(G) € Rep(G x G)¥, where we consider
G as equipped with its left and right G-actions. We are trying to show that
Verit € ﬁcrirmodigﬁaive admits a unique Fun(G)-module structure satisfying

the stated compatibility. In particular, this structure corresponds to certain
G(0),©

reg naives SO there are no homotopical
b

maps in the abelian category gerit—mod
issues.

From here, the claim is standard. For example, for V' a finite-dimensional
representation of G, we have a map uy : Vo VY — Fun(é) of G-bimodules.

The composition of py with the action map for the Fun(G)-module structure

25This construction extends for Ha/H; quasi-affine as well as long as Fun(Hs/H1) is
replaced by the (derived) global sections I'(Hz/H1,Opy /5, )-
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on Vi is given by the map

SV * Vit ® V?V reg — 8\/ *SVV * Vit = SV®Vv * Vit — Vcrita
Opg® ~ OPq

where the first isomorphism is induced by Syv and the second isomorphism

and the last map is induced by the pairing V @ V¥V — k € Rep(G) (for k

the trivial representation). It is straightforward from Theorem 7.9.1 that this

defines an action of Fun(G) as desired. O

7.11. Construction of the naive functor. For any € € G(K)-modeit, we
have a canonical identification

HomG(K)—mode (Dcrit(GrG), e) = GG(O)

given by evaluation on §; € Dcrit(Gr(;)G(O). (Explicitly, the functor Deit(Grg)
— @ corresponding to an object F € C%(©) is given by convolution with F J)

For € = Gerit—mMOdreg naive and Verit € Gerit—MOdreg naive, we denote the cor-
responding functor by I'4CP(Grg, —) : Dyt (Grg) — Gerit—MOdreg naive- Note
that the composition with the forgetful functor gerit—modreg naive — Gerit—mod
is the usual (IndCoh-)global sections functor by Appendix A.

Now observe that Deyit(Gre) and gerit—modreg naive are each DX, (G(K))®
Rep(é)-module categories. We claim that Corollary 7.10.1 naturally upgrades

[ndCeh(Grg, —) to a morphism of D (G(K)) ® Rep(G)-module categories.
Indeed, suppose more generally that € is a D}, (G(K)) ® Rep(G)-module
category. We then have
Hom - (c(k))@Rep(h)-mod (Derit (Gra), €)

crit

= Hompge,)-bimod (ReP(G), Home (1) -modeyy, (Derit (Gra), €))
= HomRep(G')fbimod(Rep(G% GG(O))

Therefore, Corollary 7.10.1 has the claimed effect.
Because the action of Rep(é) on ﬁcrirmodregmmve comes from an action
of QCoh(Op’s?), we obtain an induced functor

G
Digit***(Gr6) = Dare(Gre) ~ ®  QCoh(OP®) = erit modreg naive
Rep(G)
€ D (G(K)) ® QCOh(Opgg)—mod.

In what follows, we denote®® this functor by

FHecke,nalve — FHecke,nalve(GrG’ 7)'

26 A comment on the notation: We use Hecke,3 rather than Hecke in DI (Grg) to

crit
distinguish this category from DE$*®(Grg). But the global sections functor is defined only

on DMek3(Grg), not on DHESEE®(Grg), so we simplify the notation here by omitting the

crit

subscript 3.
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7.12. Construction of the renormalized functor. Next, we construct a func-
tor T'Hecke valued in Gerit—MOdyeg:
First, we need the following observation:

LEMMA 7.12.1. Suppose H is a Tate group indscheme (see Section 2.14)
and K C H is a polarization (i.e., a compact open subgroup with H/K ind-
proper). Let F € D(H/K) be compact. Then for any C € H-mod, the functor

Fx—:Cl e
admits a continuous right adjoint.

Proof. Let DF € D(H/K) denote the Verdier dual to F, and let inv DF €
D(K\H) denote the pullback along the inversion map. As in Proposition
22.10.1 of [FGO6], the functor

invDF x — : @ — K

canonically identifies with the desired right adjoint.
Alternatively, we may write convolution as a composition

K
DH)X @eX 5 DH)®e - C.
Each of these functors admits a continuous right adjoint (the former because K

is a group scheme, and the latter because H/K is ind-proper). This formally
implies the claim. U

By Lemma 7.12.1, the composition
Dcrit(GrG) w} /g\critmedreg,naive — /g\critmed

preserves compact objects; indeed, it is given as convolution with V¢4 €
Gerit-mod®(@) | which is compact.

Therefore, the functor T'4°P (Grg, —) maps D¢yit (Grg)© to ﬁmtfmodfeg.

From Section 7.6, we deduce that I'Heckenaive mang compact objects in
Dg?tcke’z’(Grg) iInto Gerit-Modye, .

We now define

Heck Heck Hecke, -~
phecke = PHe(Grg, —) : Do = Gerit—MOdreg

as the ind-extension of
. Hecke,; c ~ c
Hecke,; (Grg)e * Dcrit (GI'G)) — gcrlt*modreg.

crit

Hecke,naive
r Ip
7.13. By abuse of notation, we let T'""4°"(Grg, —) denote the induced
functor T'Hecke o indHeckes ¢4 we have a commutative diagram

FIndCoh(GrG77) .
gcrit_mOdreg

m’\ l’p

gcritmedreg,naive .

Dcrit (GrG)
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As we are using I'"4°"(Grg, —) in multiple ways, we will always take care to
indicate the target category. We also remark that abusing notation in this set-
ting is more mild than T'Hecke yg, pHeckenaive bocanse of Corollary 7.15.2 below.

7.14. Main result. We can now state the main theorem of this paper in
its precise form.

THEOREM 7.14.1. For G of semisimple rank 1, the functor T'Heke js g
t-exact equivalence.

In the remainder of this section, we review some general results of Frenkel-
Gaitsgory on I'Hecke and then formulate some intermediate results in this case
from which we will deduce Theorem 7.14.1. The proofs of those intermediate
results occupy the remainder of the paper.

7.15. Review of some results of Frenkel-Gaitsgory. The following exact-
ness result was essentially shown in [FGO04].

THEOREM 7.15.1 ([FG04, Th. 1.2]). The functor
FIndCOh(GI'(;, _) _ FHecke,naive o indHecke,g . Dcrit(GrG) N /g\crit *mOdreg,naive
18 t-exact.

Since there is something to do to properly deduce this from the Frenkel-
Gaitsgory result, we include a few comments.

Because Dit(Grg) is compactly generated and compact objects are closed
under truncations, it suffices to show that compact objects in Deyit (Grg) lying
in the heart of the t-structure map into acrit*mOd?eg,naive-

By Proposition 6.6.1, we are reduced to verifying this result after compos-
ing with the functor gerit—modreg naive — Gerit—mod.

By Lemma 9.2.2, for F € Dgi(Grg) compact, T4 (Grg, F) = FaVy €
Oerit—mod is eventually coconnective. Therefore, it suffices to show that when
considered as an object of Vect, '™ (Grg, F) lies in Vect®.

Now the result follows from [FG04, Th. 1.2] and the comparison results
of Appendix A.%7

Note. Formally, [FG04, Th. 1.2] only asserts that the non-derived global
sections functor is exact on Dcrit(Grg)@, not exactly that higher cohomology
groups vanish. As the argument is missing in the literature, we indicate the
details here.

For any formally smooth Rg-indscheme S of ind-finite type, we claim that
if HOT!ndCoh(g ). D(S)Y — Vect is exact, then T'"Ch (S ) . D(S) — Vect
is t-exact, and similarly for twisted D-modules.

2TIn fact, that F'”dc°h(Grg, —) as a functor Deris (Grc)O — Vect coincides with the stan-
dard global sections functor is one of the easier results in Appendix A; it is shown directly
in Section A.9.
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Indeed, we are reduced to showing that the restriction to D(S)* is t-exact.
This category is the bounded below derived category of its heart by [Ras21b,
Lemma 5.4.3] and the corresponding assertion for finite type schemes. Thus, it
suffices to show that T'"4<°h (S ) is the derived functor of HOT'Mdeh (S ) or
equivalently, that T'"dC°h (S ) a priori maps injective objects in D(S)" into
Vect?.

Formal smoothness of S implies that ind : IndCoh(S) — D(S) is t-exact,
so its t-exact right adjoint Oblv : D(S) — IndCoh(S) preserves injective ob-
jects. Therefore, we are reduced to showing that I''"¥C°" (S —) maps injective
objects in IndCoh(S)Y into Vect”.

As S is a classical indscheme by [GR14b], an argument along the lines of
the proof of [Ras21b, Lemma 5.4.3] reduces us to the corresponding assertion
for finite type classical schemes. As IndCoh(S)Y = QCoh(S)Y with T'ndCeh
corresponding to I', the assertion here is standard.

COROLLARY 7.15.2. The functor
FlndCOh(GrG7 _) : Dcrit<GrG) — acrit *mOdreg

18 t-exact.

Proof. For F € Dc,fit(Grrg)QQ compact, and hence compact in Det(Grg),
[IndCoh(Grg, F) is compact in Gerit—mod,eg by construction, and so it lies in
Gerit-mod . Therefore, by Theorem 7.15.1, we deduce that T4 (Grg, F) €

reg*
i~ Q

Gerit—Mod G,

Because Dcrit(Grg)QQ is compactly generated and our t-structures are com-

patible with filtered colimits, we obtain the claim. O

COROLLARY 7.15.3. The functor THecke . Dg(-ffke"”((}rg) — Gerit—MOdyeg
1s right t-ezxact.

Proof. By construction, Dgff ke’5(Grg)§0 is generated under colimits by

objects of the form ind™e®3(F) for F € Deyit(Grg)=Y. Then it follows that
pIHecke (jpgHeckes )y — pindCoh(Gry ) lies in degrees < 0 by Theorem 7.15.1,
so [Hecke(jpdteckes (F)) Jies in degrees < 0 and we obtain the claim. O

7.16. Fully faithfulness. Next, we review the following key property of
[Hecke  which was essentially shown in [FG06, Th. 8.7.1].

THEOREM 7.16.1 (Modified Frenkel-Gaitsgory). For any reductive G, the
functor THeke s fully faithful.

This result can be deduced from [FG06, Th. 8.7.1]. As the argument in
loc. cit. is quite involved, we present a simpler one in Appendix B based on
the ideas of the current paper (especially the use of Whittaker categories).
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7.17. Intermediate results. We now formulate three results whose proofs
we defer to subsequent sections.

For each of the following results, we assume G has semisimple rank 1; we
do not do not know how to prove any of these lemmas for GL3.

LEMMA 7.17.1. Let Gerit—MOdreg naive C Gerit-MOdreg naive b€ the full sub-

category generated by Gerit —-mod.

i 28
reg,naive under colimits.

~——

Then the essential image of [Heckenaive 1506 iy ﬁcrirmOdreg,naiVe and gen-
erates it under colimits.

LEMMA 7.17.2. The functor THeckenaive o ¢ oqact,

LEMMA 7.17.3. For every K C G(O) a compact open subgroup, the com-
position

Hecke, K Hecke, [Hecke —_(
Dcrit 3(GrG) - Dcrit 3(GrG) Yerit 7m0dreg

is left t-exact up to shift.

Assuming these results, let us show Theorem 7.14.1.

Proof of Theorem 7.14.1.

Step 1. First, we show that I'Hecke ig ¢-exact.

By Theorem 7.15.1 and the definition of the t-structure on D(ijtc k3 (Grg),
[Hecke js right t-exact.

To see left t-exactness, it suffices to see that for any compact open sub-

group K C G(O), THecke| pHeckes Gy K is left t-exact. Indeed, for any F €
Dg?fke’z((}rg), F = colimg Oblv AvE (F), and Oblv AvE is left t-exact by the
discussion of Section 7.7.

Heck
By Lemma 7.17.3, [Hee e|Dg?§ke’5(Grg)

J’_
reg reg,naive

x is left t-exact up to shift. Be-

cause p : gerit—mod  — Ferit—mod is a t-exact equivalence, it suffices
Hecke
to see that poT |Dg?§ke,;,(

Lemma 7.17.2.

Gre)K is left t-exact. But this is immediate from

Step 2. By Theorem 7.16.1, it suffices to show that THeke is essentially
surjective.
First, the composition

FHecke,naive —_

~ 20
(7.17.1) DHeCke’a(GrG) E— gcrit_mOdreg,naive s Gerit—MO

>0
crit d

reg,naive

28This is a technical distinction. It may perfectly well be the case that ﬁcrirmodregynaive
coincides with Gerit—MOdreg,naive- But we do not see an argument and do not need to consider
this question for the application to Theorem 7.14.1.
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generates the target under colimits. Indeed, the first functor generates un-
der colimits by Lemma 7.17.1, and the second functor is essentially surjective

—_—

because Gerit— Modyeg naive cONtains erit— mod=" by definition.

reg naive

By the previous step, if we identify Gerit— mod=" with Gerig— mod=?

reg naive reg

via p, then (7.17.1) factors through DI ®3(Grg)20, where it coincides with
FHeCk | Hock
pHeckess

crit

(Grg)=0"

It therefore follows that the essential image of [Hecke contains Derit— modreg

Because geit—modee is compactly generated with compact objects lying in
g

Gerit-mod_, we deduce that the essential image of T'He%ke is all of Gerit—MOdyeg -

0

reg’

8. Equivariant categories

8.1. In this section, we collect some results about I'Heckenaive 5y q Hecke
in the presence of I and Whittaker invariants. These results will be used to
establish the results formulated in Section 7.17.

We emphasize that we have nothing new to say about I -invariants; our
proofs here consist only of references to [FG09c].

Remark 8.1.1. All of the results of this section are valid for a general
reductive group G.

8.2. ITwahori equivariance. The main result in this setting is the following.

THEOREM 8.2.1 (Frenkel-Gaitsgory [FG09c, Th. 1.7]). The functor

FHecke,naive X DHeCke,Zy

crit

(Grg) — Gerit mod

reg naive

mduces a t-exact equivalence

DHecke, 3

I ,+
crit d.

I
(GI‘ ) + —>gcr1t ~MOd, o naive

on eventually coconnective I -equivariant categories.

Proof. Because our setting is slightly different from that of [FG09c], es-
pecially as regards derived categories and derived functors, we indicate the
deduction from the results of loc. cit.

First, we show t-exactness. By [FG09c, Lemma 3.6 and Prop. 3.18],

every object F € Dgffke’z’((}rg)j ¥ can be written as a filtered colimit F =

colim; F; for F; € DHCCkC"”(Grg)i ¥ admitting a finite filtration with subquo-

crit
tients of the form 1ndHeCke’2’(ffi,j)@)oprggﬂm for F;; € Dg‘ffke’z(Gr )I’QQ and
Q
j'ci,j S QCOh(OpG).
We then have

plieckemaive(inglleckes (5, ) @ ;) = TN (Grg, Fiy) @ Hij.
Opreg

reg
Opg G
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By [FG09c, Prop. 3.17], T'"d%N(Grg, F; ;) is flat as an 3-module, so the dis-
played tensor product is concentrated in cohomological degree 0. This shows
that [Heckenaive(F) g in degree 0 as well, providing the t-exactness.
Next, observe that fully faithfulness follows from Theorem 7.16.1.
Finally, we show essential surjectivity. By [FG09¢c, Th. 1.7, Lemma 3.6,

Props. 3.17, 3.18], any § € Gerit—mod’”

rgg,naive
imit § = colim; §; with G; € ﬁcrit*mOdngnaiVG and such that §; admits a finite

filtration with associated graded terms of the form
FIndCOh(Grg, §) ® K
Opréeg

can be written as a filtered col-

for § € Dyt (Gre)¥ and K € QCoh(Opgg)QQ (and where we are using the no-
tation of Section 6.5), and where the displayed (derived) tensor product is con-
centrated in cohomological degree 0. Clearly each associated graded term lies

in the essential image of I'Heckenaive g, § does as well. This implies the essential
1,0

~ 17_}'_
reg,naive’ SO all of gerit—mod O

image of THecke.naive ¢ontaing go.4—mod rog naive:
b

We include one other result in a similar spirit.

ProposITION 8.2.2. The functor
Heck: Hecke, I ~
F ¢ e|DHecke,3(GrG)f . DCI‘it Z(Grg) — gcrit*modreg

crit
18 t-exact.
Proof. By Corollary 7.15.3, the functor is right t-exact. Therefore, we need

to show left t-exactness. By Theorem 8.2.1, it suffices to show that objects in
DHecke,;j

o 93 (Grg)!Y map to eventually coconnective objects.

Suppose F € D?rffke"”((}rg)f’@. As in the proof of Theorem 8.2.1, the re-
sults of [FG09c] imply that & can be written as a filtered colimit F = colim; F;
for F; € Dg?fkc"”((}rg)] ¥ admitting a finite filtration with subquotients of
the form indHeckes (fﬂ,j)®opréegﬂ-fi7j for J; ; and 3 ; as in the proof of Theo-
rem 8.2.1.

Therefore, we are reduced to showing that
(8.2.1) N (Grg, F) ©  H € Gerit- MOdyeg
Opgg

is eventually coconnective for any F € Dcm(Grg)i “ and ¥ € QCoh(Opréeg)@.

If F is compact, then T'"4N (Grg, F) € Gerit—mModyeg is compact by con-
struction of the functor. In particular, this object is eventually coconnec-
tive. By Theorem 8.2.1, we deduce F'”dc°h(Grg, F) e ﬁcrirmodzg in this case.
As the t-structures are compatible with filtered colimits, and every object of
Deit(Grg)h? is a filtered colimit of objects in Dt (Grg)hY that are compact
in Dt (Grg), we obtain the claim for general F and H being the structure

sheaf.
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Now if K is coherent,?” then because Opgeg = Spec(3) with 3 an (infinite)
polynomial algebra, H is perfect. Therefore, the object (8.2.1) is eventually
coconnective for general F and coherent H. Applying Theorem 8.2.1 again,

we deduce that (8.2.1) lies in the heart of the t-structure under these same
assumptions. Finally, the general case follows as any H € QCoh(OpIGfeg)QQ

filtered colimit of coherent objects. ([

is a

FHecke,naive

8.3. Whittaker equivariance. We now study the behavior of
under the Whittaker functor, following [Ras21b] and [Ras19].

Our main result is the following.

THEOREM 8.3.1.

(1) The functor THeckenaive yp gy ces an equivalence

Whit(D2e%3 (Grg)) = Whit(Gerit-MO0dreg naive)-

crit
(2) Forn >0, the functor

pHeckenaive, \Whit<"( DI (Grg)) — WhIt="(Ferie-M0dreg, naive)

crit

is a t-exact equivalence for the natural®® t-structures on both sides.

We will verify the above result in what follows after recalling some results
on Whittaker categories in this setting.

8.4. We recall the following result, which appears as [Ras19, Th. 11.19.1]
and is an enhancement of the affine Skryabin theorem [Ras21b, Th. 5.1.1].

THEOREM 8.4.1. There is a canonical equivalence

Whit(gerit-mod) =~ IndCoh*(Op)
of IndCoh™(Op)-comodule categories. Under this equivalence, the full subcate-
gory (cf. Section 5.2) Whit="™(geris—mod) C Whit(geris-mod) identifies with the
full subcategory |ndCoh*Op§m(OpG) C IndCoh*(Opg) generated under colimits
e

by pushforwards from QCoh(Opgs) ~ IndCoh*(Opém) — IndCoh™(Opg).

COROLLARY 8.4.2. For any n, there is a canonical equivalence

Whit(/g\crit _mOdordn,naive) = QCOh(Opém)
of QCoh(Opén)—module categories. Moreover, for any positive m with m > n,
the embedding
Wh itgm (acrit 7m0dordn ,naive) — Whit (/g\crit 7m0d0rdn ,naive)

s an equivalence.

29That is, H corresponds to a finitely presented 3-module.

30We recall that Whit=" is defined as equivariance against a character for a compact open
subgroup. For our two categories, the t-structures are compatible with the G(K)-action, so
there are natural ¢t-structures on such equivariant categories.
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Proof. By [Ras21b, Th. 2.1.1] (or its refinement Theorem 2.7.1, which

we recalled above as Theorem 5.2.1), the functor G(K)-modcyit m

DGCateont is a morphism of DGCatcqyi-module categories that commutes with
limits and colimits.
Therefore, from the definitions, we have

Whit (/Q;crit*mOdordn ,naive)

< IndCoh*(Opx) N
= IndCoh™(Op") ® Whit(gerit—mod)

rem 8.4. IndCoh*(Opx)
T ndCoh®(0pS") ®  IndCoh*(Opy)

~ IndCoh*(OpZ") ~ QCoh(OpZ").
The stabilization of adolescent Whittaker models is proved similarly. For
m positive, we have

IndCoh*(Op )
Whit="(§erit- MOdord,, naive) = INdCoh*(OpS") @ Whit=" (§erie—mod)

IndCoh™(Opg)

Theorem 8.4.1 " <n * B
~ IndCoh (OpG ) ® |ndCohOp§m(OpG)

< IndCoh*(Op)
C IndCoh™(Op,") ® IndCoh*(Op)
~ IndCoh*(OpZ") ~ QCoh(OpZ").
The functor at the end of the second line is indeed fully faithful because
IndCohgpgm(Opé) — IndCoh*(Op) is fully faithful (by definition) and ad-
G

mits a right adjoint that is a morphism of IndCoh*(Op)-module categories.
Clearly this functor is essentially surjective for m > n. (|

8.5. Before proceeding, we recall that for € € G(K)-modc;t, the functor
Whit(e) 2% @ A=, G(0)

admits a left adjoint, which we denote Av}b in what follows. That this left
adjoint is defined is the special case n = 0, m = oo of [Ras21b, Th. 2.7.1].

8.6.  'We now recall the following result.

THEOREM 8.6.1 (Frenkel-Gaitsgory-Vilonen, [FGVO01]). The composition

5 AvY
Rep(G) Y22V Hypp = Doyt (Gre) @ =55 Whit( Dyt (Gre))

s an equivalence.

Remark 8.6.2. Formally, the setting of [FGV01] is somewhat different. We
refer to [Gai20] for the necessary comparison results.
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8.7.  'We now can prove the main result on Whittaker categories.

Proof of Theorem 8.3.1. We begin with (1). We first construct some equiv-
alence, and then we show that I'Heckenaive
By Corollary 8.4.2 (for n = 0), we have

Whit(/g\crit_mOdreg,naive) = QCOh (Opgg) .

induces the corresponding functor.

Moreover, as Whittaker invariants coincide with coinvariants by [Ras21b,
Th. 2.1.1], we can calculate

Whit( D53 (Grg)) = Whit(Derit (Gra))  ®  QCoh(Opis?).
Rep(G)

By Theorem 8.6.1, Whit(Deyit(Grg)) identifies canonically with Rep(G) as a

Rep(G)-module category. Therefore, we obtain

Whit(Dg,5e“ (Grg;)) = Rep(G) e, QCoh(Op<#) = QCoh(OpL<E).
Rep(G

We now show that THeckenaive jpdyces the evident equivalence on Whit-
["Hecke,naive rﬁg)_

G
module categories. Therefore, it suffices to show that it sends the structure
sheaf Oopréeg to itself.

taker categories. By construction, is a morphism of QCoh(Op

This follows from the following diagram, which is commutative by func-

toriality:
FHecke,naive /\ G(O
Derit (GrG)G(O) gCFitimOdre(g,n)aive
Av;ﬂ lAV;ﬂ \
. FHecke,naive N r
Whlt(Dcrit(GrG’)) Wh|t<gcrit7m0dreg,naive) —_— QCOh(Opgg)-

By construction of the equivalence of Theorem 8.4.1, the diagonal arrow in the
diagram above is the Drinfeld-Sokolov functor W. Therefore, if we consider the
0 D-module §; € Dcrit(Gr(;)G(O) supported at the origin 1 € Grg, apply Hecke
induction and the above diagram, we find

FHecke,naive(AV;/J indHecke,g 51) — \I/(FlndCOh(Grg, 51)) — \I/(Vcrit)'

Clearly Av} ind"ek®3 5, € Whit(DIS%3(Grg)) corresponds to the structure

crit

sheaf (‘)Opréeg € QCoh(Opgg). Moreover, U(Vq;i;) corresponds to the structure

sheaf Ooprgg by design.
We now verify (2). For n > 0, we have natural functors

Whit="( DIk (Grg)) — Whit(DES* (Grg)),

(8.7.1) o o
Whit=" (gcrit*mOdreg,naive> — Wh|t(gcrit*m0dreg,naive)
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as in Theorem 5.2.1, and that we claim are equivalences. In the second case,
this assertion is part of Corollary 8.4.2. In the first case, this follows from the
fact that

Whit=! (Dt (Grg)) — Whit(Dgit (Gra))

is an equivalence; see [Ras14, Th. 7.3.1] for a stronger assertion.
It now follows by functoriality and (1) that T'Heckenaive j5 an equivalence
on Whit=" for all n > 0.
Finally, we need to show that I'Heckenaive i ¢ exact on Whit=" for all n.
In [Ras21b], the functors

bt 1[=2(5, p)] : Whit="(Geric—mod) — Whit =" (gei-mod)

were shown to be t-exact. Moreover, by the proof of the affine Skryabin

theorem Theorem 8.4.1, the resulting ¢-structure on Whit(geit—mod) identi-

fies with the canonical one on IndCoh*(Opg). We deduce parallel results for

Gerit—MOdyeg naive il place of Gerit—mod in the setting of Corollary 8.4.2.
Similarly, the functors

tnnr1[~2(, p)] : Whit=" (Dt (Grg)) — Whit=""!(Deit (Grc))

are t-exact. The resulting t-structure on Whit(Deit(Gre)) identifies with the
canonical one on Rep(G) under Theorem 8.6.1; indeed, the geometric Satake
functor Rep(é) — Hepn is t-exact by construction, and Av?p is t-exact by
[Ras21b, Rem. B.7.1]. As Oblv!ekes is t-exact, we obtain similar results for
DHCCkc,g(Gr )
crit G)-
Finally, we deduce t-exactness. Indeed, we have equivalences

Whit="(Dgs“*(Grg)) ~ QCoh(Op[?) ~ Whit="(Gerit MOdseg naive)

with the t-structures on the left and right-hand sides corresponding to the

canonical t-structure on QCoh(OprG?g), and the composition being given by

FHecke,naive . O

8.8. Ezactness of renormalized global sections. We will also need the fol-
lowing parallel to Proposition 8.2.2.

PRropPOSITION 8.8.1.
(1) For any n > 1, the functor

- Whit="( D3 (Grg)) — Gerit-MOdyeg

Hecke
r |WhitSn crit

(Dgyi 7 (Gre)
18 t-ezact.
(2) More generally, suppose G € Deit(G(K)) has the following properties:
e Form >0, § is right K,-equivariant (where K,, C G(O) is the m-th
congruence subgroup).
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o There exists a Ky,-stable closed subscheme S C G(K) such that G is
supported on S.

o As an object of D(S/Ky,), S is eventually coconnective.

Then for every F € Whit="(D%e3 (Grg)) T,

crit

rHecke(Grg, G x F) € Gorie—mod,,

reg"
Proof. We begin with (1). As above, we have a t-exact equivalence

(8.8.1) Whit="(Dgs*(Grg)) ~ QCoh(Opjs®).

As Op]ereg is the spectrum of a polynomial algebra (however infinitely gener-
ated), we deduce that every object of Whit="(D2%3(Grg))¥ is a filtered

crit

colimit, of objects that are compact in Whit="(D1%**3(Grg)), and hence in
Hecke,
D "% (Grg).

I'Hecke maps compact objects to compact objects and, in

+
reg*

By construction,
particular, maps compact objects to geit—mod By Theorem 8.3.1, we deduce
that it maps compact objects of Whitgn(Dg‘ftC k3 (Grg)) that lie in the heart of
the t-structure into Gei—mody,,. As every object of Whit="(DEekd (Grg))©
is a filtered colimit of such (by the above), we obtain the result.

We now proceed to (2). We begin by noting that our assumptions imply
that for any € € G(K)-modei; equipped with a ¢-structure that is strongly
compatible with the G(K)-action (in the sense of [Ras19, §10.12]), the functor
Gx —: C — Cis left t-exact up to shift; see the proof of Lemma 9.2.2 below.
This is the key property we will use about §. By [Ras19, Lemma 10.14.1], this
property is true for € = gej—mod.

Next, if F is the object corresponding under (8.8.1) to the structure sheaf
on Opgg, then F = indHeke3(5,) for 8, € Whit="(Deit(Grg))Y =~ Rep(G)Y
corresponding to the trivial representation (by construction of (8.8.1)). There-
fore, THeke(Grg, G+ F) = I (Grg, G % 0,). As G % 0, € Duit(Grg) is
eventually coconnective by the above, the resulting object of ﬁcritfmodreg is
eventually coconnective as well by Corollary 7.15.2.

We deduce from (8.8.1) that THeke(Grg, G F) is eventually coconnective
for F € Whit=" (D¢t (Grg)) compact. We claim that in fact there is a universal
integer 7 such that for compact J lying in Whit=" (Dt (Grg))Z°, we have

FHeCke(Grg, GxF) € Gerit-mod=. "

reg

Indeed, choose r such that G — maps Geritmod=" into Gerje-mod="". As
we know the above object is eventually coconnective, it suffices to verify the
boundedness after applying p. Then the resulting object is

9 % FHCCkC’naiVO(Grg, 3:)’

which lies in degrees > —r by construction of r and Theorem 8.3.1.
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Finally, the same claim for general (possibly non-compact) object F €
Whit="(Deyis (Grg))Z0 follows by the same argument as in (1): such J is
a filtered colimit of objects of Whit="(Dgit(Grg))Z? that are compact in
Whit="(Deyis (Gra)). O

9. Generation under colimits
9.1. In this section, we prove Lemma 7.17.1.

9.2. Preliminary observations. We begin with the following basic result.

—_—~—

LEMMA 9.2.1. The subcategory Gerit—MOdreg naive < Gerit "MOUreg naive 45 @

D (G(K))-submodule category.

crit
—~—

Proof. By definition of ﬁcrirmodreg,naive, we need to show that for F €

D*

crit

As D*

(G(K)), the functor F x — maps erje—mod." INtO Perit—MOdreg naive-

reg,naive
*it(G(K)) is compactly generated, we are refluced to the case where JF is
compact. In that case, we claim that F x — maps ﬁcritfmod;g’naive into itself.
Indeed, this follows from Lemma 9.2.2 and the observation that the action
of G(K) on gerit—mModyeg naive i strongly compatible with the ¢-structure; the
latter claim reduces via Lemma 6.9.3 to the same claim for ge.j;—mod, which

is shown as [Ras19, Lemma 10.14.1(3)]. O

Above, we used the following result.

LEMMA 9.2.2. Let H be a Tate group indscheme with prounipotent tail
acting strongly on € € DGCateont. Suppose C is equipped with a t-structure
strongly compatible with the H-action in the sense of [Rasl9, §10.12]. Then
for any F € D*(H) compact, the functor Fx— : € — C is left t-exact up to shift.

Proof. Because J is compact and H has a prounipotent tail, € D*(H)¥

~ D(H/K) for some prounipotent compact open subgroup K C H. Again
because JF is compact, as an object of D(H/K), it is supported on a closed sub-
scheme S C H/K. By [DG13], F has a bounded resolution by compact objects
of the form ind(i!"C°"(G)) for i : S — H/K the embedding, § € IndCoh(S)
compact, and ind the functor of (right) D-module induction. Therefore, we
may consider F of this form.

The functor F x — then factors as

Kqg,w
AvE *

C—

Obl 7;I*ndCoh g
GK v eK,w ( ) e’

where — % — indicates the appropriate relative convolution functor

IndCoh(H/K)Ko/K:w @ @Kow — |ndCoh(H/Kj) ® CF0v — €.
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As the H-action on € is compatible with the t-structure, €% C @ is closed
under truncations; it follows that AvE is left t-exact. By [Ras19, §10.13], @%v
has a canonical t-structure for which Oblv : @% — @K% is t-exact. Finally, the
functor of convolution with G is left ¢t-exact by [Ras19, Prop. 10.16.1].3! O

COROLLARY 9.2.3. The functor T'Heckenaive ¢qctors through the subcate-
gory /g\(:rit *mOdreg,naive .

Proof. By Section 7.6, it suffices to show ['ndCoh — pHeckenaive g i, qHecke

factors through ﬁcrirmOdreg,naive- This functor is given by convolution with
Vit € ﬁcritfmodzg naive & ﬁcrirmOdreg,naive, and so the claim follows from
Lemma 9.2.1. |

COROLLARY 9.2.4. Let K C G(O) be a prounipotent™® group subscheme.
K
reg.naive 18 the subcategory of Gerit fmodfgg’naive generated under

o ~ K+
colimits by gerit *mOdregmaive'

Then Gerit—mod

Proof. We have a commutative diagram

—_~—

Gerit—mod " > Gerit—mod

reg,naive reg,naive

AvE \L AvE
—~——K

-~ K,+ « o=
gcritmed gcritmed

reg,naive reg,naive"

The top and right functors generate under colimits, so the same is true of their
composition. This implies that the bottom arrow generates under colimits, as
desired. H

9.3. Proof for PGLy. To simplify the discussion, we first assume G =
PGLsy. We indicate the necessary modifications for general G of semisimple
rank 1 in Section 9.4.

By construction, THeckenaive jg o G(K)-equivariant functor (at critical

level). In particular, the subcategory of ﬁcrirmOdreg,naive generated under co-
limits by its essential image is closed under the G(K)-action.
Therefore, by Theorem 5.1.1, in order to prove Lemma 7.17.1 it suffices

—~—1

to show that the essential image of I'Hecke:naive contains both ﬁcrit*mOdreg,naive

31There is a polarizability assumption at this point in loc. cit. that we have omitted here.
This assumption is only needed in loc. cit. to deduce a stronger result. The beginning of
that argument from loc. cit. is all that is needed here, and for that the polarizability is not
needed. (Regardless, we only apply this result to G(K), which is polarizable.)

32This assumption can be omitted, but the argument requires some additional details.
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and Whit(ﬁcrit:n\égreg,naive). The former follows from Theorem 8.2.1, while the
latter follows from Theorem 8.3.1.33

9.4. Generalization to groups of semisimple rank 1. We briefly indicate
the argument for general G of semisimple rank 1.
First, for ¢ : G1 — G2 an isogeny of reductive groups, the natural functor

DHecke,3 (Gl"Gl ) - DHecke,g (GrGg)

crit crit

is an equivalence. Indeed, this follows as

Dcrit(GrGl) ®v Rep(GQ) — Dcrit(GrGQ)
Rep(G1)

and

05 > On:
are equivalences (the latter being a consequence of Remark 1.9.2).

In particular, we see that G(K) acts (with critical level) on Dgftc ke3(Gre)
through G*(K); e.g., it is easy to see directly that the action is trivial for G a
torus. The same is evidently true for the action on ﬁcrirmOdregmaive- Moreover,
[Heckenaive jg Gad( )_equivariant.

Next, one observes that the Whittaker category with respect to the G2 (K)
action coincides with the Whittaker category for the G(K) action, and simi-
larly for the radical of Iwahori. For later reference, we also highlight that for
n > 0, the invariants for the n-th subgroup of G(K) coincide with the similar
invariants for the G2 (K )-action.

Finally, we observe that for G of semisimple rank 1, G® = PGL,, so we

can apply the above observations and Theorem 5.1.1.

10. Exactness

10.1. In this section, we prove Lemma 7.17.2. The main idea is Propo-
sition 10.4.1.

10.2. t-structures on quotient categories. We will need the following con-
struction.

Suppose € € DGCateont is equipped with a t-structure that is compatible
with filtered colimits. Let i, : €y — € be a fully faithful functor admitting a
continuous right adjoint i*. We suppose the full subcategory €g C € is closed
under truncation functors for the t-structure; in particular, Gy admits a unique
t-structure for which i, is t-exact.

33In the latter case, it is shown that THe<®m8ive oyen induces an equivalence on Whittaker
categories With gerit—MOdreg, naive, 1.€., the distinction with gerit—mMOdreg, naive 1S NOt necessary
for the Whittaker part of the argument.
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Define C as Ker(i' : € = €y). We denote the embedding of C into €@ by Fs.
This embedding admits a left adjoint F — Coker(i,i'F — F), which we denote
by 7% : € — C.

LEMMA 10.2.1. Suppose that the functor j.j* : € — C is left t-exact.
Then there is a unique t-structure on € such that j* : € — € is t-exact.

Remark 10.2.2. The hypothesis of the lemma is equivalent to the assertion
that for F € €V, the map H(i,i'F) — T is a monomorphism in the abelian
category C¥. In turn, this assertion is well known to be equivalent to G(? cev
being closed under subobjects.

Proof of Lemma 10.2.1. Define €>0 C @ as the full subcategory of F € e
with j,(F) € €Y. Define C<0 C C as the left orthogonal to €0,

The functor j* : € — e maps C=0 to =0 immediately from the definition,
and it maps €>0 to €>0 by our assumption that j,j* is left t-exact.

In particular, for F € C, 7*720%5.(F) € €>0 and 7*05,(F) € C<0. As
§%j+(F) = F, we see that we have in fact defined a t-structure on C. By the
previous paragraph, the functor j* is t-exact as desired. O

10.3. Subobjects in equivariant categories. To apply the previous material,
we use the following result.

ProposiTiON 10.3.1. Suppose H is a connected, affine algebraic group
acting strongly on C € DGCateont. Suppose that C is equipped with a t-structure
compatible with the H-action.

Then the functor @1 — €V is fully faithful and the resulting subcategory
1s closed under subobjects.

Proof. In what follows, we let ¢ : Spec(k) — H denote the unit for the
group structure, and we let H:=H \ 1 be the complementary open with
embedding j : H — H.

We let 01 = t.qr(k) € D(H) denote the 6 D-module on G supported

o

at 1 € H, and we let kg € D(H) (resp. ky; € D(H)) denote the constant
D-module (i.e., the x-dR pullback of k € D(Spec(k)) = Vect).

Step 1. We begin with reductions.
First, that @%Y — @ is fully faithful for H connected is well known.?*

34We recall the argument for the reader’s convenience. For F € C#% we need to show
that & — Av¥ Oblv(J) gives an isomorphism after applying H°. Moreover, it suffices to do
so after applying Oblv.

The resulting map is obtained by (H-equivariant) convolution with the canonical map
kg — kg xky € D(H)®. Under the identification D(H)¥ = Vect with k € Vect corre-
sponding to ki € D(H)*, the resulting map corresponds to k — T'qr(H, k). Because H is
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By Remark 10.2.2, it suffices to show that for ¥ € €% the map
Oblv AV (F) = F

induces a monomorphism on H°, or equivalently, the (homotopy) cokernel of
this map is coconnective. As the above map is obtained by convolution with the
map kg — 01 € D(H), it suffices to show that convolution with its cokernel,
which is (kg )[1], is left t-exact.

Step 2. Let F € D(H) be given. Suppose the functor Fx — : D(H) —
D(H) is left t-exact. We claim that the functor Fx — : € — C is left t-exact.

Indeed, by definition of the t-structure on € being compatible with the
H-action, the functor coact : € — D(H)® € is t-exact up to shift. The functor
coact is H-equivariant for the H-action on D(H) ® C on the first factor alone.
Moreover, coact is conservative: its composition with !-restriction along the
origin Spec(k) < H is the identity functor for C.

Therefore, the claim follows from [Ras21b, Lemma B.6.2].

Step 3. By Step 2, we are reduced to showing that convolution with
N(kg)[1] defines a left t-exact functor D(H) — D(H). By the reasoning
of Step 1, it is equivalent to say that the essential image of the functor
D(H)"Y = Vect” — D(H)? is closed under subobjects, which is evident:
a sub D-module of a constant one is itself constant. U

10.4. An exactness criterion. We begin with a scheme for checking that
a functor between categories with (finite jets into) PGLy-actions is t-exact.

PropoSITION 10.4.1. Let G = PGLsy, and let G,, be as in Section 3.2.

Let C,D € G,,—mod be equipped with t-structures compatible with the G-
actions.

Suppose F : C = D is a Gy-equivariant functor.

Then F is left t-exact if and only if the functors

eN - DN n=1,

Nn Nn,
C —+D and {@g@Ga L, Diste > 9
are left t-exact, where g ® G, is embedded into G, via (3.3.1).

Below, we give the proofs separately for n = 1 and n > 2. We remark
that in both cases, the “only if” direction is obvious.

Proof of Proposition 10.4.1 for n = 1. As we will see, in this case we only

need the action of the Borel B =T x N = G,, x G, of G = PGLs.

connected (hence, geometrically connected), this map is an isomorphism in degree 0, giving
the claim.
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Define C as Ker(C ﬂ €Ge). The embedding C — € admits a left
adjoint calculated as F +— Coker(Oblv Av®e(F) — F). By Lemma 10.2.1 and
Proposition 10.3.1, ¢ admits a unique t-structure such that this functor € — e
is t-exact.

The action functor act : D(Gy,) ® € — € maps D(Gy,) ® €% into €, and
the resulting functor is an equivalence (by Fourier transforming; cf. [Ber13]).
We claim that this equivalence is t-exact, where D(G,,) ® CC«¥ is given the
tensor product t-structure.

To verify this, we will need the following commutative diagram:

D(Gyy) ® CCart> 2 e
(10.4.1) lidD(Gm)(@Oblv
D(G,,) ®C D(Gy) ® €

with morphisms as follows. The top arrow is induced by the action functor
from above. The left arrow is idg,, tensored with the embedding CCe¥ e
(C @). For the right arrow, note that € C € is closed under the G4-action, and
the corresponding coaction functor coact : C— D(G,) ® e composed with the
Fourier transform D(G,) ~ D(A!) (tensored with ide) maps into D(A\0)®€;
we have identified A'\ 0 with G,,, here. Finally, the bottom arrow is the unique
map of D(Gy,)-comodule categories whose composition with ['qr (G, —) ®idg
is act (the action functor for the G,-action on €); here D(G,,) is a coalgebra in
DGCatcont via diagonal pushforwards, and both sides are considered as cofree
comodules coinduced from C. (That the diagram commutes is immediate.)

Now in (10.4.1), the bottom arrow is t-exact by [Ras21b, Lemma B.6.2].
By [Ras21b, Lemma B.6.2], the left arrow is t-exact because CCa¥ < € is
(as this functor coincides with the composition C¥a¥ « € — € of t-exact
functors). The right functor is t-exact because the t-structure on € is compati-
ble with the G,-action. As the vertical arrows are fully faithful and the bottom
arrow is an equivalence, we obtain that the top arrow is a t-exact equivalence
as well.

We can now conclude the argument. By assumption and [Ras21b, Lemma
B.6.2], the functor

€~ D(Gp) ® €Y = D(G,,) ® DCa¥ ~ D

is left t-exact.
Suppose F € €20, Then Oblv AvPa(F) € €Ca20 50 F(Oblv AvCe(F)) €
DCa20 Moreover, defining

F := Coker(Oblv Av®e(F) = F) € €,
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we have F € €20 by definition of the ¢-structure on €. Therefore, F(ff) € D20,
Because the embedding D — D is left t-exact (being right adjoint to a t-exact
functor), we obtain

Oblv Av®e F(F), Coker(Obly Avée F(F) — F(F)) € D=0
implying F(F) € D=°. O

Proof of Proposition 10.4.1 for n > 2. Let €*8 C € be defined as in Sec-
tion 3.3. The embedding €8 — @ admits a left adjoint j' as in loc. cit.
Moreover, because G = PGLso, the argument from Section 5.3 shows that
Ker(j') = €88%_ Applying Lemma 10.2.1 and Proposition 10.3.1, we find that
e admits a unique ¢-structure for which j' is t-exact.

By Theorem 4.2.1, the convolution functor

D(Gy)"¥ @ Nt @

admits a left adjoint Av{""¥ = Av¥"~¥[2dim N,,]. By [Ras21b, Lemma B.6.1],
Av;ﬁ’_zﬁ[— dim N,,] = AvY " ¥[dim N,,] is t-exact.

Because the above convolution functor factors through €&, Av}ﬁ’_w :C—
D(G)N¥ @ @Nn¥ coincides with Av, Y j*yde!. By the above, we find that
Avfﬁ’_tb 0j«dr is t-exact. Moreover, by Corollary 4.7.3, Av, a4 OJx,dR 18 con-
servative.

Therefore, as

D(Gy) N @ eNnt OE, By Y Nnth g DNnth

is left t-exact by assumption and [Ras21b, Lemma B.6.2], the resulting functor
Cre8 — D8 ig left t-exact.

As C9®Ca Dy, is left t-exact by assumption, the argument concludes
as in the n =1 case. O

10.5. Erzactness of I'Heckenaive e can now show t-exactness.

Proof of Lemma 7.17.2. For simplicity, we take G = PGLg; the argument
for general G of semisimple rank 1 follows by the considerations of Section 9.4.

By Corollary 7.15.3, it remains to show left t-exactness. It suffices to show
that for every n > 1, the functor

Hecke,naive , yHecke,; K, ~ K
r : Dcrit (GI‘(;) e gcrltimOdreTgL,naive

is left t-exact; here K, C G(O) is the n-th congruence subgroup. We show
this by induction on n.
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First, we treat the n = 1 case. By Proposition 10.4.1, it suffices to show
(left) t-exactness for the corresponding functors
I

reg,naive’

Hecke,3
Dcrit

(Grg)f — Gerit—mod

Whit=! (DR (Gr)) — Whit=! (Gerit MOdreg naive)-
These results follow from Theorems 8.2.1 and 8.3.1.
We now proceed by induction; we suppose the result is true for n > 1 and

deduce it for n+1. By Proposition 10.4.1, it suffices to show that the functors

Hecke,3 K ~ K
Dcrit 7 (GrG) "= gcmt7mOdreg,naive7

Whitsntl (DHeCke’;5 (GI'G)) — Whit="+1 (/g\crit*mOdreg,naive)

crit
are (left) t-exact. The former is the inductive hypothesis and the latter is
Theorem 8.3.1. O

11. The renormalized category

11.1. In this section, we prove Lemma 7.17.3. The argument is quite
similar to the proof of Lemma 7.17.2.

11.2. A boundedness criterion. The following result is a cousin of Propo-
sition 10.4.1.

ProposITION 11.2.1. Let G = PGLsy, and let G,, be as in Section 3.2.

Let C € Gp—mod be equipped with a t-structure compatible with the G-
action. Suppose that D is equipped with a t-structure compatible with filtered
colimits. Suppose F': C — D € DGCateont 18 given.

Then F is left t-exact up to shift if and only if

Flev — n=1,
{F‘@g@ma n>2
is left t-exact up to shift, and F(GxF) € DV for every
G e D(G,)T, Fe Nt

Remark 11.2.2. We emphasize that there is no assumption here that G,
acts on D, in contrast to Proposition 10.4.1.

Remark 11.2.3. The “only if” direction of Proposition 11.2.1 is clear, as
Gx —: € — @ is left t-exact up to shift for G € D(G,,)™.

Proof of Proposition 11.2.1 for n = 1. As the t-structures on € and D are
compatible with filtered colimits, F' is left t-exact up to shift if and only if
F(€*) C D*. We verify the result in this form.

Suppose that F € €. Then Oblv AvY F € €VF, and so by assumption
F(Oblv AvY F) € DT. Therefore, setting F := Coker(Oblv AvN F — F), it

o

suffices to show that F(F) € DT.
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As in the proof of Proposition 10.4.1 (for n = 1), F is in the essential image
of the fully faithful, t-exact convolution functor D(T) ® CV¥ — €. Therefore,
it suffices to show that the composition

DTYweNt sefp

is left t-exact up to shift. For convenience, in what follows, we identify F with
the correpsonding object of D(T) ® €N:¥,

For this, we observe that any object Fe D(T) ® €N+¥ lies in the full sub-
category of D(T) ® CV¥ generated under finite colimits and direct summands
by objects of the form Dy X (I(T, —) ®id)(F), where Dy € D(T)? is the sheaf
of differential operators; cf. Lemma 11.2.4 below. Then by [Ras21b, Lemma
B.6.2], for F € D(T) @ CN¥, we have

(T(T, —) ®id)(F) € eN¥+,
Therefore, by assumption, F(Dy x (I'(T, —) ® id)(F)) € DT, so we find that

o

the same is true of F(¥). O
Above, we used the following result.

LEMMA 11.2.4. Let S be a smooth affine scheme (over Spec(k)).

As is standard, let Oblv : D(S) — IndCoh(S) 2 QCoh(S) denote the
“right” D-module forgetful functor from [GR17b] and let ind : QCoh(S) —
D(S) denote its left adjoint. Let Dg = ind(Og) € D(S)¥. Let T'(S,—) :
D(S) — Vect denote the composition of Oblv with the usual global sections
functor on QCoh(S).

Then for any C € DGCateont and any F € D(S) ® C, F lies in the full
subcategory of D(S) @ C generated under finite colimits and direct summands
by objects of the form

D ® (T(S, -) @ ide)(F).

Proof. As S is affine, D(S x S) is compactly generated by objects of the
form Dg X Dg. As Agjg.(ws) is compact and connective, it lies in the full
subcategory generated under finite colimits and direct summands by objects
of the form Dg X Dg.

Identifying D(SxS) in the usual way with Endpgcat,,,,(D(S5)) (cf. [GR17b]),
the object Agr «(ws) corresponds to the identity functor, while Dg X Dg cor-
responds to Dg ® I'(S, —).

Therefore, idp(g)ge lies in the full subcategory of Endpgcateon: (D(S) ® €)
generated under finite colimits and direct summands by endofunctors of the
form (Dg ® I'(S,—)) ® ide. Applying such a resolution to the object F, we
obtain the claim. (]

We now turn to the higher n case.
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Proof of Proposition 11.2.1 for n > 2. Suppose ¥ € CT. Then it follows
that Oblv Av#®Ce F ¢ @I¥CGat 50 by assumption, F(Oblv Av#®Ca F) ¢ Dt
Therefore, setting F := Coker(Oblv Av#®Ce ¥ — ), it suffices to show that

F(F) e Dt
As G = PGLy, F € C*8, hence in C™&*. Now the claim follows as in the
n =1 case from our assumption and Corollary 4.7.2. U

11.3. Boundedness of THek¢ . We now verify boundedness of the non-naive
version of the Hecke global sections functor.

Proof of Lemma 7.17.3. We again assume G = PGLg for simplicity, refer-
ring to Section 9.4 for indications on general G of semisimple rank 1.

It suffices to show the result for K being the n-th congruence subgroup of
G(0O) for some n > 1. We proceed by induction on n.

For F € De%®3(Grg )+, THecke(Gry, F) € Gorie—modys, ; this follows from

crit reg’

Proposition 8.2.2.
Next, suppose that § € D(G)" and F € Whit=!(D2°**3(Grg))*. Then

crit
FHeCke(Grg, Gx9) € /g\crit*mOd—i_ by Proposition 8.8.1.

reg
Therefore, Proposition 11.2.1 implies the n = 1 case of the claim.

We now suppose the result is true for some n and deduce it for n + 1.
The inductive hypothesis states that I'e?k¢(Grg, G x F) is eventually cocon-

nective for F € Dgftc ke’ﬁ(Grg)K”’J“, while Proposition 8.8.1 implies the result if

F e WhitS"H(D(Iiiefke’j(Grg))Jr. Therefore, Proposition 11.2.1 gives the result
for general F € Dg?ske’a(GrG>Kn+l»+_ 0

Appendix A. The global sections functor

A.1. Let k be a level for g. In this appendix we define a global sections
functor

L(G(K), =) : DE(G(K)) — gx—mod @ g t2.crit-mod.

K

Moreover, we show the following basic property:

PROPOSITION A.1.1. The functor I'(G(K),—) is t-exact for the natural
t-structure on D*(G(K)).

To define both I' and the “natural” t¢-structure mentioned above, there
is an implicit choice of compact open subgroup of G(K) (or rather, its Tate
extension) that goes into the definitions. For definiteness, we choose G(O) in
what follows.

Abelian categorically, this construction is well known from [AGO02]. Our
setup is a little different from loc. cit., so we indicate basic definitions and
properties. We compare our construction to theirs in Proposition A.10.1.
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A.2. Definition of the functor. By [Rasl9, §11.9], we have a canonical
isomorphism
ﬁ,{fmodv ~ ﬁ_,ﬂ_:,_g.crit*mod.
Here the left-hand side is the dual in DGCatcont. This isomorphism depends
(mildly) on our choice G(O) of compact open subgroup of G(K). This isomor-
phism is a refinement of the usual semi-infinite cohomology construction; more
precisely, by loc. cit., the pairing

9x—mod ® g_x10.crit—mod — Vect

is calculated by tensoring Kac-Moody representations and then taking semi-
infinite cohomology for the diagonal action.
In addition, by [Ras19, §8], we have a level k G(K)-action on g,—mod.
Therefore, we obtain a functor

D}:(G(K)) - EndDGcatcont (ﬁ:‘iimOd) = ﬁﬁimOd 2 /g\*ﬁ+2'crit7m0d-
By definition, the resulting functor is I'(G(K), —).

A.3. Definition of the t-structure. The choice of G(O) also defines a t-
structure on D} (G(K)). We write D} (G(K)) as colim,, D,(G(K)/K,) under
x-pullback functors; the structure functors are t-exact up to shift by smooth-
ness of the structure maps, so there is a unique t-structure such that the pull-
back functor 7y [— dim G(0)/K,] : Du(G(K)/K,) — D:(G(K)) is t-exact
for all n.

A.4. t-exactness. Below, we prove Proposition A.1.1.

A.5. Since compact objects in D} (G(K)) are bounded in the ¢-structure
and closed under truncations, it suffices to show that for F € D*(G(K))"
compact in D*(G(K)), T'(G(K),F) € (§mod @ §_x42.crit-mod)”.

We fix such an J in what follows.

A.6. Because JF is compact, there exists a positive integer r such that F is
K,-equivariant on the right. Moreover, by compactness again, F is supported
on some closed subscheme S C G(K), which we may assume is preserved under
the right K,-action.

Note that S is necessarily affine as G(K) is ind-affine. We have S =
lim S/ K, ., so by Noetherian approximation, S/ K, is affine for some r’ > 0.
Up to replacing r by r 4+ r/, we may assume S/ K, itself is affine.

A.7. For any two integers mq, mg > 0, we have
H (Vf§7m1 X an+2-crit,m2 ) F(G(K)’ 3!"))

HOMG,  mod@F_ y-+2.crit-mod
= I—Ioimafmod (Vﬁ,ml I x DV*NJrQ-crit,mg)

by definition of T'. Here D : (§_x42.crit—mod®)°P ~ g,—mod® is the isomorphism

defined by the (semi-infinite) duality g.~mod ~ g.—mod" used above.
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To see that I'(G(K), J) is in degrees > 0, it suffices to see that the above
complex is in degrees > 0 for all mj, ma. Moreover, it suffices to check this for
all sufficiently large mq, ms; we will do so for m1,mo > r.

Then to see that I'(G(K),F) is in degree 0, it suffices to show that when
we pass to the limits mq, mo — 0o (using the standard structure maps between
our modules as we vary these parameters), we obtain a complex in degree 0.
In fact, we will see that already F « F x DV_,.9.crit,m, is in the heart of the
t-structure (for me > r), which clearly suffices.

A.8. By [Rasl9, Lemma 9.17.1], DV_, 9.crit,my = Vi m, [dim G(O) /Ky, |
= Vymy[m2 - dim G]. We then have F x V.. = I'"dCh(G(K) /K, F); here we
have descended F by K,-equivariance to a D-module on G(K)/K, and then
we have calculated its IndCoh-global sections.

Putting these together, we find

Homg, mod(Vieymys T+ DV my)

= Homg mod(Viemy s I * Vi p[ma - dim G — (mg — r) dim GJ)

= Homg _oq(Viemy» Fx Vi p[r - dim G]).

By Lemma 9.2.2 (and [Ras19, Prop. 10.16.1], Fx V.. € g,—mod™*. More-
over, by Section A.9 below, J x V. maps under the forgetful functor to Vect
to IndCoh(G(K) /K, F) € Vect (i.e., descend F to G(K)/K, and take IndCoh-
global sections).

As F € D¥(G(K))Y, when we consider F as an object of D, (G(K)/K,), it
lies in cohomological degree dim(G(O)/K,) = r-dim G. Therefore, the same is
true when we forget to IndCoh(G(K)/K,), as that forgetful functor is t-exact
(cf. [GR17b]). Finally, as F is supported on an affine subscheme of G(K)/K,
by construction, I'""°"(G(K)/K,,JF) is in cohomological degree 7 - dim G.

Combining this with the above, we find that %V, ,[r-dim G]) € g.—mod”.
This gives the desired claims, proving Proposition A.1.1 modulo the above as-
sertion.

A.9. Above, we needed the following observation: Suppose that F €
D:(G(K))Xr. We claim that Oblv(F x V,,) = "N G(K)/K,,F) € Vect,
where we implicitly descend F to G(K')/K, through equivariance.

To simplify the notation, we omit the level £ and work with a general
Tate group indscheme H and a compact open subgroup K. (Then the level
may easily be reincorporated in a standard way by taking H to be the Tate
extension of G(K); cf. [Rasl9, §11.3].)

For any € € H-modyeak, suppose § € C5% and F € D(H/K). As in
[Ras19, §8], D(H/K) is canonically isomorphic to IndCoh™(H/K) gy, with Hp
the formal completion of H along K. Moreover, the functor Oblv : CHrw

KW admits a left adjoint, which we denote by Avy’.
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Then we claim that we have isomorphisms
Hpw

55" AVE(G) = Oblv(F) % G e e

functorial in F and § (i.e., an isomorphism of functors D(H/K) ® 5w — @),
Here for the convolution on the left, we regard J as an object of IndCoh™(H) gy

H{w
as above. The notation % means we convolve (in the setting of weak actions)
K7
over Hj, and similarly on the right-hand side. Then Av{"(§) = w Hy /K i g,

Hp,
and F % WHA K = Oblv(F), so we obtain the claim.
Now taking @ = Vect and § = k the trivial representation in Vect% =
Rep(K), we obtain

F x ind} (k) = Oblv(F) x k € Vect.
The right-hand side calculates '™ (/K Oblv(F)) as desired.

A.10. Comparison with Arkhipov-Gaitsgory. To conclude, we observe that
our construction above recovers the one given by Arkhipov-Gaitsgory.

More precisely, D*(G(K))? manifestly coincides with the abelian category
denoted D—mod(G((t))) in Section 6.10 of [AG02], and similarly with a level
 included (which they discuss only in passing).

Below, we outline the proof of the following comparison result.

PROPOSITION A.10.1. The functor
T(G(K), ~) : DLG(K))® = (G -mod @ Gopei2.crie mod)”

= 8 X B(k,—r+2-crit) 7m0d@
constructed above coincides with the one constructed in [AGO02].
Proof.

Step 1. Let us define CDOg,, € Vect as I'(G(K), d¢(0)), where dg oy €
D} (G(K)) is the x-pullback of 6; € D.(Grg).

As 0¢0) € D*(G(K))Y, CDOg, € Vect”.

The object dg(o) manifestly upgrades to a factorization algebra in the
factorization category with fiber D*(G(K)) (defined using the standard uni-
tal factorization structure on G(K); cf. [Rasl4, §2]). Therefore, by [BD04],
CDOg, has a natural vertex algebra structure.

Note that CDOg,,; has commuting g, and g_42.crig-actions.

There is a tautological map Fun(G(0)) — CDOg, € Vect”, which is
compatible with factorization and is a morphism of g[[t]]-bimodules. Regard-
ing CDOg¢,; as a gy-module, we obtain an induced map

i, (Fun(G(0))) — CDOg, € Vect”.
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In [AGO02], a natural vertex algebra structure is defined on the left-hand side.
We claim that this map is an isomorphism of vertex algebras.

Indeed, the construction of the vertex algebra structure from [AG02] ex-
actly uses factorization geometry, showing that the map above is a map of
vertex algebras.

This map is an isomorphism because both sides have standard filtrations
and the map is an isomorphism at the associated graded level.

Step 2. Next, [AG02] constructs a g_12.crit-action on indgﬁt” (Fun(G(0))).
We claim that the above isomorphism is an isomorphism of g_ 1 2.crit-modules
as well.

We regard both sides as objects of
)Q?

(gx—mod ® §—st2.crit—mod) ™ C gx—mod ® G—y+2.crit—mod

~ End DGCatcont (/g\,fmod) .

By construction, CDOg . corresponds to the endofunctor Oblv Avf(o) :

gx—mod — g,—mod.

By [Ras19, Th. 9.16.1], the functor

9—mod™ — §,.—mod
corresponding to an object
M e (/g\n_mOd ® /g\fﬁ+2-crit_m0d)@
is the functor -
N = C=2 (g((t)), olt]]; M @ N).

Here the right-hand side is the functor of G(O)-integrable semi-infinite coho-
mology, which is defined because M ® N is a Kac-Moody module with level
2 - crit.

By [AGO02, Th. 5.5], we have

C% (a((1)), gl[1]}; ind%,, (Fun(G(0))) @ N) = Oblv Avy V) (N)

as desired. (More precisely, one needs to upgrade [AG02] a bit; this is done in
[FG06, Lemma 22.6.2], where we note that the definition of convolution in loc.
cit. involves tensoring and forming semi-infinite cohomology.)

This gives the desired isomorphism of modules with two commuting Kac-
Moody symmetries; this isomorphism is readily seen to coincide with the one

constructed earlier.

Step 3. The functor
I'G(K),—): Di(G(K)) = gx—mod ® §_+2.crit—mod

canonically upgrades to a functor between factorization categories. This in-
duces a canonical morphism of vertex algebras

Vg,n & Vg,ﬂc+2-crit — CDOG,:@ .
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This map coincides with the one constructed in [AG02]; indeed, both are
given by acting on the unit vector 1 € Fun(G(O)) € CDOg,, using the Kac-
Moody action, and we have shown that our Kac-Moody action coincides with
the one in [AGO02].

Step 4. Now suppose F € DX(G(K))”. By construction, I'(G(K),J) €
Vect” carries an action of g, and of Fun(G(K)) (considered as a topological
algebra).

These two actions coincide with the ones considered in [AG02]. Indeed,
this is tautological for Fun(G(K)).

For g, we are reduced to showing that for K,, C G(O) the n-th congru-
ence subgroup and F € D, (G(K)/K,)" a D-module, the two actions of g, on
H(T(G(K)/Kp,J)) coincide.

This is a general assertion about Tate Lie algebras for H a Tate group
indscheme and S a classical indscheme with an action of H. The above logic
defines T''"dCo(S ) . D(S) — h-mod, and we claim that F € D(S)". This
action of h on H'T'(S, F) coincides with the standard one. This can be checked
element by element in b, so it reduces to the case where § is 1-dimensional.
There it follows by the construction of the comparison results in [GR14a].

Step 5. Because d¢(p) is the unit object in the unital factorization cate-
gory D} (G(K)) (see [Rasl4, §2]), [Raslba, Prop. 8.14.1] shows that I upgrades
to a functor

I'(G(K),—-) : Di(G(K)) — CDOg, ~mod?at.

Here we use the notation from [BD04], and are not distinguishing in the nota-
tion between our factorization algebra and its fiber at a point.

Comparing with the construction in [AG02] and applying Step 4, we find
that on abelian categories that the functor

D*(G(K))® = CDOg. . ~mod™@t? ~ ind

ollt] (Fun(G(O)))fmodfuarft’o

coincides with the one constructed in loc. cit.
Now the assertion follows from Step 3. O

COROLLARY A.10.2. For every F € D*(G(K))Y compact, the functor
F % —:gemodT — g, mod™
coincides with the similarly-named functor constructed in [FG06, §22].
Proof. By construction of I'(G(K), —), the following diagram commutes:

I'(G(K),—)®id ~ ~
9x~mod @ gk 42.crit—mod ® g—mod

lid@(,)

D} (G(K)) ® gx—mod

gx—mod.
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By [Ras19, Th. 9.16.1], this means that for M € g,—mod™, we have
55 M ~ CF (g((1), al[; V(G (K), 5) ® M) € G-mod.

Here we tensor and use the diagonal action mixing the level —x + 2 - crit action
on I'(G(K), ) and the given level £ action on M, and then we form the semi-
infinite cochain complex, which retains a level x action from the corresponding
action on I'(G(K), ¥).

By Proposition A.10.1, the latter amounts to the definition of convolution
given in [FG06, §22.5] (see also loc. cit., Section 22.7). O

One can similarly show that this isomorphism is compatible with the as-
sociativity isomorphisms constructed in loc. cit., Section 22.9.

Appendix B. Fully faithfulness

B.1. In this appendix, we present a different proof of Theorem 7.16.1
(fully faithfulness of T'He%e€) than the one given in [FGO6].

B.2. We have the following general criterion.

PROPOSITION B.2.1. Suppose C; € G(K)-modcit are given for i = 1,2.
Suppose that each C; is equipped with a t-structure such that
e The t-structure that is strongly compatible with the G(K)-action.

e The functor AV?Z) : Gf(o) — Whit(C;) is t-exact for szp as in Section 8.5.
Here Whit(C;) is equipped with the t-structure coming from [Ras21b, Th. 2.7.1
and §B.7].

e The functor Av!w : GZG(O)’@ — Whit(€;)Y is conservative.

Suppose that F : C; — Co € G(K)-modcyit, is given. We suppose that the
induced functor Gf(o) QG(O) 18 t-ezact.

Then if the induced functor Whit(C1) — Whit(Ca) is a t-exact equivalence,
the functor GlG(O)’+ — GQG(O)’+ s as well.

Proof. For ¢ = 1,2, the functor Av?’ : GZ-G(O)’+ — Whit(€;)" is t-exact
and conservative by assumption. Moreover, this functor admits the right ad-
joint AvE?). By [Ras19, Lemma 3.7.2], the functor €7@F 5 Whit(€;)* is
comonadic. Being G(K)-equivariant, the functor F' intertwines the comonads
Av!w AvE9) on Whit(C1) and Whit(C2). Therefore, as we have assumed F

induces an equivalence Whit(C;)* = Whit(Cy)T, we obtain the result. O

B.3. We now deduce the following result:

COROLLARY B.3.1. The functor

Hecke,naive ., mHecke,3 G(0),+ -~ G(0),+
r Dcrit (GrG) ©) - gCTitimOdreg,naive

s a t-exact equivalence.
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Proof. We apply Proposition B.2.1 with

Hecke, -~ Hecke,nai
C = Dcrlt zj(G'I'G)y Co = gcritmedreg,naivea and F = [receenae,

It remains to check the hypotheses.
Both t-structures are strongly compatible with ¢-structures by [Ras19].
The functor AV?Z’ : Deit (Grg) 9@ — Whit(Dgit(Grg)) is t-exact and an
equivalence (in particular, conservative) on the hearts of the ¢-structures by
Theorem 8.6.1. We deduce the same for Dgff k%3 (Grg) by Sections 7.6 and 7.7.

The functor Av! : gcritfmodG( ) Whit(gerit—mod) is t-exact by [Ras21b,
Th. 7.2.1]. We immediately deduce the same for gerit—mod;eg naive- The functor

G(0),Q QC h(opreg)

reg, naive
is an equivalence by [FG04, Th. 5.3].
Finally, T'Heckenaive regtricted to DHeCke"”(Grg)G(O) is t-exact by Theo-

crit

rem 8.2.1, and similarly for Whit(D2%*®3(Grg)) by Theorem 8.3.1. O

crit

B.4. 'We now prove Theorem 7.16.1. The reductions follow [FGO06]; only
the last step differs.

Q@ Cor. 8.4.2

A T/J gcrlt mOd _>Wh|t(gcr1t mOdreg nalve)

Proof of Theorem 7.16.1.

Step 1. Recall from Section 7.6 that DHeCke(Grg) is compactly generated
by objects of the form ind™°%®3(F) for F € Dy (Grg) compact. Moreover,
['Hecke preserves compact objects by construction. Therefore, it suffices to show

that the map

HomDHecke , indHecke,;, (9:') 7 indHecke,g, (9) )

crit

(Gr )(

— Hom~ (lendCoh(EF), FIndCoh(g))

——8crit mOdreg

is an equivalence for F,G € Dcrit(Grg) compact.
As T'ndCoh(F) ¢ Oerit~Modye, € Gerit— modreg, it suffices to show that if we
apply p, then the induced map

o) (indHecke,;, (:}') 7 indHecke,;, (9))

HomDHecke 3 (G

crit

— Hom~ (FlndCoh(gj)’ FIndCoh(g))

———0crit— mOdreg naive

is an equivalence.
We will show this below with the weaker assumption that § € De,it(Grg)™.

Step 2. By Lemma 7.12.1 (and its proof), we can rewrite the above terms
as

Hom ypecke.s g, ,yc(0) (indfekes (5,), indHekes (iny D(F) x G))

— Hom. aoy (Do (gy), TIndCon (iny D(F) + G)).

Herit— mOdreg,naive
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Noting that all the terms appearing here are eventually coconnective in

the relevant t-structures, the claim follows from Corollary B.3.1. O
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