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ABSTRACT

Fishery demand for Antarctic krill is increasing, and projected to continue increasing into the future. Krill has the
potential to contribute approximately 10% to all future marine landings, adding significantly to global food
security. However, the fishery is effectively data-limited so is currently managed using precautionary assess-
ments that relate to large spatial and temporal scales that preclude the need for fine-scale ecological data.

To respond to recent changes in fishery operation and to mitigate possible ecological impacts, the Commission
for the Conservation of Antarctic Marine Living Resources (CCAMLR) plans to revise its management strategy so
that it takes into account ecosystem operation at smaller spatial and temporal scales, such as those relevant to
krill-dependent predators.

Here, we consider how catches in coastal areas potentially present challenges for these predators, where
cumulative catches over the fishing season can sometimes be greater than local consumption by predators, and
sometimes greater than the standing stock of krill within an area because of krill transport and replenishment by
ocean currents. Protecting feeding areas used by land-based predators such as penguins and seals, whilst also
offering a high level of protection for pelagic predators such as some species of fish and recovering populations of
cetaceans, will require innovative solutions.

We highlight critical ecological research needed to reduce management uncertainty. This is important as we
demonstrate that krill consumption by predators in near-shore coastal habitats relies absolutely upon krill
movement and oceanographic transport. We also highlight the need to improve understanding about krill
behaviour, especially in relation to observed seasonal changes in krill biomass. Finally, we highlight that without
up-to-date data about changes in krill, krill-dependent predator populations and their oceanographic environ-
ment, management will remain challenging in the context of increasing fishing pressure, recovering populations
of marine mammals and a changing climate.

1. Introduction

be taken from the southwest Atlantic and the southern Indian Ocean; the
precautionary catch limit for these two areas sums to 8.6 Mt., con-

Globally, under-fished marine stocks account for less than 7% of all
stocks assessed (FAO, 2018). Of these, Antarctic krill (Euphausia superba)
has the potential to become a major source of marine protein (Everson,
1977, 1992). Estimates of the total annual production in the Southern
Ocean vary, but range from 340 to 540 Mt. (Atkinson et al., 2009). Two
products are likely to be of importance; krill oil, intended for direct
human consumption, and krill meal, which is most likely destined for
aquaculture feeds (FAO, 2018), pet foods and supplements (www.aker
biomarine.com/; accessed 18 May 2021). Currently, catches can only

* Corresponding author.
E-mail address: pnt@bas.ac.uk (P.N. Trathan).

https://doi.org/10.1016/j.jmarsys.2021.103598

trasting with current catches that now approach 450,000 t. In compar-
ison, the total existing global marine capture of all harvested species is
79.3 Mt., whilst production from global aquaculture is 80.0 Mt. (FAO,
2018). Thus, krill has the potential to contribute around 10% to all
future marine landings, adding significantly to global food security.
With the global human population at 7.8 billion and expected to reach
9.8 billion in 2050, food security is a pressing need.
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1.1. The fishery for Antarctic krill

The Commission for the Conservation of Antarctic Marine Living
Resources (CCAMLR) is responsible for managing the krill fishery (see
Supplementary Information). The CAMLR Convention requires an
ecosystem approach, including consideration of the needs of krill-
dependent predators. This is because krill is an important dietary item
for many species, including fish, squid, penguins, flying seabirds, seals
and baleen whales (Trathan and Hill, 2016). Competition with these
predators is a major consideration for managers, although concerns still
exist about the validity of meal production from krill (e.g. Jacquet et al.,
2010) and about the impacts of climate change (e.g. Flores et al., 2012).

Since the fishery began, CCAMLR has recognised that krill catches
have become increasingly concentrated (e.g. SC-CAMLR-XXXV, 2016,
paragraph 3.47), with the fleet now repeatedly visiting a small number
of fishing hotspots. In the southwest Atlantic (Fig. 1), where over 99% of
harvesting takes place, such hotspots occur to the northeast of South
Georgia, to the west of the South Orkney Islands, within the central
Bransfield Strait, and in the northern Gerlache Strait. As catches have
become more concentrated, particularly near to predator breeding col-
onies, CCAMLR has agreed that it needs an appropriate management
framework (SC-CAMLR-38, 2019). In particular, CCAMLR has recog-
nised the need for a framework that ensures precautionary protection at
small scales; that is at scales typical of those used by predators and now
by the fishery (scales <50 to 100 km).

1.2. Updating the management framework for krill

Given CCAMLR’s ecosystem-approach, a fundamental understanding
of ecosystem operation should underpin any proposed revisions to krill
fisheries management. Therefore, in this context, we consider some of
the challenges now facing CCAMLR, including the movement of krill in
ocean currents, issues related to predator consumption, and the behav-
iour and standing stock of krill itself. We focus on Subarea 48.1 (Fig. 1),
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as an exemplar of issues prevalent across the southwest Atlantic.

Krill are a micro-nektonic species and move with ocean currents,
albeit with some behavioural control (Marr, 1963; Mackintosh, 1972;
Nicol, 2006; Thorpe et al., 2007). Consequently, detailed understanding
about the potential for krill redistribution is vital for management,
especially at small spatial and temporal scales. Such movement is
fundamental for understanding where and when krill spawn, how they
are replenished within the foraging ambit of a given predator colony,
and how fishing hotspots recover after intensive extraction. Krill flux has
therefore been a major concern for CCAMLR (e.g. SC-CAMLR-XIII,
1994), but understanding about the ecological consequences, and how
to incorporate these into management across a range of spatial and
temporal scales, remains unresolved.

One important consequence of krill flux coupled with behaviour, is
that catch limits that are set for large geographic areas can increase the
risks of ecological impacts at smaller scales. This is because krill may
concentrate in preferred habitats (for spawning, for feeding, etc.) which
the fishery will inevitably always seek out as the most profitable areas,
leading to concentration of catch and effort. Such concentrations by the
fishery could impact the stock itself (in spawning areas), or have con-
sequences for dependent predators that habitually use the same habitats.
However, setting catch limits at smaller scales relevant to predator
foraging, or fishery concentration, potentially requires a great deal of
ecological information, much of which is never likely to be available.

Krill exists across diverse habitats (e.g. Atkinson et al., 2008; Schmidt
etal., 2011), where they are preyed upon by many species (Trathan and
Hill, 2016). Recent work by Warwick-Evans et al. (2021) has explored
the energetic requirements of some of these predators, assuming a diet
based largely upon krill, apportioning consumption according to
modelled foraging distributions. Amongst others, Warwick-Evans et al.
(2021) considered species known to be major krill consumers (Croxall
et al., 1985; Reilly et al., 2004); these included the Pygoscelis penguins
(P. adeliae, Adélie; P. antarctica, chinstrap; P. papua, gentoo) and
humpback whales (Megaptera novaeangliae), a species that is now rapidly
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Fig. 1. The southwest Atlantic showing the main Subareas of Area 48 (identified in red) where the fishery for Antarctic krill operates. Proposed Small Scale
Management Units (identified in black) for the krill fishery (Hewitt et al., 2004) are highlighted. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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recovering (Clapham et al., 1999; Matsuoka et al., 2006; Herr et al.,
2016; Branch, 2011). Characterising the dietary demands of such species
is vital for understanding the spatial and temporal operation of marine
foodwebs, as well as for understanding areas of increased risk from
commercial harvesting, given knowledge of krill biomass (Kinzey et al.,
2015; Hill et al., 2016; Reiss et al., 2008, 2017).

A new krill management framework is also now needed as seasonal
sea-ice in Subarea 48.1 has decreased over the past decades in response
to regional warming (e.g. Stammerjohn et al., 2008; Turner et al., 2016).
This has created new opportunities for the fishery, which has now
shifted southwards (Silk et al., 2014). Future southward movement of
the fishery is probable, which means that the development of complex
infrastructure to manage the fishery is unlikely to be long lasting, or
cost-effective.

Understanding the present situation in Subarea 48.1 will not only
increase understanding about other areas where the fishery operates,
but also help inform the future. Therefore in this paper, we consider the
major oceanographic flows that supply krill into the Bransfield Strait -
the plausible sources of krill that replenish removals taken by both
natural predators and the fishery. We also consider the levels of krill
consumed by Pygoscelis penguins and humpback whales, demonstrating
how oceanographic complexity and krill behaviour are key to under-
standing ecosystem operation, and therefore management.

CCAMLR has recognised the need to offset risks associated with the
concentration of catches, particularly during predator breeding (SC-
CAMLR-XXXV, 2016, paragraph 3.110). As such in 2019, CCAMLR
endorsed a plan for the revision of management, including how to
apportion catch limits spatially and temporally at smaller spatial scales
in order to avoid negative impacts on predators, (SC-CAMLR-38, 2019,
paragraph 3.31 to 3.36). Here, we show that the devil is in the detail,
especially for those parts of the ecosystem only rarely evaluated,
including coastal areas where the fishery now increasingly operates. We
recommend that incremental revision of any management solution must
occur, wherever, and whenever adequate data are forthcoming.
CCAMLR must find a pragmatic solution, offering the best compromise
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between adequate data and sufficient precaution.
2. Methods
2.1. Catch and effort data from the fishery for Antarctic krill

Every year, CCAMLR compiles haul-by-haul catch and effort data
from the fishery. We use these data for Subarea 48.1 until the end of the
2017/2018 fishing season (CCAMLR C1 Catch and Effort Data, 2019),
throughout referring to each CCAMLR fishing season (December to
November) by the end date, so 2018 = 2017,/2018.

We used ArcGIS (ESRI Version 10.4.1) to collate catch (tonnes) and
effort (hours fished) at a spatial resolution of 10 x 10 km and at a
temporal resolution of 1 calendar month (Supplementary Tables 2, 3, 4
and 5). We collated catch and effort during the Pygoscelis penguin
breeding season (October to March) and post breeding (April to
September). Penguin settlement occurs in October to November, while
fledging occurs in February to March (Black, 2016; Warwick-Evans
et al., 2018). Black (2016) reports chick departure dates prior to the
middle of March for all three Pygoscelis species.

Recognizing recent concentration of harvesting in coastal habitats,
we also considered catches from those areas within the coastal voluntary
buffer zones (VBZ) (Fig. 2) proposed by the krill fishing companies that
form the Association of Responsible Krill harvesting companies (ARK;
www.ark-krill.org/ark-voluntary-measures; accessed 18 May 2021).
The VBZ close coastal areas to krill fishing during the summer, in the
proximity of important Pygoscelis penguin breeding sites. The VBZ have
been maintained by the entire international krill fishing fleet since 2018
(Fig. 2), they are:

(i) Gerlache Strait - within 30 km of gentoo penguin colonies, in an
area where gentoo and chinstrap penguin colonies dominate, and
gentoo populations have been increasing and extending their
geographic range southwards (Lynch et al., 2012; Humphries
et al., 2017; Trathan et al., 2019). This is also an area where
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Fig. 2. Association of Responsible Krill harvesting companies (ARK) voluntary coastal buffer zones (VBZ). GS VBZ: Gerlache Strait; SSI VBZ: South Shetland Islands;

AP VBZ: Antarctic Peninsula.
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humpback whales are repeatedly sighted (e.g. Nowacek et al.,
2011);

(i) South Shetland Islands - within 40 km of chinstrap penguin col-
onies, in an area where chinstrap penguins dominate, and where
gentoo populations are known to be increasing and chinstrap
populations decreasing (Lynch et al., 2012; Humphries et al.,
2017; Trathan et al., 2019); and,

(iii) Antarctic Peninsula - within 40 km of Adélie colonies, in an area
where Adélie penguin colonies dominate and are stable
(Humphries et al., 2017; Borowicz et al., 2018).

2.2. Consumption of krill by selected predators

We considered spatially explicit estimates of krill consumption
developed by Warwick-Evans et al. (2021) for all Pygoscelis penguin
colonies and humpback whales feeding in Subarea 48.1 (see Supple-
mentary Information). Specifically, we explored how consumption was
distributed, and how it varied inside and outside the VBZ. We used
ArcGIS to collate the estimates of consumption (Warwick-Evans et al.,
2021) at a spatial resolution of 10 x 10 km.

2.3. Oceanographic connectivity and krill flux

We explored oceanographic connectivity within the area used by the
krill fishery in Subarea 48.1 (see Supplementary Information) using the
NEMO high-resolution model described by Trathan et al. (2018). Pre-
dicted flows from this model were used to drive an Individual Based
Model (IBM) to simulate Lagrangian transport of individual ‘krill’
released in different patches at the three major oceanographic gateways
into the Bransfield Strait; these are (i) the Weddell Sea inflow near the
tip of the Antarctic Peninsula, (ii) the Gerlache Strait, and (iii) the shelf
edge to the west of the South Shetland Islands. For these simulations, we
released 100,000 model particles on 1st December 2010 at a depth of 50
m. After release, particles moved according to the 3-dimensional 5-day
mean flows, with vertical distribution restricted to between 1 and 100
m. Tides were not resolved and no particle behaviour was included; in
reality, krill might disperse less, due to swarming behaviour.

3. Results
3.1. Catch and effort data from the fishery for Antarctic krill
We focused on krill harvesting since the 2012 fishing season

(CCAMLR C1 Catch and Effort Data, 2019), but prior to the establish-
ment of the VBZ. Gridding data at a spatial resolution of 10 x 10 km
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shows how catches have aggregated in the recent past (Supplementary
Information Table 6; Supplementary Information Fig. 1). In most cells,
the mean annual catch was less than 650 t y’1 ; however, a small number
of cells showed high catches (>10,000 t y1). Over the fishing seasons
2012 to 2018, approximately half the catch from Subarea 48.1
(494,371.8 t of 985,164.9 t) was taken from a restricted area. In any
given year, fewer than 350 cells were fished (Fig. 3), with approximately
50% of the catch coming from just ~50 cells; (Supplementary Infor-
mation Table 6). Some cells provided high catch levels in multiple years
(Supplementary Information Fig. 1).

Harvesting is further summarised in Supplementary Information
Table 7, with catch data tabulated separately for summer (October to
March) and winter (April to September), corresponding to our definition
of the Pygoscelis penguin breeding season, which cross CCAMLR fishing
seasons. The highest catches are in March, April and May (see Supple-
mentary Information Tables 2, 3, 4 and 5), with over half of all har-
vesting in winter (Supplementary Information Table 7). In the years
prior to the establishment of the VBZ, approximately 13% of total annual
sum of catches occurred during the penguin breeding season within the
foraging ambit of penguins, with a further ~21% taken close to land
after most penguins had finished breeding (Supplementary Information
Table 7). In general, of catch in summer, and of catch in winter, around
one third of harvesting was close to penguin breeding sites (Fig. 4;
Supplementary Information Table 7). The estimates of harvesting are
highly variable with high estimated standard deviations (Supplementary
Information Tables 6 and 10).

3.2. Consumption of krill by selected predators

Krill consumption by the four krill predators considered here was
highly concentrated and not equally distributed (Fig. 5), highlighting
the importance of the coastal ecosystems targeted by these species
during the main breeding period for penguins, and the summer feeding
period for humpback whales (Fig. 6).

The VBZ (Fig. 2) include the majority of the penguin foraging habitat
during breeding for colonies within Subarea 48.1, encompassing
approximately 74.3% of chinstrap, 97.5% of gentoo and 91.4% of Adélie
penguin colonies. Thus, the VBZ include large tracts of foraging habitat
around penguin colonies totalling approximately 74,160.8 km?%:
13,131.9 km? within the Gerlache Strait; 37,055.6 km? around the South
Shetland Islands; and 23,973.3 km? around the tip of the Antarctic
Peninsula.

The average daily demands from breeding gentoo, chinstrap and
Adélie penguins across the whole of Subarea 48.1 range from 0.4 to 6.3
kg km~2 d~! (Supplementary Information Table 8); however, local
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P.N. Trathan et al.

Percentage of annual catch
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Percentage of summer catch

Percentage of winter catch

Fig. 4. Percentage krill catches for Subarea 48.1 after gridding CCAMLR C1
catch data into 10 x 10 km cells. Pie charts show the average catch from cells
fished for the fishing seasons between 2011/2012 and 2017,/2018 for summer
(October to March) and winter (April to September); note difference to
CCAMLR fishing seasons. Catches for the voluntary coastal buffer zones (VBZ)
around major penguin colonies in the Gerlache Strait, the South Shetland
Islands and the northern Antarctic Peninsula are shown. See Supplementary
Information, Table 7.

consumption levels within the VBZ are much higher, and probably more
representative of penguin needs. In the Gerlache Strait VBZ, mean levels
of consumption by chinstrap penguins reach 3.1 kg km~2 d%; in the
South Shetlands VBZ, mean levels of consumption by chinstraps reach
52.2 kg km 2 d~!; whilst mean levels of consumption by Adélie colonies
at the tip of the Peninsula VBZ can reach 72.0 kg km~2 d~!. Maximum
levels of consumption close to colonies are very much higher.

Penguin breeding lasts approximately 95, 85 and 95 days, respec-
tively for gentoo, chinstrap and Adélie penguins (Croll and Tershy,
1998). Within the VBZ, average seasonal krill consumption by penguins
ranges from 0.7 tkm 2y~ ! in the Gerlache VBZ, to 7.1 tkm 2y~ ! in the
tip of the Peninsula VBZ, although maximum rates close to colonies are
significantly higher (Supplementary Information Table 8). Thus, the
seasonal consumption directly adjacent to the largest colonies can be as
much as 44.9 t km~2 y~!, but decreases with increasing distance from
the colonies.

The humpback whale population that feeds along the west Antarctic
Peninsula (nominally breeding stock G) is increasing rapidly (Branch,
2011; Jackson et al., 2015). Scaling population estimates from surveys

Journal of Marine Systems 225 (2022) 103598

undertaken in 2000 (Reilly et al., 2004) with a fixed population increase
per annum (4.6%, 95% CI: —3.4% to 12.9%; Branch, 2011) suggests that
whale numbers may now be such that they consume very significant
amounts of krill (Supplementary Information Table 8). The average
daily demand from humpback whales can range up to 59.1 kg km~2d !,
with an average of 20.9 kg km ™2 d~! across the whole of Subarea 48.1
(Supplementary Information Table 8). Assuming that humpback whales
remain in their summer feeding grounds for approximately 120 days
(Lockyer, 1981), annual krill consumption equates to approximately 2.5
tkm 2 y~! on average, but reaching a maximum of 7.1 t km 2 y~! in
some areas; consumption is highly concentrated and not evenly
distributed (Fig. 5).

The estimates of consumption for both penguins and humpback
whales are highly variable, with high estimated standard deviations
(Supplementary Information Tables 8). Other uncertainties are also
present and must be considered when making comparisons, but which
remain challenging to estimate (Supplementary Information Tables 10).

3.3. Oceanographic connectivity and krill flux

Our oceanographic model reproduces the primary persistent flows
(Fig. 7) to the north of the South Shetland Islands and inside the
Bransfield Strait (Thompson et al., 2009; Sangra et al., 2011; Dotto et al.,
2016; Trathan et al., 2018; Moffat and Meredith, 2018). Weddell Sea
shelf water contributes to the Coastal Current, which transports krill into
the Bransfield Strait from the east, whilst there are western inputs of krill
from the Bellingshausen Sea, the Gerlache Strait and the southern Ant-
arctic Circumpolar Current. The mean oceanographic flows are gener-
ally invariant between seasons, (Supplementary Information Fig. 3),
suggestive of strong topographic steering, including the dominant Ant-
arctic Slope Front in the east of the region.

Fishing is congruent with the shelf-edge current to the northwest of
the South Shetland Islands, the Bransfield Current, and the Coastal
Current to the north and west of the Antarctic Peninsula, although the
presence of sea ice in winter affects fishing locations (Supplementary
Information Fig. 3).

Our simulation of individual ‘krill’ released in a patch at the eastern
end of the Bransfield Strait shows how local currents widely disperse
seeded patches (Fig. 9; release point within an ellipse at 56.75°W,
62.55°S with major and minor axes of 25 km and 10 km respectively,
oriented 30° north of east). Individual particles move considerable dis-
tances, including to the north of the South Shetland Islands. Some par-
ticles remain close to the Peninsula as the complex flows in and around
the canyons retain particles. Our simulation for a similar ‘krill’ patch
released at the western edge of the South Shetland Islands (Fig. 9; release
point within a circle at 61.00°W, 62.35°S with axes of 10 km), shows
how local currents widely disperse particles seeded in proximity to one
of the other important oceanographic gateways. Finally, our simulation
for a patch released at the third major gateway, to the north of the
entrance to the Gerlache Strait (Fig. 9; release point within a circle at
61.25°W, 63.75°S with axes of 10 km) similarly shows a complex pattern
of dispersal and persistent circulation around the South Shetland
Islands.

4. Discussion

Our results highlight the complexity and magnitude of data required
for an ecosystem approach to management at small spatial and temporal
scales, especially in coastal areas. Throughout, we have used the most
up-to-date sources of data available, yet we highlight that important
data gaps remain. The krill fishery has existed for almost five decades,
and in that time major advances in the ecosystem approach to man-
agement have been achieved, but krill fishery management essentially
remains data-limited (see Trathan et al., 2021). Currently therefore,
management progress is most likely to be made through modelling and
other approaches that support decision making when data are less than
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Fig. 5. (a) Catch distribution for Subarea 48.1 after gridding CCAMLR C1 catch data into 10 x 10 km cells (t cell™! y’l). Data show catches between 2011/12 and
2017/18 (see Supplementary Information Fig. 1. (b) Estimates of krill consumption (t km~2 y~%; to convert to t cell ™! y~! multiply by 100) for Pygoscelis penguins
(gentoo, chinstrap and Adélie penguins, with respective breeding periods of 95, 85 and 95 days) combined with humpback whales (120 days feeding) in CCAMLR

Subarea 48.1.

perfect (Carruthers et al., 2014).

The ARK VBZ were developed in response to the lack of data amidst
increasing concerns about potential competition between the krill fish-
ery and breeding penguins constrained to return to land to provision
their offspring. The VBZ also provide protection for important whale
feeding areas. Here, we have focused our analyses on the VBZ in order to

highlight a number of ecological issues that have relevance to coastal
locations near to other krill fishing hotspots, as well as in other eco-
systems that depend upon forage fish species (e.g. Pichegru et al., 2010,
2012; Bertrand et al., 2012; Sherley et al., 2015; Barbraud et al., 2018).

Our analyses demonstrate the complexity and magnitude of data
required for an ecosystem approach to management and show that
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Penguin breeding season consumption

@ Outside VBZ
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@ Shetland VBZ
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Humpback whale consumption

Fig. 6. Percentage krill consumption (t km~2 y~?) for penguins and humpback
whales in Subarea 48.1 after gridding consumption data into 10 x 10 km cells.
Pie charts show the consumption in the voluntary coastal buffer zones (VBZ)
around major penguin colonies in the Gerlache Strait, the South Shetland
Islands and the northern Antarctic Peninsula. See Supplementary Information,
Table 8. Seasonal krill consumption assumes a breeding season of 95, 85 and
95 days, respectively for gentoo, chinstrap and Adélie penguins, based on Croll
and Tershy (1998), and a feeding season of 120 days for humpback whales,
based on Reilly et al. (2004) and Lockyer (1981).

different geographic areas have local ecological complexities, each with
differing levels of consumption by our four study species (Fig. 5).
Consideration of other krill-dependent species (e.g. Santora et al., 2017;
Forcada et al., 2012; Warwick-Evans et al., 2021), though not included
in our study, would add greater levels of complexity.

We demonstrate that the krill harvest also varies in different areas
(Supplementary Information Table 6 and Supplementary Information
Table 7), but is concentrated in preferred areas. Such concentration also
has implications for predators, but in the absence of monitoring, it re-
mains uncertain whether the magnitude of impacts are ecologically
important (see Watters et al., 2020). Our results suggest that one loca-
tion is not necessarily a good proxy for all locations (Supplementary
Information Table 8), and that management might need to be location
specific (Trathan et al., 2021). Our krill consumption analyses reflect
how species have preferred habitats and that not all habitats are equal
(Supplementary Information Table 8). Finally, our oceanographic ana-
lyses (Fig. 9) highlight how different sources of krill might replenish krill
consumed by predators, or removed by harvesting.

The complexity of Subarea 48.1 indicates the need for additional
ecological data (or models. e.g. Carruthers et al., 2014) to inform
management, if it is to identify absolute risks to the ecosystem. Such
information is necessary across wide areas, given that the fishery is not
restricted in space or time, but only by catch limit. The fishery can
operate anywhere in Subarea 48.1, but it preferentially operates within
a relatively small number of 10 x 10 km cells (Supplementary Infor-
mation Table 6). Consequently, CCAMLR now faces a dilemma if it is
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ever to facilitate increased catch limits, whilst also minimizing any risk
of ecological damage (see Supplementary Information). As krill catches
increase, particularly in coastal areas, there is an increasing need for
ecological data at small spatial and temporal scales. Furthermore, in-
formation about krill movement and behaviour, both within and be-
tween key foraging locations is vital at these scales. At present,
CCAMLR’s proposed management approach does not incorporate such
data. Currently, CCAMLR has no means of identifying absolute risk, so
relies upon a precautionary approach. If catches are to increase,
CCAMLR will need to better understand ecosystem operation and ab-
solute risk.

4.1. Predator requirements

Different predators have different habitat requirements and different
demands for krill (e.g. Supplementary Information Table 8). Therefore,
understanding the temporal and spatial demand for krill by predators at
small scales is vital for management, especially where predator demand
overlaps with fisheries. Overlap is especially important where predator
or fishery requirements are conditioned by similar habitat quality, based
on krill availability (Supplementary Information Tables 6, 7 and 8; see
also e.g. Weinstein and Friedlaender, 2017; Weinstein et al., 2017, 2018;
Warwick-Evans et al., 2018; Trathan et al., 2018), or on swarm size,
structure and distribution. However, in reality, levels of complexity are
likely to be greater. This is because we do not account for juvenile and
non-breeding penguins, although we do include the energetic demands
of pre-fledged chicks. Non-breeding penguins that are not constrained to
provision offspring may use the same foraging areas, but they may also
use areas not used by breeding adults. Indeed, recent evidence suggests
that post-breeding penguins and fledglings do use coastal areas at least
some of the time (Hinke et al., 2019).

The analyses of Warwick-Evans et al. (2021), and hence, also ours,
are based upon the best available telemetry data. However, we recognise
that penguin foraging is most constrained during brood and to a lesser
extent during creche, with less constraint during incubation and pre-
moult. This will have implications for our habitat models. Neverthe-
less, gentoo penguins are coastal and resident, so their foraging is
generally near-shore (Ratcliffe et al., 2019). For chinstrap penguins,
60% of all incubation foraging trips are within 40 km, whilst over 80%
of brood trips and almost 75% of all créche trips are within 40 km
(Warwick-Evans et al., 2018; Trathan et al., 2018). For Adélie penguins,
as for chinstraps, most foraging is constrained during breeding. New
telemetry data could therefore improve spatial estimates of distribution,
especially if collected from sites where no tracking data exist (see Tra-
than et al., 2018).

Further complexity in management occurs because of historical
harvesting of fish, seals and krill-dependent baleen whales in the Ant-
arctic. For example, historically, different species of cetacean were
heavily exploited and reduced to very low population numbers,
including blue (Balaenoptera musculus) and fin (Balaenoptera physalus)
whales which are still very much below historical pre-exploitation levels
(e.g. Matsuoka et al., 2006). As these population recover, changes in the
marine ecosystem should be anticipated (Murphy, 1996 c.f. Dewar et al.,
2006), challenging krill management frameworks. Surveys to estimate
baleen whale abundance have been undertaken in Subarea 48.1, but
spatial and temporal coverage are not currently optimal (Warwick-
Evans et al., 2021).

4.2. Potential for the fishery to compete with predators

Populations of krill-dependent penguins respond to changes in their
environment, including prey availability (e.g. Cury et al., 2011). How-
ever, lags in ecological processes can introduce complexity in attributing
cause to observed changes (Trathan et al., 2006, 2007; Forcada and
Trathan, 2009). Predator life-history processes also operate over mul-
tiple scales (Horswill et al., 2014), again underscoring that management
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at small temporal or spatial scales requires detailed consideration.
Nevertheless, it is generally accepted that depleted prey during breeding
can result in irregular provisioning for penguins which may then lead to
chick failure (e.g. Lynnes et al., 2004; Cresswell et al., 2008; Cury et al.,
2011; Oro, 2014; Pichegru et al., 2010, 2012; Sherley et al., 2015, 2018;
Watters et al., 2020).

Our results show that in some areas, the average annual resource
requirements from a 10 x 10 km? cell for penguins (Supplementary
Information Table 8; e.g. 1.0 t km~2) and for humpback whales (Sup-
plementary Information Table 8; e.g. 2.5 t km~2), are comparable to the
average level of standing stock in some years (Fig. 8). This suggests that
in years with a low biomass, the fishery has the potential to compete
with penguins and whales, especially where catches are large (Watters
et al., 2020). In a number of years, the summation of the average pen-
guin demand for krill, the average humpback demand and the average
fishery demand exceeds the estimate of the krill standing stock (Fig. 8).
Naturally, caution is required as all estimates have high standard de-
viations, whilst spatial and temporal averages mask variation which
may be important to predators (Supplementary Information Table 10). It
is also well established that predators do not range equally across coastal
areas and neither does the fishery (e.g. Trathan et al., 2018; Warwick-
Evans et al., 2018). However, if catch limits were to increase in the
future, then the potential for competition would be much greater,
especially in any future years with a low standing stock.

Understanding ecosystem impacts of fishing will be challenging,
especially at the scale of the individual penguin colony, that is at
foraging scales of 10 to 40 km. This is because the majority of colonies
are not monitored, and combined standardised indices (Boyd and Mur-
ray, 2001) derived from monitored colonies show little congruency
between sites (CCAMLR Secretariat, 2016, 2017, 2018). Analyses also
show that inter-annual changes in penguin indices show decreases in
correlation between sites as the duration of the data series increases, and
that there is little evidence of a simple (linear) relationship related to
distance between sites (CCAMLR Secretariat, 2016). Such lack of con-
gruency supports the assertion that management at small scales is likely
to be both complex and data intensive. This is particularly important for
assessment of fisheries impacts, and disentangling such impacts from
changes brought about by other ecosystem processes, such as regional
environmental, or climate change (Trathan and Reid, 2009).

Prey depletion, or prey disturbance during humpback whale foraging
is unstudied, and is likely to be difficult to study. Humpback whales
remain on their feeding grounds for 120 days (Lockyer, 1981), but in-
dividuals are not completely synchronous (Weinstein and Friedlaender,
2017). Some whales may also remain on the feeding ground over winter
(Sirovic et al., 2004). Tracking individuals and relating possible inter-
ference competition to future calving performance, will require novel
approaches.

Consideration of overlap between the fishery and predators during
winter is not feasible, as data to develop preferred habitat models and
consumption estimates are not available. Thus, though predators are less
constrained in winter, this period remains a key gap in our under-
standing of predator overlap with krill fisheries. In the future, knowl-
edge about the winter will become more important as the fishery now
preferentially operates in the autumn (Supplementary Tables 2, 3, 4 and
5) when krill are oil rich. Further, Trathan et al. (2021) also report how
ecological states in the winter can carry-over into subsequent seasons,
suggesting that future models should best consider the dynamics of the
ecosystem, rather than representing the ecosystem as a simple snapshot
in time.

4.3. Oceanographic connectivity and krill flux

Duffy and Schneider (1994) highlight various metrics of predator-
fishery overlap. However, calculation of these metrics requires knowl-
edge about the residence time of krill. Therefore, it remains challenging
to calculate metrics of overlap without knowledge about regional
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oceanography and krill movement. The relationship between standing
stock (Supplementary Information Table 9), predator consumption
(Supplementary Information Table 8) and harvesting (Supplementary
Information Tables 6 and 7) highlights the importance of the dynamic
operation of the Antarctic marine ecosystem, something CCAMLR has
recognised (SC-CAMLR-XIII, 1994), but has yet to address. True metrics
of predator-fishery overlap will be needed if CCAMLR is to understand
the magnitude of real risks to the ecosystem.

Acoustic surveys that estimate krill standing stock have restricted
spatial and temporal coverage (e.g. Reiss et al., 2008; Kinzey et al.,
2015), particularly in near-shore waters where penguins and humpback
whales forage, and where the fishery operates. Improved understanding
about the availability of krill in these areas is now vital. In particular,
data are necessary that describe coastal levels of standing stock, rates of
krill flux, and the retention time of krill. Having such information at
comparable spatial and temporal scales (including for predators, their
prey and for the fishery) is important for developing plausible man-
agement options.

Krill harvesting generally aligns with the dominant oceanographic
flows where mean current speeds are in the range 0.08 m s~* t0 0.18 m
s! (Supplementary Information Fig. 3). These flows are such that the
linear movement of a parcel of water is likely to lead to turnover rates of
between 2.6 and 5.8 days over a distance of 40 km, approximately
equivalent to the foraging radius of chinstrap and Adélie penguins. Such
calculations make no assumptions about variability in flow, tidal forc-
ing, or relationships with sea ice. Interestingly, such estimates corre-
spond with observations that catch rates per hour in fishing hotspots
gradually decline over periods of 4 or 5 days, until fishing vessels move
elsewhere (SC-CAMLR-XXXV, 2016 Annex 6, paragraphs 2.215 to
2.221). Santa Cruz et al. (2018) reported similar results, showing that
hotspots last for between 3 and 17 days, depending upon the number of
vessels present and the scale of a fishing hotspot.

The Coastal Current and the Bransfield Current are key components
of the clockwise circulation pathway within the Bransfield Strait (Fig. 7).
Assuming linear transport and flow speeds of between 0.08 and 0.18 m
s~ 1, the transport of krill around a clockwise path of some ~760 km
could take between 49 and 110 days, providing many opportunities for
the fishing fleet to target the same patches of krill. However, some areas
within the Bransfield Strait have slower flow speeds (Supplementary
Information Fig. 3), so krill transport is likely to be spatially and
temporally variable, and transport around the Bransfield Strait could
take considerably longer. In addition, complex topography and current
flows in the region mean transport pathways are unlikely to be linear,
allowing further opportunities for repeated fishing on the same krill.

The time taken for passive particles (‘krill’) to enter the Bransfield
Strait, and move around the clockwise circulation pathway (Fig. 9) is
comparable to critical time-periods for predators. Respectively, gentoo,
chinstrap and Adélie penguins require 95, 85 and 95 days to raise their
chicks, whilst cetaceans remain to feed during the summer for 120 days.
This highlights that significant depletion of krill at the scale of an in-
dividual colony might take 4 or 5 days to replenish and that significant
depletion at the scale of the Bransfield Strait itself, could take 3 or 4
months to recover.

The mean flow field from our oceanographic model highlights the
fundamental physical properties of the ecosystem. Different sources of
krill supply the Bransfield Strait, whilst mixing inside the Bransfield
Strait is variable; this mean that the abundance of krill could depend
upon prevailing conditions; e.g. if one flow dominates, or dominates
under particular environmental conditions (e.g. Naganobu et al., 1999).
Consequently, further work to reduce levels of uncertainty about sources
of krill in the area fished, would enhance management information.
Recent analyses of krill length frequency highlight the potential for
different sources (Reiss et al., 2020). Other, minor oceanographic
gateways also exist, for example between the islands of the South
Shetland Islands. Tidal dynamics, including in these channels, are
important and could influence krill movement (c.f. Bernard and
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Steinberg, 2013; Bernard et al., 2017).

Several studies have previously considered krill movement in rela-
tion to local oceanography in the Antarctic Peninsula region, including
aspects that will be important for managing the krill fishery. For
example, Capella et al. (1992) concluded that the Bransfield Strait and
the South Shetland Islands receive krill larvae from the Bellingshausen
Sea to the west, the Weddell Sea to the east and from north of the South
Shetland Island arc. Capella et al. (1992) also identified the anticyclonic
circulation around Elephant Island we find in our model. Subsequently,
Pinones et al. (2011, 2013a), used a Lagrangian model to calculate
residence times for biological hotspots, and inferred that certain phys-
ical features aided retention, including proximity to deep depressions
and shelter from wider shelf circulation, something highlighted in our
results (e.g. Supplementary Information Fig. 4).

10

4.4. Krill behaviour

Complexity associated with krill behaviour will also be important,
but necessitates major assumptions about daily and seasonal behav-
ioural patterns (e.g. Thorpe et al., 2007). Recently, Reiss et al. (2017)
reported that the median krill abundance in the Bransfield Strait during
winter was generally an order of magnitude higher (8 krill m~2) than in
summer (0.25 krill m’z), and that the same pattern occurred in all
winters regardless of ice cover. Reiss et al. (2017) also observed that
acoustic estimates of krill biomass were an order of magnitude higher in
winter (e.g. ~5,500,000 t in 2014), compared with the 15 year mean in
summer (e.g. 520,000 t). Reiss et al. (2017) suggested that such obser-
vations were consistent with the hypothesized shelf-ward seasonal
movement of krill from offshore waters during autumn and winter
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(Siegel, 1988; Trathan et al., 1993). However, other explanations are
also plausible, but remain untested. For example, during the summer,
large numbers of land-based central-place predators forage within shelf
waters. Given their breeding constraints, such predators may differen-
tially target krill swarms with mature animals, given their greater en-
ergy content, particularly females (Hill et al., 1996; Reid et al., 1996).
This could result in a reduction of the numbers of mature krill over such
areas. As autumn approaches and spatial constraints on central-place
predators decrease, or as predators leave the area, inflow of krill via
the local oceanographic gateways may lead to an apparent increase, or
recovery, in average krill size. In addition, winter krill biomass might
also increase if predators are feeding elsewhere. Such an alternative
hypothesis would be plausible, and consistent with Reiss et al. (2017).

Determining the reasons behind elevated winter biomass will be
important, as such biomass could be vital for predators in the following
year, for example during the ensuing spring and early summer (Trathan
et al.,, 2021). Consequently, seasonal behaviour coupled with move-
ments of krill may be critically important at scales relevant to both
predators and the fishery. The consequences of behavioural aspects are
not only important within Subarea 48.1, but also more broadly. For
example, Pinones et al. (2013b) and Capella et al. (1992) noted that
predictions of off-shelf transport from the west Antarctic Peninsula,
support the hypothesis that spawning contributes to populations
downstream across the Scotia Sea. Further, age-dependent sea ice
associated behaviour may be important in the transport and distribution
of krill populations (Thorpe et al., 2007), with subsequent impacts on
geographically-constrained foragers.

Other aspects of krill behaviour, including swarm formation in
response to potential biological and physical processes, is a precursor for
understanding which swarms are targeted by predators and the fishery
alike, and as such, Lagrangian models (e.g. Hofmann et al., 2004)
incorporating neighbour-neighbour interactions, random diffusion,
proximity to food and predation can help identify ecological un-
certainties for management. Diel vertical migration (DVM) over a 24 h
cycle may also have implications for krill availability to some predators
(including the fishery), although, Pinones et al. (2013b) noted that DVM
made little (<10%) difference in the horizontal and vertical dispersion
of particles.

4.5. Future management options for krill

At present, all management approaches are severely data-limited
with respect to krill movement, krill behaviour and predator demand.
This is because the complex ecosystem structure and biological diversity
within the southwest Atlantic arises from the combination of numerous
biological and physical interactions. In this area, not only are there
populations of krill-dependent predators that are decreasing, for
example chinstrap penguins (e.g. Lynch et al., 2012; Strycker et al.,
2020), but there are also populations that are now recovering following
previous unsustainable exploitation of, for example, fish and marine
mammals (e.g. Kock, 1992; Reilly et al., 2004; Branch, 2011). Climate
change (Stammerjohn et al., 2008; Vaughan et al., 2013; Larsen et al.,
2014; Cook et al., 2016) is also leading to significant alteration, with
consequences reported at the base of the foodweb (Moline et al., 2004)
and for mid-trophic levels (Atkinson et al., 2004, 2019; Flores et al.,
2012; Kawaguchi et al., 2013; Freer et al., 2019). Given this complexity,
the data and management infrastructure required to manage the krill
fishery at small spatial and temporal scales appears daunting.

Improved understanding requires data if such processes are to be
modelled and eventually disentangled from any impacts from harvest-
ing. Management might eventually involve compromises that may
disadvantage certain ecosystem components over others, albeit within
the context of CCAMLR’s management objective, depending upon the
location, timing and intensity of harvesting. Without adequate data,
such compromises are likely to be arbitrary and may have unintended
consequences.

11
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For the fishery to comply with CCAMLR’s objective (see Supple-
mentary Information) whilst catches concentrate in coastal areas, a
number of big changes are likely to be necessary. Key information gaps
need to be addressed, and can be summarised as the need to improve
understanding about:

the movement and retention of krill in ocean currents (e.g. Capella
et al., 1992; Pinones et al., 2013b);

the consequences of krill behaviour on abundance and distribution
(e.g. Hofmann et al., 2004; Meyer et al., 2017);

the drivers of seasonal patterns of krill abundance and distribution
(e.g. Siegel, 1988);

the spatial distribution and consumption requirements of krill-
dependent predators (e.g. Warwick-Evans et al., 2021); and,

the consequences for the ecosystem of marine mammal recovery and
climate change (e.g. Branch, 2011).

In near-shore areas where ecological dynamics vary between years
(e.g. Fraser and Hofmann, 2003), and evolve over days to weeks (Fig. 9),
management is likely to remain challenging. As such, a pragmatic and
effective management solution is necessary for near-shore areas. Tra-
than et al. (2021) suggest a prioritisation of information gaps for krill
fisheries operating at South Georgia (Subarea 48.3), with the highest
priority proposed as improved estimates of the local standing stock of
krill biomass in each area used by the fishery, preferably with surveys
prior to the start of fishing and after fishing is complete. Without an
improved understanding of seasonal population abundance, manage-
ment will need to remain highly precautionary. Such information would
help facilitate development of a krill stock hypothesis accounting for
movement, behaviour and abundance.

In the mean time, the simplest method to ensure precautionary
management in near-shore areas during critical ecological time-periods
is to limit catch concentrations within sensitive areas. This could be
implemented using move-on rules and catch limits based on local
ecological properties, and would best be parameterised using up-to-date
ecological data for all parts of Subarea 48.1, given that all locations vary
(Supplementary Information Table 8). However, given the scientific
infrastructure needed to determine relevant local ecological properties,
rules based on a fixed harvest limit for each grid cell (pragmatically
greater than 10 x 10 km; Supplementary Information Table 6) might be
more feasible.

Alternatively, maintenance of seasonally closed coastal buffers, such
as the VBZ, during critical ecological time-periods (Supplementary In-
formation Table 8) could be used to manage coastal catch limits; how-
ever, improvements to the VBZ will be needed. For example, the
transition date from open to closed might usefully be reviewed, espe-
cially as peak harvesting now occurs in March to May (Supplementary
Information Tables 2, 3, 4 and 5), overlapping in space and time with
resident gentoo penguins and some naive, recently fledged chinstrap
penguins (Hinke et al., 2019). Whether closed areas are seasonal or year
round, and the date of transition from closed to open, creates different
levels of fishery displacement (Supplementary Information Table 7), and
thus different concerns for the ecosystem and for the fishery. The VBZ
might also be extended to include other near-shore areas in Subarea 48.1
(e.g. Elephant Island) and around coastal areas at the South Orkney
Islands (Subarea 48.2), particularly where whales (Viquerat and Herr,
2017) and chinstrap penguins (Warwick-Evans et al., 2018) occur in
abundance.

Options that would eventually allow the fishery to develop in some
near-shore areas include adaptive-management based on an agreed
experimental framework (see SC-CAMLR-XXXVI, 2017 paragraphs 3.17
to 3.22; SC-CAMLR-XXXVII, 2018 paragraphs 3.27 to 3.28). This should
be designed to provide new understanding about krill-predator-fishery
interactions, including within coastal areas.
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4.6. Important research topics especially within coastal areas during
critical ecological time-periods

In Subarea 48.1, harvesting traditionally occurred between
December and June, making it feasible to undertake regular acoustic
surveys using the fishing fleet to estimate krill standing stock (Godg
etal., 2014). Autonomous survey platforms such as gliders and moorings
may offer future opportunities (Guihen et al., 2014), though these can be
compromised by ice. To understand the dynamic nature of the
ecosystem and the natural cycle of krill (e.g. Siegel, 1988; Trathan et al.,
1993), acoustic surveys should take place each month, at least until such
a time that we understand seasonal changes in biomass (c.f. Reid et al.,
2010; Saunders et al., 2007). These surveys should extend into all areas
where harvesting occurs, including coastal locations where fishing is
concentrated (Trathan et al., 2018; Supplementary Information Fig. 1).
Small-scale before-and-after acoustic surveys to determine the degree of
stock depletion (and recovery) by the fishery will also be key.

Fishing vessels also offer opportunities to use modern drone tech-
nology (e.g. Korczak-Abshire et al., 2019) to update penguin colony
population estimates, and undertake cetacean sightings. Collaboration
and joint endeavours between CCAMLR, ARK and the International
Whaling Commission, will therefore be important, including to better
understand compensatory competition for krill amongst different pred-
ator species (e.g. Laws, 1977; Ballance et al., 2006; Trathan et al., 2012).

5. Conclusion

An effective ecosystem approach to management at small spatial and
temporal scales demands a fundamental understanding of basic ecology,
and therefore the necessary integration of critical data layers. At present,
the required ecological data are not available for managing at these
scales across the wider area used by the fishery, but especially in Sub-
area 48.1, and as previously identified, Subarea 48.2 (Trathan et al.,
2016).

Implementing a staged approach to management for the most
ecologically complex areas, that is near-shore areas, is a pragmatic
management option. Better ecological understanding of the spatial and
temporal distribution of non-target life stages (Perry et al., 2019) or
species (Rombola et al., 2019) of krill, as well as of larval and juvenile
fish (Everson et al., 1992), will provide further confidence of fishery
sustainability (See Supplementary Information). Cetaceans are key
consumers of krill, but CCAMLR has so far not considered this major gap
in ecosystem understanding.

Pressures on the Antarctic are likely to increase over the 21st century
(Rintoul et al., 2018). Maintaining CCAMLR is therefore vital, and ne-
cessitates that any future management approach reflects the prevailing
operation of the fishery. Finding a pragmatic solution to management is
key, balancing the need for data with adequate levels of precaution.
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