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Abstract— Grasp detection of novel objects in unstructured
environments is a key capability in robotic manipulation. For
2D grasp detection problems where grasps are assumed to lie
in the plane, it is common to design a fully convolutional neural
network that predicts grasps over an entire image in one step.
However, this is not possible for grasp pose detection where
grasp poses are assumed to exist in SE(3). In this case, it is
common to approach the problem in two steps: grasp candidate
generation and candidate classification [1], [2], [3], [4]. Since
grasp candidate classification is typically expensive, the problem
becomes one of efficiently identifying high quality candidate
grasps. This paper proposes a new grasp candidate generation
method that significantly outperforms major 3D grasp detection
baselines.

I. INTRODUCTION

For many robot manipulation tasks, grasping is a key step.

In order to grasp an object successfully, the robot must place

its hand in exactly the right position and orientation before

attempting to close its fingers. Grasp success depends on the

geometry, friction, mass, and deformability of both the robot

hand and the object. Possible collisions with nearby objects

further complicate the grasping process.

There have been several recent approaches that employ

deep learning techniques to predict grasp poses given point

cloud data as input [5], [6], [7], [8]. However, while these

methods have been shown to enable a robot to grasp a large

variety of rigid objects, with many different shapes, sizes,

and textures, they are often restricted to grasp detection in

the plane or with a shallow out-of-plane orientation. This is

a severe limitation because it prohibits the object from being

grasped from arbitrary directions in SE(3) and thus restricts

how the object can be manipulated.

Some recent work has focused on grasp detection in

SE(3) that can exploit all the freedoms of positioning and

orienting a robotic hand [1], [2], [3], [9]. Such methods often

follow a generate-and-test strategy, where a number of grasp

candidate poses are first generated and then tested for a grasp

quality criterion using a learned classifier. The key question

here is how to generate grasp proposals. Many methods [1],

[10], [4] either generate large numbers of grasp proposals ex-

haustively or use heuristics to prune geometrically infeasible

proposals. These methods can be slow because they typically

perform collision checks and/or grasp stability tests against

the observed scene geometry [1], [9]. An important exception

to the above is the recent work of Mousavian [3] who uses

the decoder portion of a variational autoencoder to propose
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grasp poses. This is a more flexible approach, but it can be

slow.

In this paper, we ask whether it is possible to match or

exceed the performance of existing baselines such as [1]

and [3] using a relatively simple neural network model

architecture to generate grasp proposals from 3D point

clouds. Our method first samples a set of points from the

cloud. For each sample, it efficiently encodes the geometry

of a region about the sample by cropping local rectangular

patches from each of several orthographic projections of

the global scene. This representation of the local region

is input to a neural network model that predicts which

orientations about the sampled point are likely to contain

a grasp. This method is computationally more efficient than

prior methods [1], [3] because both the cropping process

and the candidate generation process are very quick. We

demonstrate in simulation that both the accuracy and speed

of this method compare favorably with previous approaches

and we show that the method is effective in practice on a

real robot.

II. RELATED WORK

A. Object Proposals in Computer Vision

The ideas for proposing grasp poses algorithmically are

analogous to proposing object locations and bounding boxes

in computer vision. Girshick et al. laid the groundwork [11]

in which a number of candidate object regions is proposed

and individually evaluated by a convolutional neural net-

work (CNN). Their work was later extended with region of

interest pooling which improves object detection accuracy

and reduces computational cost [12]. Ren et al. [13] further

improved object detection by predicting candidate object

bounding boxes with a region proposal network (RPN),

extracting features for each box with region of interest

pooling, classifying the box content and regressing the box

parameters. Features for the RPN and the box evaluation

are shared to further reduce computational inference cost.

By learning to predict offsets from fixed reference bounding

boxes, called anchors, the authors predict bounding boxes

of different aspect ratios and sizes. Contrastively, Liu et

al. [14] used a single network that makes predictions about

a discretized space of default bounding boxes whose aspect

ratios and scales are fixed. Similarly, our approach learns to

predict 3D rotational “offsets” from a fixed set of reference

grasp poses.



B. 6-DOF Grasp Pose Detection

The state-of-the-art in grasp pose detection are deep learn-

ing based methods. Much work has focused on 3- or 4-DOF

grasp configurations [5], [6], [7], [8], [15], [16]. Typically,

such approaches keep two orientation DOFs fixed and only

learn the orientation for one axis, usually the grasp approach

axis. This severely restricts the ways in which an object can

be grasped and thus restricts the manipulation tasks that such

grasps can be used for. Another avenue of recent research

explored 6-DOF grasping.

Mousavian et al. used a variational auto-encoder to sample

a diverse set of grasp poses for an object [3]. These poses are

then iteratively evaluated with a separate network and refined

using the evaluator network’s gradient. All of their networks

are based on the PointNet++ architecture [17]. This approach

is extended by Murali et al. [18] to grasping a particular

object in clutter. Qin et al. [9] used a single-shot grasp pro-

posal network that predicts grasp poses by regression directly

from the complete visible scene. Their network is based on

the PointNet++ architecture [17]. In prior work, we detected

grasp poses by first generating grasp proposals based on local

geometry and then classifying multi-view projected features

for each of the proposals [1]. Liang et al. extended this

approach to directly work with point cloud data by training

a network based on the PointNet [4] architecture. Gualtieri

and Platt learn to grasp as part of pick and place modeled as

an MDP with abstract state and action representations, and

solve this MDP with a hierachical method that tells the robot

where to look at in the scene [2]. Zhou and Houser [19] learn

to predict a grasp score from a depth image and use the score

for grasp pose refinement. Yan et al. [20] use generative 3D

shape modeling to learn scene reconstruction that is then

used to predict grasp outcomes. Merwe et al. [21] learn to

reconstruct the object geometry and predict a score for a

multi-fingered robot hand configuration that consists of a 6-

DOF hand pose and finger joint positions. Lu et al. [22] train

a 3D CNN on voxels to predict grasp success for a 16-DOF

hand. Wu et al. [23] train a network to iteratively decide

whether to zoom in or to execute a grasp for multi-fingered

hands. Varley et al. [24] train a 3D convolutional network

to perform object shape completion and then find grasps for

the completed object. In contrast to the literature, we directly

predict grasp poses based on the point cloud geometry and

do not try to complete objects. Instead of generating grasp

proposals in a heuristic fashion, we use a neural network to

evaluate a fixed set of grasp poses.

III. PROBLEM DEFINITION

We define a robot, R, as a robot hand that can move to an

arbitrary pose in its workspace. The robot state is defined

by the pose of the hand, h ∈ SE(3), and the configuration

of the fingers. In this work, we assume the hand is a parallel

jaw gripper whose jaws are actuated by a single degree of

freedom. The world state W ∈ W is a description of the

state of the environment and objects around the robot, where

W is the set of all possible world states. A point cloud, C ∈

C, is a finite set of points in the robot’s environment which

are obtained by one or more depth sensors, where C denotes

the space of possible point clouds that can be generated by

the sensor arrangement of the robot. The world state is a

latent variable that is observed only via the point cloud. In

particular, we model the depth sensor(s) as a function Λ :
W → C that encodes aspects of world state as a point cloud.

Given a robot R and a point cloud C = Λ(W) for some

hidden world state W , the problem of grasp pose detection

is to find a robot hand pose, h ∈ SE(3), such that if the

robot hand is moved to h and the fingers are closed, then

some object in the world W can be grasped.

We approach grasp pose detection as a two step process.

First, we generate a set of grasp pose proposals. Second,

we evaluate the probability that each proposal is an actual

grasp. In this paper, we are mainly concerned with improving

the first step. We formulate the problem of generating grasp

proposals as learning a function, f : C → SE(3), that maps

from the space of possible point clouds to the space of

possible robot hand poses.

IV. GRASP DETECTION SYSTEM

Figure 1 shows an overview of the end-to-end grasp detec-

tion system. There are two components: the proposal scoring

network that generates a large set of grasp candidates quickly

and the grasp classification network that makes a high quality

binary prediction about each grasp candidate. Since the

creation of images for the grasp classification network is

computationally expensive [1], the proposal scoring network

is essential because it focuses attention on promising grasp

candidates.

A. Grasp Candidate Generation

If we were doing grasp detection in the plane (i.e. consid-

ering only x, y, θ grasp poses), then the simplest approach

to grasp candidate generation would be a single forward

pass through a fully convolutional neural network, e.g., as

in Mahler et al. [6]. However, we cannot use this approach

here because we are doing grasp detection in SE(3). Instead,

we do the following. We sample k points from a region

of interest in the point cloud. For each of the k points,

we will do a single forward pass through the proposal

scoring network predicting which hand orientations about

the sampled point are likely to be a good grasp.

Fig. 1: Overview of our approach. Given a point cloud, we

generate grasp pose proposals using a convolutional neural

network. We then classify the proposals as actual grasps

using another convolutional neural network.



Fig. 2: Grasp proposals are predicted with a proposal scoring

network that takes a 3-channel image and produces a score

for each grasp pose represented by the image. Each channel

is an orthographic representation of a subset of the point

cloud.

1) Input to the proposal scoring network: The proposal

scoring network will take as input information about the local

point cloud near the sampled point by extracting a bounding

cube centered on the sampled point. Since we plan to do one

forward pass through the proposal scoring network per point

sampled (k forward passes), it is critical that this bounding

cube is encoded efficiently. We do the following. First, we

create a three-view orthographic representation of the entire

point cloud expressed in the reference frame of the camera

and centered on a point of interest (e.g., the estimated object

center). Each of the three orthographic views is associated

with a height map that describes the scene when viewed

from that direction. These three orthographic projections are

illustrated in Figure 2 as the sides to a cube that encloses the

point cloud. Second, we crop a fixed-size rectangle in each of

the three orthographic projections centered on the sampled

point. Each of these crops encodes information about the

local neighborhood of the sample (the three orthogonal boxes

outlined in black in Figure 2). Finally, the height maps

contained in these three rectangles are stacked and input to

the grasp proposal network as a three-channel image. Notice

that the approach above is very efficient per sampled point.

For each point, we simply crop a rectangle from each of

three images and copy them into the network input as a

three-channel image (one channel for each crop).

2) Output of the proposal scoring network: Our baseline

architecture for the proposal scoring network consists of two

convolutional layers (no zero padding, stride 1, kernel size 5)

followed by two FC layers followed by a sigmoid layer with

m outputs. Each output is interpreted as the probability that

a grasp exists at a particular orientation when the closing

region of the hand is centered on the sample point and

the hand is “pushed” forward until some part of it contacts

the point cloud. In this paper, we focus on the case where

there are m = 196 orientations, but the method should

generalize to other values of m. Note that since the output

layer is a sigmoid instead of a softmax, the network makes

predictions about grasps at multiple orientations for each

sampled point. Figure 3 illustrates the m orientations about

which our network makes predictions. These orientations

cover roughly a half dome of orientations pointed in the

Fig. 3: The robot hand orientations considered by our

method. Each black arrow corresponds to a hand approach

direction. For each direction, there are four possible orienta-

tions about the approach axis.

direction of the camera and are expressed in the reference

frame of the camera. To summarize, the proposal scoring

network takes as input the visible point cloud geometry in

the vicinity of the sample point and outputs predictions about

which orientations around the sampled point are likely to be

grasps.

3) Loss Function: Learning the parameters of the pro-

posal scoring network is a multi-label classification problem

where the labels are multi-hot vectors, y ∈ [0, 1]m, where

m is the number of orientations considered by the proposal

scoring network. Generally, given some object part, multiple

robot hand orientations can usually lead to a successful grasp.

We treat this problem as if there are m independent binary

classification problems, i.e., the binary cross entropy loss

function is calculated separately for each orientation.

B. Grasp Classification

To classify grasp proposals, we use a grasp classification

network that is similar to the one presented in our earlier

work [1]. The network takes as input information about the

local point cloud that would be contained in the closing

region of the robot hand at the grasp pose. The points in that

region are orthographically projected onto a plane parallel

to the hand’s approach axis. A height map of these points

makes up the first channel and the average surface normal at

each of these points makes up three more channels of a four

channel image. We use this image type as it is much faster

to compute than ones with a larger number of channels [1].

The output of the network is a binary label that is one if the

grasp is predicted to be successful and zero otherwise. The

architecture for the network is the same as for the proposal

scoring network. We use the cross entropy loss to train the

network.

V. NETWORK TRAINING

We implemented our networks in PyTorch 1.4 [25]. For

point cloud processing, we used Open3D 0.9 [26]. To gen-

erate synthetic scenes, we used Pyrender [27].

A. Ground Truth Grasps

We consider a grasp to be successful if it (1) is collision-

free and (2) has force closure. We assume a parallel jaw

gripper with soft contacts so that an antipodal grasp is a









(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Robot experiments setup. (a-d) Examples of an

isolated object scene with the four different configurations.

(e-f) Examples of dense clutter scenes.

executed in a hierachical manner by considering grasps in the

following order: cluster centers, cluster inliers, grasps with a

score above 0.5, and grasps with a score below 0.5. For each

group, we solve inverse kinematics for all grasps in the group

and then compare them using heuristics that take into account

the height of the grasp, how vertical the approach direction

is and how wide the hand needs to be opened (similar to [1]).

The former step reduces the number of inverse kinematics

problems to be solved, and the second step can improve

grasp success on in cluttered scenes because it mitigates

the problem of collisions with objects located below other

objects in a pile. If no grasp pose can be reached by the

robot arm, the next group of grasps is considered.

B. Isolated Object Grasping

Here, we characterize how well our method is able to grasp

objects that are placed in isolation on a table in front of the

robot. For each object, we attempt a grasp for up to four

distinct configurations:1 one to three horizontal orientations

and one upright (see Figure 11(a-d)). We generate a point

cloud using a single depth sensor viewpoint and select

a grasp using the procedure described in Section VIII-A.

Table I (first column) shows the results. The robot achieved

an overall grasp success rate of 90.27% (204 successes out

of 226 attempts). Grasps on box corners and the edges

of objects were the most common failure modes in this

experiment.

C. Dense Clutter Grasping

Here, we evaluate our method in a dense clutter setting

similar to the one described in [1]. First, we place ten

randomly selected objects from the object set into a box.

The object set for this experiment is the same as shown in

Figure 10b, except for the three bowls. We then turn the box

upside down on a table in a fixed location, shake the box,

and remove it. Finally, the robot tries to grasp the objects

one by one until no objects remain on the table. Examples

of clutter scenes are depicted in Figure 11(e-h).

Results are shown in the second column of Table I.

Overall, the robot attempted 176 grasps out of which 144

1The bowls have one configuration that is repeated four times, and the
wooden cube has two (a and c).

TABLE I: Results of robot grasping experiments.

Isolated objects Dense clutter

Num grasp attempts 226 176

Num grasp successes 204 144

Grasp success rate 90.27% 81.82%

Object removal rate / 96.00%

were successful (81.82% success rate). The most common

failure modes were edge grasps and corner grasps on boxes

some of which may have failed due to noise in the robot’s

calibration. Furthermore, the robot removed 144 out of 150

objects from the table (96% success rate). The reason for

the six objects which were not removed is that they rolled

out of the robot’s reach or view because of collisions which

occurred while grasping another object.

IX. CONCLUSION

We proposed a method for predicting grasp poses which

were represented as height maps of an orthographically pro-

jected point cloud. In simulation experiments, we found that

our method is both fast and precise, in particular compared to

geometric grasp proposal generation. We also showed that we

can learn grasps based on a physics simulation. Finally, we

demonstrated that our method can effectively grasp objects

in isolation and in dense clutter on a robot.

In future work, we could extend our method to learn col-

lisions with an object’s support plane, like a table, and with

its surroundings, like in cluttered scenes. Another interesting

direction is to learn task-dependent grasps, e.g., to detect

grasps on the handle of a drill. Typically, task dependency

is learned separately from grasp pose detection but could be

learned together with grasp quality.
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