2021 IEEE International Conference on Cluster Computing (CLUSTER) | 978-1-7281-9666-4/21/$31.00 ©2021 IEEE | DOI: 10.1109/Cluster48925.2021.00018

2021 IEEE International Conference on Cluster Computing (CLUSTER)

Tackling Cold Start of Serverless Applications by
Efficient and Adaptive Container Runtime Reusing

Kun Suo*, Junggab Son*, Dazhao Cheng’, Wei Chen* and Sabur Baidya®
*Kennesaw State University, T University of North Carolina at Charlotte
fAutomotive Vehicle Group, Nvidia, SUniversity of Louisville
Email: {ksuo, json}@kennesaw.edu, dazhao.cheng@uncc.edu, weich@nvidia.com, shbaid01 @louisville.edu

Abstract—During the past few years, serverless computing
has changed the paradigm of application development and
deployment in the cloud and edge due to its unique advantages,
including easy administration, automatic scaling, built-in fault
tolerance, etc. Nevertheless, serverless computing is also facing
challenges such as long latency due to the cold start. In this
paper, we present an in-depth performance analysis of cold start
in the serverless framework and propose HotC, a container-based
runtime management framework that leverages the lightweight
containers to mitigate the cold start and improve the network
performance of serverless applications. HotC maintains a live
container runtime pool, analyzes the user input or configuration
file, and provides available runtime for immediate reuse. To
precisely predict the request and efficiently manage the hot
containers, we design an adaptive live container control algorithm
combining the exponential smoothing model and Markov chain
method. Our evaluation results show that HotC introduces
negligible overhead and can efficiently improve the performance
of various applications with different network traffic patterns in
both cloud servers and edge devices.

Index Terms—Serverless, cold start, cloud, performance

I. INTRODUCTION

As the traditional market of cloud computing turns mature
and user requirement for microservices keeps growing, server-
less computing, such as Amazon Lambda, Microsoft Azure
Function, and Google Cloud Function, which provides high
performance, high scalability, built-in availability, and fault
tolerance, is becoming increasingly popular in the public
clouds [35]. The serverless infrastructure allows developers
to focus on the application and business logic itself instead
of worrying about where to deploy their codes and how to
tweak a large number of servers. For example, one traditional
website can be decomposed into hundreds of microservices,
which are small and efficient packaged functions [13] and can
be scaled up rapidly for growing demands.

In order to execute the source code that users created or
uploaded, a serverless system first allocates resources to the
functions based on user-defined configurations and sets up
triggers from other cloud services or events. When target
events occur, the system creates containers, loads codes or
functions inside, executes them, and finally returns the results.
The serverless functions only consume CPU, memory, or other
resources at runtime. However, such a design might also
introduce performance loss due to the cold start, especially
to those I/O-intensive applications. For instance, Amazon has
reported that every 100 ms of latency costs them 1% in

(a) HTTP request latency to AWS Lambda

(b) Distribution of latency

600
800 |- g g fo g
400 [l g WAL,
800 [
200 |---- Average —— -

100 |---- HTTP request —<— _

Request latency(ms)
CDF

0 I I I I 0
0 20 40 60 80 100 350 400 450 500 550

Request index Request latency(ms)

Fig. 1: The analysis of AWS Lambda requests. (a) HTTP
request latency of 100 samples. (b) Latency distribution.

sales [5] and the page speed of websites is also treated by
Google as one of the major ranking factors [16].

The cold start issue has been widely existing in computer
systems for decades. For instance, a three-way handshake that
requires both the client and server to exchange synchronization
and acknowledgment packets has to be processed before
each TCP connection. All HTTPS requests have to prepare
security certification during accessing the webserver. However,
different from the above, cold start in serverless infrastructure
has its own characteristics and will significantly degrade the
system performance and user experience. First, Function as a
Service (FaaS) is designed to replace traditional local functions
which can be called at any time and respond immediately.
However, the cloud function needs to deploy a computing
runtime including container startup, code download, runtime
initialization, business logic initialization, etc., which increases
the latency to millisecond or even second level. Second, a
survey revealed that 75% of cloud functions execute for less
than 10 seconds [27]. As the FaaS platforms usually charge
based on the length of the request, the cold start might
incur unnecessary costs for the users. Last, the serverless
infrastructure is flexible to expand and contract based on
current requests. When the amount of requests drops, the
system will clean up and recycle resources while making the
cold start periodically happen and the application performance
unstable and unpredictable.

Figure 1(a) illustrates the latency of requests to AWS
Lambda. We implemented a backend in Python generating a
random number for the request. The client sends one request
every second to the backend through API Gateway and lasts
for 10 seconds. Then the client waits for 30 minutes and
repeatedly executes the above. We identify whether the code

978-1-7281-9666-4/21/$31.00 ©2021 IEEE 433
DOI 10.1109/Cluster48925.2021.00018

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

(a) Percentage of most commonly used images
30

(b) Percentage of base images

200

OS ==

Lauguage Runtime ==
Application 2 -

Other 3

25
150

20

Percentage (%)
Percentage (%)

Ay

@, 0o My, Co B Ap 7o
é"ﬂ/l/eb/e,] o e”los"’ ey, P 700

Fig. 2: Dockerfile statistics from Github.

is running on is a new one or an existing one by creating
a temporary file in the container and checking whether that
file already exists. As shown in the figure, the very first one
in every 10 requests has the longest request latency due to
the cold start in the Lambda architecture. The highest request
latency is about 41.8% and 31.7% longer than the lowest
and average latency, respectively. Different from the stable
request on local functions where 99% of latency is almost
the same, we observed significant long tail latency issues in
the serverless architecture due to the cold start, as shown in
Figure 1(b).

Another characteristic of serverless computing is that the
packaged functions have high similarities and many of them
execute in the same kind of container runtime which includes
the OS image, programming language environment, network
configuration, etc. For instance, Microsoft has revealed that
about 40% of key jobs or services at Bing search rerun period-
ically [7]. We analyzed thousands of Dockerfiles from GitHub
projects. As Figure 2(a) shows, both the top 100 popular and
all surveyed projects are dominated by a few commonly used
images, which mostly contain similar OSes, language run-
times, etc., or their combination. Figure 2(b) illustrates the OS,
language, and application related configurations that dominate
the majority setting of base images. Therefore, there exists a
semantic gap between the cold start issue and the inefficient
utilization of the highly similar container runtimes. Resource
reuse has been widely adopted in industries and academic
research to improve system performance. For instance, An-
droid saves the metadata and JIT-compiled code onto disk and
reuses them in the next JVM process. Interruptible Tasks [11],
HotTub [20] and Skyway [24] proposed to reuse the runtime or
intermediate data to reduce memory pressure, JVM warm-up
overhead, and data transfer cost, respectively.

To address the cold start issue in serverless services, our
key observation is that the runtime could be reused efficiently
by leveraging the lightweight containers and the homogeneity
of containerized serverless applications. Inspired by that, we
proposed and developed HotC, a container-based runtime man-
agement framework that provides low-latency request handling
while minimizing the performance overhead to applications. In
brief, our major contributions are summarized as follows:

« First, we perform an empirical performance study of the
long latency due to cold start in serverless architecture
and reveal its reason as well as potential impact.

o Next, we design and implement HotC, a simple and

434

(a) Cloud backend dominated serverless workflow

Container
runtime [

S @

|
AWS S3 AP| Gateway \AWS Lambda

/]
o] Allocate resources
]

Computation

E-O

Data

S ———

Data storage & return
-

Application

=y

Container
Edge runtime [

B Rl t

CloudFront \AWS Lambda

fcalem]
== Allocate resources
@0

Computation

1

1

I

Data storage & return |
4

Data AWS Database

Fig. 3: Serverless application processing on edges and AWS.

lightweight solution to reuse the runtime based on client
requests. Different from existing solutions arbitrarily
keeping containers alive for a certain amount of time
(i.e., 15 minutes in AWS Lambda) or periodically wak-
ing up containers to keep warm (i.e., Azure Logic),
HotC maintains a runtime pool and efficiently reuses
the containers upon user requests. To precisely control
the resource and mitigate the periodic cold start, HotC
leverages the container runtime history and combines
exponential smoothing and the Markov chain model to
improve the prediction accuracy.

o Last, our experimental results show HotC can achieve
substantial performance improvement of various applica-
tions in both cloud servers and edge devices.

The rest of this paper is organized as follows. Section II
introduces the background and motivating examples. Sec-
tion III presents the analysis of cold start issue and Section IV
describes the system design and implementation. Experimental
results are discussed in Section V. Section VI reviews the
related work and Section VII concludes this paper.

II. BACKGROUND AND MOTIVATION
A. How serverless computing works?

Different from the traditional applications or services rely-
ing on hardware configuration and resource orchestration,
serverless computing provides a higher level of abstraction
for application deployment and management. For instance, a
typical Lambda application consists of three parts: functions
— the business logic, data — the scenario input or output, and
events — the interaction between the functions and data. The
key part is the Lambda function, which is defined by users and
then associated with the execution environment and system
resources. Take Web service as an example, the traditional
solution usually requires several virtual machines (VMs) to
host different services and a database to store the business
data. As the requests grow, it also needs a load balancer in
the front to distribute the network traffic among the servers.
In comparison, a serverless solution only requires Lambda
functions to implement the application logic and an API
Gateway to auto scale and balance the network traffic. All
the resources are only consumed when it is actually needed
and no backend is required to maintain.

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

(a) Container launch time

(b) Containerized application execution time
3

(c) Container network setup time

Container startup time mm _
App execution time ==

Time (s)
Time (s)

Go

Hot execution mm
Cold execution ==

/VO A v/
ey . _Vf/) Iy,
6/5 (e 9

14000
12000
10000
8000
6000
4000
2000

Launch time =m

Time (ms)

Fig. 4: Motivation examples of cold start in serverless applications.

Serverless is a native architecture based on the cloud con-
nected to the edges. In a typical serverless scenario, the edges
only send events or requests and do not require provisioning,
maintaining, and administering servers for backend compo-
nents such as computation, database, key-value storage, stream
processing, message queueing, etc. Figure 3(a) depicts an
image processing service (e.g., compression and watermark)
as an example. A user first takes and uploads a picture (data in
the figure) directly to the cloud through the application. AWS
S3 is responsible for the temporary persistence of the images,
then finds the processing function defined by the user through
a gateway, and triggers the specified function. After that, the
Lambda function starts to allocate resources, executes image
compression and watermark processing, and finally performs
persistence and returns the results.

In recent years, many users prefer to deploy the serverless
at the edge, where most of the data processing is performed
within the device itself. It allows running code close to the user
application, thereby improving performance and reducing la-
tency. Figure 3(b) shows the serverless processing on AWS IoT
Greengrass. Take the self-driving vehicle as an example, most
of the computations, including static object recognition (i.e.,
traffic lights, traffic signs, road intersections) and dynamic
object recognition (i.e., vehicles, pedestrians, and bicycles),
have to be performed on the edges in order to improve the
performance and security. The data is first captured at the
vehicle and then forwarded through CloudFront to the local
Lambda functions. All operations of functions perform within
the edge devices and only limited data will be uploaded to the
cloud for persistence.

B. Why cold start happens?

Both the serverless in the cloud or at the edge might face
cold start issues, which introduces inefficiency and unpre-
dictability. A typical serverless application usually runs in-
side the containers and the first access or revisit after a
long time will inevitably cause the cold start problem as
it requires booting a new container and reallocating system
resources [30], [31]. Such a cold start cannot be neglected as
the serverless applications or functions are usually small and
their operation time is short. Besides the above, there also exist
some unique characteristics to the cold start in a serverless
architecture. First, the functions are not daemon processes,

435

which means they have to start whenever a new request comes,
especially for IoT scenarios that involve little data and happen
less frequently. If the function languages, e.g., Java, need
to compile and interpret, the cold start time could be even
longer. Second, as the function execution is stateless and the
container runtime terminated once requests are handled, there
exists no reuse for either program codes or processed data.
Lastly, as serverless architecture is highly scaled, the next
request could be handled on a new host distributed by the
API server which makes the existing cache mechanism or the
memory optimization inside a single server not effective. All
the above issues either give rise to or exacerbate the cold start
of serverless applications.

C. What is the impact of cold start?

Here we analyzed the potential impact of cold start in various
scenarios. Details of the testbed and benchmark settings can
be found in Section V. First, we measured the launch time of
the container in our local servers. We wrote a program that
downloads a 3.3MB pdf file from Amazon S3 and executes it
inside Docker containers. As Figure 4(a) shows, the program
execution time in cold start without local images is 23.5s while
the cold start with local images is only 4.51s. In comparison,
the execution inside a running container takes only 2.2s, which
is dominated by the application execution itself while the
runtime setup time can be neglected.

Next, we studied the execution time of containerized ap-
plications for various programming languages. Figure 4(b)
depicts the execution time of one program which sums in-
teger from O to 10 million but implemented in Go, Node.js,
Python and Java, respectively. For the hot execution which the
program executes in a running container, the time in Node.js
is only 0.38s while it is 1.07s in Java. This is due to the fact
that the Java program must be compiled into bytecode files
and then translated and executed by the JVM. Compared to the
hot execution, the cold execution which involves an additional
container environment setup prolongs all cases. For instance,
the execution time in Go with cold start is 3.06x of that in
hot execution and the cold start even doubles the already long
execution in Java.

Lastly, we also investigated the building time of various
customized networks during the boot of container runtime,
which is crucial to those short-lived or latency-sensitive work-

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

OpenFaaS
Gateway

request HTTP header | stdin
H:{watchdog O Function

HTTP 8080 HTTP header Jusr/bin/
J response " boy rstdout@k node.js

@
[Client }__.[
®

Fig. 5: Request and response in OpenFaaS framework.

loads. As Figure 4(c) illustrates, for the single host networking,
the bridge mode and host mode networking are close to
that without network setup (None) while the container mode
networking is only half of it. This is due to the cheaper
startup connecting to a proxy container instead of booting a
new container. The container networking on multiple hosts is
even more complicated. Compared to the host mode network,
the overlay or routing solution, which involves additional
registration and initialization, takes up to 23x longer startup
time. The above examples clearly show the impact of cold start
on the performance of containerized applications in different
languages and configurations, and motivate us the adoption of
hot container runtime to mitigate the cold start issue.

III. ANALYSIS OF COLD START OVERHEAD

A. Summary of Findings

Here we further studied the cold start latency in OpenFaaS [3],
an event-driven functions and microservices platform which
can be deployed both in the cloud and at edges. Other FaaS
frameworks such as Knative, Kubeless, Fn, Openwhisk, etc.,
have similar architecture and mechanisms. Figure 5 depicts
the key components and processing pipeline in OpenFaaS.
The clients send requests to the gateway, which acts as an
entry to the backends. Gateway works as a proxy forwarding
requests to the corresponding functions and can be scaled
to multiple instances. Each backend function consists of a
container running two kinds of processes. The watchdog is
a tiny Golang HTTP server that connects the executable
containerized function in the local image with API Gateway.
The watchdog puts a layer of HTTP shell on the function,
writes to the stdin of the function process, and receives
the response data from the function process stdout. The
function process executes the user-defined handler and per-
forms the application logic. The return value will be finally
forwarded to the Gateway and received by the clients.

To precisely understand the startup overhead, we make
a quantitative analysis of cold start incurred in processing
serverless functions on the OpenFaaS platform. Specifically,
we added timestamps in MakeQueuedProxy of Gateway,
main and pipeRequest of watchdog to record the request
latency at the gateway, watchdog, and function processes,
respectively. We record six moments during the workflow path:
(D: the request packet arrives the gateway; (Q): the request
packet reaches the watchdog; (3): the function process starts;
@: the function process stops; (5): the response packet sent out
from watchdog; @): the clients receive a response packet from
the gateway. Then, we send HTTP requests to one function
which generates a random number and uses tcpdump to capture
the target packets. Compared to the function execution time
and network forwarding, function initiation time (Q—Q®)

436

dominates the total latency. In addition, we also evaluated
OpenFaaS on edge platforms such as Raspberry Pi and Nvidia
Jetson TX2, and the results are much similar to the above.

B. Industry Practices

During the past few years, researchers in industry have pro-
posed solutions to mitigate cold start in serverless applica-
tions. Engineers from Alibaba cloud found that containerized
applications have to be downloaded from the warehouse and
decompressed from the images before they are used and de-
ployed. The performance is significantly affected by hardware
such as network, and sudden access burst might bring network
congestion and service not responding. To mitigate the cold
start and provide large-scale container service ability, they
proposed several optimizations including a new image format
that does not need to fully download and an efficient compress
algorithm. Besides, to reduce the network congestion on a
single node, the Alibaba team also proposed to use a P2P
network for data and image distribution. However, their design
only focused on the overhead of image pulling and code
download. Many other factors such as resource allocation and
networking configuration can still contribute to the cold start
of serverless applications.

Another growing interest in addressing cold start is to
optimize the underlying infrastructure. To reduce the delay
of cold start, Tencent engineers optimized their architecture
in two aspects. First, they deployed their functions based on
lightweight virtualization. Compared to the traditional virtual
machine or containers, the cold start of applications can be
reduced to 200 milliseconds in a new architecture. Second,
Tencent proposed new scheduling policies for active functions.
They designed a real-time autoscale system that can expand or
contract in second-level based on the system metrics and mon-
itoring data. For function prediction and preprocessing, they
used periodic data analysis and machine learning to improve
the accuracy. When the concurrent growth of the function is
monitored, the number of instances that need to be expanded
will be calculated immediately, and the scheduler quickly
deploys instances to meet subsequent concurrent growth.

AWS adopts a fixed keep-alive policy that retains the
resources in memory for minutes after function execution [1].
Many other open-source architectures, such as OpenWhisk,
also use a similar design to keep functions warm for minutes.
Although such a policy is simple and practical, it disregards
actual invocation frequency and patterns of the functions, and
also wastes lots of resources. As the FaaS platform usually
charges based on the length of requests, regular warmup
might also introduce unnecessary fees. For instance, appli-
cations with long initialization time, such as loading deep
learning models, incur additional costs when cold starts hap-
pen frequently. Researchers in Microsoft Azure [27] recently
proposed using different keep-alive values for workloads ac-
cording to their actual invocation frequency and patterns.
They allowed service providers in many cases to pre-warm a
function execution just before its invocation happens. Different
from their solutions controlling pre-warming and keep-alive

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Miss, start a
new container

Execution

1]
EEE] Execution

Client Hit, reuse a

new container

=N - E

Adaptive Update

Fig. 6: HotC Architecture.

docker command
[OPTIONS] ... [IMAGE]
[user-defined functions]
or configuration files

Clean
the used

windows, our design adopts a time series history and a Markov
model to mitigate potential cold starts of different types of
container runtimes.

IV. HoTC DESIGN & IMPLEMENTATION

In this section, we present HotC, an approach to addressing
the cold start and long latency in a serverless architecture. The
key insight of HotC is to leverage lightweight containers and
an efficient reuse mechanism to prevent the unnecessary cold
start, excessive resource allocation, and reclaim.

A. HotC Overview

Figure 6 shows the architecture of HotC. It acts as a middle-
ware between clients and backend servers. When new requests
arrive, HotC always attempts to execute the user code in
an existing and free container. If it cannot find an available
container, HotC just starts a new one as usual. After the
container finishes execution, it returns the results back to
the client side and then HotC will clean up the container
and prepare for the next request. HotC maintains a live
container runtime pool and adaptively updates the pool over
time. Such a design has many benefits: First, it is simple and
straightforward, which does not involve disruptive changes to
the existing architecture. Second, as the resource consumption
mainly comes from the application execution instead of the
container itself, it is lightweight to maintain a group of live
containers without introducing too much overhead. Lastly,
reusing the same container runtime can also offer hot cache
and less translation lookaside buffer (TLB) flushing, which can
significantly improve resource utilization as well as application
performance.

B. HotC Key Components & Operations

Parameter Analysis. The first step of HotC is to analyze
the user command or configuration file to figure out the
parameter setting of the container runtime. The parameter
includes container images, network configuration, UTS (UNIX
Time Sharing) settings, IPC (Inter Process Communication)
settings, execution options, etc. HotC treats containers with
identical parameter configurations as the same type of run-
time environment. HotC maintains a key value store to track
the available containers. The key is the formatted parameter
configurations for each container and the value is a list with
container ID and state of the container. We define three states
for the container: Not-Existing (marked as -1), Existing-Not-
Available (marked as 0) and Existing-Available (marked as

container

437

Existing-Not-
Available

Containers
are deleted

Not-
Existing

Create new
containers

Applications

i
:

:

:

:

:

;

i

:

: The container
! stop and
:

;

:

:

i

:

:

:

i

:

:

:

:

is used by i

container is

applications
cleaned

Existing-
Available

Fig. 7: Container state transition.

Algorithm 1 Start container runtimes based on configurations

1: /* num_avail[key]: the available number of specific type
of container runtimes */
2: function START_FUNCTION_RUNTIME(key)
if runtime not existing or existing but not available
then

bl

Start a new container and run the function
else if existing and available then
Reuse one container and run the function
num_avail [key] — —
end if
end function

R A

1) and state transition is illustrated as Figure 7. In order to
gain benefits from an existing container, it is ideal to run the
application in the same runtime environment. As Algorithm 1
shows, HotC resolves the user input and looks for containers
with the same runtime as candidates to reuse. If such a
container exists and is available to run, we load user code into
that candidate container and execute the program. Normally it
might exist multiple containers with the same runtime if a large
number of requests arrive. If that happens, the client just reuses
the first available container. However, if the required container
does not exist or all candidate containers are occupied, HotC
just starts a container with that runtime setting.

Container Runtime Pool. To keep live containers, HotC
maintains a container pool inside the memory. Take the alpine
Linux container as an example, it only takes hundreds of
KB for each live container. Therefore, the memory footprint
of HotC is negligible through precise control of the number
of containers and available system resources. In our current
design, we set the maximum number of live containers to 500
and the memory usage threshold as 80% in the host. We used
a heuristic method to identify the memory pressure through
monitoring used_mem and used_swap in the kernel. If
there exist too many containers or fewer resources, the oldest
live container is forcibly terminated and releases the resources.
The further overhead analysis will be discussed in Section V.

Used Container Cleanup. In order to efficiently reuse the
containers, it is important to keep the used container clean.
The CPU and memory resources are automatically reclaimed
by the OS when the containerized applications terminate. The
disk read also does not involve modifications to the Docker file
system. Therefore, we only focus on the write to containers.

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

To keep the container clean and enable data writing, HotC
assigns volume, which persists data generated and used by
applications, to each container when they are created. Each
live container has its unique directory to save its own data.
Volume can efficiently bypass the container file system and
share data between the host server and the containers. Based on
that, the cleanup of to used container includes two steps: First,
it deletes all files and directories in the old volumes. Second,
HotC mounts new volumes to the containers for future use.
To avoid resource waste and zombie files, the corresponding
volumes are deleted once the containers stop execution.

C. Adaptive Live Container Management

In order to control the resource consumption and maintain
high performance, we design an online prediction algorithm
to adaptively control the live containers in the pool, as shown
in Algorithm 3. The key idea is to combine exponential
smoothing and a Markov chain method to exactly allocate
resources and prepare the runtime in advance. The problem
of short-term request prediction is a dynamic random process,
and its trend changes frequently over time. The exponential
smoothing method is adopted to predict the trend of runtime
data based on the recent records while the Markov chain
overcomes the data volatility. The combination of the two
methods can achieve high accuracy of prediction results under
dynamic workloads.

Algorithm 2 Clean up used containers

1: /* num_avail[key]: the available number of specific type
of container runtimes */

2: function CLEAN_CONTAINERS()

3 Clean the used containers and add them to pools

4 num_avail[key] + +

5: end function

1) Container Runtime Prediction. Whether the container
runtime is reused or not is affected by many factors, such as
application workload, number of users, network traffic, service
location, etc. The relationship between each factor and whether
the container runtime would be reused is difficult to accu-
rately quantify with models, and the changes of each factor
themselves are also relatively fuzzy. Exponential smoothing is
suitable for predicting data that has no obvious trend, which
calculates the exponential history value and cooperates with a
certain time series model to predict future results. In HotC, we
used historical data of certain types of containers to estimate
their predicted number in the pool, which assigns different
weights to the data in historical periods. The more recent data
will be assigned with a higher weight. The number of specific
type of container runtimes ey, , with configuration k; at time ¢
is estimated as follow:

€]

Here, history[k;][1], historylki][2], ..., history[k;][n] are time
series data of how many specific type of container runtime

o x historylki][t] + (1 — t)ek, ;1

438

Algorithm 3 Adaptively update containers in the pool

1: /* numlkey]: total number of specific type of containers;
2: ey, s expected number of specific type of container run-
times with configuration k; at time t under exponential
smoothing */
: function UPDATE_POOL()
for each key k; do
for 1 <j<ndo
history[k;][j — 1] = historylki][/]
end for
history[k;][n] = numlk;] - num_avail[k;]
ey = aY' (1 — a)history[ki][t — i] + (1 —
a)ex,0

ol A A A

10: Calculate the predicted number Ey, , based on cur-
rent state transition probability matrix ey, ; + (R1;+ R2i)/2

11: if Ey,; > num_avail[k;] then

12: Start Ej, —num_avail[k;] function containers

13: end if

14: end for

15: end function

is in the pool. The « represents the exponential smoothing

coefficient and its range is (0,1). The predict value e, ; is

a weighted average of historical observations history[k;][t],

and the weighted coefficient is a set of values that decay by

geometric series (1 — &)’, where the more recent one has a

greater weight. The sum of weights of entire historical data
rha(l—a) +a(l—a)" is 100%.

2) Determine the Parameter. The selection of the smoothing
coefficient « is critical for the prediction accuracy. The smaller
adoption of coefficient « is, the less influence of recent histor-
ical data will be and vice versa. According to our evaluation,
when the original series shows a relatively stable horizontal
trend, the coefficient ¢ should be smaller, generally between
0.1 and 0.3. When the data series fluctuates significantly, a
larger a should be used to increase the sensitivity of the model
so that the prediction results can quickly keep up with the
changes in historical data. In this research, we choose o as
0.8. For the initial value history[k;][1], due to multiple periods
of smoothing, especially when the execution period is long,
its influence is quite small. When the number of time series
is more than 20, the influence of the initial value on predicted
results is negligible, and the observation value of the first
period can be used. When the number of time series is less than
20, the initial value has a certain influence, and the average
value of the first five historical data can be used instead. Here
we adopt the average of historical data as smoothed initial
value.

3) Markov Prediction Modification. The exponential
smoothing method is mainly used for short-term forecasting
problems with fewer data and volatility. However, for server-
less workload with significant random volatility, as shown in
Figure 1 and 11, the prediction result is not accurate and
with large relative error. To address the above, we adopt the

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

Markov chain, which predicts the results through the transition
probability between states and can better compensate for
limitations in the prediction process of exponential smoothing.

For predicted data e,, we divide them into n region
states R; = [Ry;,Ry;], where i = 1,2,...,n. The interval can be
determined based on historical data history[k;][i]. The state R;
will change dynamically over the time. In the Markov chain,
the state transition from state R; to state R; can be expressed
as Pj(k) = T;j(k)/T;, i = 1,2,...,n, where T; represented the
historical data when the state is R; and T; j(k) represented as
the number of original data samples from R; to R; after k
steps. Then the k-step state transition probability matrix can
be expressed as follows:

Pii(k) Pro(k) Py (k)
Py (k) Pa(k) Py (k)

Pl)=| " . : o)
PNl (k) PN2 (k) PNN(k)

The future state can be determined by one step on the state
transition probability matrix. After the matrix is determined,
the predicted state at the next moment can be inferred.
Assuming the current state is R;, then the predicted value can
be calculated as the average value of the interval under the
new state e, ,y1 + (Ri; + Ry;)/2. For forecasting with large
random volatility, the use of Markov chains can better revise
the limitation in the exponential smoothing process. Since the
prediction of the number of available containers is a non-
stationary random process, the exponential smoothing method
can fit the available container data to find out its changing
trend, which can rectify the limitations of the Markov chain
prediction process. Therefore, the combination of the two
can better improve prediction accuracy and control system
resource usage of live containers.

V. EVALUATION
A. Experimental Settings

Our experiments were performed on a DELL PowerEdge T430
server, which was equipped with dual ten-core Intel Xeon E5-
2640 2.6GHz processors, 64GB memory, Gigabit Network,
and a 2TB 7200RPM hard drive. We used Ubuntu 16.04 and
Linux kernel version 4.4.20 as the host OS. We also evaluated
HotC on a Raspberry Pi 3, which was equipped with Quad-
Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB memory,
and 32GB storage. The OS was adopted by Linux Raspberrypi
4.14. We used Docker 1.17 for containers and the images were
stored locally. We used OpenFaaS 0.8.5 to build serverless
functions with Docker. The evaluation setting and application
details of the individual case study were slightly different and
further discussed in the respective sections.

B. Effectiveness of Reusing Container Runtimes

Startup and Execution Time. We first evaluated the startup
time of two image recognition applications with HotC. One
was implemented in Python and built on Google inception-
v3 [33] model, which trained 1000 categories on the ImageNet

439

(a) Image recognition app on T430 (b) Image recognition app on Raspberry Pi

6 60
B w/o HotC

Py mw/ HotC @
gy, £ 40
£ =
5 3 5 30
= E=]
3 2 3 20
] 9]
] 3
[C w10

0 0

v3-app TF-APl-app v3-app TF-APl-app

Fig. 8: The image recognition
and w/ HotC.

application execution time w/o

dataset (denoted as v3-app). Another was implemented in Go
through Tensorflow APIs to perform image recognition (de-
noted as TF-API-app). The version of Tensorflow is 1.13. All
the applications were executed inside Docker containers. The
results shown were the average of ten runs. First, we evaluated
the application execution time on the PowerEdge T430 server.
As Figure 8(a) shows, the execution time of v3-app and TF-
API-app reduced by 33.2% and 23.9% respectively compared
to that without HotC. The performance improvement is due to
the efficient reuse of the existing container runtime. Similarly,
we also evaluated the performance of Raspberry Pi. Compared
to the physical servers, Raspberry Pi has more resource con-
straints and is sensitive to the overhead. Here we executed the
image recognition applications in overlay network containers.
Compared to the physical servers, the normal execution time of
the same application prolongs more than 10 times inside edge
devices and makes the cold start impact less significant among
the total execution time. However, as depicted in Figure 8(b),
HotC still helped to reduce the execution time of v3-app and
TF-API-app by 26.6% and 20.6%, respectively.

Web Application Latency. We also evaluated the application
latency with HotC. We used OpenfFaaS to build a server-
less application that transferred the user input URL into
QR code. The applications were implemented in different
languages including Python, Go, Node.js, etc. For simplicity,
all backend containers were configured and connected with
network address translation (NAT). The clients sent requests
using random configurations to the backends. As shown in
Figure 9(a), the service latency is always high every time the
backend involves a new container runtime setup and applica-
tion execution. Based on our measurement, the URL transition
only took around 60ms while the majority of time was spent
on the resource allocation and container runtime setup. In
comparison, Figure 9(b) depicts the service latency with HotC.
The first few requests perform almost the same latency as in
Figure 9(a) and it is inevitable as no existing runtime reuse is
available at the beginning. However, as more requests were
handled, the probability of the same type of request goes
up and the following service latency, as well as the average
latency, dropped dramatically. Such an improvement came
from the efficient reuse of the available idle container runtime.

C. Adaptive Live Container Control

Impact on Prediction Strategy. As shown in Figure 10(a),
we measure the live number of specific type containers

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

(a) Latency w/o HotC (b) Latency w/ HotC

-
IS

1 [oot] 12 =

= =

=10 510

2

% 8 .‘."A:'A‘.;‘Wq‘:‘m = Sorrteted €8 .

g] !

2 6 \ Average =26

S 3

2 4 s 4

22 3 IR

\ Average

0 0

1 6 11 16 21 26 31 36 41 46

Time index

1 6 11 16 21 26 31 36 41 46

Time index

Fig. 9: The web application request latency w/o and w/ HotC.

achieved by HotC with different prediction strategies. The
measurements are collected at different time intervals as the
clients send requests. Compared to the real required number,
the exponential smoothing method can simulate and predict
the trends well. As a result, we can avoid cold container
startup latency and unnecessary resource consumption at the
same time. For instance, at time index from 7" to 10", the
relative error of prediction drops from 29% to 10% as the real
request number of container jumps from 8 to 19. However, its
drawback is also obvious, which forecast is relatively lagging
and cannot handle large jittering. Figure 10(a) also illustrates
that applying the exponential smoothing and Markov chain
strategies together improves the overall prediction accuracy
and matches closer with the real data. The improvement of
prediction, as well as corresponding resource saving, is due to
that the Markov model revises preliminary results to overcome
the data fluctuation.

Sensitivity Analysis of HotC Parameters. Next, we measured
the prediction result achieved by HotC over the real required
number of a specific type of container and evaluated its
performance for various values of parameters in Equation 1.
First, we compared the small and large value of smoothing
coefficient a. As depicted in Figure 10(b), the larger adoption
of coefficient « is selected, the more impact the recent data has
on the predicted results, even though the Markov chain amends
the results. Another observation is a selection of initial values
for prediction. However, too large of o will make data offset
in prediction. For the early prediction, the first few predicted
results are more accurate if the initial value is selected with
the historical data. This is due to the fact that HotC’s initial
prediction is influenced significantly by the first few samples
while such the impact becomes negligible with more data
calculated inside the model.

D. Analysis of Request Patterns

Next, we study the benefits of HotC under different request
flows. Figure 11 illustrates a collection of Youtube request
from Umass Campus [4], [39]. The researchers measured the
request at the campus gateway and counted statistics through-
out the day. We find three representative request patterns based
on the collected data. First, there exists a burst from 20
requests to 300 requests at T719. Second, the request keeps
decreasing in the afternoon from 7gg9 to Tip00. Last, the
throughput increases from 7Ti200 to 71400 at night. We can

440

(a) Effectiveness of prediction strategy (b) Parameter setting

w
v

—& -Real number
—&— ES+M model

—+& -Real number

-.m-- alpha =09 (r)
—@—alpha =0.7 () —a—alpha =0.7 (re),
]

w
o

- ESmodel ‘

N
«

[N

o
w
o

2o
o wn
N
=]

w
=
o

Number of typer k containers

Number of typer i containers

o
o

13 5 7 91113151719 135 7 91113151719

Time index Time index

Fig. 10: Effectiveness of prediction strategy and sensitivity
analysis of HotC design parameters. Here (r), (re) denote
the initial value selects the random or real historical data,
respectively. ‘ES’ and ‘M’ denote exponential smoothing and
Markov prediction, respectively.

also observe such patterns from other cloud or edge services.
Then, we evaluate the cold start issue with HotC with these
request patterns. We mimic the distribution characteristics of
the production workflow by running Multi-Generator [2] with
smaller data size.

600
500
400
300
200
100
0 &

0 200

-.-e-- HTTP Request

Request ¢
Burst

Number of request

779

Time index

922 1113 1340
Fig. 11: Youtube request statistics of Umass. X-axis is the

minute index through a day (1440 minutes).

Serial & Parallel Request. Figure 12(a) shows the serial
latency achieved with and without HotC, respectively. The
client is a single thread application sending the same request
to the backends every 30 seconds. The experiment setting and
configuration are the same as above. As depicted in the figure,
every request has to start a new container runtime by default
and encounters cold start latency. In comparison, after the
very first request, HotC can reuse the container runtime of the
previous request as all requests have the same configuration,
which significantly reduces the request latency. Figure 12(b)
depicts the average latency under parallel requests. Ten threads
at the client keep sending requests to the backend and each
thread has its own runtime configuration. The performance
is unstable due to dynamic network traffic congestion and
resource consumption. All latencies are pretty high due to a
cold start in the default case. In comparison, after the very few
requests, HotC consistently achieves better performance than
that with cold starts. The average latency with HotC is only
9% of the default case.

Linear Increasing & Decreasing. Figure 13 plots the request
latency of clients increasing or decreasing linearly over time.
For the linear request increasing case, the clients sent two
requests to the backend at the beginning, and every 30 seconds,
the requests increased by two and the throughput at time index

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

(a) Serial request

-
wn

«
E i [—e -wjoHotC w/HotC |
<
% GF09 00000499 500009000000 0409 6000094400000 0000
= 5
3
S
T 0 lesssasmisssnsisssetsstuslsssielelinsisnsieant s
= 1 6 11 16 21 26 31 36 41 46
Time index
(b) Parallel request
- 20
‘g ‘ —e -w/o HotC w/ HotC ‘
c »-
IRV AC A AU AN MA WS Yoaat i ot
-
4
S
g 0 S i nalpSnguaBR= R, NS n
o

1 6 11 16 21 26

Time index

Fig. 12: Serial and parallel request latency w/o and w/ HotC.

i is 2i requests per second. As shown in Figure 13(a), the
latency without HotC is positive correlated with the number
of requests. This is due to the fact of cold start as well
as increasing network traffic congestion and resource com-
petition. In comparison, the latency with HotC was reduced
significantly. For instance, the latency is only 21% under index
5 compared to the default case. For individual requests, we
observed that only part of them have a cold start each time and
the rest can fully reuse the existing runtimes last time under
HotC. Figure 13(b) plots the request latency under decreasing
throughput over time. At the beginning, the throughput is 20
requests per second and it is reduced by two in the next round.
Different from the increasing throughput case, there is always
a container available if the requests keep decreasing. As a
result, the request latency is always low under HotC except
for the very first round of requests.

Exponential Increasing & Decreasing. We now evaluated
HotC with workloads of exponential increasing or decreasing
requests. As shown in Figure 14(a), we changed the number
of requests to 2’ at round i to see how HotC’s performance
is affected by such the network flows. The latency with and
without HotC both increased significantly due to the high
volume of network traffic. However, we observed that different
from the default case starting runtimes for each request, at
least half of the requests in HotC can directly use the existing
instances of the previous wave of requests, while the rest of
the requests needs to wait for a new container runtime. For
requests with exponential decreasing, similar to that in linear
decreasing case, all following requests have hot container
runtime available in the pool which will reduce the request
latency dramatically.

Request Burst. Lastly, we also evaluated the performance
of HotC under request burst. The client keeps sending eight
requests each time and increases the throughput by 10x at
the 4,5, 8, 124, 164, round. As Figure 14(b) depicts, at
the first burst, HotC can reduce the latency by around 9%
through efficiently reusing the previously available containers.
As time goes on, the latency can be reduced by up to 73%
in the following bursts. The improvements here come from
two aspects. First, there are more same types of containers

441

(a) Linear increasing request

Ew/oHotC mw/HotC

abLLLLLLL

2 3 4 5 6 7 8 9 10
Request index

-
w

[N
o

@]

o

Request latency (s)

:

(b) Linear decreasing request

Ew/oHotC mw/HotC

-
w

JI77I77A
777
/77777
77777
777777

777777

Request latency (s)

OU‘IS
~ PPz
N 77/7/7]
W 7777)

w
IS
w
)}
~
5

Request index

Fig. 13: Linear network throughput w/o and w/ HotC.

available after the previous burst. Second, the Markov chain
method can mitigate the random volatility of data and im-
proves prediction accuracy. The following latency does not
perform significant fluctuations and the network congestion
and resource competition contribute to a slight spike of latency.

E. Overhead and Discussion

We also analyzed the overhead of HotC on resource usage.
Figure 15 plots the CPU and memory usage monitoring on
Raspberry Pi and physical server. First, we varied the number
of live containers and measured the resource consumption. As
shown in Figure 15(a), the number of live containers does not
have an obvious impact on the available resource. The CPU
usage increased by less than 1% (ten live containers) compared
to that without containers. Similarly, the memory footprint due
to a different number of live containers is also insignificant.
For instance, the memory usage increased by 0.7MB for
each individual live container. As discussed in Section II, the
majority of resource consumption comes from the applications
instead of the container itself, which left immense potential
to keep live containerized runtime to address the cold start
latency. We also measured the resource change during a
containerized application lifecycle. As shown in Figure 15(b),
we started a Cassandra database in one container at 6,5, second
to handle some user requests and then stopped it at 13, second
while keeping the container still live. Cassandra database is a
heavy workload that executes the database on the Java virtual
machine. Compared to the application resource consumption,
the cold start overhead cannot be neglected during execution.
Also, another observation is that the OS will automatically
recycle the unused resources (i.e., memory) quickly and we
did not need to worry too often about memory swapping for
live containers when the memory resources are sufficient.

VI. RELATED WORK

In this section, we review the most relevant work with regard
to container startup and serverless cold start, as well as its
corresponding solutions in today’s cloud or edge platforms.

Accelerating Container Startup. Many researchers have re-
vealed that the poor performance of containerized applications

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

(a) Exponential increasing request
20

=
5
® 10
¢ (N Na N
3
§ 0
2 8 32 128 512
Request index
(b) Request burst
%20 [= -wjoHotc w/HotC__|
c g .
g Ao A N A
- 10 — N — > —— o — —e—t.0
4
E]
g0 T
1 4 7 10 13 16 19
Time index

Fig. 14: Exponential and burst request w/o and w/ HotC.

suffered from the inefficiency and complexity of container
startup. Harter et al. [12] reported pulling packages accounted
most of container start time and proposed an optimized Docker
storage driver by using backend clones lazily fetching. Akkus
et al. [6] found that high startup delays of serverless appli-
cations came from isolated and separate containers and thus
proposed a new serverless computing system that provides
fine-grained application sandboxing as well as hierarchical
message queuing and storage mechanism. Oakes et al. [25]
proposed SOCK, a container system optimized in kernel
scalability bottlenecks to provide speedup of the application
and container initialization. Du et al. [10] modified Linux
kernel based on the secure container and optimized the cold
start time of the application to sub-millisecond levels. In
industries, there also exist many manual solutions including
periodically booting the containers, reducing artifact program
size, prefetching the hot data, etc. Different from above works
and inspired by JVM warm-up [20], this paper focuses on
mitigating cold start through reusing the container runtime.

Resource Management and Allocation. There is a large body
of work dedicated to elastic resource management [15], [17],
[22], [26], [27], [29], [32], [34]. Mohan et al. [22] proposed
optimizing cold start through pre-allocating virtual network
interfaces that are later bound to new function containers.
Wang et al. [34] proposed Replayable Execution, which uses
checkpointing and sharing of memory among containers to
speed up the startup times of a JVM-based FaaS system.
Mohammad et al. [27] proposed reducing the number of cold
starts and resource usage by predicting function invocations.
Many other works proposed resource prediction and dynamic
allocation for performance optimization. For instance, Kesidis
et al. [17] proposed to use prediction of the demands of func-
tions to allow providers to allocation resources for functions on
containers. EMARS [26] predicts the right amount of memory
for each function by tracking the function execution history.

Optimizing Container Architecture. Much effort [8], [9],
[18], [19], [21], [23], [28], [38] has been dedicated to analyz-
ing factors that affect container performance and proposing
effective solutions. FreeFlow [19] presents a RDMA virtual-

442

(a) Resource monitoring on Raspberry Pi 3

— 50 500 &

x

:-E 40 ‘ ~=-CPU Memory 400 g
=

2 30 300 §

S £

2 20 200 ©

=] £

> 10 100 o

2 o

& o 0o &

0 1 2 3 4 5 6 7 8 9 10
Number of live containers
(b) Resource monitoring on T430 server

2100 100 &

.5 80 ‘ ~=—-CPU Memory ‘ 80 @

® z

N 60 60 g

5 40 40 @

=) £

5 20 -/.,-—-—-—H\ 20 %

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 15: The resource consumption of live containers.

ization framework to speedup the network performance of con-
tainerized services. Zhu et al. [38] designed and implemented
Slim, a low-overhead container overlay network in which
packets inside only traverse the network stack exactly one
time. Khalid et al. [18] reported that a container with heavy
network traffic can decrease the compute resource available to
its neighbors on the same server, and thus proposed a scheme,
named Iron, to precisely account the consumed CPU time
and enforce fair resource allocation. Other works, including
the virtual routing, resource management [14], redistribution
and reassignment [37], hardware offloading or bypassing the
inefficient parts inside kernel [36], focus on optimizing the
data path and improving container network processing. These
studies are orthogonal and complementary to our work.

VII. CONCLUSION

This paper presented HotC, a container-based runtime man-
agement framework that leverages the efficient reuse of
lightweight containers to mitigate the cold start and long
latency issue of serverless applications. HotC is a simple
and straightforward solution and does not need application
modification. Our evaluation results showed that HotC can
efficiently improve the performance of various applications
with different network patterns in the cloud servers as well
as edge devices. Our future direction is to evaluate the ef-
fectiveness of HotC in more complicated scenarios, such as
cloudlet or high concurrency applications in a multi-cloud
backend environment. For instance, in a distributed system,
a few containers are extremely popular and are invoked a lot
while others may not be used often. Some host machines might
become overloaded and we need to consider load balancing
when reusing the hot runtime. Next, small differences in the
configuration file or some settings would lead to the lookup
failure. We will explore adopting a subset of the available
parameters as the key, and evaluate the performance which
reuses an existing available or idle container with a similar
configuration and applies the changes to execute the function.
Lastly, we also plan to extend HotC into a more reliable
architecture, e.g., adopting a distributed key-value store, to
handle complex workloads.

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGEMENT

The authors would like to thank the anonymous reviewers

for

their helpful suggestions and comments. This work was

supported by U.S. NSF grant CNS-2103459.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

Cold Starts in AWS Lambda. https://mikhail.io/serverless/coldstarts/aws/.
Multi-Generator. https://github.com/USNavalResearchLaboratory/mgen.
OpenFaaS. https://www.openfaas.com/.

YouTube Traces from the Campus Network. http://traces.cs.umass.edu/
index.php/Network/Network.

How one second could cost amazon 1.6 billion in sales. http://bit.ly/
1Beu9Ah, 2012.

I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck, P. Aditya,
and V. Hilt. sand: Towards high-performance serverless computing. In
2018 USENIX Annual Technical Conference (ATC), 2018.

O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang. Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics. In Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

D. Bermbach, A.-S. Karakaya, and S. Buchholz. Using application
knowledge to reduce cold starts in faas services. In Proceedings of the
35th Annual ACM Symposium on Applied Computing, pages 134-143,
2020.

J. Cadden, T. Unger, Y. Awad, H. Dong, O. Krieger, and J. Appavoo.
Seuss: skip redundant paths to make serverless fast. In Proceedings of
the Fifteenth European Conference on Computer Systems, pages 1-15,
2020.

D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, and
H. Chen. Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

L. Fang, K. Nguyen, G. Xu, B. Demsky, and S. Lu. Interruptible tasks:
Treating memory pressure as interrupts for highly scalable data-parallel
programs. In Proceedings of the 25th Symposium on Operating Systems
Principles (SOSP), 2015.

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Slacker: Fast distribution with lazy docker containers. In
Proceedings of the. 14th USENIX Conference on. File and Storage
Technologies (FAST), 2016.

S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Serverless computation
with openlambda. In Proceedings of the USENIX Conference on Hot
Topics in Cloud Computing(HotCloud), 2016.

Y. Hu, M. Song, and T. Li. Towards full containerization in containerized
network function virtualization. In Proceedings of ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

H. Huang, J. Rao, S. Wu, H. Jin, K. Suo, and X. Wu. Adaptive resource
views for containers. In Proceedings of the International Symposium on
High-Performance Parallel and Distributed Computing (HPDC), 2019.
C. Kelton, J. Ryoo, A. Balasubramanian, and S. R. Das. Improving
user perceived page load times using gaze. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2017.

G. Kesidis. Temporal overbooking of lambda functions in the cloud.
arXiv preprint arXiv:1901.09842, 2019.

J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira, and
A. Akella. Iron: Isolating network-based cpu in container environments.
In Proceedings of 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2018.

D. Kim, T. Yu, H. H. Liu, Y. Zhu, J. Padhye, S. Raindel, C. Guo,
V. Sekar, and S. Seshan. Freeflow: Software-based virtual RDMA net-
working for containerized clouds. In Proceedings of USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2019.

D. Lion, A. Chiu, H. Sun, X. Zhuang, N. Greevski, and D. Yuan. Don’t
get caught in the cold, warm-up your JVM: Understand and eliminate
JVM warm-up overhead in data-parallel systems. In Proceedings of the
symposium on Operating Systems Design and Implementation (OSDI),
2016.

443

[21]

[25]

[29]

[30]

[31]

[34]

[35]

[38]

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara.
Serverless computing: An investigation of factors influencing microser-
vice performance. In 2018 IEEE International Conference on Cloud
Engineering (IC2E), pages 159-169. IEEE, 2018.

A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov. Agile cold starts for scalable serverless. In 7/th {USENIX}
Workshop on Hot Topics in Cloud Computing (HotCloud), 2019.

H. D. Nguyen, C. Zhang, Z. Xiao, and A. A. Chien. Real-time serverless:
Enabling application performance guarantees. In Proceedings of the 5th
International Workshop on Serverless Computing, pages 1-6, 2019.

K. Nguyen, L. Fang, C. Navasca, G. Xu, B. Demsky, and S. Lu. Skyway:
Connecting managed heaps in distributed big data systems. In Pro-
ceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2018.

E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau. SOCK: Rapid task provisioning with serverless-
optimized containers. In Proceedings of USENIX Annual Technical
Conference (ATC), 2018.

A. Saha and S. Jindal. Emars: efficient management and allocation of
resources in serverless. In 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), 2018.

M. Shahrad, R. Fonseca, {. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini. Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider. arXiv preprint arXiv:2003.03423, 2020.

Z. Shen, Z. Sun, G.-E. Sela, E. Bagdasaryan, C. Delimitrou, R. Van Re-
nesse, and H. Weatherspoon. X-containers: Breaking down barriers
to improve performance and isolation of cloud-native containers. In
Proceedings of ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2019.
K. Suo, J. Rao, H. Jiang, and W. Srisa-an. Characterizing and optimizing
hotspot parallel garbage collection on multicore systems. In Proceedings
of the Thirteenth EuroSys Conference (EuroSys), 2018.

K. Suo, Y. Zhao, W. Chen, and J. Rao. An analysis and empirical study
of container networks. In Proceedings of IEEE International Conference
on Computer Communications (INFOCOM), 2018.

K. Suo, Y. Zhao, W. Chen, and J. Rao. vnettracer: Efficient and
programmable packet tracing in virtualized networks. In Proceedings of
IEEE 38th International Conference on Distributed Computing Systems
(ICDCS), 2018.

K. Suo, Y. Zhao, J. Rao, L. Cheng, X. Zhou, and F. C. Lau. Preserving
i/o prioritization in virtualized oses. In Proceedings of the Symposium
on Cloud Computing (SoCC), 2017.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the
1IEEE conference on computer vision and pattern recognition, 2016.
K.-T. A. Wang, R. Ho, and P. Wu. Replayable execution optimized for
page sharing for a managed runtime environment. In Proceedings of the
Fourteenth EuroSys Conference (EuroSys), 2019.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. Peeking behind
the curtains of serverless platforms. In Proceedings of USENIX Annual
Technical Conference (USENIX ATC), 2018.

J. Weerasinghe and F. Abel. On the cost of tunnel endpoint processing
in overlay virtual networks. In Proceedings of the 2014 IEEE/ACM 7th
International Conference on Utility and Cloud Computing (UCC), 2014.
Y. Zhang, Y. Li, K. Xu, D. Wang, M. Li, X. Cao, and Q. Liang. A
communication-aware container re-distribution approach for high per-
formance vnfs. In Proceedings of IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), 2017.

D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett, A. Krishnamurthy,
and T. Anderson. Slim:{OS} kernel support for a low-overhead container
overlay network. In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2019.

M. Zink, K. Suh, Y. Gu, and J. Kurose. Watch global, cache local:
Youtube network traffic at a campus network: measurements and impli-
cations. In Multimedia Computing and Networking. International Society
for Optics and Photonics, 2008.

Authorized licensed use limited to: Kennesaw State University. Downloaded on April 01,2022 at 18:16:16 UTC from IEEE Xplore. Restrictions apply.

