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                                                                      Abstract
Understanding adolescent decision-making is significant for informing basic models of 
neurodevelopment as well as for the domains of public health and criminal justice. System-based 
theories posit that adolescent decision-making is guided by activity amongst reward and control 
processes. While successful at explaining behavior, system-based theories have received 
inconsistent support at the neural level, perhaps because of methodological limitations. Here, we 
used two complementary approaches to overcome said limitations and rigorously evaluate 
system-based models. Using decision-level modeling of fMRI data from a risk-taking task in a 
sample of 2000+ decisions across 51 human adolescents (25 females, mean age = 15.00 years), 
we find support for system-based theories of decision-making. Neural activity in lateral 
prefrontal cortex and a multivariate pattern of cognitive control both predicted a reduced 
likelihood of risk-taking, whereas increased activity in the nucleus accumbens predicted a greater 
likelihood of risk-taking. Interactions between decision-level brain activity and age were not 
observed. These results garner support for system-based accounts of adolescent decision-making 
behavior. 
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Significance Statement
Adolescent decision-making behavior is of great import for basic science, and carries equally 
consequential implications for public health and criminal justice. While dominant psychological 
theories seeking to explain adolescent decision-making have found empirical support, their 
neuroscientific implementations have received inconsistent support. This may be partly due to 
statistical approaches employed by prior neuroimaging studies of system-based theories. We 
used brain modeling—an approach that predicts behavior from brain activity—of univariate and 
multivariate neural activity metrics to better understand how neural components of psychological 
systems guide decision behavior in adolescents. We found broad support for system-based 
theories such that neural systems involved in cognitive control predicted a reduced likelihood to 
make risky decisions, whereas value-based systems predicted greater risk-taking propensity.
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Introduction
Adolescent decision-making has important implications for basic science (Blakemore & 

Mills, 2014; Larsen & Luna, 2018; Sharp & Wall, 2018; Yeager, Dahl, & Dweck, 2018) as well 
as public health, civic matters, and criminal justice policy (Cohen, Bonnie, Taylor-Thompson, & 
Casey, 2015; Cohen & Casey, 2014; Oosterhoff & Wray-Lake, 2020). Influential theories posit 
that adolescent decision-making is governed by psychological “systems” that compete (or in 
some cases, complement) to guide behavior (Casey, 2015; Shulman et al., 2016). While system-
based theories have enjoyed broad success at describing the psychological underpinnings of 
adolescent decision behavior, they have yielded mixed findings when used to describe the 
neurobiology underlying said behavior (e.g., Pfeifer & Allen, 2012). This discrepancy between 
psychological and neural data may be due in part to prior neuroimaging work employing brain 
mapping (predicting brain from behavior) instead of brain modeling (predicting behavior from 
brain) approaches, testing theory between- instead of within-subjects, and not considering 
multivariate neural patterns. The current neuroimaging study sought to overcome these 
methodological limitations, and to more rigorously test the validity of system-based models for 
predicting adolescent risky decision-making. 

A number of system-based theories have been used to explain risky decision-making and 
related motivated behaviors in adolescence (Casey, 2015; Ernst, Pine, & Hardin, 2006; Strang, 
Chein, & Steinberg, 2013). Most of these theories contain two key elements. First, they posit the 
existence of two (though some posit three) adversarial systems: A value-based system oriented 
toward immediate incentives, increasing the propensity for risk-taking, and a cognitive control 
system that restrains the former system to avoid risks. Second, these prominent theories argue the 
value-based system is primed to ‘overpower’ the cognitive-control system in adolescence (i.e., 
they interact with age), ostensibly leading adolescents to take more risks than children and adults 
– particularly in socioemotional contexts (Shulman et al., 2016; Steinberg et al., 2017). System-
based models tend to perform well at explaining adolescent behavior in observational and 
experimental studies (Botdorf, Rosenbaum, Patrianakos, Steinberg, & Chein, 2016; Ellingson, 
Corley, Hewitt, & Friedman, 2019; Steinberg et al., 2017). However, neuroscientific evidence for 
these theories is far less consistent (Flannery et al., 2017; Lee et al., 2018; van Duijvenvoorde, 
Achterberg, et al., 2016; van Duijvenvoorde, Peters, et al., 2016), prompting calls to update 
system-based theories (Casey, 2015; Pfeifer & Allen, 2012, 2016), or revise them so drastically 
as to be categorically different from existing versions (Harden et al., 2017; Romer et al., 2017). 
Without outright rejecting these possibilities, we propose an alternative interpretation for why 
system-based theories receive inconsistent neuroscientific support. 

Most prior neuroscientific investigations of adolescent decision-making have relied on 
univariate brain mapping methods to compare individuals who differ in terms of age or risk-
taking behavior. Brain mapping refers to statistically predicting brain activity from stimulus or 
task characteristics, or task behavior (Kragel, Koban, Barrett, & Wager, 2018). An alternative to 
brain mapping is brain modeling (Kragel et al., 2018), which uses neuroscientific data to predict 
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cognitions and behavior (i.e., any kind of neural metric predicting behavior). Having recently 
grown in popularity, brain modeling approaches have seen broad applications, some of which 
involve within-person modeling, including prediction of food craving (Cosme & Lopez, 2020; 
Cosme, Ludwig, & Berkman, 2019), emotion regulation tendencies (Doré, Weber, & Ochsner, 
2017), negative affect (Chang, Gianaros, Manuck, & Krishnan, 2015), chronic pain (Wager et 
al., 2013) and vision (Gardner & Liu, 2019; Liu, Cable, & Gardner, 2018). While brain mapping 
has generated key discoveries in neuroscience (e.g., Kanwisher, 2017), it can be problematic for 
evaluating system-based theories. Statistically, brain modeling may be preferable to brain 
mapping because individual units of analysis (e.g., voxels or neurons) are more predictive when 
used in concert (such as in a multivariate signature) to predict task behavior, as opposed to the 
opposite (e.g., behavioral responses predicting brain activity) (Zhao et al., 2020). That is, treating 
individual voxels as the outcome of an analysis is less informative than examining how multiple 
voxels collectively predict a phenomenon of interest. Unfortunately, prior brain-mapping studies 
testing system-based theories of decision-making have largely overlooked the cumulative 
information that comes from many voxels. Another advantage of brain modeling is that it is 
better suited for trial-level, within-subject modeling, which tends to be better powered than 
classic between-subject analyses. Philosophically, system-based theories make predictions about 
how underlying neural processes drive behavior – for example, “when value-based brain activity 
is high, individuals will be more likely to take a risk” – which almost by definition aligns with 
brain modeling. Relatedly, system-based theories of decision-making are implicitly geared 
towards explaining within-subject behavior (Strang et al., 2013), yet most prior studies of 
adolescent risky decision-making have focused on between-subject differences (Flannery et al., 
2017; Rudolph et al., 2017; van Duijvenvoorde, Achterberg, et al., 2016). Understanding within-
adolescent fluctuations in decision-making carries critical translational implications for 
understanding why the same individual may be law-abiding most of the time but occasionally 
engage in destructive or maladaptive behavior. The aforementioned limitations of prior work 
motivated the present study to employ novel methodology to test the validity of system-based 
accounts for predicting adolescent decision making.

Methods
Overview. The current study is, to the best of our knowledge, the first within-subject, brain 
modeling investigation of system-based theories of adolescent decision-making. Using functional 
magnetic resonance imaging (fMRI), we predicted trial-by-trial risky decision-making in healthy 
adolescents as a function of brain activity from value-based and cognitive control systems, the 
first premise posited by system-based models. We then tested to see if the two systems interacted 
with age, testing the second premise posted by system-based models. Critically, we examined 
two versions of value-based and cognitive control systems: a ‘classic’ univariate version and a 
newly posited ‘switchboard’ multivariate version. The classic variant of the theory assumes that 
the value-based system that prioritizes immediate rewards is primarily housed in the nucleus 
accumbens (NAcc) whereas the cognitive control system is located in lateral prefrontal cortex 
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(lPFC) (Shulman et al., 2016). This variant is clearly modular, in that it posits that psychological 
functions are represented in isolated brain regions, or modules, that independently and locally 
perform their respective function. While evidence exists to suggest that some degree of 
modularity may be present in the brain (Kanwisher, 2017), this assumption is inconsistent with 
much other work in cognitive neuroscience that shows psychological processes are encoded in 
distributed, multivariate signatures (Chang et al., 2015; Huth, Heer, Griffiths, Theunissen, & 
Gallant, 2016; Parkinson, Kleinbaum, & Wheatley, 2017). To that end, we additionally tested a 
‘switchboard’ version of the model wherein we predict risky behavior as a function of 
multivariate neural signatures of value and cognitive control (via the use of multivoxel pattern 
analysis; MVPA). The advantage of this approach is that it does not hypothesize the localization 
of mental function to any given region of interest (ROI) but instead assumes that mental 
functions are encoded in distributed patterns. Another way to summarize the two variants of the 
model is that the functional units of the classic model lie in particular ROIs, whereas the 
functional units of the switchboard model are comprised by patterns of activity that cut across 
brain regions. We used multilevel logistic regression to examine how linear combinations of 
these brain metrics predicted within-person risky behavior. Last, for thoroughness we also 
implemented a between-subjects version of the brain model (predicting risky behavior as a 
function of brain metrics using only between-subjects information) while considering between-
subject variables including age and sex as predictors, in addition to a traditional univariate 
analysis.

Procedures and Measures
Participants. The N = 51 participants (Mean age = 15.00 years, SD = 3.66, range = 9.11 - 

22.60, 25 females) in the current study were part of a broader longitudinal study investigating the 
impact of early life experiences on the neural bases of socioemotional development. This age 
range is consistent with recent scientific advances that suggest adolescence in human 
development may last nearly fifteen years (Kinghorn, Shanaube, Toskas, Cluver, & Bekker, 
2018). Participants in the current set of analyses were those who provided usable data from an 
fMRI scanning session and did not have a history of early social deprivation. Ethnically, eight 
participants identified as Hispanic/Latinx (15.7%). Racially, twenty-six participants identified as 
white (51%), six participants (11.8%) identified as Asian/Asian American, one participant (2%) 
identified as Native Hawaiian/Other Pacific Islander, seven participants (13.7%) identified as 
African American, no participants (0%) identified as Native American/Alaskan Native, four 
participants (7.8%) identified as being mixed race, four participants identified as belonging to an 
unlisted race (7.8%), and three participants (5.9%) declined to report their race. Sample size was 
dictated by the number of participants willing to participate in this wave of data collection. 
Participants were compensated $50 (USD) for participating in fMRI scanning. The research was 
completed at the University of California, Los Angeles (UCLA). All participants under 18 years 
provided informed assent and their parents provided informed consent; all participants 18+ years 
provided informed consent. All research practices were approved by the Institutional Review 
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Board at the University of California, Los Angeles. Data and analysis code are publicly available 
on the Open Science Framework (OSF; osfi.io/fphn4).

Experimental Design

Risky Decision-Making Paradigm. Participants completed the Yellow Light Game (YLG) 
while undergoing fMRI scanning (Figure 1A; Op de Macks et al., 2018). An adaptation of a 
widely used adolescent risk-taking task (the stoplight game; Chein, Albert, O’Brien, Uckert, & 
Steinberg, 2011; M. Gardner & Steinberg, 2005; Peake, Dishion, Stormshak, Moore, & Pfeifer, 
2013), the YLG is a computerized driving simulation in which participants drive along a straight 
road and encounter a series of intersections. Consistent with prior studies, participants in our 
study were told the objective of the game was to drive through the set of intersections as quickly 
as possible. The traffic light at each intersection turned yellow for 1000ms prior to crossing each 
intersection and participants were faced with a choice to brake (‘stop’) or drive through the 
intersection (‘go’). A choice to brake at the intersection resulted in a delay of 2500ms. A choice 
to accelerate through the intersection resulted in one of two outcomes -- (i) participants would 
drive straight through the intersection with no delay, or (ii) a car from the cross-street would 
crash into them resulting in a 5000ms delay. A 10000ms delay was imposed if participants failed 
to respond on a trial. Participants made their choices by pressing one of two buttons on a button 
box using their index and middle fingers. 

Participants completed three runs of the task, consisting of 15 trials each (n = 45 total 
trials). Unbeknownst to participants, five intersections per run were set to result in a crash if 
participants chose to accelerate through them, meaning that the probability of crashing was equal 
to ⅓. Participants were not made aware of this probability. Each run had specific intersections 
that were rigged to crash and the order in which runs were administered was counterbalanced 
across participants. Buttons indicating ‘go’ and ‘stop’ were also counterbalanced between 
subjects amongst the index and middle fingers. The task was self-paced but typically took 
participants approximately 2.5 minutes to complete each run. Participants completed two, 10-
trial practice runs prior to scanning in order to eliminate any potential confounds associated with 
learning. The YLG was programmed in Java and ran off Apache Tomcat, a program that creates 
a HTTP web-server environment.

fMRI Data Acquisition. Imaging data were acquired on a 3T Siemens Prisma scanner 
using a 32-channel head coil and a parallel image acquisition system (GRAPPA). A high 
resolution T1-weighted, magnetization-prepared rapid acquisition gradient echo (MPRAGE) 
image was acquired for registration to functional runs (TR = 2400ms, TE = 2.22ms, flip angle = 
8°, FoV = 256mm2, 0.8mm3 isotropic voxels, 208 slices). Functional images were acquired using 
a T2* EPI BOLD sequence. Thirty-three axial slices were collected with a TR of 2000ms and a 3 
x 3 x 4 mm3 voxel resolution (TE = 30ms, flip angle = 75°, FoV = 192mm2). Participants 
completed the YLG by using a head-mounted on the coil to view an LCD back projector screen. 
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fMRI Analysis 
The following sections describe our approach to analyzing the fMRI data using both 

univariate activity estimates of the NAcc and lPFC and multivariate pattern expression values for 
reward and cognitive control signatures (signature definitions described below). We first 
describe our preprocessing steps and then outline the single trial analysis procedure used to 
produce both univariate activity estimates and multivariate metrics for each trial during the task. 
Because we were interested in within-subject variability in decision-making, we estimated 
univariate and multivariate values for each trial across all subjects. Single-trial metrics were used 
for both the within-person (in disaggregate form) and between-person (in aggregate form) 
analyses, for consistency. We also detail how we conducted the traditional univariate analysis of 
the YLG. 

Preprocessing
Prior to preprocessing, functional images were visually inspected for artifacts and 

biological abnormalities. No images contained obvious artifacts or biological abnormalities that 
warranted exclusion from further analysis. fMRI data were preprocessed and analyzed using the 
fMRI Expert Analysis Tool (FEAT, version 6.00) of the FMRIB Software Library package (FSL, 
version 5.0.9; fsl.fmrib.ox.ac.uk). Preprocessing consisted of the following steps: We used the 
brain extraction tool (BET) to remove non-brain tissue from functional and structural runs, 
spatially realigned functional volumes to the middle image to correct for head motion using 
MCFLIRT, and high-pass filtered the data with a 100-s cutoff. We used fsl_motion_outliers to 
identify volumes that exceeded a 0.9mm frame displacement (FD) threshold for head motion 
(Siegel et al., 2014), though most participants failed to record any volumes exceeding this 
threshold (Table 1-1; Figure 1-1). No participant had more than 10% of their volumes in a given 
run exceed the aforementioned framewise displacement threshold and thus, no participants were 
excluded on the basis of head motion in our sample. Spatial smoothing was not conducted during 
preprocessing and was instead applied later when extracting data from single trial activity 
estimates because the extent of smoothing depended on the type of information that was being 
extracted from the single trial (average ROI activation warrants greater smoothing than pattern 
expression analysis). We prewhitened the data to correct for autocorrelated residuals across time. 
Functional data were registered to each subject’s high resolution MPRAGE scan with FSL’s 
boundary-based registration (Greve & Fischl, 2009) while maintaining the 3 x 3 x 4 mm voxel 
size. To preserve the fine-grained spatial resolution of the data, we did not register the functional 
runs to standard MNI space at this stage but did so for the traditional group analyses (See Table 
7). As detailed below, masks and neural signatures were defined in standard space and then 
transformed to subject space.

Within-Subject Analyses
Single Trial Activity Estimation. We used a least squares analytic framework to obtain 

trial-level estimates of the BOLD signal (i.e., a beta-series; Rissman, Gazzaley, & D’Esposito, 
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2004). Here we opted to use the least squares single (LSS; Figure 1B) method, due to its 
advantageous statistical properties over the least squares all (LSA) estimator, especially 
considering the fast timing of the YLG (Mumford, Davis, & Poldrack, 2014; Mumford, Turner, 
Ashby, & Poldrack, 2012). Accordingly, a fixed-effects General Linear Model (GLM) was 
created for the decision period on each trial of the YLG game within each participant. A decision 
period was defined as the time between the onset of the yellow light (i.e., when the light at the 
traffic intersection switched from green to yellow as the car approached the intersection) and 
when participants pressed a button to signify their decision. A GLM was modeled for the i-th 
decision period (target decision) such that the target decision received its own regressor, all other 
decision periods were modeled in a single, separate nuisance regressor, and outcomes of all 
decisions (delays due to the braking, successful passes after running the light, or crashes) were 
modeled in another regressor.

Head motion was statistically controlled for across all GLMs by adding FSL’s extended 
motion parameters (6 regressors for x, y, z, pitch, roll, yaw directions, their squares, and their 
derivatives, comprising 24 regressors) in addition to regressors for single volumes that exceeded 
a frame displacement threshold of 0.9mm (i.e., censoring). The first temporal derivative of all 
task and motion regressors were also entered into the model in order to account for slice timing 
and motion effects, respectively. Parameter estimates from each trial-specific GLM were used to 
create a linear contrast image comparing the target decision period to the implicit baseline 
(unmodeled events). We then used the unthresholded z-statistics of this contrast to extract 
univariate and multivariate estimates of the BOLD signal in regions of interest. 

            Extracting Univariate ROI Activity from Single Trial Estimates (Classic Model).  Masks 
were defined to extract univariate activity from the NAcc and lPFC. Both masks were defined 
using the Harvard-Oxford probabilistic atlas as rendered in FSL’s viewer (fslview) on the 
MNI152 NLIN 6th generation T1 template image at 2 mm3 voxel resolution 
(avg152T1_brain.nii.gz; Brett, Johnsrude, & Owen, 2002). This atlas contains probabilistic 
masks to various bilateral structures that articulate the probability that a given voxel within the 
mask falls in the specified brain region. We created a bilateral NAcc mask by merging the atlas’ 
left and right nucleus accumbens probabilistic images into a nifti volume and thresholding the 
image at p = .25. We selected the nucleus accumbens due to prior empirical and theoretical 
accounts of this region’s importance in adolescent risk-taking (Galvan et al., 2006; Steinberg, 
2010). The .25 threshold was selected with the goal of creating a mask that was relatively 
inclusive but did not also possess clear outlying voxels (i.e., voxels with a very low probability 
of landing in the accumbens). A similar procedure was used to create a bivariate lPFC mask by 
selecting and merging left and right interior frontal gyrus masks (both the pars opercularis and 
pars triangularis) and thresholding the image at p = .50. We chose a .50 threshold for this mask 
because lPFC activation reported in prior adolescent neuroimaging studies tends to be spatially 
broad. However, we also created another version of this mask by thresholding at p = .25 in order 
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to be consistent with the NAcc mask and found broadly consistent results (masks shown in 
Figure 2). 

Once our masks were defined, we transformed the masks into the native space for each 
single trial activity map using FLIRT (i.e., whole brain zstat) and then extracted activity 
estimates using the nilearn software package (Abraham et al., 2014). We used the package’s 
NiftiMasker() function to mask each single trial activity estimate with the aforementioned 
NAcc mask and then again with the aforementioned lPFC mask and extract the mean of all 
voxels within each respective mask (Figure 1C). It was at this step that we applied smoothing to 
the extracted data (6 mm, fwhm), as the NiftiMasker()function allows one to smooth a 
masked image when extracting data. This step produced a set of NAcc and lPFC activation 
estimates for each trial on the task across all subjects (i.e., each subject had as many NAcc and 
lPFC activation estimates as they did decisions in the YLG).

            Computing Pattern Expression from Single Trial Estimates (Switchboard). We used 
pattern expression analyses to quantify the extent to which whole-brain patterns of brain activity 
corresponded to neural signatures of cognitive control and value-based computations (Figure 
1C). Such an analysis allows one to determine how strongly a given pattern of brain activity is 
expressed as a function of a neural signature of interest (Chang et al., 2015; Kragel et al., 2018; 
Wager et al., 2013). Neural signatures are thought to be the fingerprints of brain activity that 
encode a particular psychological process or state of interest. In practice, they are frequently 
defined as maps of the brain containing weights that quantify the strength and direction of 
association between each voxel and the psychological process of interest. 

The first step in this analysis involved defining neural signatures of cognitive control and 
value-based computation. To this end, we used Neurosynth, a web-based platform that automates 
meta-analysis over a large set of published fMRI studies (Yarkoni, Poldrack, Nichols, Van 
Essen, & Wager, 2011), to retrieve meta-analytic maps (uniformity) for the terms ‘value’ (470 
studies) and ‘cognitive control’ (598 studies). We chose these terms based on system-based 
theories such that ‘value’ references one system which drives adolescents to make risky 
decisions in service of acquiring immediate hedonic rewards whereas ‘cognitive control’ 
references a second system which modulates the drive towards immediate rewards (Shulman et 
al., 2016; Steinberg, 2013). A benefit of using meta-analytic maps as neural signatures is that 
they ‘allow the data to speak for themselves’ by allowing us to select voxels weights that are 
most strongly associated to our psychological processes of interest (in contrast to approaches that 
posit singular ROIs that might exclude meaningful voxels). To our knowledge, the majority of 
data used to calculate these analytic maps come from traditional univariate studies, though we 
note that the high volume of studies should theoretically allow for identification of the most 
sensitive voxels. To ensure the robustness of results, we used both the uniformity and association 
maps (reported in Table 3). While a review of the differences between these two types of images 
is beyond the scope of this paper (see Neurosynth.org/faq), we briefly note here that association 
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maps provide greater selectivity about the relationship between a voxel and a given term by 
incorporating information about base rates. To be comprehensive, we re-ran all analyses with the 
Neurosynth term ‘reward’ and observed nearly identical results. Maps of the two signatures 
(uniformity) are depicted in Figure 3. 

Once the neural signatures were defined, we transformed each signature into the native 
space of each single trial activity map (i.e., whole brain zstat), and extracted multivariate patterns 
from both the transformed neural signatures and activity estimates using NiftiMasker().  
Multivariate patterns were minimally smoothed (1mm fwhm; Weaverdyck, Lieberman, & 
Parkinson, 2020) and then the dot product between voxels in the two patterns (activity estimate, 
neural signatures) was taken (we re-ran all analyses with a greater smoothing kernel–4mm 
fwhm–and obtained highly similar results). This resulted in two pattern expression estimates per 
trial, one quantifying the expression of value patterns in brain activity during a given decision 
and another quantifying the expression of cognitive control patterns in brain activity during the 
same decision. Barring missing decision data (see Figure 4), each subject had 90 pattern 
expression estimates - 45 for value and 45 for cognitive control, each corresponding to a decision 
during the yellow light game. 

Notably, we were aware of previous work using pattern expression analyses with a 
preprocessing stream that involved normalizing images to standard space (Chang et al., 2015; 
Wager et al., 2013). We note that our decision to keep images in subject space for pattern 
expression calculation is not necessarily at odds or incompatible with these prior studies, best 
practices for pattern expression analyses, or even the broader MVPA literature. Unlike these 
prior studies, our goal was not to create a biomarker or construct a neural signature that can be 
applied across an entire population (Weaverdyck et al., 2020). Because our focus was on intra-
individual fluctuations in activity and links to decision-making behavior, it was appropriate to 
refrain from normalizing to preserve fine-grain spatial information.

Between-Subject Analyses
Aggregation of Trial-Level Data for Between-Subjects Analysis. In order to conduct 

between-subject analyses, we aggregated the trial-level univariate and pattern expression data. 
We did this by taking the average of the aforementioned brain activity metrics for each subject. 

Group-Level Brain Mapping Analysis. We conducted traditional, group-level brain 
mapping (mass univariate) analyses to serve as a comparison point and complement our 
between-subject analyses (Chein et al., 2011; Op de Macks et al., 2018; Telzer, Ichien, & Qu, 
2015). To this end, we first submitted each participant’s run-level data to a fixed GLM analysis 
in FSL. For this purpose, the YLG was modeled consistent with other prior univariate studies by 
including a regressor for ‘Go’ decisions, a regressor for ‘Stop’ decisions, and a regressor for 
outcomes (regardless of type, e.g., successful pass, crash). This differed from the LSS analysis in 
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that all events from each condition of interest (‘Go’ decisions, ‘Stop’ decisions, outcomes) are 
put into a single regressor for that condition, whereas the LSS analysis assigns a target decision 
trial (regardless of type) its own regressor, and all other decisions and outcomes are modeled as 
two separate nuisance regressors. The same pre-processing decisions steps were taken as in all 
other analyses (e.g., slice timing correction via adding temporal derivatives, adding extended 
motion parameters, censored volumes, etc.). The only exception was that we smoothed our data 
for this model (6mm, fwhm), and non-linearly registered high resolution anatomical images to 
the MNI152 template image (10 mm warp resolution), and used the subsequent transformation 
matrix to register the functional images to standard space.

Parameter estimates from this GLM were used to create linear contrast images comparing 
the ‘Go’ and ‘Stop’ conditions (‘Go’ - ‘Stop’, ‘Stop-Go’). Random effects, group-level analyses 
were performed on this contrast using FSL’s FLAME1 module. A cluster defining threshold of Z 
= 3.1 was used in conjunction with a familywise error rate of p < 0.05 and Random Field Theory 
cluster correction to address the problem of multiple comparisons. An additional whole-brain 
analysis regressed age (mean centered) on these contrasts but found no age effects. 

Statistical Analysis

Overview. Our analytic approach consisted of two parts. The first set of analyses 
examined neural systems underlying within-subject variability in decision-making, using both 
classic and switchboard models. The second set of analyses examined between-subject 
variability in decision-making. Here, we again compared classic and switchboard dual-systems 
models. A detailed description of both approaches follows below. For thoroughness, we also 
report a traditional between-subjects univariate analysis of the YLG in Table 7.

Within-Subjects: Modeling Trial-Level Influences of Brain on Behavior. We executed our 
within-subjects test of the classic and switchboard models with a series multilevel logistic 
regression models. For each theory (classic, switchboard), we conducted a multilevel logistic 
regression model including trial-level estimates of brain activity and subject level controls (age, 
gender). The form and specification of the statistical models for both variants follow.

Trial-level, Classic: 

Logit(Decisionij) = π0j + π1j(NAccij) + π2j(lPFCij)

Trial-level, Switchboard:

Logit(Decisionij) = π0j + π1j(Value PEij) + π2j(Cognitive Control PEij) 
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Decisions (1 = risky (‘Go’), 0 = safe (‘Stop’)) at the i-th trial for the j-th individual were 
modeled as a function of a subject-specific intercept (π0j), and brain activity metrics. The brain 
activity metrics in the classic model were average activations in the ventral striatum (NAccij) and 
lateral prefrontal cortex (lPFCij) at the i-th trial for the j-th individual. Said activity metrics in the 
switchboard model were pattern expression (PE) estimates for value (Value PEij) and cognitive 
control (Cognitive Control PEij) for the i-th trial for the j-th individual. Subject-specific 
parameters for all within-person predictors (π1j & π2j) correspond to the subject-specific expected 
change in the log odds of making a risky decision given a one unit increase in the predictor (e.g., 
average univariate brain activity, pattern expression score) holding the other predictors constant. 
All trial-level predictors were standardized using the grand mean. Re-running main analyses 
while standardizing trial-level predictors within-person produced statistically significant results 
with comparable parameter estimates (magnitude and sign). 

As noted above, we controlled for the following between subject variables: gender 
(dummy coded, 0 = male, 1 = female) and age. The form of the between-subjects component of 
the model for both classic and switchboard follows (i.e., this component of the model was the 
same for both classic and switchboard models). 

π0j = γ00 + γ01(Genderj) + γ02(Agej) + u0j

π1j = γ10 + u1j

π2j = γ20 + u2j

This component of the model reflects how all trial-level parameters are allowed to vary 
randomly between subjects (indicated by the uj’s, random effects) while showing the main effect 
of between subject predictors (γ01 & γ02). The other gammas in the model (γ10 & γ20) represent the 
fixed effect of the trial-level predictors (i.e., the portion of trial-level effects that are common to 
all participants). Random coefficient regression models were implemented with the ‘lme4’ 
package in R (Bates, Mächler, Bolker, & Walker, 2014) and significant tests were obtained using 
the ‘lmerTest’ package (Kuznetsova, Brockhoff, & Christensen, 2017). Here we note that this 
analytic framework affords us greater statistical power than we would focusing on a model 
exclusively testing between-subjects differences because we have many decisions nested within 
individuals. Because our predictors of interest occurred at the level of the decision, we were able 
to reach approximately 80% statistical power to detect a meaningful trial-level effect (Astivia, 
Gadermann, & Guhn, 2019; Schoeneberger, 2016). We also tested permutations of these models 
that allowed age to interact with the trial-level brain activity metrics, effectively testing the 
possibility that the strength of the two neural systems changes with age. 

Modeling Between-Subject Brain-Behavior Associations. Using the aggregated univariate 
activity (i.e., the average of each subjects’ trial-level brain activity metrics) and aggregated 
pattern expression estimates (obtained via averaging over estimates within each subject), we 
sought to examine between subject brain-behavior associations. To do so, we conducted two 
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multiple regression analyses. The first analysis examined the contribution of univariate NAcc 
and lPFC activity on the percentage of risky decisions during the task, while controlling for age 
and gender. The second analysis swapped out the univariate predictors for the multivariate 
pattern expression metrics.

Results
Baseline Models and Descriptive Data Visualizations. Individual decisions across all 

subjects are plotted in Figure 4. This figure highlights the variability in risky behavior both 
within and between subjects. Additionally, we ran two ‘baseline’ multilevel logistic regression 
models on the trial-level risky decision-making data from the YLG. The first model was an 
empty model, modeling trial-level decisions only as a function of an intercept, effectively 
estimating the unconditional likelihood of making a risky decision on the task (Table 1). The 
second model included gender and age as predictors (‘covariate-only model’) so as to examine 
the effects of these variables unconditioned on the brain activity data (Table 1)—neither were 
related to risky decision likelihoods. 

Within Subjects Results. Results from our within-subject models are summarized in 
Tables 2-4, and Figure 5. Each are described in greater detail below. 

Classic. Using the classic system-based model, we found that trial-level univariate NAcc 
and lPFC activity were independently associated with decision tendencies in the yellow light 
game in a manner consistent with theory. Within-person increases in NAcc activity were 
associated with an increased likelihood of making a risky decision, whereas within-person 
increases in lPFC activity were associated with a decreased likelihood of making a risky 
decision. The magnitudes of the effects were comparable: a one unit increase in NAcc activity 
was associated with a 15.03% increase in the expected odds of making a risky decision, while a 
one unit increase in lPFC activity corresponded with a 13.67% decrease in the expected odds of 
making a risky decision (calculated using coefficients reported in Table 2, Column A). Notably, 
these results remained highly similar when using an alternate, more conservative lPFC mask 
(results still significant, same direction, comparable effect sizes; Table 2, Column B). Age did 
not interact with either NAcc or lPFC activity (Table 4, Column A).

Switchboard. Results from the switchboard system-based model are summarized in Table 
3. These results are partially consistent with system-based theories, in that cognitive control 
pattern expression estimates were significantly associated with risky decision-making on the 
YLG. A one unit increase in cognitive control pattern expression corresponded with a 11.57% 
decrease in the expected odds of making a risky decision (obtained from Table 3, Column A). 
Sensitivity analyses indicated this effect was robust to variations in neural signatures (e.g., when 
using uniformity and association maps, unique voxels in uniformity maps, see Table 3, Columns 
B-C) and these effects were not present when using theoretically orthogonal neural signatures 
(‘vision’ and ‘auditory’, see Table 5). Collectively these results indicate that multivariate pattern-
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based activity related to cognitive control encodes meaningful information about risk-taking 
tendencies. Simultaneously, and inconsistently with system-based theories, value-based pattern 
expression estimates were not significantly associated with risky decision propensities 
(coefficient: .051, (SE = .048, ns), from Table 3B). To ensure our value-based results were not 
driven via the selection of an erroneous pattern, we re-ran analyses using Neurosynth’s ‘reward’ 
term and obtained near-identical results (reward coefficient: .043 (SE = .048, ns)). Importantly, 
multivariate patterns and univariate activity metrics were modestly correlated (correlations 
ranged between approximately .09 and .4), and overlap between the lPFC and cognitive control 
multivariate signature—the only system that was significant in both model variants—was 
minimal (only 7.9% of the voxels in the cognitive control signature were also present in the lPFC 
mask). We reiterate here that univariate activity metrics and multivariate pattern expression 
scores represent different aspects of brain activity, and these descriptive statistics emphasize this 
point. As with the classic model, age did not interact with either value or cognitive control 
patterns. 

We conducted post-hoc analyses to interrogate the lack of a relationship between value-
based pattern expression estimates and risky behavior. We first examined whether multivariate 
signatures within the NAcc were associated with behavior given that univariate signals within 
this region were, operating under the logic that value-based patterns may be more localized to a 
given region than cognitive control. We re-ran the pattern expression analyses with the value-
based neural signature, but this time only included voxels in the NAcc in our mask. Again, this 
analysis showed a non-association between value-based pattern expression scores in the NAcc 
and risky decision-making (coefficient = 0.000, ns). Given this result and the nature of pattern 
expression analysis, it was puzzling why univariate activity in the NAcc tracked with behavior 
(especially when considering a bulk of the pattern was comprised of NAcc voxels, see Figure 3), 
but value-based signatures—even if localized to the NAcc—did not. This led us to believe that 
perhaps it was the homogeneity of multivariate activity in NAcc that related to risky decision 
tendencies. Multivariate patterns necessarily encode spatial variability, but it could that 
homogeneity or uniformity of activity are more strongly predictive of behavior, suggesting that 
pattern expression estimates that inherently capture this variability may be poor predictors of 
behavior. To test this, we re-extracted multivariate patterns from the NAcc and lPFC and 
computed Gini coefficients for each region for each trial. Traditionally used in macroeconomics 
but recently applied in neuroscience (Guassi Moreira, McLaughlin, & Silvers, 2019; Guest & 
Love, 2017), Gini coefficients in this context can describe the extent to which brain activity in a 
given region is homogenous (uniform) or heterogeneous. Indeed, as shown in Table 6, a lower 
Gini coefficient in the NAcc (i.e., more uniform activation) was associated with an increased 
propensity to take risks on the YLG, suggesting a strong, one-dimensional encoding of value 
signatures during decision-making. 

Between Subject Results. Results from between subject analyses indicate that none of the 
between-subject brain activity metrics (univariate or pattern based) were related to proportion of 
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risky decisions (univariate NAcc: b = 0.223, SE = 0.316, p > .250; univariate lPFC: b = -0.209, 
SE = 0.270, p > .250; value pattern expression: 8.725e-5, SE = 1.823e-4, p > .250; cognitive 
control pattern expression: -1.435e-4, SE = 1.219e-4, p = .245). A traditional brain mapping 
(mass univariate) analysis of the YLG showed significant anterior cingulate cortex (ACC) 
activity for the ‘Go > Stop’ contrast in addition to significant amygdala and dorsal striatal 
activity (Figure 6; Table 7).

Discussion

The current study employed a brain modeling philosophy (Kragel et al., 2018) in 
conjunction with within-subject multilevel logistic regression to test system-based theories of 
adolescent decision-making. In doing so, we also expanded upon traditional neuroscientific 
implementations of system-based theories by examining the role of multivariate neural signals. 
We found that features of brain activity predicted behavior in a manner consistent with system-
based theories. We observed this in two variants of the model—a classic implementation 
assuming modularity among ROIs, and a novel variant that included information for multivariate 
signatures. These findings have a number of ramifications for neuroscientific models of 
adolescent decision-making. 

Implications for System-Based Theories of Adolescent Decision-Making. We observed 
that value-based and cognitive control systems generally predicted behavior in a manner 
consistent with system-based theories: univariate estimates of NAcc and lPFC activity were 
directly and inversely, respectively, associated with the probability of making risky decision, 
while cognitive control pattern expression was predictive of a reduced likelihood to make a risky 
decision. Our between subject analyses, along with traditional mass univariate brain mapping 
analyses, failed to show any such trends. Two broad conclusions follow from these results. First, 
these findings support the utility of brain modeling techniques for testing system-based theories 
of decision-making in developmental neuroscience and beyond, reinforcing that brain modeling 
and brain mapping philosophies are not simply inverse functions of the other that yield 
equivalent results (Kragel et al., 2018). Second, and perhaps more importantly, these results 
suggest features of system-based theories of decision-making carry evidentiary value, despite 
compelling arguments to the contrary (Pfeifer & Allen, 2012). The present findings suggest that 
system-based theories may offer interim frameworks for relatively young fields such as cognitive 
neuroscience as they continue to incrementally extend theory on the basis of novel evidence 
(Baddeley, 2012; Pfeifer & Allen, 2016). Even as these theories are eventually replaced by 
stronger accounts that consider more nuanced relationships between cognitive control and value 
systems as well as other biological influences (Davidow et al., 2018; Harden et al., 2017), their 
use as ‘baseline’ models may actually facilitate novel theoretical insights so long as they are not 
subscribed to too rigidly. Furthermore, that features of system-based models have evidentiary 
value is not tantamount to saying they are optimal (indeed, a comparison of model fit statistics 
between system-based models and empty or covariate-only models in the present study suggests 
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otherwise), but rather points to the need to develop and test more nuanced quantitative models of 
the neurodevelopment of decision-making behavior. Relatedly, we failed to observe interactions 
between brain activity metrics and age, a major tenet of developmental system-based models. 
This null finding underscores our call for greater nuance in quantitative models of decision-
making neurodevelopment: clear age-related behavioral differences in risk-taking behavior 
(Defoe, Dubas, & Romer, 2019; Duell et al., 2017) are necessarily encoded in brain activity, yet 
current modeling approaches have been unable to consistently link age differences in the 
association between neurobiology and behavior.

Modularity and Population Coding in System-Based Theories of Decision-Making. On a 
more granular level, our results speak to two long-discussed concepts in neuroscience: 
modularity and population coding (Erickson, 2001). These two concepts are respectively 
reflected by univariate and multivariate analyses in neuroimaging data. Most system-based 
theories of adolescent decision-making originate from disciplines within psychological science 
that espoused modularity at the psychological level (Steinberg et al., 2008). Although it is not a 
given that psychological modularity necessitates neural modularity, this assumption has been 
preserved in many neuroscientific implementations of system-based theories (Shulman et al., 
2016; Strang et al., 2013), despite evidence in adults that multivariate patterns reflect meaningful 
information about decision-making (Hampton & O’Doherty, 2007). Our univariate and 
multivariate results, somewhat surprisingly, respectively provide support for both modularity and 
population coding (Cosme & Lopez, 2020) – specifically, results revealed that univariate NAcc 
and lPFC activity was associated with decision behavior, and also that pattern expression of a 
multivariate cognitive control (but not value) signature predicted decisions. The former 
(evidence of modularity) is surprising, given the limited support for neural modularity that prior 
studies have found (Erickson, 2001), whereas the latter (population coding) is notable because no 
prior studies, to our knowledge, have found evidence of such in the context of brain modeling 
decision behavior (i.e., using multivariate metrics to model behavior/cognition). 

These findings carry notable implications. Although our results suggest that modularity 
may be a feature of adolescent decision behavior, we cannot conclude with certainty what 
activation in those modules (i.e., NAcc and lPFC) reflects. While such activation could index 
computations related to value and cognitive control, respectively, it is more difficult to infer 
psychological processes from ROI-based activity than from multivariate signatures, which tend 
to be more specific in what they reflect (Poldrack, 2006; Wager et al., 2013). Our data are 
roughly consistent with an amplifier model, which would allow for reconciliation of our classic 
and switchboard results. In such a model, multivariate patterns may code for the psychological 
process of interest and the modules observed here act as ‘volume’ knobs that amplify their 
magnitude. In other words, the multivariate patterns code for a given psychological process 
whereas the univariate activity of the modules controls the intensity of the process. Indeed, such 
multidimensional coding schemes appear to support decision behaviors in monkeys (Zhang, 
Chen, & Monosov, 2019), and similar findings from human samples in other domains (eating 
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behavior) further hint at the neural plausibility of a modular-population hybrid scheme (Cosme 
& Lopez, 2020). Further work could also examine whether there is a qualitative shift between 
coding schemes across development (Gee et al., 2013). Though we found no such evidence in 
our own data, future work could broaden age ranges to include young children and adults to 
determine the extent to which system-based models explain decision making at different 
developmental stages. Overall, it is clear that additional work is needed to characterize the 
relative contributions of neural modules and population codes in system-based theories of 
decision-making, involving the use of different behavioral tasks, different multivariate 
signatures, and evaluation of decision behaviors in different contexts.

 Building on System-Based Theories of Adolescent Decision-Making. Our findings 
suggest system-based models provide at least some explanatory utility, but it is critical that 
future work improves upon existing models in several key ways. One future step will be to 
determine the algebraic form of influential system-based theories. As we noted before, existing 
neuroscientific system-based theories of human decision-making in linguistic terms without 
specifying a computational model (i.e., they are explained qualitatively, instead of with an 
algebraic equation). This means one could posit a number of algebraic forms that satisfy 
qualitative requirements of system-based theories that each carry very different implications. We 
assumed a linear relationship between the log odds of a risky choice and metrics of brain 
activity, but an alternate statistical model may be more appropriate. Future studies could test a 
set of candidate algebraic formulations of system-based decision-making theories (e.g., 
estimating latent value and linking to decision likelihoods, etc.). This could facilitate cross-study 
and cross-discipline comparison by setting an objective framework that supports falsifiability. 
Future work must also directly address our null findings involving value-based pattern 
expression values. While we tested ‘reward’ and ‘value’ patterns and obtained null results with 
both, it is possible an alternative untested pattern computed in a different manner (i.e., not 
relying on meta-analytic maps) would yield positive results. To rigorously test this possibility, 
we recommend future studies systematically create and test patterns that vary iteratively on 
psychological processes relevant for system-based theories (Chang et al., 2015; Wager et al., 
2013). This process should also involve understanding how such maps change with development, 
as it may be unrealistic to assume a reward signature derived in one age group is readily 
applicable to all ages. Taking such an approach would also have the benefit of providing insights 
into what specific psychological features these patterns encompass – for example, by examining 
subcomponents of cognitive control (e.g., working memory). Finally, it is worth noting that 
interactions between each system and age were null, defying a core feature of system-based 
theories, suggesting that more bottom-up exploratory work is needed to better understand how 
the dynamic potency of each system changes with age. Ideally, such work would involve 
repeated sampling at both the decision- and subject-level (i.e., longitudinal assessments).

Limitations and future directions. The current study has several limitations that point 
directly to future directions in this line of research. The first is that the effect sizes found from 
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key results are somewhat modest. Though not a traditional ‘limitation’ per se, this points to the 
possibility that other untested computational signals in the brain may also contribute to decision 
behavior. Another limitation is that the present results were obtained in a single, moderately-
sized sample and ought to be replicated (Helmer et al., 2020; Marek et al., 2020). That said, our 
concerns about samples size are partially assuaged by the fact that we leveraged multilevel 
models to maximize statistical power when examining brain-behavior associations 
(Schoeneberger, 2016). Three additional limitations also exist regarding generalizability. First, in 
terms of adolescent decision-making, prior work shows adolescent decision behaviors are prone 
to tremendous diversity across the world and even within individuals (Steinberg et al., 2017), 
forcing us to consider that these results, even ignoring other limitations, may not reflect a 
‘common ground truth’ among all humans or even within a single human (to the extent such a 
‘ground truth’ actually exists). Second, it is possible that a different pattern of results would 
emerge for decision behaviors in other contexts (e.g., moral, financial decisions). Third, it is 
unclear whether these findings are specific to adolescence or generalize to general decision-
making processes across the lifespan. A final limitation is that we did not compare our 
implementation of system-based theories to alternative theories. While this is mainly because 
system-based theories have dominated the field and alternative approaches have been relatively 
atheoretical (Pfeifer & Allen, 2012, 2016), we look forward to future work aimed at rigorously 
comparing alternate explanations. 

Concluding Remarks. System-based theories of adolescent decision-making have drawn 
tremendous scholarly interest, yet the veracity of their neuroscientific implementation has been 
the subject of much debate. This investigation was the first to our knowledge to test system-
based theories of adolescent decision-making using a methodological approach that is more 
consistent with the core tenets of such theories (i.e., brain modeling). We found evidence that 
system-based theories are indeed predictive of adolescent risk-taking behaviors, showing that 
univariate and multivariate brain activity metrics of cognitive control and value-based processes 
predict trial-by-trial risky decision tendencies. We did not, however, observe evidence that these 
neural systems interacted with age, at odds with a key element of system-based theories. Overall, 
this work contributes knowledge about the neural bases of adolescent decision behavior.  
Table 1. Log-odds of risky choice from Empty and Covariate-Only models. Table 1-1 lists head 
motion statistics for fMRI data.

Empty Covariate-Only

Term Estimate

Intercept 0.527 (0.087)*** 0.599 (0.119)***

Trial Number - -0.009 (0.047)

Age - 0.104 (0.085)
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Gender - -0.144 (0.169)

Variance Component Estimate

Var(Intercept) 0.282 0.268

Var(Trial Number) - 0.006

Fit Statistic Statistic

AIC 2887.1 2892.8

BIC 2898.5 2932.8

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Sex was 
dummy coded (0 = male, 1 = female). Standard errors of parameter estimates are printed in 
parentheses. Var() refers to a variance component of a given random effect from the model.

Table 2. Log-odds of risky choice from within-subjects analysis of classic system-based models

Term  A – Estimate B – Estimate

Intercept 0.580 (0.121)*** 0.575 (0.121)***

NAcc 0.140 (0.063)* 0.135 (0.064)*

lPFC -0.147 (0.057)* -0.123 (0.058)*

Age 0.105 (0.086) 0.104 (0.086)

Gender -0.084 (0.172) -0.077 (0.172)
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Variance 
Component

A – Estimate B – Estimate

Var(π0ij) 0.267 0.267

Var(π1ij) 0.041 0.043

Var(π2ij) 0.024 0.024

Fit Statistic A – Statistic B – Statistic

AIC 2888.7 2888.7

BIC 2951.5 2951.5

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 
was dummy coded (0 = male, 1 = female). NAcc refers to univariate ventral striatum activity; 
lPFC refers to univariate lateral prefrontal cortex activity. Var() refers to a variance component 
of a given random effect from the model. Results come from a multilevel logistic regression 
model, with log-odds of a risky choice as the dependent variable. The ‘A’ column references 
results using an lPFC mask thresholded at .25; the ‘B’ column references results using an 
alternate, more conservative mask (thresholded at .50) that covered less cortical area.

Table 3. Log-odds of risky choice from within-subjects analysis of switchboard system-based 
models

Term A – Estimate B – Estimate C – Estimate

Intercept 0.581 (0.123)*** 0.510 (0.122)*** 0.619 (0.122)***

Value PE 0.051 (0.048) 0.008 (0.054) -0.004 (0.052)

Cognitive Control PE -0.123 (0.047)** -0.119 (0.060)* -0.154 (0.055)**

Age 0.113 (0.087) 0.134 (0.079)’ 0.122 (0.087)

Gender -0.104 (0.181) 0.054 (0.181) -0.176 (0.174)
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Variance Component A – Estimate B – Estimate C – Estimate

Var(π0ij) 0.259 0.253 0.284

Var(π1ij) 0.000 0.006 0.010

Var(π2ij) 0.003 0.039 0.022

Fit Statistic A – Statistic B – Statistic C – Statistic

AIC 2894.3 2892.6 2888.1

BIC 2957.1 2955.4 2950.9

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Value PE 
refers to value-based pattern expression; Cognitive Control PE refers to cognitive control pattern 
expression. Var() refers to a variance component of a given random effect from the model. 
Results come from a multilevel logistic regression model, with log-odds of a risky choice as the 
dependent variable. The ‘A’ column references results using Neurosynth association maps for 
pattern expression analysis; the ‘B’ column references results using Neurosynth uniformity 
maps; the ‘C’ column references results from a pattern expression analysis using only unique 
voxels among the value and cognitive control Neurosynth uniformity maps (i.e., common voxels 
between the two masks were removed). 

Table 4. Models testing interactions with age

Term  A – Estimate B – Estimate

Intercept 0.583 (0.121)*** 0.508 (0.122)***

NAcc (A) | Value PE 
(B)

0.120 (0.063)’ 0.007 (0.054)

lPFC (A) | Cognitive 
Control PE (B)

-0.139 (0.057)* -0.117 (0.061)’

Age 0.107 (0.087) 0.120 (0.086)
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Gender -0.088 (0.171) -0.056 (0.182)

NAcc (A) | Value PE 
(B) x Age

-0.090 (0.063) 0.004 (0.056)

lPFC (A) | Cognitive 
Control PE (B) x Age

0.045 (0.057) 0.019 (0.062)

Variance Component A – Estimate B – Estimate

Var(π0ij) 0.266 0.252

Var(π1ij) 0.033 0.006

Var(π2ij) 0.022 0.036

Fit Statistic A – Statistic B – Statistic

AIC 2890.8 2896.5

BIC 2965.0 2970.7

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 
was dummy coded (0 = male, 1 = female). NAcc refers to univariate ventral striatum activity; 
lPFC refers to univariate lateral prefrontal cortex activity. Var() refers to a variance component 
of a given random effect from the model. Results come from a multilevel logistic regression 
model, with log-odds of a risky choice as the dependent variable. The ‘A’ column references 
results from the classic model (lPFC threshold = 0.25); the ‘B’ column references results from 
the switchboard model (association maps). In order to be concise, differing terms for each model 
(any term involving a metric of brain activity) are included in the same line of the first column, 
separated by ‘|’. 

Table 5. Log-odds of risky choice from models with additional Neurosynth patterns to gauge 
uniqueness of cognitive control pattern expression findings

Term Estimate

Intercept 0.569 (0.120)***

Vision PE 0.096 (0.054)’

Auditory PE 0.075 (0.050)

Age 0.072 (0.083)
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Gender -0.072 (0.168)

Variance Component Estimate

Var(π0ij) 0.292

Var(π1ij) 0.027

Var(π2ij) 0.011

Fit Statistic Statistic

AIC 2888.4

BIC 2951.2

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 
was dummy coded (0 = male, 1 = female). The alternate maps correspond to the terms listed in 
the table (‘Vision’, ‘Auditory’). ‘PE’ refers to pattern expression. Association maps for each 
term were used. Var() refers to a variance component of a given random effect from the model. 
Results come from a multilevel logistic regression model, with logodds of a risky choice as the 
dependent variable.

Table 6. Models with predicting decision activity from trial-level Gini coefficients 

Term Estimate

Intercept 0.629 (0.121)***

NAcc Gini -0.115 (0.048)*

lPFC Gini 0.057 (0.047)

Age 0.080 (0.088)
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Gender -0.198 (0.172)

Variance Component Estimate

Var(π0ij) 0.270

Var(π1ij) 0.009

Var(π2ij) 0.004

Fit Statistic Statistic

AIC 2894.1

BIC 2956.9

Note. ‘ refers to p < .10, * refers to p < .05, ** refers to p < . 01, *** refers to p < .001. Gender 
was dummy coded (0 = male, 1 = female). Var() refers to a variance component of a given 
random effect from the model. Results come from a multilevel logistic regression model, with 
log-odds of a risky choice as the dependent variable.

Table 7. Brain regions which showed significant activation Go > Stop and Stop > Go.

Region   x   y   z    Z   k

Go > Stop
Occipital Pole L  -18  -90   0 7.51 13177a

Striatum R   10    6   8 4.22 a

pSTS L  -52 -36  28 5.18 491
ACC R  12 10  42 5.15 406
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Amygdala L  -30 -10 -14 5.60 372
Amygdala R  30 -12 -12 5.86 229
Insular Cortex L -56    4  12 4.49 216
SPL R  24  -52  56 5.34 146

Stop > Go
TPJ R  50 -56    42 4.97 566
TPJ L -46 -60    46 4.52 204

Note. R refers to right and L refers to left. x, y, and z refer to MNI coordinates; Z refers to the z-
statistic at those coordinates (local maxima); pSTS refers to posterior superior temporal sulcus; 
ACC refers to anterior cingulate cortex; IOG refers to inferior occipital gyrus; ACC refers to 
anterior cingulate gyrus; SPL refers to superior parietal lobule; TPJ refers to temporoparietal 
junction. Regions that share the same superscript are part of the same cluster.

Figure 1. Schematic of Data Collection, Processing, and Analysis. Figure 1-1 visualizes head 
motion metrics for fMRI data.
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Note. Panel A depicts data acquisition of the Yellow Light Game while participants were 
undergoing fMRI scanning. Panel B depicts the Least Squares Single (LSS) modeling 
implemented as a preprocessing step. Panel C is a schematic of extracting the set of univariate 
and multivariate metrics from Panel B’s resulting beta-series. 

Figure 2. Nucleus Accumbens and Lateral Prefrontal Cortex Masks Used to Extract Univariate 
Activation Estimates
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Note. NAcc refers to ventral striatum (NAcc); lPFC refers to lateral prefrontal cortex. Thresholds 
were applied to probabilities values from the Harvard-Oxford cortical and subcortical atlases. 
Masks are depicted in MNI standard space and projected onto an average of all subjects high 
resolution anatomical images. 

Figure 3. Multivariate 
signatures of Value (top row) 
and Cognitive Control 
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(bottom row)

Note. Both signatures obtained from Neurosynth. Uniformity signatures are depicted here. 
Voxels weights differed between each mask (i.e., a hypothetical voxel could be included in both 
signatures, but its weight likely varied between signatures. This is important to note because 
these maps were used as multivariate signatures, which ultimate meant that the same brain 
regions included in both masks possessed a different multivariate signature. 
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Figure 4. Visualizing risky and safe decisions on the yellow light game for all participants

Note. Red squares represent risky decisions, black squares represent safe decisions, white 
squares represent no decision (i.e., failure to respond). Columns correspond to decision (trial) 
number, arranged chronologically; Rows correspond to subjects (arranged in order of descending 
rate of risky decisions). Entries into the matrix represent whether a given subject made a risky or 
safe decision on a given trial.
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Figure 5. Associations between univariate and multivariate brain activity and probability of 
making a risky decision

Note. ‘NAcc Univariate’ refers to the trial-level univariate NAcc activity estimates; ‘lPFC 
Univariate’ refers to the trial-level univariate lPFC activity estimates; ‘Cog Control Pat Exp’ 
refers to trial-level cognitive control pattern expression estimates; ‘Value Pat Exp’ refers to trial-
level value-based pattern expression estimates. Fixed effects of brain activity metrics from both 
models are shown in the left panel. Subject specific random effects of associations between risky 
decision-making probability and univariate NAcc and univariate lPFC activity are depicted in the 
middle panel. Subject specific random effects of associations between risky decision-making 
probability and, value-based pattern expression, and cognitive control pattern expression values 
are depicted in the right panel. 
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Figure 6. Results from the Go > Stop (top row) and Stop > Go (bottom row) contrasts. 

Note. XYZ refer to voxel coordinates in MNI standard space. Clusters rendered here were 
obtained using a cluster-defining-threshold of Z = 3.1, correct for multiple comparisons at p 
< .05 using Random Field Theory. Clusters are rendered on ‘bg_image’, FSL’s average of all 
subjects’ high resolution anatomical images.
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Table 1-1. Head motion statistics

n Volumes > 0.9mm
(mean, SD)

Most extreme displacement
(mean, SD) 

% n Volumes < 0.9mm % Extreme displacements 
< 1.8mm

Run 1 0.0816, 0.5714 0.3270, 0.2894 97.96% 100%

Run 2 0.2653, 0.8845 0.5013, 0.7125 87.76% 95.92%

Run 3 0.3265, 1.1617 0.4342, 0.4876 91.84% 95.92%

Note. ‘n Volumes > 0.9mm’ reflects the average number of volumes exceeding the 0.9mm frame 
displacement threshold across subjects; ‘Most extreme displacement’ reflects the average of the 
most extreme frame displacements across subject. ‘% n Volumes < 0.9mm’ indicates the 
percentage of subjects whose data did not have a single volume exceeding our 0.9mm frame 
displacement cut-off. ‘% Extreme displacements < 1.8mm’ indicates the percentage of subjects 
whose most extreme frame displacement value did not exceed 1.8mm, corresponding to twice 
the value of our 0.9 mm threshold. 

Figure 1-1. Most extreme frame displacements
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Note. Values are randomly jittered along the x-axis. Frame displacement values are in millimeter 
units. The dotted line corresponds to our frame displacement cutoff of 0.9. 
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