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Abstract

Robust object detection under photon-limited conditions
is crucial for applications such as night vision, surveillance,
and microscopy, where the number of photons per pixel is
low due to a dark environment and/or a short integration
time. While the mainstream “low-light” image enhance-
ment methods have produced promising results that improve
the image contrast between the foreground and background
through advanced coloring techniques, the more challeng-
ing problem of mitigating the photon shot noise inherited
from the random Poisson process remains open. In this
paper, we present a photon-limited object detection frame-
work by adding two ideas to state-of-the-art object detec-
tors: 1) a space-time non-local module that leverages the
spatial-temporal information across an image sequence in
the feature space, and 2) knowledge distillation in the form
of student-teacher learning to improve the robustness of the
detector’s feature extractor against noise. Experiments are
conducted to demonstrate the improved performance of the
proposed method in comparison with state-of-the-art base-
lines. When integrated with the latest photon counting de-
vices, the algorithm achieves more than 50% mean average
precision at a photon level of 1 photon per pixel.

1. Introduction
State-of-the-art object detection methods such as Faster

R-CNN [64] and YOLO [63] are the backbones of many

computer vision systems today, but their operating regimes

have been limited to well-illuminated scenes with a suffi-

cient amount of photons. As the number of photons de-

creases so that the signal-to-noise ratio becomes lower, the

performance of these detectors will also degrade. For ap-

plications where photon-limited imaging is essential ( e.g.,

night-time navigation, surveillance in an under-resourced
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Figure 1: We present a new object detection method for

photon-limited conditions. While traditional detectors fail

because the signal is too weak, our method addresses the

problem by proposing two improvements: (1) Space-time

non-local module, and (2) Student-teacher learning.

environment, and microscopy with limited fluorescence

dosage and cell exposures,) developing a more robust ob-

ject detection algorithm presents a pressing need. The goal

of this paper is to fill the gap by demonstrating object de-

tection where existing methods fail to work.

Photon-limited imaging refers to image acquisition un-

der a condition where the number of measured photons is

very low. The fundamental limit is attributed to the Poisson

process of the photon arrivals. This randomness is present

even if the sensor is perfect – no read noise, no dark current,

and has a uniform pixel response. Because the randomness

is the nature of the problem, a photon-limited object detec-

tion algorithm must be able to extract the weak signal from

the noise. Existing low-light enhancement algorithms have

demonstrated promising results of improving the contrast of

low-light images. In this paper, we are interested in pushing
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Figure 2: While baseline/vanilla methods [2, 8, 11, 13, 20, 36, 37, 46, 49, 51, 52, 63, 64, 70, 73, 80, 81] are designed to handle
well-illuminated scenes, this paper focuses on the photon-limited regime where signals are very weak. Existing “low-light”
methods [7, 53, 67, 78] typically do not operate in such an extreme condition where the signal is weak even after tone-map
and/or adjusting the sensor’s ISO.

the limit further by considering images that do not only have
a low contrast but are also contaminated with shot noise.

The contributions of this paper are summarized in Fig-
ure 1. While conventional methods such as Faster R-CNN
fail to detect objects under photon-limited conditions, we
propose two improvements to overcome the difficulty:

• Leverage spatial-temporal redundancy. We assume
that the input data is a burst of photon-limited frames.
Although motion exists across the burst of frames, the
total signal-to-noise ratio (SNR) of a burst is higher
than a single frame. By borrowing ideas from the non-
local neural network [71], we build a space-time non-
local feature aggregation module to assemble neigh-
boring space-time features.

• Regularize features via student-teacher knowledge dis-
tillation. The construction of the non-local features
is based on feature matching. The success of feature
matching depends on the SNR of the features. To max-
imize the SNR of the features, we employ a knowl-
edge distillation technique where the feature extraction
module of a student network is trained to mimic the
features produced by a pre-trained teacher.

By incorporating the two improvements into Faster R-CNN,
we offer improved detection performance. Our experimen-
tal results show that the new algorithm outperforms the
baselines by more than 6% in mean accuracy precision
(mAP). Given a desired mAP level, our system requires
up to 50% fewer photons. When combined with the latest
single-photon image sensors [55], we achieve object detec-
tion at 1 photon per pixels (PPP) or lower on real images.

2. Related Work
The taxonomy of the object detection methods is out-

lined in Figure 2, where we compare different detection
tasks/methods against the photon-level (measured in lux)
and the sensor gain (measured in ISO).

2.1. Baseline / Vanilla Methods

The mainstream object detection methods that are
trained using large scale data set such as ILSVRC [66] and
COCO [50] typically operate at the right most column of
Figure 2 where the number of photons is sufficient. Depend-
ing on the input data format, the methods can be categorized
into the following two groups:

Single-image detection methods that detect objects from
a single image. Some of these methods focus on speed
and real time processing capability [46,49,52,63], whereas
other methods based on region proposal focus on detection
performance [11, 36, 37, 64]. On top of these methods, var-
ious work are proposed by leveraging multi-scale informa-
tion [48], making network fully convolutional [11], utilizing
multi-task training [36], tackling foreground-background
imbalance [49], and improving bounding box prediction
quality [39, 79].

Video detection methods that detect objects from mul-
tiple frames of a video. The premise of these methods is
that the temporal information and the spatial-temporal re-
dundancy provides valuable information for the detection.
The aggregation of temporal cues are typically done at two
levels: (i) feature level aggregation [2,51,70,73,80,81], and
(ii) box level aggregation [8, 13, 20, 70].

Despite the abundance of baseline methods, the networks
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and training are not designed for photon-limited conditions.
As a result, directly applying these methods to our problem
is ineffective (performance is limited even if one augment
training data) and inefficient (pre-processing could be com-
putationally expensive but does not necessarily lead to un-
paralleled performance), as demonstrated in [27, 78] and in
our experiment.

2.2. Low-Light Detection Methods

Conventional low-light image processing methods can
handle darker images than the baselines as shown in Fig-
ure 2(c) and (d). The easier case, as shown in Fig-
ure 2(d), happens when the lighting condition is not prop-
erly adjusted. However, information is mostly intact after
tone-mapping and contrast enhancement. Image enhance-
ment for this class of problem has been extensively stud-
ied [1,10,25,29,30,35,40,43,44,54,60,65,69,74,77]. For
object detection, Loh et al. [53] and Yang et al. [78] created
large-scale real low light detection data sets. The state-of-
the-art detection systems in this scenario adopt Multi-Scale
Retinex with Color Restoration (MSRCR) algorithm [43]
for pre-processing and fine tune detectors on pre-processed
data [78]. As will be shown in the experiment section, this
strategy fails to work on photon-limited images; the strong
photon shot noise will void the illumination smoothness as-
sumption held by the Retinex model.

The harder case of the two, as shown in Figure 2(c), hap-
pens when the photon level is further reduced. In this op-
erating regime, one needs to switch to a high sensor gain
(higher ISO) so that the details can be observed. As far as
object detection algorithms are concerned, to the best of our
knowledge, no large scale detection dataset is available to
date. Instead, Sasagawa et al. [67] treat detection in this sce-
nario as a domain adaptation problem and use knowledge
distillation to train a detector with normal lighting detec-
tion data and SID reconstruction data set [7]. In our study,
we simulate the physical process of photon-limited image
formation and demonstrate that our simulation enables our
model to work on real photon-limited images.

2.3. Photon-Limited Imaging Methods

When the light level is extremely low or the exposure
time is extremely short, each pixel only receives a handful
of photons. Images captured under this condition are dom-
inated by photon shot noise as shown in Figure 2(a)-(b),
which are the cases of interest in this paper.

For object detection at this photon level, the pioneer
study by Chen et al. [6] shows the feasibility of perform-
ing classification under such condition on MNIST [47] data
set. Various new types of image sensors have been devel-
oped over the past few years, including the single-photon
avalanche diodes (SPAD) [3, 5, 14–16, 34, 61, 62] and the
quanta image sensors (QIS) [21–24, 56, 57]. A lot work has

also been done in the signal processing side of both these
sensors [4, 17, 18, 26, 28, 31, 32, 41, 42, 58, 75]. Specific
to high-level computer vision tasks, Gyongy et al. demon-
strated tracking and reconstruction of rigid planar object at
this light level [33]. Gnanasambandam et al. [27] and Chi et
al. [9] achieved image reconstruction and classification by
combining student-teacher training scheme. The proposed
idea is inspired by the student-teacher scheme. To further
improve the performance, we introduce a spatial-temporal
non-local module to leverage the information from neigh-
bor frames. Our method generalizes the conventional de-
tection methods by providing a more robust detection under
photon-limited conditions.

3. Method
Given a sequence of photon-limited frames, our goal is to

localize objects and identify their classes in all frames. Our
proposed system is trained on data obtained from Sec 3.1
and consists of key components: the non-local module (Sec
3.2) and the student-teaching learning scheme (Sec 3.3).

3.1. Image Formation Model

Under a photon limited condition, the signal generated
by the image sensor, , is modeled through a Poisson pro-
cess [6, 9, 27]:

Poisson CFA RGB dc r (1)

where CFA stands for the color filter array. RGB is the clean
RGB image in the range . determines the average
number of photons arriving at the sensor and therefore it
depends on the exposure time and the average photon flux
of the scene. dc is the dark current, and N r is
the readout noise with standard deviation r.

The final output is truncated at 3 standard deviation
from mean pixel values and re-normalized to the range

. All frames are assumed to be statistically indepen-
dent, as the Poisson process and the noise are indepen-
dent [68]. In our experiments, we used values listed in table
1, following [6, 27, 72]. The dark current parameter is set
to 0 as it is insignificant compared to other noise sources on
modern sensors when the exposure time is short.

dc r
— or

Table 1: Data synthesis parameters used in our experiments

3.2. Space-Time Non-Local Module

The biggest challenge of detecting objects under photon-
limited conditions is the presence of intense shot noise. Our
solution to extract signals from the noise is to utilize the
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Figure 3: Our proposed non-local module and student-teacher training scheme. The teacher network is first pre-trained on

photon-abundant data and it enforces the student to extract noise-rejected features of each input frame. By applying the

non-local search in the feature space, similar spatial-temporal features are aggregated to update the key frame features.

spatial-temporal redundancy across a burst of frames. Our

hypothesis is that if we are able to find similar patches in

the space-time volume, we can take a non-local average to

boost the signal. To achieve this goal, we design a non-local

module as depicted in Figure 3.

Given an image sequence, each frame is fed into a feature

extractor (the student-teacher module, which will be dis-

cussed in Section 3.3) to obtain the feature maps. For each

feature vector at location (i, j, t), we conduct a non-local

search for similar features by computing the inner-products

of this feature and all the candidate features in the adjacent

frames. This operation produces a set of scalars represent-

ing the similarities between the current feature and the fea-

tures in the space-time neighborhood. Then for every time t,
we select the top-k candidates with the highest inner prod-

uct values. As shown in the Supplementary Materials, we

find that k = 2 is an appropriate number for most of the

experiments. After picking the top-k features, we take the

average to generate the aggregated non-local feature.

Our proposed space-time non-local module differs from

the traditional non-local neural networks [71] in the follow-

ing two aspects:

• Before computing the similarity, [71] uses convolu-

tional layers to first project features onto another fea-

ture space. This additional feature space is designed to

represent high-level semantic meanings of the scene,

such as interactions. For photon-limited imaging

where the SNR is low, such semantic-level features are

generally more corrupted and hence they are less reli-

able than low-level features. In addition, feature pro-

jection could cause confusion to our spatial-temporal

feature matching step because the noise is heavy.

• [71] aggregates all space-time information via a soft-

max weighted average. We only average partially the

space-time information from the top-k features be-

cause irrelevant features in the time-space can distract

our model. In the Supplementary Material, we demon-

strate that the top-2 features per frame are sufficient for

our purpose.

3.3. Knowledge Distillation

The performance of the non-local feature matching de-

pends heavily on the SNR of the features. If the features are

contaminated by noise, finding correct feature correspon-

dence would be difficult. Inspired by [9, 27], we introduce

a knowledge distillation step known as the student-teacher

learning scheme to regularize the features. The idea is to

train the student feature extractor by minimizing its L2 dis-

tance with a teacher pre-trained on clean data so that the

features extracted by the student are denoised.

Figure 4 depicts the idea of the proposed student-

teaching learning scheme. In this figure, we have a teacher

network and a student network. The teacher network is pre-

trained using well-illuminated images. The student network

has the same architecture but it is used to extract features

from the photon-limited data (i.e., noisy). During training,
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Figure 4: Knowledge distillation via student-teacher learn-

ing. The teacher network is pre-trained on clean images. We

train the student network by minimizing the perceptual loss

which measures the pixel-wise difference of the features.

the parameters of the teacher network are fixed and those of

the student network are trainable. Because the teacher net-

work is trained to handle clean images, it generates noise-

free features when it is fed with clean images. We want fea-

tures produced by the student network to be similar to those

of the teacher. To this end, we introduce regularization to

the student network by defining a perceptual loss:

Lp =
N∑
i=1

‖φ̂i(xclean)− φi(xnoisy)‖2, (2)

where φ̂i(xclean) and φi(xnoisy) are the i-th layer’s feature of

the teacher and student network, respectively. The percep-

tual loss is the Euclidean distance measuring the difference

between the student’s and the teacher’s features. Minimiz-

ing the perceptual loss forces them to be close in the fea-

ture space. This further enforces the network to denoise the

image and generate good representations before non-local

feature matching.

The overall training loss of our detector consists of the

perceptual loss Lp, the standard cross-entropy loss, and the

regression loss [64].

3.4. Rationale of Our Design

To illustrate the benefit of the proposed non-local mod-

ule and the student-teacher learning scheme, we conduct an

experiment in this section.

In Figure 5, we synthesize two independent and identi-

cally distributed (i.i.d.) copies of a photon-limited image at

a photon level of 0.25 photons per pixel (ppp). We use this

pair of images to check how the feature matching step per-

forms. Three methods are compared: 1) Non-local search in

the image space (i.e., the original non-local search), 2) non-

local Search in the feature space, and 3) student-teacher +

non-local Search in the feature space. In the image space,

for each h × w patch, we compute its normalized cross-

correlation (NCC) with all h×w patches in the other image

and choose the one with the highest NCC as its matching

patch. In the feature space, we use features trained with

or without student-teacher training and find correspondence

for every feature vector. The correspondence is visualized

by the center of the receptive field of feature vectors.

The benefit of the proposed method can be seen in two

aspects: accuracy and speed. As illustrated in Figure 5, the

non-local search in the feature space has a much higher suc-

cess rate of finding correct correspondence than the same

method applied to the image space. The student-teacher

training further increases the performance by enhancing the

robustness of the feature extractor against noise. We per-

formed the experiment for 100 images and we observed that

the trend was consistent.

For the speed, non-local search in image space is compu-

tationally more expensive than in the feature space. Given

an H ×W image with desired patch size h×w, the feature

matching process takes approximately (HW )
2
hw floating-

point operations (FLOP) in the image space and (HW
S )

2
C

FLOP’s in the feature space, where C is feature vector di-

mension and S is spatial resolution compression ratio by

the feature extractor. Reducing the patch size reduces the

computation cost, but the matching quality deteriorates sig-

nificantly. In our implementation, we use 64 × 64 for the

image space search and it takes ∼ 256 times more compu-

tation than in the feature space.

4. Experiments

4.1. Experimental Settings

Dataset. We use the procedure in Sec 3.1 to synthesize

training data of the photon-limited images from the Pascal

VOC 2007 dataset [19]. To synthesize motion across the

frames, we introduce a random translation of image patches.

The total movement varies from 7 to 35 pixels across 8

frames similar to [9]. For testing, we created a synthetic

testing dataset and also collected a dataset of real images.

The read noise of our model is assumed to be 0.25e−, based

on the sensor reported in [55]. The average photon level we

tested ranges from 0.1 to 5.0 photons per pixel (ppp). With

an f/1.4 camera, 1.1μm pixel pitch, and 30ms integration,

this range of photons roughly translates to 0.02 lux to 5 lux

(typical night vision scenarios). For real data, we use the

GJ01611 16MP photon counting Quanta Image Sensor de-

veloped by GigaJot Technology [55].

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2022 at 16:50:08 UTC from IEEE Xplore.  Restrictions apply.



Motion-free
Two realizations of noise

0.25 photons per pixel

Image space
+ Nonlocal search

Feature space
+ Nonlocal search

Student-teacher
+ Feature space

+ Nonlocal search

18.19% 52.98% 69.02%

10 matching patches （Blue: correct Yellow: incorrect）Input

Figure 5: Comparison of different non-local patch matching methods. We synthesize two i.i.d. copies of a photon-limited

image. For each competing configuration, we visualize 10 matching patch examples. The blue and yellow arrows indicate

correct and incorrect matching, respectively. As the image pair is motion-free, the correct matches should be indicated by

horizontal arrows. The combination of non-local search and student-teacher learning demonstrates the best performance.
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Figure 6: Experiments on synthetic data. (a) Compare different object detection methods: Faster R-CNN [64], RED [59]

+ Faster R-CNN [64], RDN [13], and MSRCR [43] + RetinaNet [49]. (b) Compare methods that use image denoising as a

pre-processing step.

Implementation Details. Our method is implemented in

Pytorch based on [76]. The framework takes a T -frame im-

age sequence as input (T = 1, 3, 5 and 8 in the following ex-

periments). We adopt ResNet-101 [38] pretrained on Ima-

geNet [12] as the backbone. The perceputual loss is applied

to the features from block 1, block 2 and block 3 of

ResNet-101 and the non-local module is processed on the

features from block 3. We utilize RoIAlign [36] to extract

the features from object proposals and block 4 is further

applied to the extracted proposal features before the final

classifier. The model is trained for 20 epochs and we use

Adam [45] optimizer with default parameters, learning rate

0.001, and weight decay 0.1 every 5 epochs.

Competing Methods. We compare our method with

four baselines. (a) A generic image object detector: Faster

R-CNN [64]; (b) A video object detector: Relation Distilla-

tion Network (RDN) [13]; (c) A low-light detection frame-

work: color restoration algorithm (MSRCR) [43] plus a

detection RetinaNet [49], which is one of the winning so-

lutions of 2019 UG2+ low-light face detection challenge;

(d) A two-stage pre-denoised detection framework: RED-

Net [59] plus Faster R-CNN [64]. (a) and (b) are fine-tuned

using the synthesized photon-limited data.

4.2. Main Results

Our first experiment is conducted on synthetic data. We

use 8-frame inputs with the number of features for non-local

aggregation set to 2 per frame in the following experiments.

Comparison with the baselines. Figure 6a shows the

detection rate, measured in mean average precision (mAP),

as a function of the photon level, measured in photons per

pixel (ppp). The proposed method consistently outperforms

the competing methods across the tested photon levels from

0.25 ppp to 0.5 ppp. The difference between our method

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2022 at 16:50:08 UTC from IEEE Xplore.  Restrictions apply.



False alarms

Correct Correct

Fail to detect

CorrectCorrect

False alarmsFalse alarms

Fa
st

er
 R

-C
NN

Ou
rs

Synthetic Data Real Data

1.0 ppp 1.0 ppp 0.52 ppp 0.19 ppp

Figure 7: Detection results on synthetic and real data. The top row is the Faster R-CNN [64]. The bottom row is our

method. The photon level is shown in the top-left corner. The real data is captured by Gigajot Technology 16 MP Photon

Counting Quanta Image Sensor (GJ01611).

and the second-best method is as large as 6% in terms of

mAP when the photon level is 2.0 ppp.

Comparison with image denoisers. When handling

noisy images, a natural solution is to first run a denoiser and

feed the denoised images into a standard object detector.

Figure 6b depicts the comparisons with such baseline meth-

ods. The denoiser we use is the RED-Net [59] previously

used in other photon-limited imaging papers such as [9]

and [27]. As the figure indicates, the proposed method out-

performs the baselines by a big margin. In addition, adding

a denoiser to the proposed method offers almost no addi-

tional benefit. Therefore, the proposed method has effec-

tively executed the denoising task without requiring another

network for denoising.

Different network designs. Table 2 demonstrates the

importance of the space-time non-local module and the

student-teacher learning module. In this table, we present

the relative performance gain compared with Faster R-CNN

baseline [64]. The addition of the non-local module and the

student-teacher training shows improvement upon the base-

line. We observe that the performance gain shrinks when

the photon level increases, as detection becomes easier. The

combination of both designs shows the best performance

across all photon levels, especially in extremely low light,

where the relative gain is 20.07%.

Real data. We collected 225 real images in low light

and annotate objects from 3 categories: person, sheep,

and car. We train our model using the synthetic data and

verify the results using the real data. The results are shown

in Table 3. On average, our proposed method achieves an

mAP of 87.9% while the baseline method achieves 66.9%.

Photon Level

(ppp)
0.25 0.5 1.0 2.0 5.0

ST 9.12 6.20 4.52 5.44 2.57

NL 16.06 14.56 9.89 10.13 5.14

ST+NL 20.07 15.90 11.61 11.26 5.95

Table 2: Comparison of different network designs. Rel-

ative mAP increase are reported with respect to Faster R-

CNN baseline. The unit is %. ST: student-teacher learning;

NL: non-local module; ST+NL:student-teacher learning +

non-local module.

person car sheep mAP (%)

Faster R-CNN 54/105 58/60 60/60 66.9

Ours 73/105 60/60 60/60 87.9

Table 3: Detection results of real data. Each class column

shows the number of correct detections versus ground truth.

The last column is the overall mAP.

Figure 7 shows a qualitative comparison between our

method and the baseline Faster R-CNN. The result shows

that the baseline suffers from either false alarms or missed

detection. In contrast, the proposed method is able to detect

the static toy car and moving person on the real data when

the photon level is 0.52 ppp and 0.19 ppp, respectively.

4.3. Performance comparison with CIS and QIS

We evaluate the proposed method with a conventional

CMOS image sensor (CIS) from Google Pixel 3XL and a

Authorized licensed use limited to: Purdue University. Downloaded on April 01,2022 at 16:50:08 UTC from IEEE Xplore.  Restrictions apply.
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Fi g ur e 8: C o m p a ris o n of diff e r e nt s e ns o rs a n d diff e r e nt  m et h o ds o n r e al d at a. T h e vis u ali z e d fi g ur es ar e t o n e  m a p p e d
a n d t h e b as eli n e  m et h o d is F ast er  R- C N N.  We c h o os e 5 diff er e nt l u x l e v els r a n gi n g fr o m 0. 0 2 t o 5. 0, e q ui v al e nt t o  A v g. p p p
r a n gi n g fr o m 0. 2 0 t o 6. 0 3. I n t h e ri g ht-t o p c or n er of i m a g es, t h e r e c all ( R) a n d pr e cisi o n ( P) ar e c o m p ut e d, e n cl os e d i n fr a m es
wit h diff er e nt c ol ors.  R e d/ Yell o w/ Gr e e n i n di c at es t ot all y f ail e d/ p arti all y c orr e ct/t ot all y c orr e ct, r es p e cti v el y. I n t h e first r o w,
w e z o o m i nt o t h e l eft-fr o nt si d e of t h e y ell o w c ar a n d s h o w d et ails i n t h e ri g ht- b ott o m b o x.  We c a n s e e t h at i n t h e e xtr e m el y
l o w li g ht c o n diti o n, t h e i m a g es s uff er fr o m t h e hi g h- n ois e pr o bl e m.

GJ 0 1 6 1 1  Q u a nt a I m a g e S e ns or ( QI S) fr o m  Gi g aj ot  Te c h-
n ol o g y [ 5 7 ] u n d er diff er e nt ill u mi n ati o n l e v els.  B y c o m bi n-
i n g t h e pr o p os e d al g orit h m  wit h t h e  QI S d e vi c e,  w e d e m o n-
str at e t h e p erf or m a n c e of t h e pr o p os e d d et e cti o n  m et h o d u n-
d er e xtr e m el y p h ot o n-li mit e d c o n diti o ns ( 0. 0 2 l u x a n d o nl y
0. 2 0 p p p).

T o e ns ur e a f air c o m p aris o n,  w e n ot e t h at t h e  CI S h as a
pi x el pit c h of 1. 4  m a n d r e a d n ois e of 2. 1 4 − ,  w hil e t h e
QI S h as 1. 1  m pi x els a n d r e a d n ois e of 0. 2 2 − . I n t h e e x-
p eri m e nts, t h e f- n u m b er of t h e l e ns is a dj ust e d t o b al a n c e
t h e diff er e n c e of pi x el si z es (f/ 1. 8 f or  CI S a n d f/ 1. 4 f or  QI S)
i n t h e t w o s e ns ors a n d 3 0 ms e c e x p os ur e ti m e is us e d f or
b ot h s e ns ors.

T h e c o m p aris o n r es ults ar e s h o w n i n Fi g ur e 8 .  T h e i m-
a g es  w er e t a k e n u n d er ill u mi n ati o n l e v els fr o m 0. 0 2 l u x t o
5. 0 l u x.  U n d er str o n g ill u mi n ati o n c o n diti o ns s u c h as 5. 0
l u x, all t h e c o m p ar e d  m et h o ds s h o w hi g h d et e cti o n a c c u-
r a c y  wit h o ut a n y f als e al ar ms.  H o w e v er, as t h e ill u mi n ati o n
l e v el d e cr e as es, t h e pr o p os e d al g orit h m s h o ws si g ni fi c a nt
a d v a nt a g es o v er t h e b as eli n e  m et h o ds.  T his p erf or m a n c e
i m pr o v e m e nt is f urt h er e n h a n c e d  wit h t h e  QI S c o m p ar e d
t o t h e  CI S b e c a us e of its ultr a-l o w r e a d n ois e. F or e x a m-
pl e, u n d er 0. 0 2 l u x a n d a n a v er a g e p h ot o n l e v el of 0. 2 0 p p p,
o nl y t h e c o m bi n ati o n of t h e pr o p os e d al g orit h m a n d t h e  QI S
d e vi c e c a n s u c c essf ull y d et e ct t h e y ell o w c ar i n t h e s c e n e.

5.  C o n cl usi o n

We pr o p os e d a p h ot o n-li mit e d o bj e ct d et e cti o n fr a m e-
w or k.  O ur s ol uti o n i nt e gr at es a n e w n o n-l o c al f e at ur e a g-
gr e g ati o n  m et h o d a n d a k n o wl e d g e distill ati o n t e c h ni q u e
wit h t h e st at e- of-t h e- art d et e ct or n et w or ks.  T h e t w o n e w
m o d ul es off er b ett er f e at ur e r e pr es e nt ati o ns f or p h ot o n-
li mit e d i m a g es. I n c o m p aris o n  wit h t h e b as eli n es, t h e pr o-
p os e d d et e ct or d e m o nstr at e d s u p eri or p erf or m a n c e i n s y n-
t h eti c a n d r e al e x p eri m e nts.  W h e n a p pli e d t o t h e l at est
p h ot o n c o u nti n g d e vi c es,  w e d e m o nstr at e d o bj e ct d et e cti o n
at a p h ot o n l e v el of 1 p h ot o n p er pi x el or l o w er, si g ni fi-
c a ntl y s ur p assi n g t h e e xisti n g  C M O S i m a g e s e ns ors a n d al-
g orit h ms. It is e n visi o n e d t h at t h e n e w d et e cti o n fr a m e w or k
will e n a bl e a v ari et y of a p pli c ati o ns, s u c h as s e c urit y, d e-
f e ns e, lif e s ci e n c e, a n d c o ns u m er, as  w ell as t h e e m er gi n g
m e di c al a p pli c ati o ns.

6.  A c k n o wl e d g m e nt

T h e  w or k is s u p p ort e d, i n p art, b y t h e  N ati o n al S ci-
e n c e F o u n d ati o n u n d er t h e gr a nts  C C F- 1 7 1 8 0 0 7 a n d  E C C S-
2 0 3 0 5 7 0.

3 9 6 6

A ut h ori z e d li c e n s e d u s e li mit e d t o: P ur d u e U ni v er sit y. D o w nl o a d e d o n A pril 0 1, 2 0 2 2 at 1 6: 5 0: 0 8 U T C fr o m I E E E X pl or e.  R e stri ct i o n s a p pl y.
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