
Tackling Cold Start of Serverless Applications by
Efficient and Adaptive Container Runtime Reusing

Kun Suo∗, Junggab Son∗, Dazhao Cheng†, Wei Chen‡ and Sabur Baidya§

∗Kennesaw State University, †University of North Carolina at Charlotte
‡Automotive Vehicle Group, Nvidia, §University of Louisville

Email: {ksuo, json}@kennesaw.edu, dazhao.cheng@uncc.edu, weich@nvidia.com, shbaid01@louisville.edu

Abstract—During the past few years, serverless computing
has changed the paradigm of application development and
deployment in the cloud and edge due to its unique advantages,
including easy administration, automatic scaling, built-in fault
tolerance, etc. Nevertheless, serverless computing is also facing
challenges such as long latency due to the cold start. In this
paper, we present an in-depth performance analysis of cold start
in the serverless framework and propose HotC, a container-based
runtime management framework that leverages the lightweight
containers to mitigate the cold start and improve the network
performance of serverless applications. HotC maintains a live
container runtime pool, analyzes the user input or configuration
file, and provides available runtime for immediate reuse. To
precisely predict the request and efficiently manage the hot
containers, we design an adaptive live container control algorithm
combining the exponential smoothing model and Markov chain
method. Our evaluation results show that HotC introduces
negligible overhead and can efficiently improve the performance
of various applications with different network traffic patterns in
both cloud servers and edge devices.

Index Terms—Serverless, cold start, cloud, performance

I. INTRODUCTION

As the traditional market of cloud computing turns mature

and user requirement for microservices keeps growing, server-

less computing, such as Amazon Lambda, Microsoft Azure

Function, and Google Cloud Function, which provides high

performance, high scalability, built-in availability, and fault

tolerance, is becoming increasingly popular in the public

clouds [35]. The serverless infrastructure allows developers

to focus on the application and business logic itself instead

of worrying about where to deploy their codes and how to

tweak a large number of servers. For example, one traditional

website can be decomposed into hundreds of microservices,

which are small and efficient packaged functions [13] and can

be scaled up rapidly for growing demands.

In order to execute the source code that users created or

uploaded, a serverless system first allocates resources to the

functions based on user-defined configurations and sets up

triggers from other cloud services or events. When target

events occur, the system creates containers, loads codes or

functions inside, executes them, and finally returns the results.

The serverless functions only consume CPU, memory, or other

resources at runtime. However, such a design might also

introduce performance loss due to the cold start, especially

to those I/O-intensive applications. For instance, Amazon has

reported that every 100 ms of latency costs them 1% in

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100
R

eq
ue

st
 la

te
nc

y(
m

s)
Request index

(a) HTTP request latency to AWS Lambda

HTTP request

 0

 0.2

 0.4

 0.6

 0.8

 1

 350 400 450 500 550

C
D

F

Request latency (s)

(b) Distribution of latency

Request latency (s)Request latency(ms)

Fig. 1: The analysis of AWS Lambda requests. (a) HTTP

request latency of 100 samples. (b) Latency distribution.

sales [5] and the page speed of websites is also treated by

Google as one of the major ranking factors [16].

The cold start issue has been widely existing in computer

systems for decades. For instance, a three-way handshake that

requires both the client and server to exchange synchronization

and acknowledgment packets has to be processed before

each TCP connection. All HTTPS requests have to prepare

security certification during accessing the webserver. However,

different from the above, cold start in serverless infrastructure

has its own characteristics and will significantly degrade the

system performance and user experience. First, Function as a

Service (FaaS) is designed to replace traditional local functions

which can be called at any time and respond immediately.

However, the cloud function needs to deploy a computing

runtime including container startup, code download, runtime

initialization, business logic initialization, etc., which increases

the latency to millisecond or even second level. Second, a

survey revealed that 75% of cloud functions execute for less

than 10 seconds [27]. As the FaaS platforms usually charge

based on the length of the request, the cold start might

incur unnecessary costs for the users. Last, the serverless

infrastructure is flexible to expand and contract based on

current requests. When the amount of requests drops, the

system will clean up and recycle resources while making the

cold start periodically happen and the application performance

unstable and unpredictable.

Figure 1(a) illustrates the latency of requests to AWS

Lambda. We implemented a backend in Python generating a

random number for the request. The client sends one request

every second to the backend through API Gateway and lasts

for 10 seconds. Then the client waits for 30 minutes and

repeatedly executes the above. We identify whether the code

433

2021 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-9666-4/21/$31.00 ©2021 IEEE
DOI 10.1109/Cluster48925.2021.00018

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

78
-1

-7
28

1-
96

66
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
lu

st
er

48
92

5.
20

21
.0

00
18

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

 0

 5

 10

 15

 20

 25

 30

Ubuntu
Debian

Node
Centos

Python
Alpine

P
er

ce
nt

ag
e

(%
)

(a) Percentage of most commonly used images

Top 100
All

 0

 50

 100

 150

 200

Top 100
All

P
er

ce
nt

ag
e

(%
)

(b) Percentage of base images

OS
Lauguage Runtime

Application
Other

Fig. 2: Dockerfile statistics from Github.

is running on is a new one or an existing one by creating

a temporary file in the container and checking whether that

file already exists. As shown in the figure, the very first one

in every 10 requests has the longest request latency due to

the cold start in the Lambda architecture. The highest request

latency is about 41.8% and 31.7% longer than the lowest

and average latency, respectively. Different from the stable

request on local functions where 99% of latency is almost

the same, we observed significant long tail latency issues in

the serverless architecture due to the cold start, as shown in

Figure 1(b).

Another characteristic of serverless computing is that the

packaged functions have high similarities and many of them

execute in the same kind of container runtime which includes

the OS image, programming language environment, network

configuration, etc. For instance, Microsoft has revealed that

about 40% of key jobs or services at Bing search rerun period-

ically [7]. We analyzed thousands of Dockerfiles from GitHub

projects. As Figure 2(a) shows, both the top 100 popular and

all surveyed projects are dominated by a few commonly used

images, which mostly contain similar OSes, language run-

times, etc., or their combination. Figure 2(b) illustrates the OS,

language, and application related configurations that dominate

the majority setting of base images. Therefore, there exists a

semantic gap between the cold start issue and the inefficient

utilization of the highly similar container runtimes. Resource

reuse has been widely adopted in industries and academic

research to improve system performance. For instance, An-

droid saves the metadata and JIT-compiled code onto disk and

reuses them in the next JVM process. Interruptible Tasks [11],

HotTub [20] and Skyway [24] proposed to reuse the runtime or

intermediate data to reduce memory pressure, JVM warm-up

overhead, and data transfer cost, respectively.

To address the cold start issue in serverless services, our

key observation is that the runtime could be reused efficiently

by leveraging the lightweight containers and the homogeneity

of containerized serverless applications. Inspired by that, we

proposed and developed HotC, a container-based runtime man-

agement framework that provides low-latency request handling

while minimizing the performance overhead to applications. In

brief, our major contributions are summarized as follows:

• First, we perform an empirical performance study of the

long latency due to cold start in serverless architecture

and reveal its reason as well as potential impact.

• Next, we design and implement HotC, a simple and

Fig. 3: Serverless application processing on edges and AWS.

lightweight solution to reuse the runtime based on client

requests. Different from existing solutions arbitrarily

keeping containers alive for a certain amount of time

(i.e., 15 minutes in AWS Lambda) or periodically wak-

ing up containers to keep warm (i.e., Azure Logic),

HotC maintains a runtime pool and efficiently reuses

the containers upon user requests. To precisely control

the resource and mitigate the periodic cold start, HotC

leverages the container runtime history and combines

exponential smoothing and the Markov chain model to

improve the prediction accuracy.

• Last, our experimental results show HotC can achieve

substantial performance improvement of various applica-

tions in both cloud servers and edge devices.

The rest of this paper is organized as follows. Section II

introduces the background and motivating examples. Sec-

tion III presents the analysis of cold start issue and Section IV

describes the system design and implementation. Experimental

results are discussed in Section V. Section VI reviews the

related work and Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. How serverless computing works?

Different from the traditional applications or services rely-

ing on hardware configuration and resource orchestration,

serverless computing provides a higher level of abstraction

for application deployment and management. For instance, a

typical Lambda application consists of three parts: functions
– the business logic, data – the scenario input or output, and

events – the interaction between the functions and data. The

key part is the Lambda function, which is defined by users and

then associated with the execution environment and system

resources. Take Web service as an example, the traditional

solution usually requires several virtual machines (VMs) to

host different services and a database to store the business

data. As the requests grow, it also needs a load balancer in

the front to distribute the network traffic among the servers.

In comparison, a serverless solution only requires Lambda

functions to implement the application logic and an API

Gateway to auto scale and balance the network traffic. All

the resources are only consumed when it is actually needed

and no backend is required to maintain.

434

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

 0
 5

 10
 15
 20
 25
 30
 35

Cold container

w/o local images

Cold container

w/ local images

Hot container

Ti
m

e
(s

)

(a) Container launch time

Container startup time
App execution time

 0

 0.5

 1

 1.5

 2

 2.5

 3

Go Node.js
Python

Java

Ti
m

e
(s

)

(b) Containerized application execution time

Hot execution
Cold execution

Ti
m

e
(m

s)
Ti

m
e

(e

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

None
Bridge

Container

Host
Host

NAT
Overlay

W
eave

Flannel

Calico(IPIP)

Calico(BGP)

Ti
m

e
(m

s)

(c) Container network setup time

Launch time(m
s)

e
(m

s)

e(m
s)

Fig. 4: Motivation examples of cold start in serverless applications.

Serverless is a native architecture based on the cloud con-

nected to the edges. In a typical serverless scenario, the edges

only send events or requests and do not require provisioning,

maintaining, and administering servers for backend compo-

nents such as computation, database, key-value storage, stream

processing, message queueing, etc. Figure 3(a) depicts an

image processing service (e.g., compression and watermark)

as an example. A user first takes and uploads a picture (data in

the figure) directly to the cloud through the application. AWS

S3 is responsible for the temporary persistence of the images,

then finds the processing function defined by the user through

a gateway, and triggers the specified function. After that, the

Lambda function starts to allocate resources, executes image

compression and watermark processing, and finally performs

persistence and returns the results.

In recent years, many users prefer to deploy the serverless

at the edge, where most of the data processing is performed

within the device itself. It allows running code close to the user

application, thereby improving performance and reducing la-

tency. Figure 3(b) shows the serverless processing on AWS IoT

Greengrass. Take the self-driving vehicle as an example, most

of the computations, including static object recognition (i.e.,

traffic lights, traffic signs, road intersections) and dynamic

object recognition (i.e., vehicles, pedestrians, and bicycles),

have to be performed on the edges in order to improve the

performance and security. The data is first captured at the

vehicle and then forwarded through CloudFront to the local

Lambda functions. All operations of functions perform within

the edge devices and only limited data will be uploaded to the

cloud for persistence.

B. Why cold start happens?

Both the serverless in the cloud or at the edge might face

cold start issues, which introduces inefficiency and unpre-

dictability. A typical serverless application usually runs in-

side the containers and the first access or revisit after a

long time will inevitably cause the cold start problem as

it requires booting a new container and reallocating system

resources [30], [31]. Such a cold start cannot be neglected as

the serverless applications or functions are usually small and

their operation time is short. Besides the above, there also exist

some unique characteristics to the cold start in a serverless

architecture. First, the functions are not daemon processes,

which means they have to start whenever a new request comes,

especially for IoT scenarios that involve little data and happen

less frequently. If the function languages, e.g., Java, need

to compile and interpret, the cold start time could be even

longer. Second, as the function execution is stateless and the

container runtime terminated once requests are handled, there

exists no reuse for either program codes or processed data.

Lastly, as serverless architecture is highly scaled, the next

request could be handled on a new host distributed by the

API server which makes the existing cache mechanism or the

memory optimization inside a single server not effective. All

the above issues either give rise to or exacerbate the cold start

of serverless applications.

C. What is the impact of cold start?

Here we analyzed the potential impact of cold start in various

scenarios. Details of the testbed and benchmark settings can

be found in Section V. First, we measured the launch time of

the container in our local servers. We wrote a program that

downloads a 3.3MB pdf file from Amazon S3 and executes it

inside Docker containers. As Figure 4(a) shows, the program

execution time in cold start without local images is 23.5s while

the cold start with local images is only 4.51s. In comparison,

the execution inside a running container takes only 2.2s, which

is dominated by the application execution itself while the

runtime setup time can be neglected.

Next, we studied the execution time of containerized ap-

plications for various programming languages. Figure 4(b)

depicts the execution time of one program which sums in-

teger from 0 to 10 million but implemented in Go, Node.js,

Python and Java, respectively. For the hot execution which the

program executes in a running container, the time in Node.js
is only 0.38s while it is 1.07s in Java. This is due to the fact

that the Java program must be compiled into bytecode files

and then translated and executed by the JVM. Compared to the

hot execution, the cold execution which involves an additional

container environment setup prolongs all cases. For instance,

the execution time in Go with cold start is 3.06× of that in

hot execution and the cold start even doubles the already long

execution in Java.

Lastly, we also investigated the building time of various

customized networks during the boot of container runtime,

which is crucial to those short-lived or latency-sensitive work-

435

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Request and response in OpenFaaS framework.

loads. As Figure 4(c) illustrates, for the single host networking,

the bridge mode and host mode networking are close to

that without network setup (None) while the container mode

networking is only half of it. This is due to the cheaper

startup connecting to a proxy container instead of booting a

new container. The container networking on multiple hosts is

even more complicated. Compared to the host mode network,

the overlay or routing solution, which involves additional

registration and initialization, takes up to 23× longer startup

time. The above examples clearly show the impact of cold start

on the performance of containerized applications in different

languages and configurations, and motivate us the adoption of

hot container runtime to mitigate the cold start issue.

III. ANALYSIS OF COLD START OVERHEAD

A. Summary of Findings

Here we further studied the cold start latency in OpenFaaS [3],

an event-driven functions and microservices platform which

can be deployed both in the cloud and at edges. Other FaaS

frameworks such as Knative, Kubeless, Fn, Openwhisk, etc.,

have similar architecture and mechanisms. Figure 5 depicts

the key components and processing pipeline in OpenFaaS.

The clients send requests to the gateway, which acts as an

entry to the backends. Gateway works as a proxy forwarding

requests to the corresponding functions and can be scaled

to multiple instances. Each backend function consists of a

container running two kinds of processes. The watchdog is

a tiny Golang HTTP server that connects the executable

containerized function in the local image with API Gateway.

The watchdog puts a layer of HTTP shell on the function,

writes to the stdin of the function process, and receives

the response data from the function process stdout. The

function process executes the user-defined handler and per-

forms the application logic. The return value will be finally

forwarded to the Gateway and received by the clients.

To precisely understand the startup overhead, we make

a quantitative analysis of cold start incurred in processing

serverless functions on the OpenFaaS platform. Specifically,

we added timestamps in MakeQueuedProxy of Gateway,

main and pipeRequest of watchdog to record the request

latency at the gateway, watchdog, and function processes,

respectively. We record six moments during the workflow path:

1©: the request packet arrives the gateway; 2©: the request

packet reaches the watchdog; 3©: the function process starts;

4©: the function process stops; 5©: the response packet sent out

from watchdog; 6©: the clients receive a response packet from

the gateway. Then, we send HTTP requests to one function

which generates a random number and uses tcpdump to capture

the target packets. Compared to the function execution time

and network forwarding, function initiation time (2©→ 3©)

dominates the total latency. In addition, we also evaluated

OpenFaaS on edge platforms such as Raspberry Pi and Nvidia

Jetson TX2, and the results are much similar to the above.

B. Industry Practices

During the past few years, researchers in industry have pro-

posed solutions to mitigate cold start in serverless applica-

tions. Engineers from Alibaba cloud found that containerized

applications have to be downloaded from the warehouse and

decompressed from the images before they are used and de-

ployed. The performance is significantly affected by hardware

such as network, and sudden access burst might bring network

congestion and service not responding. To mitigate the cold

start and provide large-scale container service ability, they

proposed several optimizations including a new image format

that does not need to fully download and an efficient compress

algorithm. Besides, to reduce the network congestion on a

single node, the Alibaba team also proposed to use a P2P

network for data and image distribution. However, their design

only focused on the overhead of image pulling and code

download. Many other factors such as resource allocation and

networking configuration can still contribute to the cold start

of serverless applications.

Another growing interest in addressing cold start is to

optimize the underlying infrastructure. To reduce the delay

of cold start, Tencent engineers optimized their architecture

in two aspects. First, they deployed their functions based on

lightweight virtualization. Compared to the traditional virtual

machine or containers, the cold start of applications can be

reduced to 200 milliseconds in a new architecture. Second,

Tencent proposed new scheduling policies for active functions.

They designed a real-time autoscale system that can expand or

contract in second-level based on the system metrics and mon-

itoring data. For function prediction and preprocessing, they

used periodic data analysis and machine learning to improve

the accuracy. When the concurrent growth of the function is

monitored, the number of instances that need to be expanded

will be calculated immediately, and the scheduler quickly

deploys instances to meet subsequent concurrent growth.

AWS adopts a fixed keep-alive policy that retains the

resources in memory for minutes after function execution [1].

Many other open-source architectures, such as OpenWhisk,

also use a similar design to keep functions warm for minutes.

Although such a policy is simple and practical, it disregards

actual invocation frequency and patterns of the functions, and

also wastes lots of resources. As the FaaS platform usually

charges based on the length of requests, regular warmup

might also introduce unnecessary fees. For instance, appli-

cations with long initialization time, such as loading deep

learning models, incur additional costs when cold starts hap-

pen frequently. Researchers in Microsoft Azure [27] recently

proposed using different keep-alive values for workloads ac-

cording to their actual invocation frequency and patterns.

They allowed service providers in many cases to pre-warm a

function execution just before its invocation happens. Different

from their solutions controlling pre-warming and keep-alive

436

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: HotC Architecture.

windows, our design adopts a time series history and a Markov

model to mitigate potential cold starts of different types of

container runtimes.

IV. HOTC DESIGN & IMPLEMENTATION

In this section, we present HotC, an approach to addressing

the cold start and long latency in a serverless architecture. The

key insight of HotC is to leverage lightweight containers and

an efficient reuse mechanism to prevent the unnecessary cold

start, excessive resource allocation, and reclaim.

A. HotC Overview

Figure 6 shows the architecture of HotC. It acts as a middle-

ware between clients and backend servers. When new requests

arrive, HotC always attempts to execute the user code in

an existing and free container. If it cannot find an available

container, HotC just starts a new one as usual. After the

container finishes execution, it returns the results back to

the client side and then HotC will clean up the container

and prepare for the next request. HotC maintains a live

container runtime pool and adaptively updates the pool over

time. Such a design has many benefits: First, it is simple and

straightforward, which does not involve disruptive changes to

the existing architecture. Second, as the resource consumption

mainly comes from the application execution instead of the

container itself, it is lightweight to maintain a group of live

containers without introducing too much overhead. Lastly,

reusing the same container runtime can also offer hot cache

and less translation lookaside buffer (TLB) flushing, which can

significantly improve resource utilization as well as application

performance.

B. HotC Key Components & Operations

Parameter Analysis. The first step of HotC is to analyze

the user command or configuration file to figure out the

parameter setting of the container runtime. The parameter

includes container images, network configuration, UTS (UNIX

Time Sharing) settings, IPC (Inter Process Communication)

settings, execution options, etc. HotC treats containers with

identical parameter configurations as the same type of run-

time environment. HotC maintains a key value store to track

the available containers. The key is the formatted parameter

configurations for each container and the value is a list with

container ID and state of the container. We define three states

for the container: Not-Existing (marked as -1), Existing-Not-
Available (marked as 0) and Existing-Available (marked as

Fig. 7: Container state transition.

Algorithm 1 Start container runtimes based on configurations

1: /* num avail[key]: the available number of specific type

of container runtimes */

2: function START FUNCTION RUNTIME(key)

3: if runtime not existing or existing but not available

then
4: Start a new container and run the function

5: else if existing and available then
6: Reuse one container and run the function

7: num avail[key]−−
8: end if
9: end function

1) and state transition is illustrated as Figure 7. In order to

gain benefits from an existing container, it is ideal to run the

application in the same runtime environment. As Algorithm 1

shows, HotC resolves the user input and looks for containers

with the same runtime as candidates to reuse. If such a

container exists and is available to run, we load user code into

that candidate container and execute the program. Normally it

might exist multiple containers with the same runtime if a large

number of requests arrive. If that happens, the client just reuses

the first available container. However, if the required container

does not exist or all candidate containers are occupied, HotC

just starts a container with that runtime setting.

Container Runtime Pool. To keep live containers, HotC

maintains a container pool inside the memory. Take the alpine

Linux container as an example, it only takes hundreds of

KB for each live container. Therefore, the memory footprint

of HotC is negligible through precise control of the number

of containers and available system resources. In our current

design, we set the maximum number of live containers to 500

and the memory usage threshold as 80% in the host. We used

a heuristic method to identify the memory pressure through

monitoring used_mem and used_swap in the kernel. If

there exist too many containers or fewer resources, the oldest

live container is forcibly terminated and releases the resources.

The further overhead analysis will be discussed in Section V.

Used Container Cleanup. In order to efficiently reuse the

containers, it is important to keep the used container clean.

The CPU and memory resources are automatically reclaimed

by the OS when the containerized applications terminate. The

disk read also does not involve modifications to the Docker file

system. Therefore, we only focus on the write to containers.

437

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

To keep the container clean and enable data writing, HotC

assigns volume, which persists data generated and used by

applications, to each container when they are created. Each

live container has its unique directory to save its own data.

Volume can efficiently bypass the container file system and

share data between the host server and the containers. Based on

that, the cleanup of to used container includes two steps: First,

it deletes all files and directories in the old volumes. Second,

HotC mounts new volumes to the containers for future use.

To avoid resource waste and zombie files, the corresponding

volumes are deleted once the containers stop execution.

C. Adaptive Live Container Management

In order to control the resource consumption and maintain

high performance, we design an online prediction algorithm

to adaptively control the live containers in the pool, as shown

in Algorithm 3. The key idea is to combine exponential

smoothing and a Markov chain method to exactly allocate

resources and prepare the runtime in advance. The problem

of short-term request prediction is a dynamic random process,

and its trend changes frequently over time. The exponential

smoothing method is adopted to predict the trend of runtime

data based on the recent records while the Markov chain

overcomes the data volatility. The combination of the two

methods can achieve high accuracy of prediction results under

dynamic workloads.

Algorithm 2 Clean up used containers

1: /* num avail[key]: the available number of specific type

of container runtimes */

2: function CLEAN CONTAINERS()

3: Clean the used containers and add them to pools

4: num avail[key]++
5: end function

1) Container Runtime Prediction. Whether the container

runtime is reused or not is affected by many factors, such as

application workload, number of users, network traffic, service

location, etc. The relationship between each factor and whether

the container runtime would be reused is difficult to accu-

rately quantify with models, and the changes of each factor

themselves are also relatively fuzzy. Exponential smoothing is

suitable for predicting data that has no obvious trend, which

calculates the exponential history value and cooperates with a

certain time series model to predict future results. In HotC, we

used historical data of certain types of containers to estimate

their predicted number in the pool, which assigns different

weights to the data in historical periods. The more recent data

will be assigned with a higher weight. The number of specific

type of container runtimes eki,t with configuration ki at time t
is estimated as follow:

α ∗history[ki][t]+ (1−α)eki,t−1 (1)

Here, history[ki][1], history[ki][2], ..., history[ki][n] are time

series data of how many specific type of container runtime

Algorithm 3 Adaptively update containers in the pool

1: /* num[key]: total number of specific type of containers;

2: eki,t : expected number of specific type of container run-

times with configuration ki at time t under exponential

smoothing */

3: function UPDATE POOL()

4: for each key ki do
5: for 1 ≤ j < n do
6: history[ki][j−1] = history[ki][j]
7: end for
8: history[ki][n] = num[ki] - num avail[ki]
9: eki,t = α ∑n−1

i=0 (1 − α)ihistory[ki][t − i] + (1 −
α)neki,0

10: Calculate the predicted number Eki,t based on cur-

rent state transition probability matrix eki,t +(R1i +R2i)/2

11: if Eki,t > num avail[ki] then
12: Start Eki −num avail[ki] function containers

13: end if
14: end for
15: end function

is in the pool. The α represents the exponential smoothing

coefficient and its range is (0,1). The predict value eki,t is

a weighted average of historical observations history[ki][t],
and the weighted coefficient is a set of values that decay by

geometric series α(1−α)i, where the more recent one has a

greater weight. The sum of weights of entire historical data

∑n−1
i=0 α (1−α)i +α (1−α)n is 100%.

2) Determine the Parameter. The selection of the smoothing

coefficient α is critical for the prediction accuracy. The smaller

adoption of coefficient α is, the less influence of recent histor-

ical data will be and vice versa. According to our evaluation,

when the original series shows a relatively stable horizontal

trend, the coefficient α should be smaller, generally between

0.1 and 0.3. When the data series fluctuates significantly, a

larger α should be used to increase the sensitivity of the model

so that the prediction results can quickly keep up with the

changes in historical data. In this research, we choose α as

0.8. For the initial value history[ki][1], due to multiple periods

of smoothing, especially when the execution period is long,

its influence is quite small. When the number of time series

is more than 20, the influence of the initial value on predicted

results is negligible, and the observation value of the first

period can be used. When the number of time series is less than

20, the initial value has a certain influence, and the average

value of the first five historical data can be used instead. Here

we adopt the average of historical data as smoothed initial

value.

3) Markov Prediction Modification. The exponential

smoothing method is mainly used for short-term forecasting

problems with fewer data and volatility. However, for server-

less workload with significant random volatility, as shown in

Figure 1 and 11, the prediction result is not accurate and

with large relative error. To address the above, we adopt the

438

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Markov chain, which predicts the results through the transition

probability between states and can better compensate for

limitations in the prediction process of exponential smoothing.

For predicted data eki,t , we divide them into n region

states Ri = [R1i,R2i], where i = 1,2, ...,n. The interval can be

determined based on historical data history[ki][i]. The state Ri
will change dynamically over the time. In the Markov chain,

the state transition from state Ri to state R j can be expressed

as Pi j(k) = Ti j(k)/Ti, i = 1,2, ...,n, where Ti represented the

historical data when the state is Ri and Ti j(k) represented as

the number of original data samples from Ri to R j after k

steps. Then the k-step state transition probability matrix can

be expressed as follows:

P(k) =

⎡
⎢⎢⎢⎣

P11(k) P12(k) ... P1N(k)
P21(k) P22(k) ... P2N(k)

...
...

. . .
...

PN1(k) PN2(k) ... PNN(k)

⎤
⎥⎥⎥⎦ (2)

The future state can be determined by one step on the state

transition probability matrix. After the matrix is determined,

the predicted state at the next moment can be inferred.

Assuming the current state is Ri, then the predicted value can

be calculated as the average value of the interval under the

new state eki,t+1 + (R1i + R2i)/2. For forecasting with large

random volatility, the use of Markov chains can better revise

the limitation in the exponential smoothing process. Since the

prediction of the number of available containers is a non-

stationary random process, the exponential smoothing method

can fit the available container data to find out its changing

trend, which can rectify the limitations of the Markov chain

prediction process. Therefore, the combination of the two

can better improve prediction accuracy and control system

resource usage of live containers.

V. EVALUATION

A. Experimental Settings

Our experiments were performed on a DELL PowerEdge T430

server, which was equipped with dual ten-core Intel Xeon E5-

2640 2.6GHz processors, 64GB memory, Gigabit Network,

and a 2TB 7200RPM hard drive. We used Ubuntu 16.04 and

Linux kernel version 4.4.20 as the host OS. We also evaluated

HotC on a Raspberry Pi 3, which was equipped with Quad-

Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB memory,

and 32GB storage. The OS was adopted by Linux Raspberrypi

4.14. We used Docker 1.17 for containers and the images were

stored locally. We used OpenFaaS 0.8.5 to build serverless

functions with Docker. The evaluation setting and application

details of the individual case study were slightly different and

further discussed in the respective sections.

B. Effectiveness of Reusing Container Runtimes

Startup and Execution Time. We first evaluated the startup

time of two image recognition applications with HotC. One

was implemented in Python and built on Google inception-

v3 [33] model, which trained 1000 categories on the ImageNet

Fig. 8: The image recognition application execution time w/o

and w/ HotC.

dataset (denoted as v3-app). Another was implemented in Go
through Tensorflow APIs to perform image recognition (de-

noted as TF-API-app). The version of Tensorflow is 1.13. All

the applications were executed inside Docker containers. The

results shown were the average of ten runs. First, we evaluated

the application execution time on the PowerEdge T430 server.

As Figure 8(a) shows, the execution time of v3-app and TF-

API-app reduced by 33.2% and 23.9% respectively compared

to that without HotC. The performance improvement is due to

the efficient reuse of the existing container runtime. Similarly,

we also evaluated the performance of Raspberry Pi. Compared

to the physical servers, Raspberry Pi has more resource con-

straints and is sensitive to the overhead. Here we executed the

image recognition applications in overlay network containers.

Compared to the physical servers, the normal execution time of

the same application prolongs more than 10 times inside edge

devices and makes the cold start impact less significant among

the total execution time. However, as depicted in Figure 8(b),

HotC still helped to reduce the execution time of v3-app and

TF-API-app by 26.6% and 20.6%, respectively.

Web Application Latency. We also evaluated the application

latency with HotC. We used OpenFaaS to build a server-

less application that transferred the user input URL into

QR code. The applications were implemented in different

languages including Python, Go, Node.js, etc. For simplicity,

all backend containers were configured and connected with

network address translation (NAT). The clients sent requests

using random configurations to the backends. As shown in

Figure 9(a), the service latency is always high every time the

backend involves a new container runtime setup and applica-

tion execution. Based on our measurement, the URL transition

only took around 60ms while the majority of time was spent

on the resource allocation and container runtime setup. In

comparison, Figure 9(b) depicts the service latency with HotC.

The first few requests perform almost the same latency as in

Figure 9(a) and it is inevitable as no existing runtime reuse is

available at the beginning. However, as more requests were

handled, the probability of the same type of request goes

up and the following service latency, as well as the average

latency, dropped dramatically. Such an improvement came

from the efficient reuse of the available idle container runtime.

C. Adaptive Live Container Control

Impact on Prediction Strategy. As shown in Figure 10(a),

we measure the live number of specific type containers

439

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: The web application request latency w/o and w/ HotC.

achieved by HotC with different prediction strategies. The

measurements are collected at different time intervals as the

clients send requests. Compared to the real required number,

the exponential smoothing method can simulate and predict

the trends well. As a result, we can avoid cold container

startup latency and unnecessary resource consumption at the

same time. For instance, at time index from 7th to 10th, the

relative error of prediction drops from 29% to 10% as the real

request number of container jumps from 8 to 19. However, its

drawback is also obvious, which forecast is relatively lagging

and cannot handle large jittering. Figure 10(a) also illustrates

that applying the exponential smoothing and Markov chain

strategies together improves the overall prediction accuracy

and matches closer with the real data. The improvement of

prediction, as well as corresponding resource saving, is due to

that the Markov model revises preliminary results to overcome

the data fluctuation.

Sensitivity Analysis of HotC Parameters. Next, we measured

the prediction result achieved by HotC over the real required

number of a specific type of container and evaluated its

performance for various values of parameters in Equation 1.

First, we compared the small and large value of smoothing

coefficient α . As depicted in Figure 10(b), the larger adoption

of coefficient α is selected, the more impact the recent data has

on the predicted results, even though the Markov chain amends

the results. Another observation is a selection of initial values

for prediction. However, too large of α will make data offset

in prediction. For the early prediction, the first few predicted

results are more accurate if the initial value is selected with

the historical data. This is due to the fact that HotC’s initial

prediction is influenced significantly by the first few samples

while such the impact becomes negligible with more data

calculated inside the model.

D. Analysis of Request Patterns

Next, we study the benefits of HotC under different request

flows. Figure 11 illustrates a collection of Youtube request

from Umass Campus [4], [39]. The researchers measured the

request at the campus gateway and counted statistics through-

out the day. We find three representative request patterns based

on the collected data. First, there exists a burst from 20

requests to 300 requests at T710. Second, the request keeps

decreasing in the afternoon from T800 to T1200. Last, the

throughput increases from T1200 to T1400 at night. We can

Fig. 10: Effectiveness of prediction strategy and sensitivity

analysis of HotC design parameters. Here (r), (re) denote

the initial value selects the random or real historical data,

respectively. ‘ES’ and ‘M’ denote exponential smoothing and

Markov prediction, respectively.

also observe such patterns from other cloud or edge services.

Then, we evaluate the cold start issue with HotC with these

request patterns. We mimic the distribution characteristics of

the production workflow by running Multi-Generator [2] with

smaller data size.

Fig. 11: Youtube request statistics of Umass. X-axis is the

minute index through a day (1440 minutes).

Serial & Parallel Request. Figure 12(a) shows the serial

latency achieved with and without HotC, respectively. The

client is a single thread application sending the same request

to the backends every 30 seconds. The experiment setting and

configuration are the same as above. As depicted in the figure,

every request has to start a new container runtime by default

and encounters cold start latency. In comparison, after the

very first request, HotC can reuse the container runtime of the

previous request as all requests have the same configuration,

which significantly reduces the request latency. Figure 12(b)

depicts the average latency under parallel requests. Ten threads

at the client keep sending requests to the backend and each

thread has its own runtime configuration. The performance

is unstable due to dynamic network traffic congestion and

resource consumption. All latencies are pretty high due to a

cold start in the default case. In comparison, after the very few

requests, HotC consistently achieves better performance than

that with cold starts. The average latency with HotC is only

9% of the default case.

Linear Increasing & Decreasing. Figure 13 plots the request

latency of clients increasing or decreasing linearly over time.

For the linear request increasing case, the clients sent two

requests to the backend at the beginning, and every 30 seconds,

the requests increased by two and the throughput at time index

440

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 12: Serial and parallel request latency w/o and w/ HotC.

i is 2i requests per second. As shown in Figure 13(a), the

latency without HotC is positive correlated with the number

of requests. This is due to the fact of cold start as well

as increasing network traffic congestion and resource com-

petition. In comparison, the latency with HotC was reduced

significantly. For instance, the latency is only 21% under index

5 compared to the default case. For individual requests, we

observed that only part of them have a cold start each time and

the rest can fully reuse the existing runtimes last time under

HotC. Figure 13(b) plots the request latency under decreasing

throughput over time. At the beginning, the throughput is 20

requests per second and it is reduced by two in the next round.

Different from the increasing throughput case, there is always

a container available if the requests keep decreasing. As a

result, the request latency is always low under HotC except

for the very first round of requests.

Exponential Increasing & Decreasing. We now evaluated

HotC with workloads of exponential increasing or decreasing

requests. As shown in Figure 14(a), we changed the number

of requests to 2i at round i to see how HotC’s performance

is affected by such the network flows. The latency with and

without HotC both increased significantly due to the high

volume of network traffic. However, we observed that different

from the default case starting runtimes for each request, at

least half of the requests in HotC can directly use the existing

instances of the previous wave of requests, while the rest of

the requests needs to wait for a new container runtime. For

requests with exponential decreasing, similar to that in linear

decreasing case, all following requests have hot container

runtime available in the pool which will reduce the request

latency dramatically.

Request Burst. Lastly, we also evaluated the performance

of HotC under request burst. The client keeps sending eight

requests each time and increases the throughput by 10× at

the 4th, 8th, 12th, 16th round. As Figure 14(b) depicts, at

the first burst, HotC can reduce the latency by around 9%

through efficiently reusing the previously available containers.

As time goes on, the latency can be reduced by up to 73%

in the following bursts. The improvements here come from

two aspects. First, there are more same types of containers

Fig. 13: Linear network throughput w/o and w/ HotC.

available after the previous burst. Second, the Markov chain

method can mitigate the random volatility of data and im-

proves prediction accuracy. The following latency does not

perform significant fluctuations and the network congestion

and resource competition contribute to a slight spike of latency.

E. Overhead and Discussion

We also analyzed the overhead of HotC on resource usage.

Figure 15 plots the CPU and memory usage monitoring on

Raspberry Pi and physical server. First, we varied the number

of live containers and measured the resource consumption. As

shown in Figure 15(a), the number of live containers does not

have an obvious impact on the available resource. The CPU

usage increased by less than 1% (ten live containers) compared

to that without containers. Similarly, the memory footprint due

to a different number of live containers is also insignificant.

For instance, the memory usage increased by 0.7MB for

each individual live container. As discussed in Section II, the

majority of resource consumption comes from the applications

instead of the container itself, which left immense potential

to keep live containerized runtime to address the cold start

latency. We also measured the resource change during a

containerized application lifecycle. As shown in Figure 15(b),

we started a Cassandra database in one container at 6th second

to handle some user requests and then stopped it at 13th second

while keeping the container still live. Cassandra database is a

heavy workload that executes the database on the Java virtual

machine. Compared to the application resource consumption,

the cold start overhead cannot be neglected during execution.

Also, another observation is that the OS will automatically

recycle the unused resources (i.e., memory) quickly and we

did not need to worry too often about memory swapping for

live containers when the memory resources are sufficient.

VI. RELATED WORK

In this section, we review the most relevant work with regard

to container startup and serverless cold start, as well as its

corresponding solutions in today’s cloud or edge platforms.

Accelerating Container Startup. Many researchers have re-

vealed that the poor performance of containerized applications

441

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 14: Exponential and burst request w/o and w/ HotC.

suffered from the inefficiency and complexity of container

startup. Harter et al. [12] reported pulling packages accounted

most of container start time and proposed an optimized Docker

storage driver by using backend clones lazily fetching. Akkus

et al. [6] found that high startup delays of serverless appli-

cations came from isolated and separate containers and thus

proposed a new serverless computing system that provides

fine-grained application sandboxing as well as hierarchical

message queuing and storage mechanism. Oakes et al. [25]

proposed SOCK, a container system optimized in kernel

scalability bottlenecks to provide speedup of the application

and container initialization. Du et al. [10] modified Linux

kernel based on the secure container and optimized the cold

start time of the application to sub-millisecond levels. In

industries, there also exist many manual solutions including

periodically booting the containers, reducing artifact program

size, prefetching the hot data, etc. Different from above works

and inspired by JVM warm-up [20], this paper focuses on

mitigating cold start through reusing the container runtime.

Resource Management and Allocation. There is a large body

of work dedicated to elastic resource management [15], [17],

[22], [26], [27], [29], [32], [34]. Mohan et al. [22] proposed

optimizing cold start through pre-allocating virtual network

interfaces that are later bound to new function containers.

Wang et al. [34] proposed Replayable Execution, which uses

checkpointing and sharing of memory among containers to

speed up the startup times of a JVM-based FaaS system.

Mohammad et al. [27] proposed reducing the number of cold

starts and resource usage by predicting function invocations.

Many other works proposed resource prediction and dynamic

allocation for performance optimization. For instance, Kesidis

et al. [17] proposed to use prediction of the demands of func-

tions to allow providers to allocation resources for functions on

containers. EMARS [26] predicts the right amount of memory

for each function by tracking the function execution history.

Optimizing Container Architecture. Much effort [8], [9],

[18], [19], [21], [23], [28], [38] has been dedicated to analyz-

ing factors that affect container performance and proposing

effective solutions. FreeFlow [19] presents a RDMA virtual-

Fig. 15: The resource consumption of live containers.

ization framework to speedup the network performance of con-

tainerized services. Zhu et al. [38] designed and implemented

Slim, a low-overhead container overlay network in which

packets inside only traverse the network stack exactly one

time. Khalid et al. [18] reported that a container with heavy

network traffic can decrease the compute resource available to

its neighbors on the same server, and thus proposed a scheme,

named Iron, to precisely account the consumed CPU time

and enforce fair resource allocation. Other works, including

the virtual routing, resource management [14], redistribution

and reassignment [37], hardware offloading or bypassing the

inefficient parts inside kernel [36], focus on optimizing the

data path and improving container network processing. These

studies are orthogonal and complementary to our work.

VII. CONCLUSION

This paper presented HotC, a container-based runtime man-

agement framework that leverages the efficient reuse of

lightweight containers to mitigate the cold start and long

latency issue of serverless applications. HotC is a simple

and straightforward solution and does not need application

modification. Our evaluation results showed that HotC can

efficiently improve the performance of various applications

with different network patterns in the cloud servers as well

as edge devices. Our future direction is to evaluate the ef-

fectiveness of HotC in more complicated scenarios, such as

cloudlet or high concurrency applications in a multi-cloud

backend environment. For instance, in a distributed system,

a few containers are extremely popular and are invoked a lot

while others may not be used often. Some host machines might

become overloaded and we need to consider load balancing

when reusing the hot runtime. Next, small differences in the

configuration file or some settings would lead to the lookup

failure. We will explore adopting a subset of the available

parameters as the key, and evaluate the performance which

reuses an existing available or idle container with a similar

configuration and applies the changes to execute the function.

Lastly, we also plan to extend HotC into a more reliable

architecture, e.g., adopting a distributed key-value store, to

handle complex workloads.

442

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers

for their helpful suggestions and comments. This work was

supported by U.S. NSF grant CNS-2103459.

REFERENCES

[1] Cold Starts in AWS Lambda. https://mikhail.io/serverless/coldstarts/aws/.
[2] Multi-Generator. https://github.com/USNavalResearchLaboratory/mgen.
[3] OpenFaaS. https://www.openfaas.com/.
[4] YouTube Traces from the Campus Network. http://traces.cs.umass.edu/

index.php/Network/Network.
[5] How one second could cost amazon 1.6 billion in sales. http://bit.ly/

1Beu9Ah, 2012.
[6] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,

and V. Hilt. sand: Towards high-performance serverless computing. In
2018 USENIX Annual Technical Conference (ATC), 2018.

[7] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

[8] D. Bermbach, A.-S. Karakaya, and S. Buchholz. Using application
knowledge to reduce cold starts in faas services. In Proceedings of the
35th Annual ACM Symposium on Applied Computing, pages 134–143,
2020.

[9] J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo.
Seuss: skip redundant paths to make serverless fast. In Proceedings of
the Fifteenth European Conference on Computer Systems, pages 1–15,
2020.

[10] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen. Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[11] L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible tasks:
Treating memory pressure as interrupts for highly scalable data-parallel
programs. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP), 2015.

[12] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Slacker: Fast distribution with lazy docker containers. In
Proceedings of the. 14th USENIX Conference on. File and Storage
Technologies (FAST), 2016.

[13] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless computation
with openlambda. In Proceedings of the USENIX Conference on Hot
Topics in Cloud Computing(HotCloud), 2016.

[14] Y. Hu, M. Song, and T. Li. Towards full containerization in containerized
network function virtualization. In Proceedings of ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[15] H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, and X. Wu. Adaptive resource
views for containers. In Proceedings of the International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), 2019.

[16] C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das. Improving
user perceived page load times using gaze. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2017.

[17] G. Kesidis. Temporal overbooking of lambda functions in the cloud.
arXiv preprint arXiv:1901.09842, 2019.

[18] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira, and
A. Akella. Iron: Isolating network-based cpu in container environments.
In Proceedings of 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

[19] D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo,
V. Sekar, and S. Seshan. Freeflow: Software-based virtual RDMA net-
working for containerized clouds. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2019.

[20] D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Grcevski, and D. Yuan. Don’t
get caught in the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In Proceedings of the
symposium on Operating Systems Design and Implementation (OSDI),
2016.

[21] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara.
Serverless computing: An investigation of factors influencing microser-
vice performance. In 2018 IEEE International Conference on Cloud
Engineering (IC2E), pages 159–169. IEEE, 2018.

[22] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov. Agile cold starts for scalable serverless. In 11th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud), 2019.

[23] H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien. Real-time serverless:
Enabling application performance guarantees. In Proceedings of the 5th
International Workshop on Serverless Computing, pages 1–6, 2019.

[24] K. Nguyen, L. Fang, C. Navasca, G. Xu, B. Demsky, and S. Lu. Skyway:
Connecting managed heaps in distributed big data systems. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2018.

[25] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. SOCK: Rapid task provisioning with serverless-
optimized containers. In Proceedings of USENIX Annual Technical
Conference (ATC), 2018.

[26] A. Saha and S. Jindal. Emars: efficient management and allocation of
resources in serverless. In 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), 2018.

[27] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider. arXiv preprint arXiv:2003.03423, 2020.

[28] Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Re-
nesse, and H. Weatherspoon. X-containers: Breaking down barriers
to improve performance and isolation of cloud-native containers. In
Proceedings of ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.

[29] K. Suo, J. Rao, H. Jiang, and W. Srisa-an. Characterizing and optimizing
hotspot parallel garbage collection on multicore systems. In Proceedings
of the Thirteenth EuroSys Conference (EuroSys), 2018.

[30] K. Suo, Y. Zhao, W. Chen, and J. Rao. An analysis and empirical study
of container networks. In Proceedings of IEEE International Conference
on Computer Communications (INFOCOM), 2018.

[31] K. Suo, Y. Zhao, W. Chen, and J. Rao. vnettracer: Efficient and
programmable packet tracing in virtualized networks. In Proceedings of
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), 2018.

[32] K. Suo, Y. Zhao, J. Rao, L. Cheng, X. Zhou, and F. C. Lau. Preserving
i/o prioritization in virtualized oses. In Proceedings of the Symposium
on Cloud Computing (SoCC), 2017.

[33] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016.

[34] K.-T. A. Wang, R. Ho, and P. Wu. Replayable execution optimized for
page sharing for a managed runtime environment. In Proceedings of the
Fourteenth EuroSys Conference (EuroSys), 2019.

[35] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking behind
the curtains of serverless platforms. In Proceedings of USENIX Annual
Technical Conference (USENIX ATC), 2018.

[36] J. Weerasinghe and F. Abel. On the cost of tunnel endpoint processing
in overlay virtual networks. In Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC), 2014.

[37] Y. Zhang, Y. Li, K. Xu, D. Wang, M. Li, X. Cao, and Q. Liang. A
communication-aware container re-distribution approach for high per-
formance vnfs. In Proceedings of IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017.

[38] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson. Slim:{OS} kernel support for a low-overhead container
overlay network. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.

[39] M. Zink, K. Suh, Y. Gu, and J. Kurose. Watch global, cache local:
Youtube network traffic at a campus network: measurements and impli-
cations. In Multimedia Computing and Networking. International Society
for Optics and Photonics, 2008.

443

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

