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ABSTRACT

We present a simple method, not based on the transfer matrices, to prove vanishing of dynamical transport exponents. The method is applied
to long-range quasiperiodic operators.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0054834

I. INTRODUCTION

Bourgain, partially with collaborators, developed a powerful method to prove Anderson localization for ergodic Schrodinger operators
(see Ref. 1 and references therein). The method relies heavily, in both perturbative and nonperturbative settings, on the subharmonic function
theory and the theory of semi-algebraic sets and has turned out to be quite robust. While the precursor was the non-perturbative approach
of Ref. 16 that initiated the emphasis on obtaining off-diagonal Green’s function decay using bulk features rather than individual eigenfunc-
tions, Bourgain’s method has crystallized and developed the key ideas that did not require transfer matrices/nearest-neighbor Laplacians,
thus allowing, in particular, the extension to Toeplitz matrices as well as multidimensional localization results. See also Refs. 12 and 18 for
streamlining and simplification of Bourgain’s multidimensional method and the non-self-adjoint version.

Discrete quasiperiodic operators with the Laplacian replaced by a Toeplitz operator appear naturally in the context of Aubry duality and
have been studied by several authors. Let Hg,, ., with (6, ) € T, act on £*(Z) by

(Hpaett)n = E(Zan_kuk) +v(0 + na)uy, (1)

keZ
where |a,| < Alef"‘”l for some a,A; > 0 and a_, = a,,. Bourgain’s main localization result for the long-range case is as follows:

Theorem 1.1 (Ref. 1, Theorem 11.20). If v is analytic non-constant on T, then for |e| < €o, €0 = €0(A1,a,v), Hoq, satisfies Anderson
localization for a full measure set of (6,a) € T°.

We note that this theorem is non-perturbative, that is, €y does not depend on a. There is also a stronger arithmetic (that is, with an
arithmetic full measure condition on the frequency and phase) localization result for v(8) = cos 276,” and recently, an arithmetic multidimen-
sional result was obtained as a corollary of dual quantitative reducibility in Ref. 8, but for the general function v, Bourgain’s non-arithmetic
Theorem 1.1 remains the strongest available. We note that the perturbative multidimensional version appears in Ref. 12; however, in the
multidimensional case, there is no essential difference between the nearest neighbor and long-range Laplacians.

At the same time, Anderson localization (pure point spectrum with exponentially decaying eigenfunctions) is extremely fragile. Indeed,
it was shown by Gordon’ and del Rio, Makarov, and Simon’ that a generic rank one perturbation of an operator with an interval in the
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spectrum even in the regime of dynamical localization leads to a singular continuous spectrum and, therefore, by the RAGE theorem, growth
of the moments. However, it was shown in Ref. 6 that under the condition of SULE, present in many models, this growth can be at most
logarithmic and thus preserves vanishing of the dynamical exponents. Thus, one can argue that it is vanishing of the dynamical exponents
B(q) [see (3) for the definition] that captures the physically relevant effect of localization.

Indeed, such localization-type results [vanishing of $(g)] have been obtained, in increasing generality, for random and quasiperiodic
operators as a corollary of positive Lyapunov exponents in Refs. 3, 4, 13, and 14, with Ref. 10 covering the entire class of ergodic operators with
base dynamics of zero topological entropy, a class that includes shifts and skew-shifts on higher-dimensional tori. Clearly, those techniques
are transfer-matrix based and thus do not extend to long-range operators.

In this article, we present a very simple method to obtain such quantum dynamical upper bounds for the long-range case and show that
one part of Bourgain’s localization proof can serve as an input to obtain an arithmetic result: vanishing of quantum dynamical exponents for
all long-range quasiperiodic operators with Diophantine frequencies, all phases, and sufficiently large analytic potentials (see Corollary 1.6).
This should be contrasted with the non-arithmetic Theorem 1.1. We note also that Anderson localization for all phases does not even hold.' '

Bourgain’s method consists of multiple parts, and the one in question is establishing the sublinear bound (33) for the number of boxes
of size N° in a box of size N that do not have the off-diagonal Green function decay. Our method requires only the presence of one box of size
N° with the off-diagonal Green function decay, in a box of size N; thus, Bourgain’s sublinear bound is even an overkill for a needed input.

We note that, while suitable for long-range, our method is still one-dimensional, as only in dimension 1 does one box create a barrier and
thus a good estimate for the Green’s function in a bigger box. Yet, it does provide the first departure from the Lyapunov exponent/transfer-
matrix based methods and leads to a strong corollary. In addition, it extends easily to the (not necessarily uniform) band, requiring only one
“good box” to apply Theorem 1.4.

Let us now introduce the main concepts. We restrict here to dimension one, although many of the statements and definitions are easily
extendable to higher dimensions. For a fixed self-adjoint operator H on £2(Z), ¢ € £*(Z) and p, T > 0, let

(XN = 2 [T i g0, @)

neli

The growth rate of (|X |‘$)(T) characterizes how fast does e

by the following upper transport exponents S5 (p):

¢ spread out. The power law bounds for (|X |$)(T) are naturally characterized

In{|X[5)(T)
“(p) =i s
By (p) =lim sup— = = ©)
Here, we study Schrédinger operators on £2(Z) of the form
H=A+V,

where V = {V,},z is real bounded and A is a long-range operator of the form

(Au)” = Zun—kukr

keZ

where |a,| < Are” for some a, A; > 0 and a_, = a@,.
More precisely,

(Hu), = (Zakun_k) + Valin. (4)

kel

Just like Schrodinger operators, such operators admit a ballistic bound on the transport exponents.
Theorem 1.2. Let H be given by (4). Assume that ¢ is compactly supported. Then, the upper transport exponent 5 (q) < 1 for any q > 0.
Remark 1.3. In fact, sufficiently fast decay works equally well, but we restrict in all results, to the compactly supported ¢, for simplicity.

Theorem 1.2 is probably well known, but we did not find the proof in the literature. The proof, following the ideas of Refs. 19 and 20, is
presented in the Appendix.
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Let Ry be the operator of restriction to A ¢ Z. Define the Green’s function by
Ga(z) = (Ra(H - zI)Ry) ™. ©)

Set G(z) = (H — zI)™". Clearly, both Ga(z) and G(z) are always well defined for z € C; = {z € C : Jz > 0}. Sometimes, we drop the depen-
dence on z for simplicity. Since the operator H given by (4) is bounded, there exists K > 0 such that 6(H) c [-K + 1, K — 1]. Our main general
result is as follows:

Theorem 1.4. Let H be given by (4). Suppose there exist 8 >0 and No > 0 such that the following is true. Let z = E + ie with |E| < K

and 0 < & < 8. Suppose that for N > No, there exists an interval I  [-5, -1 or I < [§, 5] such that |I| > N° and that for any n,n’ € I and

|n—n'| > 55|1|, we have
Gi(2)(m )] <.
Assume ¢ is compactly supported. Then, the upper transport exponent B (p) = 0 for any p > 0.

Remark 1.5. For the Schrodinger case, the existence of such an interval I (in fact, a stronger statement, but this is not important) can be
deduced from the positive Lyapunov exponents and Cramer’s rule by the method going back to Ref. 17.

We say « € R is Diophantine if there exist x and 7 > 0 such that for any k € Z\{0},
T
k 2o,
ko] /2 IKJ*

where |x||g/z = dist(x, Z).
Let Hy be as in (1). Fixing a and ¢, we denote the B (p) for operator Hy g by B o(p). Our main application is as follows:

Corollary 1.6. There exists an €y = €0(v, A1, a) > 0 such that for any compactly supported ¢ and Diophantine o, ﬁ;;)g (p) = 0 forany|e| < eo,
0eR,andp > 0.

It immediately implies also the following corollary:

Corollary 1.7. There exists an €y = €o(v,A1,a) > 0 such that for any ¢ € £*(Z), the spectral measure ug of operator Hp,, is zero
dimensional for any 6 € R, Diophantine o, and any || < €.

Il. PROOF OF THEOREM 1.4

For the Schrédinger case, the proof would be just a double application of the resolvent identity,

G= G[ + G[c - (G[ + G]c)(H—HI —H[r)(GI + G[c)
+ (G[ + G[r)(H—HI —HIC)(GI + G[r)(H—HI —H[c)G,

ensuring the decay of |G(0, n)| based on the “barrier” box I. The problem with the long-range case is that such an expansion for G(0, N) will
contain terms all grouped nearby, thus neither incorporating the decay coming from the barrier box nor from |a,|. In order to tackle this
difficulty we introduce several extra steps, all involving applications of the resolvent identity but with different boxes.

Since ¢ has a compact support, there exists K; such that ¢(n) = 0 for |n| > K;.
Assume T > §. Fix z = E + i1 with |E| < K. Below, C (c) is a large (small) constant that may depend on 6, K, A1, a, ¢, and V = {V,,}. Let
I=[b-4£0b+¢]with > 0and bsuch that |b + £| is large. Suppose

|G (m,n)| < Ce™* (6)
foranymeI,neland|m—n|> 5.
Recall that if
A:Al UAz,A] ﬁAz :¢>
J. Math. Phys. 62, 073506 (2021); doi: 10.1063/5.0054834 62, 073506-3
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then
Gy = GA1 + GAz - (GA1 + GAZ)(HA —HAl _HAZ)GA

[provided the relevant matrices Ry (H — zI)Rp and Ry, (H — zI) Ry, are invertible], where Hy = RAHR,.
If m € A; and n € A, we have

Ga(m,n) = Ga, (myn)xa,(n) = 37 Ga,(m,m1)an-m,Ga(nz,n). 7
nyeN;,n€eN,
Therefore,
(Ga(m, m)| <[Ga, (m,m)a, ()| + € 3 [Ga, (momn) e |G (nay ). (8)
nyeAy,neN,
Lemma 2.1. Assume that for some interval I = [b—£,b+ (] andz = E + %, (6) holds. Then,
Ga(m,n)| < CT?e™" 9)
foranynel,me[b-L+ %,b+€],and|m— n| > {50, where A = (=00, b + ].
Proof. Let A1 =I=[b—£,b+¢]and A; = (—o00,b— ¢ —1]. Clearly, A = A; U A;. By (6) and (8), one has that
IGa(mn)|<Ce“ +C 3 |G, (mym)|e M7 |G (12, m)]. (10)
niel;,myel,
It suffices to bound the second term on the right of (10).
Forany n; € Ay,
Sednrlcc (11)
nyeN,
Ifn; e [b—£6,b—LC+ 5], bythe fact thatm € [b— £+ 5, b+ ¢] and (6), one has
|Ga, (m,m)| < Ce™“. (12)
Ifnme[b-L+ %,b+€],onehas
S erdmnl < e (13)
nyel,
Since Jz = %, one has that
\GAl(m,nl)\ < T,|GA(}’12,71)| <T. (14)
By (11)-(14), we have
S [Ga, (mom) e |G (may )| < CT?e ™
niel,nyel,
O
Lemma 2.2. Assume b — £ is large. Under the conditions of Lemma 2.1, we have that for any j with |j| < Ky andn e [b+{ — 1%, b+{],
IGa(j,n)| < CT* e, (15)
where A = (=00, b+ {].
J. Math. Phys. 62, 073506 (2021); doi: 10.1063/5.0054834 62, 073506-4
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Proof. Let A, =[b—£L,b+ (], A1 = (—00,b— ¢ —1],and A = (=00, b + £]. By (8), one has that for any j with | j| < K1,

GaGim) < C 3 1Ga, Gor)e™ 7 |Ga (2, m) . (16)
nyeAy,neh,
For any n; € A,
Sednrlcc (17)
nyeN

Ifny e [b—£,b+ £~ %], bythefactthatne [b+¢— 5,b+ (] and (9), one has

10°

Ga(n2,n)| = |Ga(n,12)| < CT2™". (18)

Ifn,e[b+4- g,b + £], by the fact that n; < b — £, one has
Z eclm—ml < Ce*. (19)

niel;

By (14) and (17)-(19), we have
> |Ga G m)le "Gy (3, m)| < CT ™
nyeN;,neN,

This implies (15). |

Lemma 2.3. Let z = E+ . Assume that { > IN|® and for some interval I = [b—£,b +£] with I c [l%l, |2M] orlc [—@,—@], (6) holds.
Then, for any j with |j| < K1,

G (j, N)| < €T, (20)
where A = (—o0, 00).

Proof. Without loss of generality, assume N > 0. Let Aj = (—o0,b+£], Ay = [b+£+1,00),and A = (-0, 00). By (8), one has

GAGL ) <C S |G, Gomn)le™ " G (2, N). (1)

nieA,nyeNy

First, one has

edmml < ¢, (22)
nyeA,nel,
Ifn e[b+4- 1%, b+ {], By (15), one has
G, (om)| < CT*e ™. (23)
Ifny € (—oo0,b+ 10— %] and n, € Ay, one has
e—c|n1—nz| < Ce—cé. (24)

By (14) and (22)-(24), we have

ST 1Ga, Gom)le ™ | Ga (2, N)| < CTO ™

neA,nel,

This implies (20). |
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Proof of Theorem 1.4. This is standard. For any j with |j| < K1, let
a(on,T) = % fo T (M, 8, . (25)
By the Parseval formula,
1 oo i\! 2
a1 = [ ‘((H—E—?) aj,an) dE. (26)

Recall that ¢(H) ¢ [-K + 1,K - 1]. For any E € (-00,-K) U (K, ), 1 = dist(E + +,spec(H)) > 1. The well-known Combes-Thomas

estimate yields for large #,
\ -1
‘((H—E— %) aj,an) < Ce™ M, 27)

By (26) and (27), one has that
2

_ 1 K i\~
a(j,n, T) < Ce C'"‘*Tf ‘((H—E—%) 51,5,1) dE. (28)
wJ-K
By Lemma 2.3, we have for any |E| < K,
i -1 c c
H-E-=) 88| <crte™ <crie . (29)
T) %
By (28) and (29), one has that
a(jn, T) < CT ™", (30)
Therefore,
(IXIN(T) < C 3 Y |nfa(ion, T)
lil<KineZ
< ZCT“|n|Pe_C|"|E
neZ
<cr' (31)
It implies
11
Bi(p) < —.
P
Since B (p) are nondecreasing, we have that for every p > 0,
Bi(p) < lim B3 (p) = 0. (32)
]

I1l. PROOF OF COROLLARY 1.6

Under the assumption of Corollary 1.6, one has that when |¢| < €o, the following holds for some & > 0:
#{beZ: |b| < N,I, does not satisfy (6)} < N, (33)

This was proved in Ch. 11 of Ref. 1 for E € R and also holds for complex energies (this is mentioned already in Ref. 1).!® Therefore,
Corollary 1.6 follows from Theorem 1.4. ]
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APPENDIX: PROOF OF THEOREM 1.2
Proof. By an easy application of the Holder inequality, B4 (¢) is nondecreasing with respect to g. Therefore, it suffices to show that for

any N e N, B (2N) < 1.
Define the free long-range Schrédinger operator by

(Hot)n = Y @u_itt = Y alhy_i.

kel keZ

—clK]

For any sequence y = {y;} with |y;| < Ce™@", we define the momentum operator X} ,

(Xgpu)n = anykun_k
k

and X} = ~i[Ho, X], ], where [Bi, B;] = B,B1 - BiBa.
Direct computations imply

(Xgpu)n = —z‘(;117 > Vi (Hot) e, — Z“k(Xgpu)n—k)
keZ

kieZ

——i(”P Z Vi, GkclUn—k, -k — Z ak(n_k)pyklun—k—kl)

ki€Z.keZ keZ.k\€Z
=—i Y (= (n=k)")axy, nii,
keZ,k\eZ
=-iy (Z(np —(n- k)P)ukym,k)un_m.
meZ, \keZ
Therefore, X;/p can be rewritten as
o
oY _
sz = szj (A1)
i=0

for some new sequences {)/k} with |y;(| < Cjefc’lk‘,j =0,1,---,p— 1
Let

y _ itHyy —itH 3y _ itHygy —itH
X, (1) =" XX (1) =€ X e
Differentiating X%’ » (), one has that

ax3 (1)
dt

- X, (1). (A2)

J. Math. Phys. 62, 073506 (2021); doi: 10.1063/5.0054834 62, 073506-7
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We will show inductively that

(X2 ()8, X2 (£)¢) < Cpgnt™ forlarget. (A3)
We first prove (A3) for N = 1. Differentiating X} (¢), one has that

dx; (t)

_x
2 =X, (a4)

where X;(t) is a bounded selfadjoint operator by (A1). By (A2), one has

t
XU(1) = X! + f X2(s)ds. (A5)
0
This implies

(DXL (1))
- (g + [ XU)pds Xig+ [ XU(5)d)

<Xl + 21xdgl [ 1Rioslas ([

< Cy,(ptz + Cygt + Cygs

£)(6)914s)

since ¢ has compact support and X (#) is bounded.
Assume that (12) holds for p < N - 1. This means that for any sequence {y;} andp =1,2,---,N -1,

(X2, ()6, X0, (£)9) < Cypp” forlarget. (A6)
By (A2), one has
Xp(0) =Xy + [ (o). (a7)
By (A1) and (A6), we have
| X2 (D)9 < Cpnt™ " forlarge . (A8)
This implies, for large ¢,
CENOIRNOL))

- (X§N¢+ fOtX;N(s)gbds,Xquwr [Otng(s)gbds)

X ()¢l ds + ( fo t XgN(s)gbnds)z

t
2
< Il + 210l [

<CyoN .

Let {yx} be the sequence such that yy = 1 and y; = 0 for k # 0. Therefore, one has

oN|, —itH 2 —itH —itH
I 8n)lF = (Xye o X))

neZ
_ (eitH X%zNe—itH é, oM XZyNe—itH )
= (XzyN(t)y‘/’)XgN(t)@
< C¢,Nt2N. (A9)
J. Math. Phys. 62, 073506 (2021); doi: 10.1063/5.0054834 62, 073506-8
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By (2) and (A9), one has

IA

(REV)(T) < 7 [T Gt ™ar

ConT™.

IA

Thus, B;(q) < 1 forany g > 0. ]
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