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Abstract— Grasp detection of novel objects in unstructured
environments is a key capability in robotic manipulation. For
2D grasp detection problems where grasps are assumed to lie
in the plane, it is common to design a fully convolutional neural
network that predicts grasps over an entire image in one step.
However, this is not possible for grasp pose detection where
grasp poses are assumed to exist in SE(3). In this case, it is
common to approach the problem in two steps: grasp candidate
generation and candidate classification [1], [2], [3], [4]. Since
grasp candidate classification is typically expensive, the problem
becomes one of efficiently identifying high quality candidate
grasps. This paper proposes a new grasp candidate generation
method that significantly outperforms major 3D grasp detection
baselines.

I. INTRODUCTION

For many robot manipulation tasks, grasping is a key step.
In order to grasp an object successfully, the robot must place
its hand in exactly the right position and orientation before
attempting to close its fingers. Grasp success depends on the
geometry, friction, mass, and deformability of both the robot
hand and the object. Possible collisions with nearby objects
further complicate the grasping process.

There have been several recent approaches that employ
deep learning techniques to predict grasp poses given point
cloud data as input [5], [6], [7], [8]. However, while these
methods have been shown to enable a robot to grasp a large
variety of rigid objects, with many different shapes, sizes,
and textures, they are often restricted to grasp detection in
the plane or with a shallow out-of-plane orientation. This is
a severe limitation because it prohibits the object from being
grasped from arbitrary directions in SE(3) and thus restricts
how the object can be manipulated.

Some recent work has focused on grasp detection in
SE(3) that can exploit all the freedoms of positioning and
orienting a robotic hand [1], [2], [3], [9]. Such methods often
follow a generate-and-test strategy, where a number of grasp
candidate poses are first generated and then tested for a grasp
quality criterion using a learned classifier. The key question
here is how to generate grasp proposals. Many methods [1],
[10], [4] either generate large numbers of grasp proposals ex-
haustively or use heuristics to prune geometrically infeasible
proposals. These methods can be slow because they typically
perform collision checks and/or grasp stability tests against
the observed scene geometry [1], [9]. An important exception
to the above is the recent work of Mousavian [3] who uses
the decoder portion of a variational autoencoder to propose
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grasp poses. This is a more flexible approach, but it can be
slow.

In this paper, we ask whether it is possible to match or
exceed the performance of existing baselines such as [1]
and [3] using a relatively simple neural network model
architecture to generate grasp proposals from 3D point
clouds. Our method first samples a set of points from the
cloud. For each sample, it efficiently encodes the geometry
of a region about the sample by cropping local rectangular
patches from each of several orthographic projections of
the global scene. This representation of the local region
is input to a neural network model that predicts which
orientations about the sampled point are likely to contain
a grasp. This method is computationally more efficient than
prior methods [1], [3] because both the cropping process
and the candidate generation process are very quick. We
demonstrate in simulation that both the accuracy and speed
of this method compare favorably with previous approaches
and we show that the method is effective in practice on a
real robot.

II. RELATED WORK

A. Object Proposals in Computer Vision

The ideas for proposing grasp poses algorithmically are
analogous to proposing object locations and bounding boxes
in computer vision. Girshick et al. laid the groundwork [11]
in which a number of candidate object regions is proposed
and individually evaluated by a convolutional neural net-
work (CNN). Their work was later extended with region of
interest pooling which improves object detection accuracy
and reduces computational cost [12]. Ren et al. [13] further
improved object detection by predicting candidate object
bounding boxes with a region proposal network (RPN),
extracting features for each box with region of interest
pooling, classifying the box content and regressing the box
parameters. Features for the RPN and the box evaluation
are shared to further reduce computational inference cost.
By learning to predict offsets from fixed reference bounding
boxes, called anchors, the authors predict bounding boxes
of different aspect ratios and sizes. Contrastively, Liu et
al. [14] used a single network that makes predictions about
a discretized space of default bounding boxes whose aspect
ratios and scales are fixed. Similarly, our approach learns to
predict 3D rotational “offsets” from a fixed set of reference
grasp poses.



B. 6-DOF Grasp Pose Detection

The state-of-the-art in grasp pose detection are deep learn-
ing based methods. Much work has focused on 3- or 4-DOF
grasp configurations [5], [6], [7], [8], [15], [16]. Typically,
such approaches keep two orientation DOFs fixed and only
learn the orientation for one axis, usually the grasp approach
axis. This severely restricts the ways in which an object can
be grasped and thus restricts the manipulation tasks that such
grasps can be used for. Another avenue of recent research
explored 6-DOF grasping.

Mousavian et al. used a variational auto-encoder to sample
a diverse set of grasp poses for an object [3]. These poses are
then iteratively evaluated with a separate network and refined
using the evaluator network’s gradient. All of their networks
are based on the PointNet++ architecture [17]. This approach
is extended by Murali et al. [18] to grasping a particular
object in clutter. Qin et al. [9] used a single-shot grasp pro-
posal network that predicts grasp poses by regression directly
from the complete visible scene. Their network is based on
the PointNet++ architecture [17]. In prior work, we detected
grasp poses by first generating grasp proposals based on local
geometry and then classifying multi-view projected features
for each of the proposals [1]. Liang et al. extended this
approach to directly work with point cloud data by training
a network based on the PointNet [4] architecture. Gualtieri
and Platt learn to grasp as part of pick and place modeled as
an MDP with abstract state and action representations, and
solve this MDP with a hierachical method that tells the robot
where to look at in the scene [2]. Zhou and Houser [19] learn
to predict a grasp score from a depth image and use the score
for grasp pose refinement. Yan et al. [20] use generative 3D
shape modeling to learn scene reconstruction that is then
used to predict grasp outcomes. Merwe et al. [21] learn to
reconstruct the object geometry and predict a score for a
multi-fingered robot hand configuration that consists of a 6-
DOF hand pose and finger joint positions. Lu et al. [22] train
a 3D CNN on voxels to predict grasp success for a 16-DOF
hand. Wu et al. [23] train a network to iteratively decide
whether to zoom in or to execute a grasp for multi-fingered
hands. Varley et al. [24] train a 3D convolutional network
to perform object shape completion and then find grasps for
the completed object. In contrast to the literature, we directly
predict grasp poses based on the point cloud geometry and
do not try to complete objects. Instead of generating grasp
proposals in a heuristic fashion, we use a neural network to
evaluate a fixed set of grasp poses.

III. PROBLEM DEFINITION

We define a robot, R, as a robot hand that can move to an
arbitrary pose in its workspace. The robot state is defined
by the pose of the hand, h € SFE(3), and the configuration
of the fingers. In this work, we assume the hand is a parallel
jaw gripper whose jaws are actuated by a single degree of
freedom. The world state W € W is a description of the
state of the environment and objects around the robot, where
W is the set of all possible world states. A point cloud, C €
C, is a finite set of points in the robot’s environment which

are obtained by one or more depth sensors, where C denotes
the space of possible point clouds that can be generated by
the sensor arrangement of the robot. The world state is a
latent variable that is observed only via the point cloud. In
particular, we model the depth sensor(s) as a function A :
W — C that encodes aspects of world state as a point cloud.
Given a robot R and a point cloud C = A(W) for some
hidden world state W, the problem of grasp pose detection
is to find a robot hand pose, h € SE(3), such that if the
robot hand is moved to h and the fingers are closed, then
some object in the world W can be grasped.

We approach grasp pose detection as a two step process.
First, we generate a set of grasp pose proposals. Second,
we evaluate the probability that each proposal is an actual
grasp. In this paper, we are mainly concerned with improving
the first step. We formulate the problem of generating grasp
proposals as learning a function, f : C — SE(3), that maps
from the space of possible point clouds to the space of
possible robot hand poses.

IV. GRASP DETECTION SYSTEM

Figure 1 shows an overview of the end-to-end grasp detec-
tion system. There are two components: the proposal scoring
network that generates a large set of grasp candidates quickly
and the grasp classification network that makes a high quality
binary prediction about each grasp candidate. Since the
creation of images for the grasp classification network is
computationally expensive [1], the proposal scoring network
is essential because it focuses attention on promising grasp
candidates.

A. Grasp Candidate Generation

If we were doing grasp detection in the plane (i.e. consid-
ering only x,y, 0 grasp poses), then the simplest approach
to grasp candidate generation would be a single forward
pass through a fully convolutional neural network, e.g., as
in Mabhler et al. [6]. However, we cannot use this approach
here because we are doing grasp detection in SE(3). Instead,
we do the following. We sample k points from a region
of interest in the point cloud. For each of the %k points,
we will do a single forward pass through the proposal
scoring network predicting which hand orientations about
the sampled point are likely to be a good grasp.
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Fig. 1: Overview of our approach. Given a point cloud, we
generate grasp pose proposals using a convolutional neural
network. We then classify the proposals as actual grasps
using another convolutional neural network.
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Fig. 2: Grasp proposals are predicted with a proposal scoring
network that takes a 3-channel image and produces a score
for each grasp pose represented by the image. Each channel
is an orthographic representation of a subset of the point
cloud.

1) Input to the proposal scoring network: The proposal
scoring network will take as input information about the local
point cloud near the sampled point by extracting a bounding
cube centered on the sampled point. Since we plan to do one
forward pass through the proposal scoring network per point
sampled (k forward passes), it is critical that this bounding
cube is encoded efficiently. We do the following. First, we
create a three-view orthographic representation of the entire
point cloud expressed in the reference frame of the camera
and centered on a point of interest (e.g., the estimated object
center). Each of the three orthographic views is associated
with a height map that describes the scene when viewed
from that direction. These three orthographic projections are
illustrated in Figure 2 as the sides to a cube that encloses the
point cloud. Second, we crop a fixed-size rectangle in each of
the three orthographic projections centered on the sampled
point. Each of these crops encodes information about the
local neighborhood of the sample (the three orthogonal boxes
outlined in black in Figure 2). Finally, the height maps
contained in these three rectangles are stacked and input to
the grasp proposal network as a three-channel image. Notice
that the approach above is very efficient per sampled point.
For each point, we simply crop a rectangle from each of
three images and copy them into the network input as a
three-channel image (one channel for each crop).

2) Output of the proposal scoring network: Our baseline
architecture for the proposal scoring network consists of two
convolutional layers (no zero padding, stride 1, kernel size 5)
followed by two FC layers followed by a sigmoid layer with
m outputs. Each output is interpreted as the probability that
a grasp exists at a particular orientation when the closing
region of the hand is centered on the sample point and
the hand is “pushed” forward until some part of it contacts
the point cloud. In this paper, we focus on the case where
there are m = 196 orientations, but the method should
generalize to other values of m. Note that since the output
layer is a sigmoid instead of a softmax, the network makes
predictions about grasps at multiple orientations for each
sampled point. Figure 3 illustrates the m orientations about
which our network makes predictions. These orientations
cover roughly a half dome of orientations pointed in the

Fig. 3: The robot hand orientations considered by our
method. Each black arrow corresponds to a hand approach
direction. For each direction, there are four possible orienta-
tions about the approach axis.

direction of the camera and are expressed in the reference
frame of the camera. To summarize, the proposal scoring
network takes as input the visible point cloud geometry in
the vicinity of the sample point and outputs predictions about
which orientations around the sampled point are likely to be
grasps.

3) Loss Function: Learning the parameters of the pro-
posal scoring network is a multi-label classification problem
where the labels are multi-hot vectors, y € [0, 1]™, where
m is the number of orientations considered by the proposal
scoring network. Generally, given some object part, multiple
robot hand orientations can usually lead to a successful grasp.
We treat this problem as if there are m independent binary
classification problems, i.e., the binary cross entropy loss
function is calculated separately for each orientation.

B. Grasp Classification

To classify grasp proposals, we use a grasp classification
network that is similar to the one presented in our earlier
work [1]. The network takes as input information about the
local point cloud that would be contained in the closing
region of the robot hand at the grasp pose. The points in that
region are orthographically projected onto a plane parallel
to the hand’s approach axis. A height map of these points
makes up the first channel and the average surface normal at
each of these points makes up three more channels of a four
channel image. We use this image type as it is much faster
to compute than ones with a larger number of channels [1].
The output of the network is a binary label that is one if the
grasp is predicted to be successful and zero otherwise. The
architecture for the network is the same as for the proposal
scoring network. We use the cross entropy loss to train the
network.

V. NETWORK TRAINING

We implemented our networks in PyTorch 1.4 [25]. For
point cloud processing, we used Open3D 0.9 [26]. To gen-
erate synthetic scenes, we used Pyrender [27].

A. Ground Truth Grasps

We consider a grasp to be successful if it (1) is collision-
free and (2) has force closure. We assume a parallel jaw
gripper with soft contacts so that an antipodal grasp is a



Fig. 4: Example instances from 3DNet object categories used
for training.

sufficient and necessary condition for force closure [28]. We
consider all points within a fixed distance from each finger
as possible contact points. We then check if the surface
normals of those points lie within the friction cone with a
fixed friction coefficient. This is the same procedure as in
our earlier work [1].

B. Generating Data for Training

Our training set consists of a total of 300 objects, ten ob-
jects for each of thirty categories in 3DNet [29] (see Figure 4.
To fix holes and other issues with the 3DNet object meshes,
we apply a preprocessing method that produces watertight
meshes with a 2-manifold topology and vertices distributed
about uniformly on the object surface [30]. We obtain point
clouds from a mesh by placing it at the origin of a fixed
world frame and scaling it by a randomly chosen factor such
that the object’s extents are within [0.01m, 0.07m] We then
obtain single-view, partial point clouds by sampling camera
locations uniformly on a sphere that has a radius of 0.5m and
that is centered on the world frame’s origin. For our training
set, we sampled 20 camera locations. From each of the
resulting point clouds, we uniformly sampled 100 points and
evaluated grasps with each method used for the simulation
experiments against the corresponding ground truth mesh.
In total, we evaluated about 117 million grasp poses to train
the proposal scoring network and 600,000 poses for the grasp
classification network.

C. Training the Networks

We use a batch size of 64 and images of width 60 and
height 60. All models are trained with stochastic gradient
descent with a momentum of 0.9. The learning rate starts
from 0.01 and is exponentially decreased after each epoch
by a factor of 0.96. We only use the synthetic data (described
above) for training.

VI. ANTIPODAL DETECTION EXPERIMENTS

In this section, we evaluate how well out method can
detect antipodal (i.e. two finger force closure) grasps for
objects presented in isolation. We obtain synthetic point
clouds in the same way as described in Section V.

A. Object Test Set

We evaluate on novel object instances from the same thirty
object categories in 3DNet which were used for training.
Objects are randomly scaled and viewpoints are generated
in the same way as for the training set (see Section V-B. For
each viewpoint, we sample 100 points uniformly from the
cloud.

B. Comparisons

We compare our method, called QD, against two ablations,
QD:GC and QD:ROT, and one baseline GPD. QD:GC is an
ablation of QD that consists of only the grasp classification
network (second half of Figure 1). QD:ROT is an ablation
that consists of only the proposal scoring network (first
half of Figure 1). Both of these ablations are one-stage
grasp detectors which evaluate all potential grasp poses. The
GPD baseline is the 2-stage grasp detector from [1]. It is
structurally similar to the method in this paper, but uses a
geometric proposal strategy instead of a learned proposal
generator.

C. Evaluation Metrics

We evaluate our approach with three metrics: precision,
recall, and detections per second (DPS). Precision and recall
have the standard definitions. DPS is the number of grasp
predictions produced by our method (both stages of Figure 1)
per second. In addition to the standard precision/recall plot
(Figure 5) we also show precision/DPS (Figure 6). Pre-
cision/DPS shows the tradeoff between precision and the
number of predictions the grasp detection system makes.
Ideally, our system would achieve a point in the upper right
corner of this plot — lots of high precision grasps produced
per second.

D. Results: Isolated Objects

Figures 5 and 6 compare QD against QD:GC, QD:ROT,
and GPD for the objects in the 3DNet test set in terms
of precision/recall and precision/DPS. First, notice that QD
outperforms the GPD baseline by a large margin in both
plots. While the QD:GC ablation is very similar to QD in
terms of precision/recall, notice that it is much slower than
QD, especially at high precision values. (At 90% precision
and above, QD:GC is approximately an order of magnitude
slower than QD.) We attribute this speedup to the fact that
our candidate generation strategy allows us ignore a large
number of candidates that the GC network would otherwise
need to consider. Whereas QD:GC has to exhaustively calcu-
late grasp images for every possible grasp proposal while QD
only considers a subset. Looking at QD:ROT, notice that it
is much faster than all other methods, but its precision/recall
curve is significantly lower than either QD:GC or QD. This
confirms that the proposal scoring network is fast but that
it is not as accurate as the grasp classifier. These results
emphasize that both components of QD are important for its
performance: ROT allows us to subsample the set of grasp
proposals to reduce runtime and GC allows us to make more
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object instances.

accurate predictions because of the more informative grasp
descriptor representation.

Figure 7 shows the precision that can be achieved by QD
and GPD for each of the 30 object categories considered in
our experiments. Notice that while QD outperforms GPD for
all categories, the amount of outperformance is significant
for some categories, like books. We believe that this simply
reflects the difficulty the geometry based GPD proposal
generator has for certain objects.

VII. PYBULLET SIMULATION EXPERIMENTS

In this section, we investigate the performance of our
method in a PyBullet physics simulation of robot grasping.
While point clouds are still obtained synthetically in the same
way as before, we measure the actual performance of grasps
in the simulator.

A. Simulating Grasps

After obtaining a point cloud as described in the last
section (using Pyrender) and performing grasp detection,
we simulate a grasp as follows. This process is designed
to mimic the simulation used in 6DoF GraspNet [3], which
is not publicly available. We place a free floating Robotiq
2F-85 parallel jaw gripper in a pose relative to the object
that corresponds to the selected grasp and close the fingers.
After the grasp is formed, we turn on gravity such that it
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Fig. 7: Per-category maximum precision for GPD and QD
on novel, isolated object instances from 3DNet.

points in the direction that the gripper is pointing (it is as if
the gripper is pointed down). We then perform a predefined
shaking motion. Collision between the hand and the object
are checked with FCL [31]. A grasp is considered to be
successful if the hand is not in collision, the object’s center
of mass moves less than 0.5m from the hand, and the z-axis
distance between the object and the hand’s base is less than
0.3m. During this process, the friction coefficient between
the gripper and objects is kept constant, and all objects are
simulated with a uniform mass of 0.5kg.

To make the ground truth robust against errors caused by
imprecise robot kinematics and sensor noise, we simulate
a small number of randomly perturbed poses for each grasp
pose (i.e., in addition to the original proposal). The perturbed
grasp poses are generated by applying a uniformly distributed
random rotation between 0 and 5 degrees about a random
axis, and a uniformly distributed random translation between
0 and 3mm. We decide the final label by a majority vote over
the labels of the perturbations and the original grasp pose,
i.e., if 3 out of the 5 poses are successful, we label the grasp
as positive.

We compare our method to Graspnet [3], a recently pub-
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Fig. 8: Examples of grasps simulated in PyBullet.
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Fig. 9: Precision/DPS comparison between QD and Graspnet.
QD was trained using the full 3DNet object set and we use
the version of Graspnet pretrained in [3].

lished 6-DOF grasp pose detection method. After obtaining
a point cloud using Pyrender, we run Graspnet with the
following default settings: 200 samples for the generative
network and 10 refinement steps using Metropolis-Hastings
sampling. We then label the resulting grasp poses using
the PyBullet simulator as described above. We evaluate on
unseen object instances from the same object categories
that Graspnet has been evaluated on: bottles, bowls, boxes,
cylinders and mugs (BBBCM). Cylinders and boxes are
generated using Open3d with random dimensions. Bowls,
bottles, and mugs are taken from the 3DNet object set.

B. Results: Physics Simulation of Grasps

Figure 9 shows the comparison with Graspet [3]. Our
method is faster and produces grasp detections with higher
precision. We do not perform the precision/recall comparison
here because the Graspnet proposal generator does not have
a discrete hypothesis set and we therefore cannot calculate
recall. However, the precision/DPS shows that our method is
much faster with no worse precision. It is important to point
out here that Graspnet is at a disadvantage relative to our
detector. The problem is that Graspnet cannot be retrained
on our training set without access to high-end GPUs. As
a result, we are using the version of pretrained Graspnet
weights found using the labels generated in [3]. Although
both methods were trained using the same object categories,
it is likely there are slight differences between the labels in
the training set and that this puts Graspnet at a disadvantage.
However, given what is publicly available, this is the closest
comparison that is possible.

VIII. ROBOT EXPERIMENTS
A. Setup

We conducted all our robot experiments on a Universal
Robots” ur5 robot with six DOFs and a Robotiq 2F-85
parallel jaw gripper with one DOF. A Structure 10 depth
camera is mounted on the wrist of the robot arm (see
Figure 10a). The robot is mounted to the same table on
which the objects to be grasped are placed. Our object set
is shown in Figure 10b. We chose objects for which at least

Fig. 10: Robot experiments setup. (a) A point cloud is
acquired from a single viewpoint. (b) Object set for isolated

grasping.

one side fits into the robot hand (preferably more than one).
All objects weigh less than 0.5kg.

The computer used for these experiments has an Intel i7-
7800X 3.50GHz CPU, 64GB system memory, and an Nvidia
GeForce GTX 1080 graphics card with 8GB of memory. All
robot experiments were run on ROS Melodic [32]. For in-
verse kinematics, an analytic solution was used [33]. Motion
planning and collision checking was done in OpenRAVE [34]
and trajopt [35]. We use toppra [36] to produce a trajectory
from a path under joint velocity and acceleration constraints.

To generate grasp poses, the robot moves its hand to a
single viewpoint and obtains a point cloud from its wrist-
mounted depth camera. The viewpoint is chosen such that
the system can observe as much as possible of the scene.
Our algorithm then takes the point cloud and produces a set
of grasp poses. We sample n = 500 points from the point
cloud. From the n x m outputs of ROT (n sampled points,
m hand orientations), we select the top-k (k = 20) scoring
orientations for each of the n points, and then uniformly
subsample 300, and calculate grasp images for those. Then,
we select the top-k (K = 150) scores from GC.

During initial testing, we found that grasps found using
our method sometimes generated collisions with the object
due to small kinematic errors in robot arm positioning. We
believe these errors occur because the training set we used
does not take proximity to collision into account. In order to
correct for this problem on the robotic system, we followed
the following procedure. First, we translate each detected
grasp pose in the hand closing direction such that the visible
points are centered in the grasp. Then, for grasp poses
where the hand is further than a threshold distance from
the closest point in the hand closing region, we translate
the hand forward along its approach direction as far as
possible without generating collisions. Next, we find sets of
geometrically aligned grasps using a similar procedure as
in [10] and generate one additional grasp per cluster that
corresponds to the geometric center of the cluster. These
centers are often close to object (part) centers. These centers
and all grasps produced previously are then checked for
collisions with the point cloud. We select a grasp to be
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Fig. 11: Robot experiments setup. (a-d) Examples of an
isolated object scene with the four different configurations.
(e-f) Examples of dense clutter scenes.

executed in a hierachical manner by considering grasps in the
following order: cluster centers, cluster inliers, grasps with a
score above 0.5, and grasps with a score below 0.5. For each
group, we solve inverse kinematics for all grasps in the group
and then compare them using heuristics that take into account
the height of the grasp, how vertical the approach direction
is and how wide the hand needs to be opened (similar to [1]).
The former step reduces the number of inverse kinematics
problems to be solved, and the second step can improve
grasp success on in cluttered scenes because it mitigates
the problem of collisions with objects located below other
objects in a pile. If no grasp pose can be reached by the
robot arm, the next group of grasps is considered.

B. Isolated Object Grasping

Here, we characterize how well our method is able to grasp
objects that are placed in isolation on a table in front of the
robot. For each object, we attempt a grasp for up to four
distinct configurations:! one to three horizontal orientations
and one upright (see Figure 11(a-d)). We generate a point
cloud using a single depth sensor viewpoint and select
a grasp using the procedure described in Section VIII-A.
Table I (first column) shows the results. The robot achieved
an overall grasp success rate of 90.27% (204 successes out
of 226 attempts). Grasps on box corners and the edges
of objects were the most common failure modes in this
experiment.

C. Dense Clutter Grasping

Here, we evaluate our method in a dense clutter setting
similar to the one described in [1]. First, we place ten
randomly selected objects from the object set into a box.
The object set for this experiment is the same as shown in
Figure 10b, except for the three bowls. We then turn the box
upside down on a table in a fixed location, shake the box,
and remove it. Finally, the robot tries to grasp the objects
one by one until no objects remain on the table. Examples
of clutter scenes are depicted in Figure 11(e-h).

Results are shown in the second column of Table I.
Overall, the robot attempted 176 grasps out of which 144

IThe bowls have one configuration that is repeated four times, and the
wooden cube has two (a and c).

TABLE I: Results of robot grasping experiments.

Isolated objects | Dense clutter
Num grasp attempts 226 176
Num grasp successes 204 144
Grasp success rate 90.27% 81.82%
Object removal rate / 96.00%

were successful (81.82% success rate). The most common
failure modes were edge grasps and corner grasps on boxes
some of which may have failed due to noise in the robot’s
calibration. Furthermore, the robot removed 144 out of 150
objects from the table (96% success rate). The reason for
the six objects which were not removed is that they rolled
out of the robot’s reach or view because of collisions which
occurred while grasping another object.

IX. CONCLUSION

We proposed a method for predicting grasp poses which
were represented as height maps of an orthographically pro-
jected point cloud. In simulation experiments, we found that
our method is both fast and precise, in particular compared to
geometric grasp proposal generation. We also showed that we
can learn grasps based on a physics simulation. Finally, we
demonstrated that our method can effectively grasp objects
in isolation and in dense clutter on a robot.

In future work, we could extend our method to learn col-
lisions with an object’s support plane, like a table, and with
its surroundings, like in cluttered scenes. Another interesting
direction is to learn task-dependent grasps, e.g., to detect
grasps on the handle of a drill. Typically, task dependency
is learned separately from grasp pose detection but could be
learned together with grasp quality.
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