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Abstract

Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible
amount of study and application since their introduction by Kaufman and Mass (ITCS 2016), yet their broader
combinatorial and spectral properties remain poorly understood. We develop a combinatorial characterization
of the spectral structure of HD-walks on two-sided local-spectral expanders (Dinur and Kaufman FOCS 2017),
which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization,
which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips,
leads to novel structural theorems such as a tight f2-characterization of edge-expansion, as well as to a new
understanding of local-to-global graph algorithms on HDX.

Towards the latter, we introduce a novel spectral complexity measure called Stripped Threshold Rank,
and show how it can replace the (much larger) threshold rank as a parameter controlling the performance of
algorithms on structured objects. Combined with a sum-of-squares proof for the former ¢s-characterization, we
give a concrete application of this framework to algorithms for unique games on HD-walks, where in many
cases we improve the state of the art (Barak, Raghavendra, and Steurer FOCS 2011, and Arora, Barak, and
Steurer JACM 2015) from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or
of slices of the g-ary hypercube). Our characterization of expansion also holds an interesting connection to
hardness of approximation, where an f~-variant for the Grassmann graphs was recently used to resolve the 2-2
Games Conjecture (Khot, Minzer, and Safra FOCS 2018). We give a reduction from a related {o-variant to
our {>-characterization, but it loses factors in the regime of interest for hardness where the gap between ¢2 and
l~ structure is large. Nevertheless, our results open the door for further work on the use of HDX in hardness
of approximation and their general relation to unique games.
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1 Introduction

Since their introduction by Kaufman and Mass [KM16a] in 2016, higher order random walks (HD-walks)
on high dimensional expanders (HDX) have seen an explosion of research and application throughout
theoretical computer science, perhaps most famously in approximate sampling [ALOV19, [AT20] [ALO20, [CT.V20,
CLV21l, \CGSV21l, [FGYZ21l, JPV21, [Liu21, BCCT21], but also in CSP-approximation [AJT19], error correction
[IDHK™19, [DDHRZ20), [JQST20|, [IST21], and agreement testing [DKI7, [DD19, [KM20]. These breakthroughs,
while evidence of the importance of HD-walks, tend to have a fairly narrow focus in their analysis of the walks
themselves—most rely only on proving (often one-sided) bounds on spectral expansion. On the other hand,
there are many reasons to study combinatorial and spectral structure beyond the second eigenvalue. Such
results are often useful, for instance, when designing graph algorithms (e.g. techniques relying on threshold
rank [BRS1I, [GS11l [OT13]), and have even shown up in recent breakthroughs in hardness of approximation
[KMST7, DKK™*18b, IDKK™ 18a, [BKS18, [KMMST8|, [KMSTS8]|, where such an analysis of the Johnson and Grassmann
graphs (themselves HD-walks) proved crucial for the resolution of the 2-2 Games Conjecture. Despite so many
interesting connections and the recent flurry of work on HDX, these structures remain relatively unexplored and
poorly understood.

Building on work of [KO20, DDFHIS|, we make progress on this problem, building a combinatorial
characterization of the spectral structure of HD-walks on two-sided local-spectral expanders, a variant of HDX
introduced by Dinur and Kaufman [DK17] to generalize the Johnson and Grassmann schemesﬂ (and their
corresponding agreement tests). We show how our characterization leads to a new understanding of local-to-global
algorithms on HDX, including the introduction of a novel spectral parameter generalizing threshold rank, and give
a concrete application to efficient algorithms for Unique Games on HD-walks. While the structural theorems we
develop lie in a different regime than the one needed to recover hardness results like the proof of 2-2 Games, we
open the door for future work connecting HDX and hardness of approximation.

1.1 Contributions We start with an informal overview of our contributions, broken down into three main
sections. We give a more thorough exposition of these results in Section [2] along with some relevant background,
and overview their proofs in Section [3] The remainder of the paper is devoted to background, proof details, and
further discussion.

Eigenstripping and ST-Rank: We develop the interplay of spectral and combinatorial structure on HD-
walks, and introduce a spectral parameter called Stripped Threshold Rank (ST-Rank) that generalizes threshold
rank and controls the performance of local algorithms on such graphs. In more detail, we prove that the spectrum
of any HD-walk can be decomposed into small, disjoint intervals we call “eigenstrips,” where the corresponding
eigenvectors in each strip share the same combinatorial structure.

THEOREM 1.1. (EIGENSTRIPPING (INFORMAL)) Let M be an HD-walk on k-sets of an y-HDX. Then the spectrum
of M lies in k+ 1 eigenstrips of width OkyM('yl/z) each corresponding combinatorially to a level in the underlying
HDXP]

The ST-Rank of an HD-walk (Definition then measures the number of spectral strips with eigenvalues above
some smallness threshold. This generalizes the concept of standard threshold rank, which measures the total
number of such eigenvalues, to coarser eigendecompositions. Threshold rank itself is well known to control the
performance of many graph algorithms [ABSI5, [BRS11] IGS11l [OT13| [HST20]. At their core, these techniques
often boil down to various methods of enumerating over eigenvectors with large eigenvalues. On structured objects
like HD-walks, we argue one should instead enumerate over strips of eigenvectors with matching combinatorial
structure, and therefore that ST-rank is the relevant parameter. Since many important objects share similar
combinatorial and spectral characteristics to HD-walks (e.g. noisy hypercube, g-ary hypercube...), we expect
ST-Rank to have far-reaching applications beyond those studied in this work.

TThe Johnson Scheme consists of matrices indexed by k-sets of [n] which depend only on intersection size. HD-walks on the
complete complex are exactly the non-negative elements of the Johnson Scheme. The Grassmann scheme is an analogous object over
vector spaces.

2This was recently improved to Oy (7) by Zhang [Zha20)].

3There are k + 1 rather than k strips since 0 is a dimension of the complex (corresponding to the empty set).
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Edge-expansion in HD-walks: The combinatorial and spectral machinery we develop allows us to
characterize a fundamental graph property on HD-walks: edge-expansion. Given a graph Gy = (V, E)
(corresponding to a random walk M), the edge expansion of a subset S C V measures the expected probability of
leaving S after a single application of M. It is hard to overstate the importance of edge-expansion throughout
theoretical computer science. While the most widely used characterizations of expansion are for families where all
sets expand (expander graphs) or all small sets expand (small set expanders), more involved characterizations
for objects such as the Johnson and Grassmann graphs have seen recent use for both hardness of approximation
[KMST17, [DKK™18bl, IDKK™18a, [BKSIR, [KMSTI8| and algorithms [BBK*21]. We prove that HD-walks exhibit
similar expansion characteristics to the Johnson graphs in two key aspects: the expansion of locally-structured sets
called links, and the structure of non-expanding sets.

Applying our machinery to the former reveals a close connection between local expansion and ST-rank:

THEOREM 1.2. (LocAL EXPANSION vS. EIGENSTRIPPING (INFORMAL)) The (non)-expansion of any zlmlﬁ is
almost exactly the eigenvalue corresponding to the ith level’s eigenstrip.

This connection is particularly useful in the construction and analysis of spectral ‘local-to-global’ graph algorithms,
where it helps tie performance guarantees to ST-rank rather than threshold rank. Surprisingly, to our knowledge,
Theorem is novel even for the Johnson graphs (though in this case it follows easily from known results). In
fact, this special case alone already gives a better understanding of recent local-to-global algorithm for unique
games [BBK™21].

A corollary of this result, on the other hand, extends a very well known fact on the Johnson graphs: locally
structured sets expand poorly. This raises a natural question: are all (small) non-expanding sets explained by local
structure? Before answering, we address a subtle point: what exactly does it mean to be “explained” by local
structure? There are a number of reasonable ways to formalize this notion, each with its own use. Following
IBBK™21|, we resolve an {y-variant of this conjecture stating:

THEOREM 1.3. (CHARACTERIZING EXPANSION IN HD-WALKS (INFORMAL {3-VARIANT)) Any non-expanding set
in an HD-walk has high variance across low-level links.

Similar results used in hardness of approximation [KMST7, [DKK™18b, DKK™18a, BKS18|, KMMS18, [KMS1]|,
on the other hand, rely on an ¢,.-variant that replaces variance with mazimum. While our bound is exactly tight
in the former regime, it (necessarily) loses a factor in the latter in cases where there is a significant gap between £
and /,, structure. Proving a tight bound directly on the ¢ ,-variant for HD-walks remains an important open
question given their close connections to the structures used in hardness of approximation.

Playing Unique Games: Unique Games are a well-studied class of 2-CSP that underlie a central open
question in computational complexity and algorithms called the Unique Games Conjecture (UGC). The UGC
stipulates that distinguishing between almost satisfiable (value > 1 — ¢) and highly unsatisfiable (value < ¢)
instances of Unique Games is NP-hard. It implies optimal hardness of approximation for a host of optimization
problems such as Max-Cut [KKMOQT], Vertex Cover [KR08|, and in fact all CSPs [Rag08|, but is still not
known to be true or false. In a recent breakthrough, Khot, Minzer, and Safra [KMS18] (following a long line
of work [KMSI7, DKK™"18b, DKK™18a, [BKS18, [KMMSIS]]) used an ¢, characterization of expansion on the
Grassmann graphs to prove a weaker variant known as the 2-2 Games Conjecture: it is NP-hard to distinguish
(% — ¢)-satisfiable instances from e-satisfiable instances of unique games. On the other hand, in contrast to hard
CSPs such as 3SAT, a long line of research establishes sub-exponential time approximation algorithms for unique
games [ABS15] and furthermore shows that approximating unique games is easy on various restricted classes
of graphs such as expanders [MM10], perturbed random graphs [KMM11], certifiable small-set expanders and
Johnson graphs [BBK™21].

While our ¢;-characterization of expansion may not be as useful for hardness of approximation as the .-
variant, it gets its chance to shine in the latter context: algorithms. For most classes of constraint graphs, the best
known algorithms for unique games depend on the threshold rank [ABS15, BRS11l, [GST1] of the graph. Using
a sum-of-squares variant of our ¢>-characterization and the connection between local expansion and stripped
eigenvalues, we build a local-to-global algorithm for unique games on HD-walks (based off the recent paradigm of
IBBK™21]) that depends instead on ST-rank.

TLinks are grouped by level of the complex. The set of links at each level give increasingly finer decompositions of the HDX into

local parts. See Section @ for details.
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THEOREM 1.4. (PLAYING UNIQUE GAMES ON HD-WALKS (INFORMAL)) For any € € (0,.01), there exists an

algorithm A with the following guarantee. If T is a (1 — €)-satisfiable instance of unique games whose constraint
graph is an HD-walk ]\4E| on k-sets of an HDX, then:

1. A outputs a poly(k~",e)-satisfying solution.
2. A runs in time at most NO(()e™")
where r = Ry_oc)(M) is the ST-rank of M above threshold 1 — O(e), and there are N total k-sets.

When k£ = O(1), the ST-rank above any threshold 7 is substantially smaller than the threshold rank above
7 for (non-expanding) HD-walks, and Theorem therefore obtains a strict improvement over previous results
based on threshold rank for this family. In many cases, such as sparsifications of (constant-level) Johnson graphs
or related objects like slices of the noisy g-ary hypercube, our algorithm reduces the best-known runtime from
nearly-exponential to polynomial. Besides its independent algorithmic interest, the result carries a number of
connections to other open problems both in and outside of the study of unique games. The algorithm sheds some
(limited) lightﬁ for instance, on requisite structure for candidate hardness reductions that use direct product
testing [KM16D] or potential attempts to use agreement tests based on local-spectral expanders [DK17]. It gives
some hope for better unique games algorithms on graphs like the hypercube [AKKTI5|] as well, which can be
viewed as an HD-walk on level £ = O(log N) on a weaker (one-sided) notion of high dimensional expansion than
we study. Outside of unique games the result has some further connections to error correcting codes, where
approximation algorithms for general CSPs on HDX underlie recent breakthroughs in efficient decoding for locally
testable codes [JQST20, [IST21]. In fact, algorithms specifically for unique games over expanders have already
seen similar use for efficient decoding of direct-product codes based on HDX structure [DHK"21].

2 Our Results

We now move to a more in-depth exposition of our main results. First, however, we cover some background
regarding local-spectral expanders and higher order random walks. For a full treatment of these and related objects,
see Section [}l Local-spectral expansion is a robust notion of local connectivity on pure simplicial complexes
introduced by Dinur and Kaufman [DK17]. A d-dimensional pure simplicial complex is the downward closure of a
d-uniform hypergraph, that is a collection:

X=X0)U...UX(d)

where X (d) C ([Z]) is a d-uniform hypergraph, and X (i) consists of all 7 € ([?]) such that 7 C T for some T' € X (d)
(and X (0) = {0}). We note that this notation is off-by-one from much of the HDX literature, where X (4) is instead
given by sets of size ¢ 4+ 1, a notation rooted in the topological view of simplicial complexes. The former definition
is more common in combinatorial works (e.g. the sampling literature [ALO20]), and more natural for our purposes.

Simplicial complexes come equipped with natural local structure called links. For every i and 7 € X (i), the

link of 7 is the restriction of the complex to faces containing 7, that is:
X,={o :on7t=0, c0Ur € X}.

We call the link of an i-face an i-link, and when clear from context, will also use X, to denote the set of faces at a
given level (e.g. in X (d)) containing 7. Following Dinur and Kaufman |[DK17]|, we say a complex is a two-sided
~-local-spectral expander if the graph underlying every link is a y-spectral expander (that is all non-trivial
eigenvalues are smaller than ~ in absolute value). Finally, it is worth noting that we actually study the more
general set of weighted pure simplicial complexes (see Section , but for simplicity restrict to the unweighted
case for the moment as it requires essentially no modification.

Higher order random walks [KM16a] are analogues of the walk associated with standard graphs (given by
the normalized adjacency matrix) that moves from vertex to vertex via an edge. In a higher order random walk,

5Note that self-adjoint random walks can be equivalently viewed as undirected weighted graphs, and therefore also as underlying

constraint graphs for unique games.
SThe result certainly does not rule out reductions using such structure, but states that one must be careful in doing so that the
resulting constraint graphs fall outside the parameter regime for our algorithm.
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one applies a similar process at any level of the complex—moving for instance between two edges via a triangle,
or two triangles via a pyramid. We call walks between k-faces of a complex k-dimensional HD-walks (see
Definition for formal definition), and study a broad set of walks that capture important structures such as
sparsifications of the Johnson and Grassmann schemes[] For simplicity, throughout the introduction we will often
focus on two natural classes of HD-walks which see the most use in the literature: the canonical walks NV, ,i which
walk between k-faces via a neighboring (k + i)-face, and the partial-swap walks Si which do the same but only
move between k-faces of fixed intersection size k — . While this latter class may seem less natural at first, notice
that on the complete complex they are exactly the well-studied Johnson graph J(n, k,k — i) (the graph on ([Z])
where (v,w) € E iff v Nw| =k —1).

2.1 Eigenstripping and ST-Rank With background out of the way, we start our results in earnest with a
more in-depth discussion of eigenstripping and ST-rank: the spectral and combinatorial structure of HD-walks.
We prove that the spectra of k-dimensional HD-walks lie in k + 1 tightly concentrated “eigenstrips”, where the ¢th
strip corresponds combinatorially to functions lifted from the ith level of the complex by averaging.

THEOREM 2.1. (SPECTRUM OF HD-WALKS (INFORMAL THEOREM + COROLLARY + PropoSITION [7.3]))
Let M be an HD-walk on the kth level of a two-sided ~y-local-spectral expander. Then the spectra of M is highly

concentrated in k + 1 strips:
k

Spec(M) € {1} U U [Mi(M) —e, \i(M) + €]

j=1

where the \;(M) are decreasing constants depending only on M, and the error term satisfies e < O (/7).
Moreover, the span of eigenvectors with eigenvalues in the strip \;(M) = e are (approzimately) functions in X (i)
lifted to X (k) by averaging.

Recently, Zhang [Zha20] provided a quantitative improvement of Theorem such that e < Og(y). Theorem
can be seen as a marriage (and generalization) of previous results studying N, ,i of Kaufman and Oppenheim
[KO20], and Dikstein, Dinur, Filmus, and Harsha (DDFH) [DDFHIS]. The former prove that N} exhibits spectral
eigenstripping, while the latter introduce the corresponding combinatorial structure but lack the machinery to tie
it directly to these strips. We fill in the gap by proving a general linear algebraic theorem of independent interest.

THEOREM 2.2. (APPROXIMATE EIGENDECOMPOSITIONS IMPLY EIGENSTRIPPING (INFORMAL THEOREM )
Let M be a self-adjoint operator over an inner product space V., and V. =V @ ...® VF* a decomposition satisfying
Vi<i<k,f, eV

M fi = Nifill < ecillfill

for some family of constants ({\;}r_,,{ci}¥_,). Then as long as the ¢; are sufficiently small, the spectra of M is
concentrated around each \;:

C =

Spec(M) C | ][N —e, A\ +e] =1y,

K2

1
where e = Ok » (\/maxi{ci}). This was recently improved to e < Og(max;{c;}) by Zhang [Zha20].

Theorem then follows from proving that DDFH’s decomposition is an approximate eigendecomposition for all
HD-walks (DDFH only show this holds for N}).

In the analysis of graphs, it is often useful to bound the number of eigenvalues above some smallness threshold.
This parameter, called the threshold rank, often plays a key role, for instance, in graph algorithms, including
many methods for generic 2CSP approximation [ABS15, [BRS11] [GS11), [OT13] [HST20]. Painted in broad strokes,
these algorithms usually boil down to some method of eigenvalue enumeration, whether performed directly or
implicitly in the proof of key structural lemmas. Given the spectral structure of HD-walks (or generally any
operator with a natural approximate eigendecomposition), we argue that it is generally more natural to enumerate
over strips with large eigenvalues instead. This motivates a natural spectral complexity measure we call stripped
threshold rank.

We note that the Grassmann scheme comes from applying HD-walks to the Grassmann poset, which is not a simplicial complex.
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DEFINITION 2.1. (STRIPPED THRESHOLD RANK) Let M be a linear operator over a wector space V with
decomposition V. = @, V* denoted 2, where each V* is the span of some set of eigenvectors. Given 6 € R,
the stripped threshold rank (ST-Rank) with respect to § and 2 is:

Rs(M,2)=|{V' € 2:3f € V', Mf=\,A>6}.
In this work, 2 will always correspond to the eigenstrips given by Theorem [2.1] so we drop it from the notation.

The ST-Rank of any (non-expanding) k-dimensional HD-walk is always substantially smaller than its standard
threshold rank (which is at least poly(n), and often as large as n*(¥)). As a general algorithmic paradigm, if
one can leverage the combinatorial structure of eigenstrips to replace eigenvalue enumeration, it is possible to
achieve substantially better performance on structured graphs. In Section [2.3] we discuss a concrete instantiation
of this framework to unique games, where we gain substantial improvements over state of the art algorithms
[BRS11l, [ABS15] over such constraint graphs.

Before moving on to such results, however, it is natural to ask whether we can give a finer-grained
characterization of ST-rank for HD-walks. In Section [7] we show how to explicitly compute the approximate
eigenvalue \;(M) corresponding to each strip based upon the structure of M. While the full result requires further
background, its specification to canonical and partial-swap walks has a nice combinatorial interpretation. Recall
that the canonical walk N; walks between k-faces through a shared (k + i)-face. We say it has depth i/(k + i)
since it traverses i of the k + i relevant levels of the complex. Similarly, we say the partial-swap walk Si has depth
i/k, since it swaps i out of k elements (up to factors in ~, this can also be viewed as walking between k faces via
a shared k — i face, where one traverses ¢ out of the k relevant levels). We prove that the stripped eigenvalues
corresponding to the canonical and partial-swap walks decay exponentially fast with a base rate dependent on
depth.

THEOREM 2.3. (ST-RANK OF HD-wALKS (COROLLARY [7.2] ++ COROLLARY [7.3)) Let M be a canonical or
partial-swap walk of depth 0 < B < 1 on a sufficiently strong two-sided local-spectral expander. Then the
eigenvalues corresponding to the eigenstrips of M decay exponentially fast:

)\Z(M) < e P,

The ST-Rank Rs(M) is then at most:

R(s(M) < lnéé)

In other words, walks that reach deep into the complex (e.g. N ,]: / 2) have constant ST-Rank, whereas shallow walks
like N} have ST-rank Q(k).

2.2 Characterizing (non)-Expansion in HD-Walks We now move to our main structural application,
characterizing edge expansion in HD-walks. Edge expansion is a fundamental combinatorial property of graphs with
applications across many areas of theoretical computer science, including (as we will soon discuss) both hardness
and algorithms for unique games. For a subset of vertices S C V, edge expansion measures the (normalized)
fraction of edges which leave S.

DEFINITION 2.2. (EDGE EXPANSION) Given a graph G(V, E), the edge expansion of a subset S CV is:

E(S,V\S)

4(G.8) = Zpia vy

where E(S,T) counts the number of edges crossing from S to T (double-counting edges in the intersection). When
convenient, we denote non-expansion, 1 — ¢(G,S), as ¢(G,S), and drop G from the notation when clear from
context.

It is often useful to characterize exactly which sets in a graph expand. The two most widely used characterizations
are when alﬁ sets expand (expanders), or when all small sets expand (small-set expanders). However, many

8By this we really mean all sets of size at most |V|/2.
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important structures fall outside such a simple characterization. The Johnson and Grassmann graphs, for instance,
are well known to have small non-expanding sets. Characterizing the structure of non-expansion in these graphs
was crucial not only for the resolution of the 2-2 Games Conjecture [KMS18], but also for recent algorithms for
unique games [BBK™21|.

Using the spectral machinery developed in the previous section, we give a tight characterization of expansion
in HD-walks. As discussed, we focus mainly on two key aspects: the expansion of links, and the structure of
non-expanding sets. We start with the former, where links have long been the prototypical example of small,
non-expanding sets for the Johnson graphs. In fact, we prove this stems from a much stronger connection between
local expansion and spectral structure in HD-walks.

THEOREM 2.4. (LOCAL (NON)-EXPANSION = GLOBAL SPECTRUM (INFORMAL THEOREM [9.1))) Let M be a k-
dimensional HD-walk on a sufficiently strong d-dimensional two-sided ~y-local-spectral expander with d > kﬂ and
let \;j(M) be approximate eigenvalues corresponding to M’s k + 1 eigenstrips. For all 0 <i <k and 7 € X (i), let
X, denote the set of k-faces that contain 7. Then X, is expanding if and only if \;(M) is small:

P(X7) € \i(M) £ Ok(7).

Since HD-walks (like the Johnson graphs) are generally poor spectral expanders, Theorem implies the existence
of small, non-expanding sets (namely 1-linkﬂ. Our stronger characterization of local expansion is of independent
interest beyond this simple corollary, however, due to its important connections to local-to-global algorithms and
ST-rank. In particular, essentially all work on high-dimensional expanders relies on a strategy known as the local-
to-global paradigm, where a global property (e.g. mixing, agreement testing, etc.) is reduced to examining a local
version on links. These arguments often reduce to showing that, in some relevant sense, interaction between links
is minimal. Theorem [2.4] offers exactly such a statement for levels of the complex which correspond to eigenspaces
with large eigenvalues—since links at these levels are non-expanding, they don’t have much interaction. This gives
a holistic local-to-global approach for spectral graph algorithms on HDX, since the eigenspaces corresponding
to small eigenvalues are traditionally easy to handle through other means. Later we will see an algorithmic
application of this approach to unique games, where the non-expansion of links allows us to patch together local
solutions, and the connection to global spectra ties performance of the algorithm to ST-rank.

Returning to the topic of expansion, Theorem [2.4] shows that as long as M is not a spectral expander, there
always exist small, non-expanding sets in the form of links. This raises a natural question: are all non-expanding
sets explained by links? Before answering, let’s spend a little time formalizing this. Given a subset S C X (k), let
Lg; be a function on i-faces measuring the deviation of S from its average across links at level ::

Vre X(i): Lg(r) = )Ig[]ls] —E[1g].

The statement “non-expansion is explained by links” then really amounts to saying that we expect Lg; to be
far from 0 in some sense if S is non-expanding. There are a number of reasonable ways to formalize this notion,
each with its own use. Following [BBK™21|, we mainly focus on an fs-variant that is particularly useful for
designing local-to-global algorithms: if S is non-expanding, then ||Lgl||§ (or equivalently the variance of S across
i-links) must be large. It is perhaps easier to think about this result in terms of its contrapositive. Call a set
lo-pseudorandom if its variance across i-links is small.

DEFINITION 2.3. (¢2-PSEUDORANDOM SETS) Let X be a pure simplicial complex. We call a subset S C X (k)
(e, 0)-La-pseudorandom if
Vi <{:|Ls,|3 < cE[1g]

We remark briefly on the choice of normalization by E[1g] on the right. While mostly a formality, we will see this
is in fact a natural choice both in comparison to the ,,-variant (which differs in some natural sense by at least a
factor of E[1g]), and when considering expansion which is itself normalized by E[1g]. Indeed with this in mind,
we prove that (e, )-fo-pseudorandom sets expand near-perfectly.

9The lower bound on non-expansion still holds for d = k, which is sufficient for most applications of this result. It’s also worth

noting that the condition d > k itself is generally trivially satisfied, since all known two-sided local-spectral expanders are in fact
cutoffs of larger complexes.

10Since we generally consider the regime where | X (1)| > k, a basic averaging argument gives that there must exist a o(1)-size 1-link.
One may also note that in a «-local-spectral expander, no 1-link can have more than O() mass, so all links are small if v < o(1).

1076 Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 04/01/22 to 77.124.29.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

THEOREM 2.5. ({-PSEUDORANDOM SETS EXPAND (INFORMAL THEOREM [9.2)) Given a k-dimensional HD-
walk M on a sufficiently strong two-sided ~y-local-spectral expander and small constants «,d,e > 0, we have
that any (e, Rs(M))-pseudorandom set S of density « expands near-perfectly:

#(S) 21 —a—6—0x() — Ok(y)

We note that (the formal version of) this result is exactly tight (in the limit of v — 0). Passing back to the
original (now contrapositive) form of the statement, Theorem immediately implies that any non-expanding set
must have large variance across links at a level determined by the ST-rank of M. On the algorithmic side, this
informally translates to the statement that most interesting structure lies on low-level links, which is crucial to
any local-to-global algorithm.

Before formalizing this algorithmic intuition in the case of unique games, it’s worth taking a moment to
consider the implication of Theorem to a different formalization of this problem with recent applications to
hardness of approximation: the f-variant. In this characterization, the (squared) fo-norm of Lg; is replaced
with its maximum. In other words, the ¢,.-variant characterization posits that every non-expanding set must be
highly concentrated in some individual link. We prove that Theorem [2.5] actually holds in this regime as well by a
simple reduction. If we analogously define ¢,,-pseudorandom sets (see Definition , it is not hard to show that
any {~.-pseudorandom set must also be £o-pseudorandom. This results in a tight version of Theorem for the
loo-regime, but only when max(Lg ;) is close to m | Ls.||®. Practically, the interesting regime in hardness of
approximation is when these two quantities are far apart. In this case our ¢, to {5 reduction necessarily loses
important factors, so we cannot recover any results from the hardness of approximation literature.

Nevertheless, it is worth stating that as an immediate corollary of our /5-based analysis we get an f.o-
characterization of expansion in HD-walks: any non-expanding set must be non-trivially concentrated in a
link.

COROLLARY 2.1. (NON-EXPANDING SETS CORRELATE WITH LINKS (INFORMAL COROLLARY [9.1))) Let M be a
k-dimensional HD-walk on a sufficiently strong two-sided ~y-local-spectral expander. Then if S C X (k) is a set of
density « and expansion at most:

¢(5) <1l—a—0—-0k(v)

for some § >0, S must be non-trivially correlated with some i-link for 1 <i <r = Rs/o(M):

AN<i<nTeX(): Ellg]>a+ C(fc;
where cs . depends only on § and the ST-rank .

Proving a k-independent /..-characterization for HD-walks, either directly or via a stronger k-dependent reduction
to the ¢s-regime, remains an interesting open problem. Such a characterization is known on the Johnson graphs
(and a number of related objects [KLLM19, [FKLM20]), and may shed light on similar structure in the Grassmann
graphs used to prove the 2-2 Games Conjecture [KMSI8]. We discuss some additional subtleties in this direction
in Section 2.4

2.3 Playing Unique Games One motivation for studying spectral structure and non-expansion in HD-walks
stems from a simple class of 2-CSPs known as unique games, a central object of study in hardness-of-approximation
since Khot’s introduction of the Unique Games Conjecture (UGC) [Kho02] nearly 20 years ago. We study affine
unique games which are known to be as hard as unique games [KKMOQ7]:

DEFINITION 2.4. (AFFINE UNIQUE GAMES) An instance I = (G,S) of affine unique games over alphabet
Y ={0,...,m — 1} is a weighted undirected graph G(V,E), and set of affine shifts S = {suv € E}(uv)cE-
The value of 1, val(I), is the mazimum fraction of satisfied constraints over all possible assignments LV :

max Pr [X, — X, = suy(mod |X|)],

max Pr[X, = X, = s, (mod |3))
where edges are drawn corresponding to their weight. For an individual assignment X, we refer to this expectation
as valp(X). Any weighted undirected graph G is uniquely associated with a self-adjoint random-walk matriz M
where M (u,v) = Prg[(u,v)]/ 3, Pre((u,w)] (see Appendiz[C.1). We will usually view the constraint graph in this
manner instead, referring to unique games instances over random-walks as I = (M, 1I).
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Informally, the UGC states that for sufficiently small constants €,d, there exists an alphabet size such that
distinguishing between instances of unique games with value 1 — ¢ and ¢ is NP-hard. A positive resolution to
the UGC would resolve the hardness-of-approximation of many important combinatorial optimization problems,
including CSPs [Rag08§], vertex-cover [KRO§|, and a host of others such as [Kho02, [KKMOO07, [GMROS| [CTHIII]
KTW14, [KV15].

Building on the recent framework of Bafna, Barak, Kothari, Schramm, and Steurer [BBK™ 21|, we show how
our structural theorems combine with the notion of ST-rank to give efficient algorithms for unique games over
HD-walks.

THEOREM 2.6. (PLAYING UNIQUE GAMES ON HD-wALKS (INFORMAL THEOREM [10.1))) For any ¢ € (0,.01),
there exists an algorithm A with the following guarantee. If T = (M,S) is an instance of affine unique games
with value at least 1 — e over M, a complete k-dimensional HD-walk on a d-dimensional two-sided ~y-local-spectral
expander with v < ox(1) and d > k then A outputs a poly(7)-satisfying assignment in time | X (k)[Pey(/7),

where T = ((i> and r(g) = Ri_o() (M) is the ST-rank of M.

It is worth giving a quantitative comparison of this result to the best known algorithms based on threshold rank
[ABS15, BRS11l [GSTI]. These algorithms run in time roughly exponential in the (1 — O(g))-threshold rank of G
to get similar soundness guarantees when k = O(I)B Due to the poor threshold rank of HD-walks, this generally

amounts to nearly exponential time (2|X(k)‘p01y(5)), whereas our algorithm runs in time roughly |X(k)|20(k). In
the regime of constant k, Theorem therefore gives a polynomial time algorithm for such instances achieving
an exponential improvement over threshold-rank based algorithms. We describe a few examples of such families
below.

Since Theorem [2.6] can be a bit hard to interpret without additional knowledge of the high dimensional
expansion literature, we end our discussion of algorithms for unique games with a few concrete examples. Perhaps
the most basic example generalizing the Johnson graphs that fits into our framework are slices of the g-ary noisy
hypercube. For constant-level slices, we improve over BRS from nearly exponential to polynomial. Further, the
result is robust in the sense that it continues to hold even when the underlying complex is perturbed. This results
in algorithms, for instance, for dense random sparsifications of these slices, or slices taken from a negatively
correlated distribution over Zy (or more generally slices of any spectrally-independent spin-system [ALO20]).
Another interesting class of graphs we see significant speed-ups on are algebraic sparsifications of the Johnson
graphs stemming from bounded-degree constructions of two-sided local-spectral expanders such as (cutoffs of)
Lubotsky, Samuels, and Vishne’s [LSV05] Ramanujan complexes, or Kaufman and Oppenheim’s [KO18]| coset
complex expanders. The resulting speedups on this class of graphs is somewhat more surprising than the above,
since they exhibit substantially different structure in other aspects (they are, for instance, of bounded degree
unlike the Johnson graphs).

2.4 Connections to Hardness and the Grassmann Graphs We finish the discussion of our results by
taking a deeper look at connections with recent progress on the UGC, and argue that our framework opens an
avenue for further progress. The resolution of the 2-2 Games Conjecture [KMS18| hinged on a characterization of
non-expanding sets on the Grassmann graph not dissimilar to what we have shown for two-sided local-spectral
expanders. While we have focused above on HDX which are simplicial complexes, our work extends to a broader
set of objects introduced by DDFH [DDFHI1S| called expanding posets which includes class of objects includes
expanding subsets of the Grassmann poset we call g-eposets (we refer the reader to [DDFHIS]| for definitions and
further discussion).

Theorem [2.5] and Corollary [2.1] extend naturally to HD-walks on g-eposets. We state the latter result here
since it follows without too much difficulty from the same arguments as in this paper, but the full details (and
further generalizations to expanding posets) will appear in a companion paper.

TTFormally, we note ~ also has dependence on M (see Theorem [10.1)), though this can be removed in special cases like the Johnson
scheme. We also note again that d > k is generally a trivial condition for strong two-sided local-spectral expanders.
12This corresponds to the setting in which the dimension of the HD-walk is fixed, and the number of vertices in the complex grows.
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COROLLARY 2.2. (NON-EXPANSION IN ¢-EPOSET) Let (X,II) be a two-sided y-q-eposet with v sufficiently small,
M a k-dimensional HD-walk on (X,II). Then if S C X (k) is a set of density a and expansion:

P(8) <1—a—=04r(v) =6

Jor some 6 >0 and r = Rs/o(M), S must be non-trivially correlated with some i-link for 1 <i <r:

ﬂSiSnTeX@:EHﬂZa+EX

q

where c5,» depends only on § and the ST-rank r, and (];')q is the standard g-binomial coefficient:
g -1
(),

Since the Grassmann graphs are simply partial-swap walks on the Grassmann posetE Corollary provides a
direct connection to the proof of the 2-2 Games Conjecture [KMS18]. Unfortunately, due to the dependence on k,
this result is too weak to recover the proof.

The dependence of both Corollary 2.1 and Corollary 2.2/ on % is a subtle but important point, so we’ll finish
the section by discussing it in a bit more detail. The particular dependence we get in the f3-regime, ( ) for the
Johnson and (f)q for the Grassmann, is tight and can be understood by examining the variance of i-links. While
i-links are the prototypical example of an Q(1)-pseudorandom set in the ¢, regime, one can show that they are
actually about 1/(*)-pseudorandom in the £5-regime (or 1/ (’;)q for the Grassmann). Since links are non-expanding,
any bound in the #s-regime must have matching dependence on k to make up for this fact. Indeed, one can use
the same argument to show that a k-independent bound cannot exist in £a-regime (even if we relax dependence on
pseudorandomness, see Proposition . As a result, any £, to ¢5 reduction like ours (which has no dependence
on k) will always result in a final bound depending on k.

Finally, it’s worth noting that while the f.-regime escapes this particular issue since links are Q(1)-
pseudorandom (and indeed that for the Johnson graphs, a k-independent bound is known [KMMS18|), there is
an additional consideration for the Grassmann graphs: there exist small, non-expanding /..-pseudorandom sets
IDKK™18a]. The proof of the 2-2 Games Conjecture therefore relies on a finer-grained definition of local structure
than links (called zoom-in zoom-outs) [KMS18]|. While we cannot hope to apply exactly the same techniques to
analyze this variant, we view our method’s generality and simplicity as evidence that a deeper understanding of
higher order random walks may be key to further progress on the UGC.

3 Proof Overview

In this section we give a proof overview of our main results. Throughout the section we will assume the complex is
endowed with a uniform distribution, and will (usually) ignore error terms in the spectral parameter . The full
details for weighted complexes and a careful treatment of the error terms is given in the main body along with a
number of further generalizations.

3.1 Eigenstripping and the HD-Level-Set Decomposition We start with a discussion of the techniques
underlying Theorem (Eigenstripping). At its core, this (and indeed all of) our results rely upon now-standard
machinery for working on simplicial complexes called the averaging operators.

DEFINITION 3.1. (THE AVERAGING OPERATORS) Let X be a d-dimensional pure simplicial complex. For any
0 <k < d, denote the space of functions f : X(k) = R by Cx. The “Up” operator lifts f € Cy to Upf € Cry1:

WEX(k+1):UfW) =5 > S
zeX (k):xCy

T3Seeing that they are HD-walks is non-trivial, and follows from the g-analog of work in [AJTT9].
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The “Down” operator lowers functions f € Cx41 to Dyy1f € C:

Vre X(): Denf@)=—— S f()

N yeX (k+1):yDzx

Since it is often useful to compose these operators, we will use the shorthand UF = Uy_y ... U; and D¥ = D;1y ... Dy,
to denote the composed averaging operators which raise and lower functions between C; and Cy by averaging.

In fact, the averaging operators are crucial even to defining higher order random walks. We discuss this definition
in greater detail in Section [5] and for now settle for noting that a basic class of HD-walks are given simply by
composing U and D. For instance, the canonical walk N} is the composition DE'HU k+i and the partial swap
walks S}, turn out to be an affine combinations of the N} [AJT19].

The proof of Theorem [2.1] relies on a useful decomposition for functions on simplicial complexes based upon
the averaging operators we call the HD-level-set Decomposition recently introduced by Dikstein, Dinur, Filmus,
and Harsha [DDFHIS|. The idea is to break functions into components coming from each level of the complex,
lifted by averaging to the top level.

THEOREM 3.1. (HD-LEVEL-SET DECOMPOSITION, THEOREM 8.2 [DDFHIS|) Let X be a d-dimensional two-
stded y-local-spectral expander, v < é, 0<k<d, and let:

H® = Cy, H" = Ker(D;), Vi = UFH".

Then:
Cr=VWao.. .oV

In other words, every f € Cy has a unique decomposition f = fo+ ...+ fi such that f; = UFg; for g; € Ker(D;).

The HD-Level-Set Decomposition is particularly useful not only for its rigid combinatorial structure, but also its
spectral properties. Namely, one familiar with the Johnson Scheme might notice that when X is the complete
complex, this decomposition exactly gives the eigenspaces of the Johnson Scheme. DDFH gave an approximate
extension of this result to the basic “upper” walk Dy 41Uy, proving that the Vki are approximate eigenspaces.

The proof of Theorem [2.1| follows from combining an extension of this result to all HD-walks (see Corollary
with Theorem [2:2] which states that any approximate eigendecomposition strictly controls the spectrum of the
underlying operator. However, since the proof of Theorem is purely linear algebraic (and is essentially irrelevant
for understanding our core results on expansion and unique games), we defer detailed discussion of the result to
Section [61

3.2 Characterizing Expansion We now take a look at how this combinatorial understanding of the spectra of
higher order random walks allows us to characterize their edge-expansion. We start with a standard observation,
the expansion of a set can be written as the inner product of its indicator function. In other words, if X is a
simplicial complex and M is an HD-walk on X (k), the expansion of any S C X (k) with respect to M may be
written as:

1
d(M,15) =1— Efig] (1s, M1g).

The key is then to notice that by the bilinearity of inner products, we can expand the right-hand side in terms of

k )
the HD-Level-Set Decomposition. In particular, writing 1g = > 1g; for 1g; € V}!, we have:
i=0

k
d(M,1g) =

M1g,).
1:0

Finally, since we know each V,j is approximately an eigenstrip concentrated around some \;, up to additive error
in v we can simplify this to:

(3.1) ¢(M,15) ~ 1~ Ai(ls, Lg;).

=
—
'M"*

I
<

[1s]

(2
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Thus we see that understanding the expansion of S' comes down to the interplay between its projection onto each
level of the complex and their corresponding approximate eigenvalues. Our characterization of expansion combines
this observation with the combinatorial and spectral structure of the HD-Level-Set Decomposition. We devote
the rest of the section to sketching the proofs of Theorem (local expansion vs global spectra), Theorem
(pseudorandom sets expand), and our reduction from the £,-variant to £y-variant.

Proof sketch of Theorem [2.4k Recall that Theorem shows a tight inverse relation between the expansion
of links and the spectra of M. Given 7 € X (j), we wish to examine the indicator function 1x_ of the link X. First,
notice that since 1x_ = (’;) UJ’? 1, it’s easy to see that 1y € VP& ... & V. We prove something stronger, that

1y, in 'fact lies almost entirely in ij . In particular, we show that for every i # j, 1x_ has almost no projection
onto V}!:
(1x,,1x, ) < Ox(y)E[1x,].

Since the HD-Level-Set Decomposition is approximately orthogonal [DDFHI8| (more generally, this is true of any
approximate eigendecomposition, see Lemma, this implies that the mass on level j is around (1O (7))E[1x_],
and plugging these observations into Equation (3.1]) we get:

k
1
¢( 5 S) E[HS]; <S S7>
Ai
~1— 1g,1g;
By 1 1
~1-—X\

where we have ignored some Og(7) error terms.

Proof sketch of Theorem Proving that pseudorandom functions expand is a bit more involved, but
still at its core revolves around the analysis of Equation . In particular, since the approximate eigenvalues of
M monotonically decrease (i.e. Vi > j, A;(M) < X\;(M)) then for any 6 > 0 we can simplify Equation (3.1) to:

| BN
3.2 M,1g) < 1— A(lg, Tg,) +6,
(3.2) o( s) E[lg] ; (1s,1g,)

where we recall Rs(M) is the ST-rank, denoting the number of eigenstrips of M with eigenvalues greater than 0.
Using Theorem it is possible to show (see Proposition that essentially all HD-walks of interest satisfy this
property. With this in hand, proving Theorem boils down to characterizing the projection of a set S onto low
levels of the complex by its behavior on links.

THEOREM 3.2. (PSEUDORANDOMNESS BOUNDS LOW-LEVEL WEIGHT (INFORMAL THEOREM [8.2])) Let X be a
sufficiently strong d-dimensional v-local-spectral expander. For any i < k < d let S C X(k) be a (e,i)-l3-
pseudorandom set. Then for all j < i:

(15.155) 5 (} ) Bl

Theorem follows immediately from plugging this result into Equation . Perhaps surprisingly, Theorem
itself follows without too much difficulty from combining analysis of the averaging operators and our spectral
analysis of the HD-Level-Set Decomposition (namely Theorem . In particular, given a set S C X (k), the idea
is to examine the lowered indicator function Df]l s, which exactly gives the expectation of S over j-links, that is
for any 7 € X(j):

Dils(r) = )15[15].

Proving Theorem then corresponds to lower bounding Var(DfILS) by some function of the projection of S
onto level j. In fact, it is possible to exactly understand this connection. The idea is to reduce the problem to a
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spectral analysis of HD-walks using the adjointness of D¥ and U} (see e.g. [DDFHIS]):

Var(D}1g) = (Df1s, D¥1s) — E[D} 1)
(15,UFD1g) — E[15])

|
™=

(15,UFD}1s,) — E[1s)?

~

= |l
<}

(15,UF D} 1g,).

~
Il
—_

Since UJ’?D;C is an HD-walk, Theorem |2.1| implies that UfD}“]lSl ~ M\lg, for some approximate eigenvalue A,.
In the formal version of Theorem we compute the approximate eigenvalues of such walks, and in this case

()
(e)

projection of S onto low levels of the complex:

a simple computation shows that Ay = As a result, we get a tight connection between Var(Dk]ls) and the

k J
Var Dk]].s Z% ]].3,]].5'7g>
(=1 é

where we have ignored factors in . The proof then follows from noting that the right-hand side is approximately
lower bounded by 0] 1-(1s,1g ;) by near orthogonality of the HD-Level-Set decomposition [DDFHIS].

lo to f5 reduction: We end with a simple observation that generalizes our results to the {..-variant
characterization via reduction. The idea is that the 2-norm may be re-written as a (normalized) expectation over
a modified distribution:

1 k k k
mVar(Dj ]].5) = %[D] ]]-S] - E[ﬂ.g] < maX(Dj ]]-S — E[ﬂ.g})
where ITg is the distribution on X (j) naturally induced by restricting II to the support of S (see Section [8| for
further details). It immediately follows that any (e, £)-fo-pseudorandom set is also (g, £)-¢3-pseudorandom.

3.3 Playing Unique Games We end the section with a discussion of Theorem an application of our
structural theorems to algorithms for unique games. We follow the algorithmic framework of [BBK'21]| for
playing unique games on Johnson graphs, a special case of HD-walks on the complete complex. We generalize
their algorithm and its analysis to HD-walks over all (sufficiently strong) two-sided local spectral expanders by
abstracting the algorithm into the broader local-to-global paradigm for HDX:

1. For some r, break the UG instance down into sub-instances over r-links of the complex.
2. Solve the local sub-instances and patch together the solutions into a good global solutionE

For their underlying algorithmic machinery, BBKSS rely heavily on a well-studied paradigm known as the Sum-
of-Squares (SoS) semidefinite programming hierarchy. We won’t go into too much detail about this paradigm
here (see Section for details), and for the moment it suffices to say that analysing SoS algorithms relies on
porting the proofs of relevant inequalities (specific to the problem at hand) into the Sum-of-Squares proof system,
a restricted proof system for proving polynomial inequalities. We leverage the BBKSS framework to solve unique
games on HDX by observing that their algorithm’s analysis can be generalized to rely on two core structural
properties true of the graphs underlying HD-walks:

1. A low-degree Sum-of-Squares proof that non-expanding sets have high variance in size across links.
2. For every small enough ¢, the existence of some r = r(¢) such that:

T This is only informally speaking, as the actual algorithm is iterative and repeats these two steps many times to obtain a good

solution for the whole graph
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(a) The (r 4 1)-st largest (distinct) stripped-eigenvalue of the constraint graph is small:
Ar <1-Q(e)
(b) The expansion of any r-link is small as well:
Vre X(r): ®(X;) < O(e).

In essence, properties (1) and (2a) ensure that there are good local solutions at level r, and property (2b) ensures
that these solutions can be patched together without too much loss. Given the above properties, the proof of
Theorem [2.6] follows the BBKSS analysis framework, but is more technical as properties that hold for Johnson
graphs generally only hold approximately for HD-walks.

The novelty in our analysis lies mostly in proving these two properties. Luckily, we have already done most of
the work! Property (1) is simply an SoS variant of Theorem which we prove by developing SoS versions of the
now standard machinery for the HD-Level-Set Decomposition from [DDFHIS|. The proof then follows essentially
as discussed in Section The second property is slightly more subtle. This parameter, found in [BBK™21| by
direct computation on the Johnson graphs, determines both the soundness and runtime of their algorithm. In fact,
our framework completely demystifies its existence: since A, and the expansion of r-links are inversely correlated
by Theorem r is exactly the ST-Rank of the underlying constraint graph! As a result, using these properties
and generalizing the analysis of BBKSS results in Theorem [2.6} an algorithm for unique games on HD-walks with
approximation and runtime guarantees dependent on ST-Rank.

Organization

In Section [d] we discuss related work on HD-walks, Unique Games, and CSP approximation. In Section [5] we give
requisite background and notation. In Section [6] we prove that approximate eigendecompositions tightly control
spectral structure. In Section |7} we show that the combinatorial decomposition of [DDFHIS]| is an approximate
eigendecomposition for any HD-walk and compute its corresponding approximate spectra, thereby determining
the spectral structure of HD-walks. In Section [§] we prove Theorem [3.2] showing how pseudorandomness controls
projections onto any HD-walks eigendecomposition. In Section [0} we use this fact to give a tight characterization
of edge expansion in HD-walks. Finally, in Section [I0] we give a sum-of-squares variant of our results and show
they imply efficient algorithms for unique games over HD-walks.

4 Related Work

Higher Order Random Walks: The spectral structure of higher order random walks has seen significant
study in recent years, starting with the work of Kaufman and Oppenheim [KO20] who proved bounds on the
spectra of V. ,i on one-sided local-spectral expanders. Their result lead not only to the resolution of the Mihail-
Vazirani conjecture [ALOV19], but to a number of further breakthroughs in sampling algorithms via a small but
consequential improvement on their bound by Alev and Lau [AL20]. The spectral structure of N, ,i on the stronger
two-sided local-spectral expanders was further studied by DDFH [DDFEFH18| who introduced the HD-Level-Set
Decomposition, and Kaufman and Oppenheim [KO20] who introduced a distinct approximate eigendecomposition
with the benefit of orthogonality (though this came at the cost of additional combinatorial complexity). In recent
work, Kaufman and Sharakanski [KS20] claim that these two decompositions are equivalent on sufficiently strong
two-sided 7-local-spectral expanders, but their proof relies on [KO20, Theorem 5.10] which has a non-trivial error.
Indeed, it is possible to construct arbitrarily strong two-sided local-spectral expanders for which the HD-Level-Set
Decomposition is not orthogonal (see Appendix, so their result cannot holdE Finally, Alev, Jeronimo, and
Tulsiani [AJT19] showed that the HD-Level-Set Decomposition is an approximate eigendecomposition (in a weaker
sense than we require) for general HD-walks, a result we strengthen in Section [7} For further information on these
prior works and their applications, the interested reader should see [Ale20].

Unique Games: The study of unique games has played a central role in hardness-of-approximation since
Khot’s [Kho02] introduction of the Unique Games Conjecture. One line of work towards refuting the UGC
focuses on building efficient algorithms for unique games for restricted classes of constraint graphs based off of

15Tt is worth noting that the main results of [KO20, [KS20] are unaffected by this error, as an approximate version of [KO20, Theorem

5.10] remains true and is sufficient for their purposes.
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spectral or spectrally-related properties; these include works employing spectral expansion [AKK™08, [MMTI0],
threshold rank [ABST5], [BRSTT] [GSTT, [KolTT], hypercontractivity [BBH™12|, and certified small-set-expansion
or characterized non-expansion [BBK™21|. Our work continues to expand this direction with polynomial-time
algorithms for (affine) unique games over HD-walks and the introduction of ST-Rank. On the other hand, recent
work towards proving the UGC has focused on characterizing non-expanding sets in structures such as the
Grassmann [KMST8|, [KMS17, [DKK'18b, [DKK™18al [BKS18, [KMMSTS8| [KMS18] and Shortcode [BKS1S8|, [KMSTS|
graphs. Our spectral framework based on HD-walks and the HD-Level-Set Decomposition provides a more general
method to approach this direction than previous Fourier analytic machinery.

CSPs on HDXs: Finally, it is worth noting a related, recent vein of work connecting high dimensional
expansion, Sum of Squares, and CSP-approximation. In particular, Alev, Jeronimo, and Tulsiani [AJT19] recently
showed that for k > 2, certain natural k-CSP’s on two-sided local-spectral expanders can be efficiently approximated
by Sum of Squares. Conversely, Dinur, Filmus, Harsha, and Tulsiani [DEHT20] later used cosystolic expanders (a
stronger variant) to build explicit instances of 3-XOR that are hard for SoS. Both these works focus on k-CSPs for
k > 3, where the variables of the CSP are level 1 of the complex and the constraints are defined using the higher
levels of the complex; therefore these works do not encompass unique games. At a high level, the techniques of
[AJT19] are based on [BRSII]|, and they generalize the BRS algorithm for 2-CSPs to k-CSPs. While these works
are not directly related to ours since their definition do not encompass unique games, we see a similar pattern
where high dimensional expanding structure is useful both for hardness of and algorithms for CSP-approximation.

5 Preliminaries and Notation

5.1 Local-Spectral Expanders and Higher Order Random Walks We now overview the theory of
local-spectral expanders and higher order random walks in more formality than our brief treatment in Section [2}

5.1.1 Two-Sided Local-Spectral Expanders Two-sided local-spectral expanders are a generalization of
spectral expander graphs to weighted, uniform hypergraphs, which we will think of as simplicial complexes.

DEFINITION 5.1. (WEIGHTED, PURE SIMPLICIAL COMPLEX) A d-dimensional, pure simplicial complex X on n
vertices is a subset of ([Z]). We will think of X as the downward closure of these sets, and in particular define the

We call the elements of X (i) i-facesm A simplicial complex is weighted if its top level faces are endowed with a
distribution 1. This induces a distribution over each X (i) by downward closure:

1

(5.3) ]:[7,(:1?) = m Z Hi—&-l(l}),
yeX (i+1):yDx

where 11; = I1.

Two-sided local-spectral expanders are based upon a phenomenon called local-to-global structure, which looks to
propogate information on local neighborhoods of a simplicial complex called links to the entire complex.

DEFINITION 5.2. (LINK) Given a weighted, pure simplicial complex (X,II), the link of an i-face s € X (i) is the
sub-complex containing s, i.e.
X, ={t\se X |tDs}

IT induces a distribution over X, by normalizing over top-level faces which we denote by Ily. When considering a
function on the k-th level of a complex, we also use X to denote the k-faces which contain s as long as it is clear
from context, and refer to X, as an i-link if s € X (i).

Two-sided local-spectral expansion simply posits that the graph underlying every linklﬂ must be a two-sided
spectral expander.

T6We differ here from much of the HDX literature where an i-face is often defined to have i + 1 elements. Since our work is mostly

combinatorial rather than topological or geometric, defining an i-face to have ¢ elements ends up being the more natural choice.
17The underlying graph of a simplicial complex X is its 1-skeleton (X (1), X(2)).
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DEFINITION 5.3. (LOCAL-SPECTRAL EXPANSION) A weighted, pure simplicial complex (X,11) is a two-sided -
local-spectral expander if for every i < d — 2 and every face s € X (i), the underlying graph of X is a two-sided
y-spectral ezpanderﬁ

5.1.2 Higher Order Random Walks Weighted simplicial complexes admit a natural generalization of the
standard vertex-edge-vertex walk on graphs known as higher order random walks (HD-walks). The basic idea is
simple: starting at some k-set S C X (k), pick at random a set T' € X (k + 1) such that T D> S, and then return to
X (k) by selecting some S’ C T. Let the space of functions f : X(k) — R be denoted by Cy. Formally, higher
order random walks are a composition of two averaging operators: the “Up” operator which lifts a function f € Cy
to Upf € Cry1:

WEX(h+ 1) USW) =g Y @)
zeX (k):xCy

and the “Down” operator which lowers a function f € Ci11 to Dgy1f € Ck:

Hit1(y)
Hk(fb)

1
yeX (k+1):yDz

f(w).

These operators exist for each level of the complex, and composing them gives a basic set of higher order random
walks we call pure (following [AJT19]).

DEFINITION 5.4. (k-DIMENSIONAL PURE WALK) Given a weighted, simplicial complex (X,1I), a k-dimensional
pure walk Y : Cy, — Cy on (X, 1) (of height h(Y")) is a composition:

Y = Zopyyo---02y,
where each Z; is a copy of D or U.

We call an affine combinatiorﬂ of pure walks which start and end on X (k) a k-dimensional HD-walk.

DEFINITION 5.5. (HD-wWALK) Let (X,II) be a pure, weighted simplicial complex. Let Y be a family of pure walks
Y : Cp — Cy on (X,II). We call an affine combination

M=) ayY
Yey

a k-dimensional HD-walk on (X,II) as long as it is self-adjoint and remains a valid walk (i.e. has non-negative
transition probabilities).

Previous work on HD-walks mainly focuses on two natural classes: canonical walks (introduced in [KM16al [DK17]),
and partial-swap walks (introduced in [AJT19, DD19]).

DEFINITION 5.6. (CANONICAL WALK) Given a d-dimensional weighted, pure simplicial complex (X,1I), and
parameters k + j < d, the canonical walk N} is:

NZ) — Dllz-l-jUI’:"rj’
where Uf =Uk_1...Uy, and Df =Dyyy...Dg.

In other words, the canonical walk Ng takes j steps up and down the complex via the averaging operators.
Partial-swap walks are a similar process, but after ascending the complex, we restrict to returning to faces with a
given intersection from the starting point.

T8 A weighted graph G(V, E) with edge weights I is a two-sided y-spectral expander if the vertex-edge-vertex random walk with

transition probabilities proportional to IIg has second largest eigenvalue in absolute value at most ~.
19 An affine combination is a linear combination whose coefficients sum to 1.
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DEFINITION 5.7. (PARTIAL-SWAP WALK) The partial-swap walk Si is the restriction of N,g to faces with
intersection k — j. In other words, if |sNs'| # k — j,5/(s,s") = 0, and otherwise Si(s,s') = asNj(s,s),
where
-1
s = Z Ny (s,8")

s':|sNs’ |=k—j
is the appropriate normalization factor.

It is not hard to see that partial-swap walk S}, on the complete complex J(n,d) (all d-subsets of [n] endowed with
the uniform distribution) is exactly the Johnson graph J(n,k, k — t). While it is not immediately obvious that
the partial-swap walks are HD-walks, Alev, Jeronimo, and Tulsiani [AJT19] showed this is the case by expressing
them as an alternating hypergeometric sum of canonical walks.

5.1.3 Expansion of HD-Walks In this work, we study the combinatorial edge expansion of HD-walks, a
fundamental property of graphs with strong connections to many areas of theoretical computer science, including
both hardness and algorithms for unique games. Given a weighted graph G = ((V, E), (Ily,I1g)) where IIy is a
distribution over vertices, and Ilg is a set of non-negative edge weights, the expansion of a subset S C V is the
average edge-weight leaving .S.

DEFINITION 5.8. (WEIGHTED EDGE EXPANSION) Given a weighted, directed graph G = ((V, E), (Ily,g)), the
weighted edge expansion of a subset S C 'V is:
(G, S)= E [E(’U’V\S)]a

vlly s

where

E(w,V\S) = > Te((v,y)

(v,y)EE:yeV\S

is the total weight of edges between vertex v and the subset V'\ S, and Ily|g is the re-normalized restriction of Iy
to S. In the context of a k-dimensional HD-Walk M on a weighted simplicial complex (X,11), we will always have
V =X(k), Iy =g, and E, 1 given by M. Thus when clear from context, we will simply write ¢(.S).

Edge expansion in a weighted graph is closely related to the spectral structure of its adjacency matrix. Given a set
S C V of density a = E[lg], we may write

1
¢(G7 S) =1- E(ﬂS)AG]15>Hv7

where Ag is the adjacency matrix with weights given by Iz, and (f, g)m, is the expectation of fg over IIy;. When
considering such an inner product over a weighted simplicial complex (X, IT), the associated distribution will always
be IIj, so we will drop it from the corresponding notation. Notice that the right-hand side of this equivalence
may be further broken down via a spectral decomposition of 1g with respect to Ag. Thus to understand the
edge-expansion of HD-walks, it is crucial to understand the structure of their spectra.

6 Approximate Eigendecompositions and Eigenstripping

In this section we prove a general linear algebraic result concerning the spectra of operators that admit an
approximate eigendecomposition: their spectra lies tightly concentrated around the decomposition’s approximate
eigenvalues. Before giving the formal result, we formalize the concept of approximate eigendecompositions.

DEFINITION 6.1. Let M be an operator over an inner product space V. We cal V. = V1@ ...® VF a
(i}, {ei}E ) -approzimate eigendecomposition if for all i and v; € V*, the following holds:

[Mw; — Nvil| < e [|vill-

As long as the ¢; are sufficiently small, we prove each V? (loosely) corresponds to an eigenstrip, the span of
eigenvectors with eigenvalue closely concentrated around ;.
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THEOREM 6.1. (EIGENSTRIPPING) Let M be a self-adjoint operator over an inner product space V, and V =
Vie...eVF a ({N}, {ci}r ) -approzimate eigendecomposition. Let cmax = max;{c;}, Aaip = min, ;{|\; — A\;|},

and Aratio = %{/L}“} Then as long as cmax 1S sufficiently small:
dif
Adi
cmax —= 4]{/:Lf7

the spectra of M is concentrated around each \;:

k
Spec(M) C U A —e, \i +e] =1y,

i=1
where e = O (k Aratio * C%éc)

This result was recently improved by Zhang [Zha20] to have dependence e < O(\/Ecmax), removing the dependence
on the approximate eigenvalues altogether. This follows from a simple modification to our proof which we will
note below. Finally, it is also worth mentioning that a version of Theorem holds with no assumption on cpax,
but the assumption substantially simplifies the bounds and is sufficient for our purposes.

Before proving Theorem [6.1 we note a useful property of approximate eigendecompositions of self-adjoint
operators: they are approximately orthogonal.

LEMMA 6.1. Let M be a self-adjoint operator over an inner product space V. Further, let V=V'®...® V" be a
AN e, {cZ 1 )-approzimate eigen-decomposition. Then for i # j, V' and V7 are nearly orthogonal. That is, for
any v; € V' and v € VI:
Ci + ¢
Vi, Vi) | < —— ||vi]| [|vill -
s 2] € S ol )

Proof. This follows from the fact that M is self-adjoint, and V' and V7 are approximate eigenspaces. In particular,
notice that for any v; € V% and v; € V7 we can bound the interval in which (Mwv;,v;) = (v;, Mv;) lies by
Cauchy-Schwarz:

(Mg, vj) € Aivi, v5) £ ¢ [[og] vl
and
(vi, Muj) € Aj{vi,vj) £ ¢; [|vill [|vs ]l -
Since these terms are equal, the right-hand intervals must overlap. As a result we get:
[(Xi = Aj) (i, v3)] < (i + ¢5) llvill [l ]
as desired. ]

Using Lemma we can modify [KO20, Theorem 5.9] to prove Theorem 6.1} Given an eigenvalue p of M, the
idea is to find a probablhty distribution over [k] for which the expectation of | — Ai] is small, where ¢ € [k:] is
sampled from the aforementioned distribution.

Proof. The proof follows mostly along the lines of [KO20, Theorem 5.9], modifying where necessary due to lack of
orthogonality. Let ¢ be an eigenvector of M with eigenvalue p. Our goal is to prove the existence of some \; such
that | — A;| is small. To do this, we appeal to an averaging argument. In particular, denoting the component of ¢
in V* by ¢;, we bound the expectation of |u — );|? over a distribution P, given by the (normalized) squared norms

sl

ZIM il llsall”

(6.4) [ = Xf?] = ——
g o> =1

ZNP
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If we can upper bound this expectation by some value ¢, then by averaging there must exist A; such that
| — Ai| < +/c, and thus the spectra of M must lie in strips \; & v/c. To upper bound Equation (6.4)), consider the
result of pushing the outer summation inside the norm:

2

_ Z (o= X) (e = Nj) (s &5 -

1<i#j<k

k
(6.5) Dol= Al =
i=1

k
Z(u—xim

We will separately bound the two resulting terms, the former by the fact that the ¢; are approximate eigenvectors,
and the latter by their approximate orthogonality. We start with the former, which follows by a simple application
of Cauchy-Schwarz:

k 2 k 2
D= X) || = |no = Nig
i=1 i:; )
=||M¢ > Nt
. =1 ,
=D (Me; — Xigy)
z=k1
<EY [(Mi = Nigy)|)?

Il
_

7

k
2
< ket Nl
i=1
The latter takes a bit more effort. Let Apax be max;{|);|}, then by Lemma [6.1] we have:

S =)= 06| < ST = Ml = A= g s

1<i#j<k 1<i#j<k X = Al
3 2
< 2maxAgir (Amax + | M]]) (Z ||¢1-||>
=1

k
< 2kcmaxAgi (Amax + 1M[)? Y 64l

i=1
Since we’d like our bound to depend only on A; and ¢;, we must further bound ||| which will follow similarly
from approximate orthogonality. Let v be a unit eigenvector with eigenvalue ||M|| and v; be v’s component on V*,
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then we have:

[M]| = [|Mv]]
k
Z Muv; — \jv; + A\,

=1

k
Z (N +¢) il
i=1

k
S ()\max + Cmax) Z ||UZH
i=1

< (Amax + cmax)

S ()\ma,x + cmax) \/ﬁ

where the last step follows from Lemma and our assumption on Cpax:

k

2 2
Yol =lol*+ D (viwy)
i=1

1<iAj<k

2c
§1+% > lill v
I <izj<k

2¢ b ’
S 1 + max Vs
Syl 0L
2kc b
S 1+ max "y 2
v L

k
1 2
<1+3 3 Il

Together, these bounds imply the existence of some \;; such that:

2
|Nf - /\1" < \/kcrnax <Cmax + QA;% ()\max + (/\Inax + Cmax) Vv Qk) )7

which implies the desired result when accounting for our assumption on cpyax- 0
Zhang’s [Zha20] improvement to our proof came from the observation that the analysis of the latter term can be

simplified by a recursive strategy. In particular, this term can instead be upper bounded by 26)’\’;";‘]“ Z = X)2 || oa |-

With the appropriate assumption on cpax, plugging this back into Equation (|6.5)) gives the deblred result.
In either case, notice that if cpax is sufficiently small, the intervals I, are dlSJOlIlt. As a result, each V*
corresponds to an eigenstrip W*:

W' =Span{¢: Mo = pud,ucIy,}.

The approximate eigenspaces V? are closely related to the resulting eigenstrips. Indeed, it is possible to show
that most of the weight of a function in V* must lie on W, though we will not need this result in what follows.
Previous works [KO20, [KS20] make stronger claims for the specific case of the HD-Level-Set Decomposition,
most notably that V¢ and W are in fact equivalent on sufficiently strong two-sided local-spectral expanders.
Unfortunately, these results are based off of [KO20, Theorem 5.10], whose proof has a non-trivial error we discuss
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further in Appendix [B] Indeed, were their proof correct, it would imply (due to the generality of their argument)
that V¢ = W for any approximate eigendecomposition. However, it is easy to see this cannot be the case by
considering a diagonal 2 x 2 matrix with an approximate eigendecomposition given by a slight rotation of the
standard basis vectors in R?.

7 The Spectra of HD-walks

We now show that the HD-Level-Set Decomposition is an approximate eigendecomposition for any HD-Walk.
Combined with Theorem this proves Theorem that the spectrum of any k-dimensional HD walk is tightly
concentrated in k + 1 eigenstrips. As a result, we give explicit bounds on the spectra of HD-walks, paying special
attention to the canonical and partial-swap walks. Finally, we show that the approximate eigenvalues (and thus the
values in their corresponding eigenstrips) of the HD-Level-Set Decomposition decrease monotonically for a broad
class of HD-Walks we call complete walks which, to our knowledge, encompass all walks used in the literature. As
we will see in the following section, such decay is crucial for understanding edge expansion.
To start, we recall the definition of pure and HD-walks along with introducing some useful notation.

DEFINITION 7.1. (k-DIMENSIONAL PURE WALK) Given a weighted, simplicial complex (X,1II), a k-dimensional
pure walk Y : Cyp, — Cy on (X, 1) is a composition:

Y = Zopyyo---02y,

where each Z; is a copy of D or U, and h(Y') is the height of the walk, measuring the total number of down (or
up) operators.

DEFINITION 7.2. (k-DIMENSIONAL HD-WALK) Given a weighted, simplicial complez (X,II), a k-dimensional
HD-walk on (X,1I) is an affine combination of pure walks

M:ZayY

Yey

which is self-adjoint and gives a valid walk on (X,II) (i.e. has non-negative transition probabilities). We say the
height of M, h(M), is the mazimal height of any Y with a non-zero coefficient, and say the weight of M, w(M),
is the one norm of the ay (namely, w(M) =3 |ay]|).

Our proofs in this section rely mainly on a useful observation of [DDFHIS|, who show that the up and down
operators on two-sided v-local-spectral expanders satisfy the following relation:

7
7.6 DUy — ——I1— ——U,_1D;|| <~.
( ) ‘ i+1Y4 it 1 it 1 i—1Vi|| =Y

This fact leads to a particularly useful structural lemma showing the effect of flipping D through multiple U
operators.

LEMMA 7.1. (Cramv 8.8 [DDFHIS|) Let (X,II) be a d-dimensional ~y-local-spectral expander. Then for all
j<k<d:
)

k
Ui—j1Di—j|| < 2(k+1)

j+1 k—3j
[ S N

One crucial application of Lemma [7.1|lies in understanding the relation between || f;||, and ||g;||, where f; = UFg;.

LEMMA 7.2. (LEMMAS 8.10, 8.13, THEOREM 4.6 [DDFHIS|) Let (X,II) be a d-dimensional ~y-local-spectral
expander with v < 1/d, f € Cy a function with HD-Level-Set Decomposition fo + ...+ frx. Then for all
0<t¢<k<d:

1
Ifel” = 7 (L ea(k07) llgel®

(2)

where c1(k,0) = O(k? (lz))
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In Appendix we prove a stronger version of both Lemma and Lemma for v < 279(%) where the
dependence on the first order term + is polynomial rather than exponential in k. However, since this only provides
a substantial improvement for a small range of v, we use the simpler versions from [DDFHI8]| throughout the
body of the paper. Using Lemma [7.] and Lemma [7.2] an inductive argument shows that the HD-Level-Set
Decomposition is an approximate eigendecomposition. We show this first for the basic case of a pure walk, and
then note that the general result follows immediately from the triangle inequality.

PROPOSITION 7.1. Let (X,II) be a two-sided v-local-spectral expander with v < 2=K) and Y : Cy — Cy, a pure
walk:
Y:ZQh(Y)O"'OZI'

Let iy < ... <iipy) denote the h(Y') indices at which Z; is a down operator. Then for all0 <L <k, f € V,f:

h(Y)

Vi 11 (- ) /| <0 (ronwnen (5 in).

Proof. We prove a slightly stronger statement to simplify the induction. For b > 0, let ij : Cy = Cyqp denote an

unbalanced walk with j down operators, and j + b up operators. If ij has down operators in positions i; < ... <4
and g, € HY, we claim:

(7.7) <76+ 7) llgell-

J
1
Ybg, — 1— b+-£
i 9 H( max{f,is—23+€—|—l}>Ue 9t

s=1

Notice that since f € V,f may be written as Ulf“gg for go € H®, then we may write Y f as Y,f&e) ge wWhere Y,f(;,l; has
down operators in positions i1 + k — ¢ < ... < i; + k — {. Combining Equation with Lemma then implies
the result.

We prove Equation by induction. The base case j = 0 is trivial. Assume the inductive hypothesis holds
for all Y?,i < j. Notice first that if i; = 1, we are done since g, € H* and

J

14
1— Yige =
H ( max{&is—2s—|—€—|—1}> 09¢ =10,

s=1

asis —2s+ £+ 1=/ for s = 1. Otherwise, it must be the case that one or more copies of the up operator appear
before the first down operator, and we may therefore apply Lemma to get:

ih—1
Vo= (5 oy ) Ve o

where we can (loosely) bound the spectral norm of I' by
T < (b+J)y

since at worst the first down operator D passes through b+ j up operators. By the form of Lemma ij_l has
down operators at indices i3 —2 < ... <i; — 2. Then by the fact that i1 + ¢ —1 > ¢ and the inductive hypothesis:

. Jj—1 . .
i1 —1 fg41 — 25— 1 b 11— 1
Ybg, = Y, ——h+7T

3 9t <max{€,i1+€—1}Hmax{ﬁ,isﬂ—Qs—i—E—l} Oge+i1+£—1 + 19

ih—1 J e — 2541 ih—1
= 2 Y ——F—h+T
(max{é,i1+£1}s_H2max{£,is25+€+1}> 09€+i1+671 +Lge

J . .
g — 28+ 1 b 11— 1
_ Ylg+ 2 pyr
<Hmax{£,i5—25+£+l}> 09t T

s=1
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where ||h]] < v(5 — 1)(b+j — 1) ||ge]| and we have used the (vacuous) fact that max{¢,i; + £ — 1} =43 + £ — 1.
Finally, we can bound the norm of the right-hand error term by:
i1 —

7h Tr
- +1ge

< (1Al 4 T[] gell

J =00+ =1 llgell + (b +5) [l gell

<@
< j(b+7)llgell

as desired. 0

Since HD-walks are simply affine combinations of pure walks, the triangle inequality immediately implies the result
carries over to this more general setting.

COROLLARY 7.1. Let (X,TI) be a two-sided y-local-spectral expander with v < 27¥k) and M = 3 «;Y; a k-
dimensional HD-walk on (X,11). Then for all0 <<k, f € V,f:

115 = 071 < 0 (unrOnh+ n) () 1£1).

where
= (Vi)

and \(Y;) is the approximate eigenvalue of Y; given in Proposition m

It is worth noting that the resulting approximate eigenvalues in Corollary [7.1] are exactly the eigenvalues of M
when considered on a sequentially differential poset with 6 =14/(i+1). We discuss this generalization in more
depth and give tighter bounds on the approximate spectra in our upcoming companion paper. It should be noted
that this result is similar to one appearing in [AJT19|, where a weaker notion of approximate eigenspaces based
on the quadratic form (f, M f) is analyzed. Plugging Corollary into Theorem [6.1] we immediately get that for
small enough v the true spectra of HD-walks lie in strips around each A\;(M), and thus that that the approximate
eigenvalues of the HD-Level-Set Decomposition and the spectra of HD-walks are essentially interchangeable.

For concreteness, we now turn our attention to computing the approximate eigenvalues (and thereby the true
spectra) of the canonical and swap walks.

COROLLARY 7.2. (SPECTRUM OF CANONICAL WALKS) Let (X,II) be a d-dimensional y-local-spectral expander
with v satisfying v < 2=k k4§ <d, and f, € V,f. Then:

k
HN,ﬁfg- W gl < ek, ) 1520,

("}

where c(k,?,j) = O ('yj(j + k)(’;)) Moreover:

Spec(NJ LkJ l(k-}]) i20(]+k)f]

Proof. By Proposition NJ is an ({A\e}5_, {c(k, €, j)}5_,)-approximate eigendecomposition for

! ¢
= 1—
8_1_[1( max{k’—2s+is—|—l,€})’

where i1 < ... < i, denote the indices of down operators. By the definition of IV Ig we have iy = j + s, and therefore

/\Zﬁ(lk—si]’—i—l) (lg?j)

s=1

as desired. The bounds on Spec(N; Ig ) follow immediately from plugging the above into Theorem O
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A vpriori, it is not obvious how to bound the spectra of the partial-swap walks, or indeed even that they are
HD-walks. However, Alev, Jeronimo, and Tulsiani [AJT19] proved that partial-swap walks may be written as an
alternating hypergeometric sum of canonical walks.

PROPOSITION 7.2. (COROLLARY 4.13 [AJTI9]) Let (X,II) be a two-sided y-local-spectral expander with v < 1/k.

Then for 0 < j <k:
J
() ()
k‘ j 1=0 v

As a result, we can use Corollary [7:2] to bound their approximate eigenvalues and true spectrum.

COROLLARY 7.3. Let X be d-dimensional two-sided y-local-spectral expander, v < 2=¥)  k+j < d, and f, € V,f.
Then:
P )
Syfe— A1
(¢)

< c(R) [ fell

where c(k) = v2°*). Moreover,
' k (*59)
Spec(S]) = {1} U U ﬁ + 200 /4|
=1L \¢

Proof. By Corollaryn, @e o Vihisa ({Xe}h o, {¢(k, €, j)}5_,)-approximate eigendecomposition for Si with
1< k+
e (oo

_ (7
- (I)Z (>< >
(

B ()

and
(k. 0, 5) =~2°0).
This latter fact follows from noting that
l&ll, = zj: <9> (k N Z) < 92tk
izo \' !

where @ consists of the hypergeometric coefficients of Proposition The bounds on Spec(Si,) then follow from
Theorem [6.11 0

Together, Corollary and Corollary prove Theorem (assuming ~ is sufficiently small).
In Theorem we mentioned that approximate eigenvalues \;(M) are monotonically decreasing for any

HD-walk. In fact, to prove this we will need to restrict our original definition of HD-walks slightly, requiring that
our walks are always well-defined on the complete complex.
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DEFINITION 7.3. (COMPLETE HD-WALK) Let (X,II) be a weighted, pure simplicial complex and M = > ayY
Yey
an HD-walk on (X,I1). We call M complete if for all n € N there exist ng > n and d such that Y ayY is also
Yey
an HD-walk when taken to be over J(ng,d).

To our knowledge, all walks considered in the literature (pure, canonical, partial-swap) are complete. We can prove
that the eigenstrips of complete HD-walks corresponding to the HD-Level-Set Decomposition exhibit eigenvalue
decay by noting that the approximate eigenvalues of Corollary are independent of the underlying complex.

PROPOSITION 7.3. Let (X,1II) be a two-sided y-local-spectral expander, M = > ayY a complete HD-walk over
Yey
(X,1I), and v small enough to apply the conditions of Theorem , Then for all 0 <i< j <k,

Ai(M) > X (M)

Proof. The proof follows from two observations. First, recall from Corollary that A;(M) is independent of

the underlying complex. Second, any HD-walk on the complete complex can be written as a non-negative sum

of partial-swap walks, which satisfy the monotonic decrease property. Let n € N be any parameter such that

applying > ayY to J(n,d) results in a valid walk (i.e. a non-negative matrix). By the symmetry of J(n,d),
Ye

the transition probabilities of this walk depends only on size of intersection, and it may thus be written as some
convex combination of partial-swap walks:

k
M = Z ayY = ZﬁiS,i.
0

Yey i=

Since these walks are equivalent over J(n,d), their spectra must match. Then by Theorem it must be
the case that for every 1 < ¢ < k and n sufficiently large, the intersection of > ayA(Y) + O(1/n) and
Yey

> Bide(SE) £0(1/n) is non-empty. Since we may take n arbitrarily large, this implies the two quantities are
Yey
in fact equivalent. Finally, by Corollary Ae(S}) decreases monotonically in £ for all i, which implies that the

Ai(M) =>ay (YY) =3 6&-(5%) decrease monotonically as desired. d

8 Pseudorandomness and the HD-Level-Set Decomposition

Now that we have examined the spectral structure of the HD-Level-Set Decomposition, we turn to understanding
its combinatorial characteristics. In this section, we give a combinatorial characterization how arbitrary
functions project onto the HD-Level-Set decomposition, proving in particular a generalization of Theorem
pseudorandom sets have bounded projection onto corresponding levels of the complex. We discuss two variants of
pseudorandomness, an fo-variant stating that the variance across links is small, and an ¢,.-variant stating that the
maximum (or £y-norm for arbitrary functions) across links is small. We focus mainly on giving an exact analysis
for the /5-case, as this forms the structural core of our algorithm for unique games in Section We further
discuss the impliations of our ¢ analysis to the £.-variant by reduction.

As such, we’ll start by analyzing the fo-variant. First, let’s extend our definition of £3-pseudorandomness from
sets (boolean functions) to arbitrary functions.

DEFINITION 8.1. ({2-PSEUDORANDOM FUNCTIONS) A function f € Cj is (e1,...,&¢)-la-pseudorandom if its
variance across i-links is small for all 1 <1i < £:

Var(Dy f) < &[E[f]]

As mentioned in Section [3| the key to connecting Var(D¥ f) and the HD-Level-Set Decomposition is to notice that
by the adjointness of D and U, we can reduce the problem to analyzing the spectral structure of HD-walks. The
proof then follows immediately from arguments in the previous section.
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THEOREM 8.1. Let (X,II) be a vy-local-spectral expander with v < 2=Uk) and let f € Cy have HD-Level-Set
Decomposition f = fo+ ...+ fx. Then for any ¢ < k, the Var(D}f) is controlled by its projection onto
Vo®...®VEin the following sense:

VA Z
Va’/’Devf EZ% f).f] :I:C,Y<f?f>
J=1 J

where ¢ < 200

Proof. To start, notice that since (D f, Dt f) = (UEDE £, f) it is enough to analyze the application of the HD-walk
U Lf“Dif to f. By Proposition we know that each f; is an approximate eigenvector satisfying:

(;)
()

where ¢; < 29%)_ Combining these observations gives:

(DEf, Dy f) = (f,UFD} f)
k
Z £.UE D f)
5 )
)

where all constants ¢ < 29(*) and noting that (f, f0> = E[f]? completes the result. ]

ULDEfi — i Fil| < eov 1L

—~
Sl

<faf]>:t07<f7f>

—~
S

=0

Theorem follows immediately from combining this result with approximate orthogonality of the HD-Level-Set
Decomposition.

LeEMMA 8.1. (DDFH THEOREM 4.6) Let (X,II) be a y-local-spectral expander with v < 2=k) and let f € Cy
have HD-Level-Set Decomposition f = fo+ ...+ fx. Then for alli +# j:

[(fis f3)] < exv(f, )
where ¢ < 20k
COROLLARY 8.1. Let (X,TI) be a y-local-spectral expander with v < 2=%*) and let f € Cy, be an (e1,...,e0)-lo-

pseudorandom function. Then for any 1 <i < {:

0, £ < ( )ezua[ |+ e, £)

where ¢ < 200,

Proof. By Lemma [8.1} E for all j we have (f, f;) > —cy(f, f) for some ¢ < 20() . Then by Theorem [8.1} . for all
0 < i < k the variance of D¥ f is lower bounded by the projection onto f;:

Var(DF f) > ﬁ“’ fi) = cav(f5 ),

where ¢, < 2°(%). Finally, since f is (e1,...,e¢)-fo-pseudorandom, we have by definition that for all 1 < i < ¢,
Var(DF f) < &;|E[f]|. Therefore isolating (f, f;) gives the desired upper bound:

.10 < () var(Ef) + entr. )
< (4)alemn+ s )

where ¢z < 20(%), Finally, we already noted that (f, f;) > —cvy(f, f) for some ¢ < 29 which gives the desired

lower bound and completes the proof. O -
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It is worth noting that both Theorem and Corollary are tight. This is obvious for the former which is
a near-equality, and the latter is clearly tight for subsets like i-links which project (almost) entirely onto level 4
(we’ll prove this formally in the next section).

We'll also see in Section [J] that Corollary leads to a tight ¢s-characterization of edge-expansion stating that
any non-expanding set must have high variance across links. Since an f..-variant of this result for the Grassmann
graphs was recently crucial for the resolution of the 2-2 Games Conjecture [KMS18§], it is natural to discuss what
our results imply for this regime. First, let’s formalize /,.-pseudorandomness for arbitrary functions.

DEFINITION 8.2. ({so-PSEUDORANDOM FUNCTIONS) A function f € Cy is (€1,...,¢)Loo-pseudorandom if for
all 1 < i < £ its local expectation is close to its global expectation:

1D 1~ Bl < e

We will prove via reduction to the ¢o-variant that a version of Corollary holds in this regime as well. We
proceed in two steps. First, we show that /.,-pseudorandom functions are also ¢s-pseudorandom assuming a weak
local-consistency property.

DEFINITION 8.3. Let (X,II) be a weighted, pure simplicial complex. We say a function f € Cy has {-local constant
sign if:

1. B[f] #0,

2. Vs e X(0) s.t. )I?I [f] #0: sign (}I{E [f]) = sign (E[f]).
Second, we’ll reduce to the case of locally constant sign by noting that we can always shift a function to satisfy
this property. With these definitions in hand, we can now state the ¢,,-variant of Theorem

THEOREM 8.2. Let (X,II) be a vy-local-spectral expander with v < 2=9K) and let f € C) have HD-Level-Set
Decomposition f = fo+ ...+ fi. If [ is (e1,...,e0)-Loo-pseudorandom, then for all 1 < i < {:

k
000 < ((5) + ethn ) 2+ ctin 11
where c(k) < 2°0%) | and if f has i-local constant sign:

01,00 = () BLA + ek 11

In dealing with expansion, we will mainly be interested in boolean-valued functions, which always have locally-
constant sign and satisfy (f, f) = E[f]. Thus in the boolean case we have:

. = ((§)eer 20007 Bl

which is particularly useful since the expansion of f may be written as 1— ﬁ (f, M f). In the case f is non-negative,
we can also replace the /., norm with maximum in our definition of pseudorandomness, which is important to
show non-expanding sets are locally denser than expected. Finally, we note that one can improve the dependence
on v by pushing exponential dependence on k to the second order ¥ term via more careful analysis of error
propagation. However since the analysis is complicated and only gives a substantial improvement for a small range
of relevant v, we relegate such discussion to Appendix [A]

We now move to the proof of Theorem [8.2] starting with our generic £ to ¢5 reduction for functions with
locally-constant sign.

LEMMA 8.2. Let (X,II) be a weighted, pure simplicial complex, and f € Cy a (e1,...,c¢)-loo-pseudorandom
function with i-local constant sign for any i < €. Then f is also (e1,...,&¢)-¢2-pseudorandom
1096 Copyright © 2021 by SIAM
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Proof. For ease of notation, let II;(X;) be shorthand for > TI,(¢) (i.e. the normalization factor for the above
tex,

restricted expectation). The trick is to notice that since f has locally constant sign, we may rewrite HDf f ||; as an
expectation over a related distribution P;:

L ke R (s 1 I, (2) f(2) kot

se€X (1) teX,

_ 1 L0

= i f(s)
P & 20

~ E[D /],

where we have used the fact that IIx(X;) = (If) I1;(s) by Equation 1' To understand P;(s) more intuitively,
consider the special case when f is non-negative. Here, II and f induce a distribution Py over X (k), where

IL(f(1)
BT

P, then induces the distribution P; on X (i) via the following process: draw a face ¢t € X (k) from Py, and then
choose a i-face s C t uniformly at random. Replacing the non-negativity of f with the conditions in the theorem
statement still leaves P;(s) a valid distribution, albeit one with a less intuitive description.

The result then follows from an averaging argument:

Py(t)

‘]E[lﬁvar(fo)‘ = ‘E[fo] —E[f]‘ < |DFf - E[f]lls

We note that when E[f] > 0, the {o.-norm may be replaced with maximum in the above. O

To complete the proof of Theorem [B:2] we reduce to Theorem [B.1] by noting that any function may be shifted to
have locally constant sign and applying our reduction.

Proof. [Proof of Theorem Note that the latter bound for functions with locally constant sign is immediate
since, by Lemma f is also (e1,...,e¢)-la-pseudorandom and therefore satisfies the guarantees of Corollary

For the former, assume for simplicity that E[f] > 0 (the negative case follows from a similar argument) and
consider the shifted function f’ = f + (¢; — E[f])1. Notice that as long as e; > 0, f’ has positive expectation over
all i-links and non-zero expectation, and further that

ff=f+f+. .+ fr

where f} = fo+ (i — E[f])1 and f = > f; is the original HD-Level-Set Decomposition of f. Since adding a
constant has no effect on the £-pseudorandomness, f’ remains (1, ...,&;)-feo-pseudorandom and, by our £, to
¢y reduction, (e1,...,e¢)-fo-pseudorandom as well. Applying Corollary then gives:

(7 + (e~ BUDL£) < () SEIF + (e~ EIDI] + e2lf + 65~ BIAL, S + (e — ELADY

< ((f) +c*y> €§+C’Y<f7f>

where we have used the fact that f; is orthogonal to 1 for all ¢ > 0. We are left to deal with the case that e; = 0,
which follows from a limiting argument applying the above to any € > 0. |

9 Expansion of HD-walks

In this section we characterize the edge expansion of HD-walks, proving Theorem[2:4] Theorem [2.5] and Corollary [2-1}
As a reminder, these results focus on two key aspects of edge-expansion: the expansion of links, and the structure
of non-expanding sets. We’ll start with the former, but first let’s recall the definition of edge-expansion (specified
to HD-walks for simplicity).
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DEFINITION 9.1. (WEIGHTED EDGE EXPANSION) Given a weighted simplicial complex (X, 1), a k-dimensional
HD-Walk M over (X,II), and a subset S C X (k), the weighted edge expansion of S is

4(8)= E [M@.X(0)\S5).

where

M, X0\ S) = Y My)

yeX (k)\S
and M (v,y) is the transition probability from v to y.

We start by proving Theorem that the expansion of i-links is (up to O(7) error) exactly controlled by the
eigenvalue of the ith eigenstrip.

THEOREM 9.1. (LoCAL EXPANSION VS GLOBAL SPECTRA) Let (X,II) be a d-dimensional two-sided ~y-local-
spectral expander with v < 27%%) and M a k-dimensional, complete HD-walk with k < d. Then for all
0<i<kandTeX(i):

(X)) el = N(M) £ ey,
where ¢ < w(M)h(M)?20%),

The main idea behind Theorem [9.1] is simply to show that the indicator function of any i-link always lies almost
entirely in V}! (or equivalently, almost entirely in the ith eigenstrip W}).

LEMMA 9.1. Let (X,II) be a d-dimensional two-sided ~y-local-spectral expander with v < 2=9k)  Then for all
0<i<k<dandTte X(i), 1x, lies almost entirely in Vi. That is for all j # i:

(Ix,,1x, ) < ev(lx,, 1x,)
where ¢ < 20k
Proof. 1t is enough to analyze the expansion of X, with respect to N} since the quantity can both be analyzed
directly, and expressed in terms of X,’s HD-Level-Set decomposition. For the direct analysis, recall that N}
describes the process of moving from a k-face o to a (k + 1)-face T = o U {v}, then back to a k-face o’ C T.

Crucially, the latter step is performed uniformly at random. Applying N} to any element in X, the probability of
returning to X, is exactly the probability that we remove an element in T\ {7} in the final step, which gives:

- k+1—1
1y )= T 270
(1x,) 1

On the other hand, we may also expand out ¢(1x_) in terms of 1x_’s HD-Level-Set decomposition. Using the fact
that 1x, = (’f) UL, e V2 @& ...® V], we may write:

%

- 1
1x.) = 1x.,Nilx
(b( XT) <1XT71XT> J§< X k XT7J>
1 k41— 1 ‘
= 1 7]- ] + 1 T7FS7
<1XT,1XT>];J P e e Y S:O< ool

where ||T|| < 2°®)y | 1x, || by Corollary and the fact that | Lx, s
Cauchy-Schwarz to the error term gives:

< (1+2°M9) ||Lx, . Finally, applying

%

_ 1 kt1—j
(98) (b(lXT) € <1X 1X > E L <1X7a 1X77j> + cy
s /=0

for ¢ < 205, Recall by approximate orthogonality (Lemma [8.1)), the projections (1x._,1 X, ;) cannot be too
negative, that is (1x ,1x, ;) > —cy(lx,,1x,) for some ¢ < 29" Then if there exists some j # i such that
(1x,,1x, ;) > c2v(1x.,1x,) for large enough ¢y < 29%) the LHS of Equation lies strictly above k;ﬁ;’,
giving the desired contradiction. a
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Since the HD-Level-Set decomposition of 1x_ has no dependence on the walk in question, Theorem follows
almost immediately.

Proof. [Proof of Theorem The expansion of X, may be written as:

BX,) =1 (Lx,, Mlx,)

1 d
=1-—> (lx,, Mlx, ),
s=0
where « is the density of X, and 1x_, € V7. By Corollary we can simplify the sum up to an error term:
i

BX) =13 (Ix, My, )

s=0
1 1§:A-(M)<1 1 >+1i<1 r,)
- as:o ] X7-7 X,-,S as:o X,-a S/

where by the fact that || 1x, | < (1 +29%)5)|[1x_ || we have ||Ts|| < O (w(M)h(M)(h(M) + k) (5)y1x, ||) By
Lemma for all s # ¢ we can absorb (Lx,,1x_ ) into the error term which gives:

1
(b(XT) cl— aA/L(M)<]l-XT7 ]lXT,i> + cy

for ¢ < w(M)h(M)?2°), Finally, by Lemma and approximate orthogonality, we know that (1x_,1x ;) is
very close to a:

(I-ay)a <(lx,,1x, ) < (1+ 7)o
where ¢;,co < 290) Combining this with the above completes the proof. Note that the proof falls through for
d = k since we cannot analyze N} on such a complex. The upper bound, however, still holds in this case simply
by expanding out the inner product and bounding the inner summation using A;(M). O

Theorem [9.1] will form one of two core pieces of our algorithm with unique games. The fact that links corresponding
to bad eigenvalues have poor expansion will allow us to patch together good local solutions into a global solution
without seeing too much interference. Moreover, close connection between local expansion and stripped eignenvalues
will result in the performance of our algorithm being tied directly to ST-rank (which we recall here for convenience).

DEFINITION 9.2. (STRIPPED THRESHOLD RANK) Let (X, 1I) be a two-sided v-local-spectral expander and M a k-
dimensional HD-walk with v small enough that the HD-Level-Set Decomposition has a corresponding decomposition
of disjoint eigenstrips C, = € Wg@ The ST-Rank of M with respect to § is the number of strips containing an
eigenvector with eigenvalue at least :

Rs(M) = [{W}:3f € V', M = \f, A > 6}|.
We often write just Rs when M is clear from context.

A basic corollary of Theorem is that, like the Johnson graphs, links are small, non-expanding sets (at lesat
when | X (1)| > k or 7 is small). The second core piece of our algorithm for unique games relies on a certain
converse to this result: that all non-expanding sets are explained by links. As discussed in Section [I] and Section [2]
we consider two regimes for this problem. The first, which we call the fs-variant, claims that any non-expanding
set must have high variance over links—this regime is useful for constructing algorithms for unique games, as we’ll
show in the next section. The second is the {,-variant, which claims that any non-expanding set must have a
high mazimum over links—this regime is useful in hardness of approximation. We examine both regimes through
their converse: that both ¢5/¢,.-pseudorandom sets expand near-perfectly.

20Tt should be noted that when the HD-Level-Set Decomposition has spaces with the same approximate eigenvalue, their corresponding

eigenstrips technically must be merged. However, since this detail has no effect on our arguments, we ignore it in what follows. We
now show how to express the expansion of a set S C X (k) with respect to an HD-walk M in terms of the pseudorandomness of S and
the ST-rank of M.
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THEOREM 9.2. Let (X,II) be a two-sided y-local-spectral expander, M a k-dimensional, complete HD-walk, and
let v be small enough that the eigenstrip intervals of Theorem are disjoint. For any 6 >0, let r = Rs(M) — 1.
Then the expansion of a set S C X (k) of density « is at least:

68) 2 1=~ (1= - e = S0 - )+
=1

where A\;(M) is the approzimate eigenvalue given by Corollary-, S is either (e1,...,&,)-la-pseudorandom or
(e1,...,6r)-Log-pseudorandom, and ¢ < w(M)h(M)?20F),

Proof. Recall that the expansion of S may be written as:

E[ls] (1s, M1g).

Decomposing 1g = 1g9 + ...+ 1g by the HD-Level-Set Decomposition, we have:

k
P(S)=1-— L > (g, M1s;)

E |
ES

Ai(M)(1s, Ls,)
i=0 z:1

where by Corollary [7.1{ |T;]| < O (w(M)h(M)(h(M) +k)(¥)y HILSlH) Using Cauchy-Schwarz and the fact that

[Ls] < (14 2°9F)y)||1g]| (this follows from approximate orthogonality, see [DDFHIS|, Corollary 8.13]) we can
simplify this to

P(5) =21 -

k
}151 SN (M)(Is, Ts) — e,

=0

where e < w(M)h(M)?2°%), Since M is a complete walk, we know the \;(M) decrease monotonically and as long
as +y is sufficiently small, correspond to the eigenvalues in strip W* as well. Thus we may write:

I k
4(8) 21— ey @ DML 15,) - e 3 fiss

=r+1

1 T
=1—eyy— ]E Zx\ )(1s,L1si) — 0 <1 T L] Z(ﬂs, ]15,i>>

=0

(Ai(M) = 0) (s, Ls4)

Finally, recalling that 1g, = E[1 S]T and applying Theorem gives the fo-variant result, and the ¢, ,-variant
follows immediately from our {o, to ¢35 reduction (Lemma [8.2)) a

We now turn to the discussion of a surprisingly subtle point: the tightness of Theorem [9.2] There are two main
parameters of interest: the pseudorandomness parameter e, and the level of the HD-walk k. We'll first prove that
in both the /5 and /., regimes, if we fix the dependence on ¢ to be linear, our bound is exactly tight.

PROPOSITION 9.1. Let X = J(n,d) be the complete complezx, 2k —t < d, m|n, and B, be the the set of all k-faces
(["ém]). Then for any t, B, witnesses the tightness of Theorem with respect to S”k“*t as n,m — Q.
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Proof. First, note that it is enough to examine only the /., bound, since the function in question has locally-constant
sign the tightness of the ¢ bound follows from Lemma [8.2]
By direct computation, it is not hard to show that the expansion of B,, with respect to S,lj_t is:

¢
m
=1- o + Ok (1/n)

On the other hand, we can directly compute that B,, is (e1,. ..,k )-pseudorandom, where:

(i)

(=)

Since the complete complex is a two-sided O(1/n)-local-spectral expander [DDFH18], for large enough n Theorem
gives the bound:

3

g <

(B >1-3 (t) ((Zj"_zi)) — Opm(1/n)
1 k—1i

G RN
-1- 0% Z() iy~ Ot/

k) =0 i
Ny
>1-—m" L — Opm(1
> m ; <Z>m kom(1/M)
(m+1)"
=1- F — Ok.m(1/n)
Thus we see that for large n, the bound is tight up to the leading term in m. ]

However, Proposition does not preclude a bound with better (or even no) dependence on k. Indeed, proving that
such a bound holds in the /.-regime for the Johnson graphs was an important stepping stone in the proof of the 2-2
Games Conjecture [KMMS18]. On the other hand, we can actually prove that a k-independent bound is impossible
in the f5-regime. The intuition behind the difference can be summarized by examining the behavior of these

two variants on a link. In the ¢, regime, links are of course Q(1)-pseudorandom. On the other hand, somewhat
k

-1
counter-intuitively, links are actually O((l) )-pseudorandom in the ¢3-regime. Since links tend to have poor

-1
expansion, the dependence on k in our bound has to make up for the fact that links are O((’:) )-£o-pseudorandom
(this also explains the particular dependence on (I:))

PROPOSITION 9.2. For every { € N and c;(),ca(f) > 0, there exist n > k > £ and an (e1,...,&0)-l2-
pseudorandom subset S of S],:/2 on J(n, 2k of density o satisfying:

B(S) <1 —a — Apy1(SF?) = ¢re

Proof. The result follows from letting S be any ¢-link of the complete complex J(n, 2k) for sufficiently large n, k.
In particular, notice that the expansion of S with respect to S:/ % is then:
i, 1
On the other hand, note that Apy1(S)/%) € 2741 + Ok(%). Since one can also check that S is (e1,...,e¢)-la-
pseudorandom for g; < (,;)—1 + Oy, (%), we for large enough n > k that:
1
l—a- )\Hl(S,I:/Q) —e2>1-27"1 -0 (n) —or(1) > ¢(S)

as desired. O

2TNote that this is exactly the Johnson Graph J(n, k, k/2) mentioned in Section

1101 Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 04/01/22 to 77.124.29.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

In other words, no k-independent version of Theorem [0.2] exists for the fo-variant, as such a result would violate
the upper bound in Proposition [0.2] While this doesn’t directly rule out a reduction from £, to ¢5 that proves a
k-independent bound for the former (the reduction itself would need to be k-dependent in this case), it’s known
to be impossible in our framework which encompasses the Grassmann where such a result is known to be false
[IDKK™18a].

The difference between a k-independent bound and the regime we consider is most stark when examining the
contrapositive of Theorem [9.2] which states that non-expanding sets must be concentrated inside links.

COROLLARY 9.1. Let (X,1I) be a two-sided v-local-spectral expander, M a k-dimensional, complete HD-walk, and
let v be small enough to satisfy the requirements of Theorem . Then for any 6 > 0, if S C X (k) is a set of
density a and expansion:

d(S)<l—a—(1—-a)f—cy

for ¢ < w(M)h(M)?2°%) | then S is non-trivially correlated with an i-link for 1 <i < Rs/a:

E[]].S}Z()é—f— 0

EIlSiSR5/27T€X(i)5XT m

)

where co > 2 is some small absolute constant.

Notice that the excess correlation implied by Corollary decays as k grows large (except in the case of very deep
walks like S,’: 70(1)); this is one of the main obstructions to using results like Corollary for hardness of unique
games. On the other hand, we now turn our attention to algorithms for unique games, where the fo-regime gets
its chance to shine.

10 Playing Unique Games on HD-Walks

Following the recent algorithmic framework of [BBK™21], we show how to translate our spectral machinery and
combinatorial characterization of non-expansion into a polynomial time algorithm for unique games over HD-walks
whose finer-grained runtime and approximation guarantees depend on ST-rank. Before we dive into the theorems
let’s start with some notation for this section.

Notation: We briefly comment on the use of Z = (M, S) to denote an affine UG instance over a random-walk
M, since unique games are formally defined over graphs, not random walks. In particular, it is well known
that every HD-walk M over X (k) uniquely corresponds to an undirected weighted graph G = (X (k), E) (see
Section [C.1). Thus by Z = (M, S), we really mean that the constraints S are over the edges of G and the value is
calculated according to the distribution over edges E. We will use the 6() notation in this section to hide log

factors, that is, O(f) denotes O(flog® f) for any constant ¢ > 0.
With notation out of the way, let us describe the main theorem:

THEOREM 10.1. For any € € (0,.01), there exists an algorithm A with the following guarantee. Let (X,II) be

a d-dimensional two-sided y-local spectral expander and M be a k-dimenstonal complete HD-walk over X such

that v < w(M)~12= kM) gnd d > k. Let T = (M,S) be an instance of affine unique games over M with
A k 1

is > | -satisfying assignment in time |X(k)|O((T(25>)E), where

(r(25))

value at least 1 —e. Then A outputs an €
r(e) = Ri—16:(M) is the ST-rank of M.

Since the HDX literature focuses mostly on canonical and partial-swap walks, we also give the specification
of Theorem to this class for concreteness. Here we see that the finer-grained performance of our algorithm
depends on the depth of the walk.

COROLLARY 10.1. For any € € (0,.01), there exists an algorithm A with the following guarantee. Let (X,II) be a
d-dimensional two-sided ~y-local spectral expander and M be a k-dimensional canonical or partial-swap walk of
depth B € [0,1] over X such that v < w(M)~12=Uk+h(M) and d > k. Let T = (M,S) be an instance of affine

unique games over M with value at least 1 —e. Then A outputs an i—S)Q -satisfying assignment in time
5

(5

|X(k:)\5((ﬁk/ﬁ)é) for some absolute constant ¢ > 0.
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To prove Theorem [10.1] we follow the general SoS algorithmic paradigm introduced by BBKSS for Johnson
graphs (partial-swap walks on the complete complex), described in Section for completeness. As discussed in
Section [3.3] we abstract BBKSS’ analysis to rely on two core structural properties true of the graphs underlying
HD-walks:

1. There exists a low-degree Sum-of-Squares proof that non-expanding sets have high variance in size across
links.

2. For every small enough ¢, there exists a parameter r = r(g) such that:

(a) The (r + 1)-st largest (distinct) stripped-eigenvalue of G is small:
A <1—=0Q(e)
(b) The expansion of any r-link is small as well:
V1 e X(s): ®(X;) < O(e).

Recall that we have already proved property (1) in Theorem m albeit not in the low-degree SoS proof system. In
Section we modify the proof of Theorem to show that it has a degree 2 SoS proof. For property (2), it
is clear that the existence of r(g) is an inherent consequence of Theorem and furthermore it is exactly the
(1 — O(g)) ST-Rank of the HD-walk. Analyzing the generalized BBKSS algorithm using these properties combined
with a few more technicalities (described in Section then gives an efficient algorithm for unique games over
HD-walks on two-sided local spectral expanders.

10.1 Background for Unique Games and SoS Proving Theorem from the ground up requires
substantial background in the SoS framework. However, since we mostly rely on a number of higher level results
from |[BBK™21| for the SoS side of our work, we cover here only background necessary to understand our methods,
and refer the reader to the surveys of [BS14a],[FKP19],]RSSI8| and additionally Sections 1, 2, and A of [BBK™21|
for more information.

The Sum of Squares framework is a method for approximating polynomial optimization problems
through semi-definite programming relaxations. In particular, given the problem:

Maximize p € Rz, ..., z,] constraint to {¢; = 0},
for ¢; € R[z1,...,,)], the Degree-D Sum of Squares semidefinite programming relaxation outputs in time n°®) a
pseudoexpectation operator E : polyg(n, D) — R over polynomials in R[zy,...,z,] of degree at most D satisfying:

1. Scaling: E[1] =1

2. Linearity: Elaf(z) + bg(x)] = aE[f(x)] + bE[g(z)]
3. Non-negativity (for squares): E[f(z)?] > 0

4. Program constraints: E[f(z)g;(x)] = 0

5. Optimality: E[p(«)] > max, {p(x) : {g; = 0}},

Note that the first four properties give the definition of a pseudoexpectation (under constraints {¢; = 0} ),
whereas the fifth is promised by the SoS relaxation. The pseudoexpectation operator can equivalently be defined
as a weighted expectation over a “pseudodistribution” u satisfying similar properties (and analogous to an actual
distribution). We will sometimes use the pseudodistribution view below when convenient and refer to E[-] (or IEM[]
in this case) as pseudomoments of the pseudodistribution (see [BS14b| for a more detailed exposition).

A Degree-D Sum of Squares proof of a polynomial inequality f(z) < g(x) (where f,g are polyno-
mials of degree at most D) is a method for ensuring the inequality continues to hold over any degree-D
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pseudoexpectation. In particular, given constraints {¢; = 0}, a degree-D sum of squares proof of f < g, denoted
by:
{Qi = O}:il l_D f S g,

is a certificate of the form g(z) = f(z) +_ s(z)? + Y, t(z)gi(x) where all terms have degree at most D. Notice
that properties 2, 3, and 4 then immediately imply E[f(x)] < E[g(z)].

Conditioning is a standard algorithmic technique in the SoS paradigm used to improve the value of independently
sampling a solution from the output of an SoS semidefinite relaxation (see e.g. [BRSTI, BBK™21|). Given a degree
D pseudodistribution p, and a degree < D sum of squares polynomial s(x), we can define a new pseudodistribution
p' by conditioning on s(z) as follows:

for all polynomials f(x) of degree < D — deg(s). We have that u' is a valid pseudodistribution of degree
D — deg(s) that satisfies the axioms satisfied by E In an algorithmic context, this is often used to restrict the
pseudoexpectation to some partial solution.

10.2 The Algorithm We now present our algorithm for solving Unique Games on HD-walks. We follow the
overall framework of BBKSS, which is based on the Sum-of-Squares semidefinite programming (SDP) relaxation
paradigm and its view as optimizing over pseudoexpectation operators. The unique games problem (Definition [2.4)
can be written as a polynomial optimization problem. In particular, given an instance I of unique games with
alphabet ¥ and constraints S over G(V, E) (that are of the form X,, — X, = sy, (mod k)), consider the following
quadratic optimization problem A; over variables {X, ;}v xx that computes val(I):

Maximize: WE l; Xu,sXv,,Tw(s)l
Constraint to: Xis =Xy YveV,sel
Xy,aXop=0 YVweV,a£beX
Y Xya=1 Yo eV
seX

The variables X, , are 0/1 indicators that vertex v € V takes the value a € X, E is a distribution over
the edges of the weighted graph G, the constraints are m,,(s) = s — Sy (mod k), and the objective function
maximizes the fraction of constraints satisfied. We will work with the Degree-D Sum of Squares relaxation of
this program, which outputs a degree-D pseudodistribution p and corresponding pseudoexpectation operator
E,: X=P 4 R, where X=P is the set of all monomials in the X variables up to degree D, and E, satisfies

the above equality constraints as axioms. The wvalue of E

val, (I) = B, [val;(X)] = B,

E,[val;(X)] > val(I).

We now describe the rounding algorithm that takes a pseudodistribution g over an almost-satisfiable UG
instance I and produces a high value assignment.

Condition&Round: We start with a basic sub-routine which will then be used in the final algorithm for
HD-walks. This subroutine takes a pseudodistribution p for an affine unique games instance (G(V, E),II) on
alphabet ¥ and outputs an assignment 2 € XV via the following process:

u» With respect to the instance I is denoted by

( IE;, E[Zsez Xo,s Xm0, (s))]- This operator is obtained in time [V|9(P) such that

)

22Technically only the axioms that were of degree < D — deg(s)
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1. Sample a vertex v € V' uniformly at random, and condition p on event X, o = 1 to get the conditioned
pseudodistribution u|(X, o = 1).

2. Sample a solution z € £V by independently sampling a label for every vertex w # v from its marginal
distribution in p|(Xy0 = 1): Priz, = s] = E,[Xy | X0 = 1].

Note that IEN[-|XU,0 = 1] is by definition conditioning x on the polynomial X, ¢, hence IEN (X sl Xvo =1] =
E,.[Xw,sXv.0]/ Eu[Xv,0]. Following |[BBK™ 21|, we define the term Condition&Round-value (abbreviated to CR-val)
of an instance I with respect to a pseudodistribution p:

DEFINITION 10.1. (CONDITION&ROUND VALUE) The CR-Value of the instance I with respect to a pseudodistri-
bution p is the expected value of the solution output by ConditionédRound on instance I and pseudodistribution p,
denoted CR-Val,(I). We drop the subscript ;i when clear from context.

Before we describe the main algorithm, an iterative framework for applying Condition&Round, we need to
introduce a simple operation on pseudodistributions for affine unique games that allows for ease of analysis:

Symmetrization: Symmetrization is an operation on pseudodistributions introduced in [BBK™21]| to take
advantage of the symmetric structure of affine unique games. The idea is to average the pseudoexpectation operator
over shifts s € 3. Formally, given a degree D pseudodistribution p, define the symmetrized pseudodistribution
tsym Via its pseudoexpectation operator as follows. For all degree < D monomials:

~ 1 ~
E [Xumn e 'Xut,at] = E Z E[thari-s S Xut,at+8]~

Hsym iy K

We will call a pseudodistribution shift-symmetric if it is invariant under this operation. If p is a degree
D pseudodistribution that satisfies the unique games axioms Aj it is easy to verify that the symmetrized
pseudodistribution psy., is also a valid degree D pseudodistribution satisfying A; with val(y) = val(usym)-
Furthermore symmetrization can be performed in time subquadratic in the description of ]E#. As a result, we
can perform this operation essentially for free inside our algorithm and therefore assume throughout that we are
working with a shift-symmetric pseudodistribution.

We are now ready to describe the main algorithm which is called Iterated Condition&Round. The algorithm
follows the strategy presented in [BBK ™21, Algorithm 6.1], differing mainly in that the parameter r(g) satisfying
their second condition has been replaced with the (1 — O(e))-ST-Rank of the underlying constraint graph.

Iterated Condition&Round: The full algorithm builds a solution by iteratively applying Condition&Round
to links. Let M be a complete k-dimensional HD-walk over a d-dimensional two-sided ~-local spectral expander
(X,II) and Gy = (X(k), E) be the corresponding undirected weighted graph on vertex set X (k). Let I = (M, S)
be an instance of affine unique games over alphabet ¥ with val(I) > 1 — ¢ and r = Ry_16.(M). Further, given a
subset H C X (k), let Iy denote the restriction of the instance I to the subgraph vertex-induced by H. Given a
subroutine for finding a link with high CR-value (see Proposition , the following process returns an € , x(1)
satisfying assignment.

1. Let é(g) :==Q (i) Solve the Degree-D = O (1/8()) SoS SDP relaxation of unique games, and symmetrize

()

the resulting pseudodistribution to get pg. Set j = 1.

2. Let Dif(j) = Ey, [valr(x)] — E,, . [val;(z)]. While Dif(j) < e:

(a) Find an r-link X, such that the CR-Value of I|x_ is at least d(e + Dif(j))la

(b) Let S; be the subgraph of X, induced by the vertices in X (k) which have not yet been assigned a value
in any partial assignment f;, ¢ < j, and perform Condition&Round on S; to get partial assignment f;.

23When #, k, d satisfy certain inequalities then such a link is guaranteed to exist by Proposition m Therefore we can find it by
enumerating over all links 7 € X (r) and computing CR-val(X)
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(c) Create a new pseudodistribution p; by making the marginal distribution over assigned vertices uniform
and independent of others, i.e. for all degree < D monomials let E,,. be:
~ 1

E[Xnar - Xnoar Xur s - Xumb) = 157 B [Kur ity - X b,
Hj |Z| Hj—1

where h; € §; and u; € X (k) \ S;. Increment j < j + 1.

It is worth noting that the Condition&Round subroutine, and thus the entire Iterated Condition&Round
algorithm, can be derandomized by standard techniques like the method of conditional expectations [BBK™21|.

10.3 Analysis of Algorithm BBKSS’ analysis of Iterated Condition&Round algorithm relies heavily
on analysing a quantity called the Approximate shift-partition potential defined therein. For completeness we
include the definitions of the potential functions used in Appendix For the purpose of this section, the
potential ®£  (X) can be thought of as a low-degree polynomial (with degree = O(1/v)) in the variables of A;
(X=(.., Xq;a, ...) where v € V and a € ). Given a pseudodistribution p for instance I, the pseudoexpectation

of the potential will be denoted by ®} (1) = E,[®},(X)]. 8, are some parameters in [0, 1] that control the
degree of @4 (X) and the value of the assignment we finally obtain via Condition&Round.

The framework developed by BBKSS for analyzing Iterated Condition&Round can be described as follows.
First, they prove that the Condition&Round subroutine, when run on a pseudodistribution p for a unique games
instance I, returns a high value assignment whenever ®Z (1) (Definition is high:

THEOREM 10.2. (BBKSS THEOREM 3.3) Let I = (G,S) be an affine instance of Unique Games over graph
G = (V,E) and the alphabet ¥.. Let B,v € [0,1] and p be a degree—é(l/y) shift-symmetric pseudodistribution
satisfying the unique games azioms A (Section . If @IW(,u) > 0, then on input p, the ConditionédRound
Algorithm runs in time poly(|V(G)|) and returns an assignment of expected value at least (6 — v)(8 —v) for I.

Using this rounding algorithm as a subroutine the analysis of Iterated Condition&Round in BBKSS proceeds
in the following way:

1. For every I = (G,1II), where G is a Johnson graph, using the structure theorem for non-expanding sets of G
and the properties of the potential function, there exists a link X of G such that the potential induced on
C is large: @éljj‘* (1) > poly(9), where I|x_ denotes the UG instance induced on the subgraph X,. Using the
rounding theorem [10.2) we get that the Condition&Round value on this link is high.

2. Tterative Condition&Round: Using iterations one can patch together solutions on different links, and since
each link is a non-expanding set we get a good solution for the whole graph.

We show that this framework extends to all UG instances on HD-walks. We use the analysis of Condition&Round
(Theorem in a blackbox way. We start with the analysis of Point 1, which relies on the technical machinery
developed in the previous sections for analysing the non-expanding sets of HD-walks. Using this, we show that
there always exists a link with high potential and therefore with high Condition&Round value.

PROPOSITION 10.1. Let M be a k-dimensional complete HD-walk on a d-dimensional, two-sided ~y-spectral expander
with v < w(M)~12= UM+ 4nd d > k, and I be an affine unique games instance over M with value at
least 1 —n where 1/28 < n < .02. Let r = r(n) = Ri—16y(M) — 1, and assume r < k/2. Then given a

degree—5 (%(f)) pseudodistribution satisfying the axioms Ar, we can find in time | X (k)[* an r-link X, with

CR-Value(X,) > Q ((f))

The proof of this lemma is similar in nature to the proof of the analogous lemma in BBKSS, albeit with all of
our technical machinery is plugged in. In particular we use a sum-of-squares version of Theorem the relation
between eigenvalues and expansion of links (Theorem , and a new property analyzing the expansion of vertices
within a link (Lemma . We elaborate on this in Section m

Given the ability to find a link with high CR-value, we can use BBKSS analysis of Iterated Condition&Round
(IBBK™21, Lemma 6.12]) as a blackbox to conclude it produces an assignment satisfying a large fraction of the
constraints for the whole graph.
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LEMMA 10.1. (LEMMA 6.12 |[BBK™21|) Let ¢ € (0,.01), § : [0,1] — [0,1] be any function, and Spin =
ming ) ce,2¢]- Let G be a weighted gmpﬂ and I be any affine unique games instance on G with alphabet

size |8 > Q (51 ) and value at least 1 — €.

Suppose we have a subroutine A which, for any ¢ < n < 2e, given as inpul a shift-symmetric degree-D
pseudodistribution p satisfying Ar with E,[vali(x)] > 1 —n returns a vertez-induced subgraph H such that:

1. The CR-Value of Iy is at least §(n).
2. The expansion of H is O(n).

Then if A runs in time T(A), Iterated Condition@Rounon outputs a solution for I satisfying an Q(82,,,€)-fraction
of edges of G in time |V (G)|(T(A) +|V(G)|°P).

With these results in hand, the final observation to prove Theorem [I0.1] lies in the relation between the local
expansion of links and global spectra of eigenstrips we proved in Section [J] Namely, since the rth strip is by
definition the last one with eigenvalue worse than 1 —O(e), the expansion of r-links is at most O(e) by Theorem
We therefore meet the conditions of Lemma and can use Iterated Condition&Round to output a good global
assignment. We now prove Theorem assuming Proposition and Lemma hold.

Proof. [Proof of Theorem [10.1] To start, we first prove that we may assume without loss of generality both that
e > 1/2% and that r(2¢) < k/2 (we will need these properties to meet the conditions of Proposition and
Lemma [10.1)). This relies on the following claim, the proof of which we defer to Appendix

CrLAM 10.1. Let M be a k-dimensional complete HD-walk on a d-dimensional, two-sided ~y-local-spectral expander
with d > k and v < w(M)~12=RO+E) - If the expected laziness of M (i.e. By, [IXM1,]) is at least .1, then the
spectral gap of M is at least Q(1/k) and Ay, o(M) < .68.

With this in mind, note that we can always assume the expected laziness E[17M1,] is at most 1/10. This follows
from the fact that the expected laziness of M exactly corresponds to the probability of drawing a self-edge on the
corresponding graph G, (see Appendix 7 and in an affine unique game, every self edge is either always or
never satisfiable. Since our game has value at least .99, in a walk with more than .1 laziness, at least .09 of the
weight on self-edges must be satisfiable, and therefore every assignment will satisfy our approximation guarantee.
Assuming then that E[17M1,] < .1, Claim implies that the spectral gap of M is at least 2(1/k), in which
case standard algorithms for unique games on expander graphs (e.g. [MM10]) give the desired result. Similarly, we
have \; /o < .68 <1 — 32¢ by assumption, so we may further assume r(2¢) < k/2 as desired.

Now that we have 1/2% < e < .02 and r < k/2, we are in position to solve the degree-D SoS relaxation of
the unique games integer program A; for D = 5(% (r(ge))), and apply Proposition E' to build a sub-route that
satisfies Lemma Namely, we have that for any ¢ < 1 < 2¢ and pseudodistribution of value at least 1 — 7,
Proposition [I0.] finds a link X, with high Condition&Round value:

CR—val(XT)zQ< 7 )
(T(n))

Further, note that by our assumptions on v and the fact that M is complete, Proposition gives that the
eigenvalues corresponding to each eigenstrip strictly decrease, and therefore by definition of ST-Rank that the
approximate eigenvalue corresponding to the rth eigenstrip is at least 1 — O(n). By Theorem this implies that
X, has poor expansion:

®(X;) < O(n) + w(M)h(M)?2°M < O(n)

sincen > e > w(M )QO(h(M )+Fk)~ by assumption. As a result, this sub-routine satisfies the conditions of Lemmam

with 4 set to d(n) = <(’,Z)) The only catch is that we need the alphabet X to satisfy |X| < Q (5 L ) This
r(n)

2IBBKSS only state the result for regular graphs, but their proof works for weighted graphs too, where the value, expansion etc are
measured appropriately according to the edge-weights.
25We note that the version of Iterated Condition&Round analyzed in [BBK™ 21| differs slightly from the one we present. Our version

simplifies their algorithm a bit but the analysis is exactly the same.
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can be assumed without loss of generality, since a random solution satisfies a 1/|3| fraction of constraints in

in

expectation (and can be easily derandomized), which satisfies our approximation guarantee if |X| < O (%) As

a result, applying Lemma [10.1{ outputs a Q(62;, ¢)-satisfying solution for &, = min, e ¢ o] {(i) >Q ((i)>
r(n) r(2¢)

The running time guarantee follows from noting that the sub-routine promised by Proposition runs in time

|V(G)[*, so Lemma then runs in time |V(G)|°P) with |V(G)| = | X (k)|. Since solving the original Degree-D

SoS relaxation also takes time only |V (G)|9P)] we get the desired result. |

10.4 Proof of Proposition Now that we have given the algorithmic background, we prove the main
technical lemma behind the analysis. The broad outline of the proof is as follows:

1. We first prove a structure theorem (Theorem [10.3) for non-expanding sets of HD-walks. We show an SoS
proof of the fact that every non-expanding set must have large variance of size when restricted to links of
the complex.

2. Using the structure theorem, in Proposition [I0.2] we show that given a pseudodistribution p with objective
value 1 — n for unique games over an HD-walk M, one can find a link X with high global shift-partition
potential (Definition [C.2]).

3. In the final step (Lemma , we relate the global shift-partition potential to the shift-partition potential
on the subgraph induced by X we show that @gfy(u) (Definition is large. By the rounding
theorem (Theorem , we then conclude that the expected value of the Condition&Round algorithm,
when performed on X, (CR-val, (X)) must be high.

This proof structure is similar to the analogous Lemma 6.9 of [BBK™21]. Most of our technical work goes into
proving points 1 and 3 above, and point 2 turns out to be straightforward given BBKSS.

We now turn to proving our structure theorem in the low-degree SoS proof system. We will reprove the
lemmas for expansion for pseudorandom sets in HD-walks proved in Section [§|and Section [0} but this time carefully
making sure that they are in the low-degree SoS proof system.

THEOREM 10.3. (SOS STRUCTURE THEOREM FOR HD-WALKS) Let (X,II) be a two-sided ~y-local-spectral ex-
pander and M be a k-dimensional, complete HD-walk on X with v < w(M)~ h(M)~22=%)  Then for any f € Cy,
and any 0 < £ < k/2, the ezpansio@ of f with respect to M is large:

e (-0 2 (=2 (0= e @11+ 800 - (§) 0.0,

where B(f) = E[f? — f] represents the Booleanity constraints and c; < 20,

The proof of Theorem relies on a number of SoS variants of properties of the HD-Level-Set Decomposition
used in the previous sections, namely approximate orthogonality and the relation between || f;|| and ||g;||-

LEMMA 10.2. Let (X,TI) be a two-sided v-local-spectral expander with v < 27%%) and f € Cy. Then for
fi = Uikgi € sz

Fo (fis fi) € <(;1c) iCW) (95 9i),

where ¢; < O(k?). Further, weak variants of approzimate orthogonality also have degree 2 proofs:

Fo (fi, fi) < (L+ e2v)(f, f),
and
}_2 <f7fz> 2 _037<fa f>7

where cg, c3 < 20(k)

28T his is just the potential measured on the sub-instance I when restricted to the induced subgraph given by the link X .

27This notion of expansion varies slightly from our previous definition, coinciding (up to normalization) for Boolean functions.
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The proof of Lemma follows from combining arguments in [DDFHIS8| with standard SoS tricks. For
completeness, we give the proof in Appendix [C.3] With Lemma [10.2]in hand, Theorem [10.3] follows similarly to
Theorem [R.2] and Theorem

Proof. [Proof of Theorem As in the proof of Theorem it is sufficient to bound the weight of f onto
low levels of the HD-Level-Set decomposition to prove that the expansion of f is small. First, note that given
the function f, the low-level decomposition functions f;’s are explicit linear functions of the coordinates of f
[IDDEFHI8|. We will thus show that Lemma has an SoS proof, that is the following relation between HDZ? f ||2
and f’s weight holds:

¢
(10.9) Fo D (f ) < (’;)< 1 Dif) +2°0(f 1),
§=0

Before proving Equation , we check that if the above inequality holds then the theorem statement
follows. To see this, first recall from Section [7] that M f; = A; f; + I'g; where T is a matrix with spectral norm
< w(M)h(M)?2°F)~ which we call C for convenience. It will be useful to have an SoS upper bound on (f,T'g;),
which we will use multiple times throughout this proof. First by an SoS version of Cauchy-Schwarz we get that for
all real constants ¢ > 0: (

Now substituting ¢ = C' and simplifying using the spectral norm bounds on I' and Lemma [10.2] we get:

<f7 Pgi> < F917F91>

SN+ 5t
<f7f>+%<giagi>

a0+ 5 ((5) +om) s,

cer<f7 .f>7

where all inequalities are degree 2 SoS inequalities and ¢; < w(M)h(M)?2°*). With this in hand and assuming
Equation ((10.9)), the result follows from expanding out {f, (I — M)f) and applying Lemma m

IN

IN
| Q| Qe Q

IN

k k
(FAL =)y = (£ f) = 3 Nlfs fi) = D_(F.Tgi)

¢ k
> (=) ) = Y Nl i) = D Ml f)
i=0 i=r+1
¢ +k
> (L= ), f) = Y o fi) = Aew D (i)
i =01

4
= (L= ) = DU fi) = Aer (s ) + Mesr Y (F £i)

=0 =0
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It remains to prove Equation (10.9). This follows from a similar modification of Lemma Notice that by
the adjointness of D and U, it is enough to analyze the walk U} D}
(D f, Dif) = {f,UFDLf)
Using Proposition and the assumption ¢ < k/2, we can decompose the righthand side as:
¢ k

(ﬁ) (FUFDE) =Y <]; _j) (F83) + 24T

j=0 =0

where |T|| < w(M)h(M)?2°®)~ .= C. Noting that (lz:j) is at least 1 for 0 < j < ¢, we can apply the upper
bound on (f,I'g;) proved above and Lemmam to get:

k
(’;)<D§f,D§f>z (F £i) = esy(f.£) = D_(f:Tgy)
7=0

<.
- 10-
o

Y

<f,fj> - 067<faf>
=0

<.

where all the constants ¢;’s are less than w(M)h(M)?2°%) and all inequalities are degree-2 SoS. |

It is worth giving a brief qualitative comparison of this result to a similar version for the Johnson graphs in
IBBK™21]. In particular, Theorem not only gives a tighter bound (by a factor of exp(r)), but perhaps more
importantly shows how viewing the problem from the framework of high dimensional expansion demystifies the
original Fourier analytic proof. This understanding allows us to extend the structural result well beyond the
Johnson graphs to all HD-walks. In fact, this result also holds for the more general class of expanding posets
[IDDFHIS] (albeit with different parameters). We leave their discussion to future work.

Given this structure theorem, we use the BBKSS’ framework to show that the global potential (Definition
on a link is high. This follows because of the properties of the potential function and the pseudodistribution over
(1 — n)-satisfying assignments. In general, the potential function ®4 ’U(,u) turns out to be an average taken over
non-expanding partitions of the graph. Using our structure theorem, we get that every non-expanding partition
must have a large variance across links, and therefore there must exist a link X such that the partition is large
even when restricted to X,. As a result, there must be be a link X, where the partitions are large on average too,
which corresponds to a quantity called the global potential restricted to X,, denoted by ®%  (u|,), being large.
The proof is essentially the same as [BBK™21, Lemma 6.9], but we include it in Appendix for completeness.

PRrOPOSITION 10.2. Let M be a k-dimensional complete HD-walk on a d-dimensional, two-sided ~-local-spectral
expander satisfying yw(M)20MM)+k) < 1/92k < 5 < 0.02 and d > k, and I be an affine unique games instance
over M with value at least 1 — . Let v(n) = Ri_16,(M) — 1, and assume r < k/2. Let B =199 and v = %.

Then given a degree-é(l/u) pseudodistribution p satisfying the axioms Ay, there exists an r-link X, such that the
global potential restricted to X, is large:

In the next lemma, we will relate the global potential to the potential induced on X,. In particular we’ll
show that since the global potential on X, is high (Proposition |10.2)), the potential induced on X, oL g 7 (1), must
also be high. Since this is just the usual potential function when apphed to the sub instance I|, corresponding to
the subgraph induced by X, (Definition , we can then apply the rounding theorem of BBKSS Theorem m
to surmise that the CR-value of X, is high.

LEMMA 10.3. Assume the condztzons of Pmposztwnu 110.2 hold. Let X, be an r-link for r = R1_16,(M) — 1 with
high global potential: ®1, V(u| ) > ( )’ for =190 and v = G’Zk). Then the potential induced on X, is also high:
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We prove Lemma [10.3] in Appendix but it’s worth pausing to discuss the proof, especially in how it differs
from the analogous result in BBKSS [BBK™21, Claim 6.11]. Recall that the main idea behind Lemma is
to relate the global potential on X, (bounded in Proposition to the potential induced on X itself (which
implies high CR-~Value by Theorem . In a bit more detail, the global potential on a link depends on the “value”
of the vertices in the link (which measures the value of an assignment at the vertex), but is measured with respect
to its neighbors across the entire graph. On the other hand, the induced potential on the link depends on the value
of vertices when measured only with respect to the edges inside the link (see Definitions for exact details).
It is possible to relate the two potentials by observing that the internal-value of a vertex (value with respect to
only the neighbors inside the link) can decrease by at most an additive factor equal to its edge-expansion inside
the link (i.e. the fraction of edges incident on the vertex that leave the set). By leveraging machinery developed in
Section [7| and some additional properties, we show not only that the expansion of links is small (by Theorem ,
but in fact that this holds approximately vertex by vertex: for most vertices in the link, only an O(n)-fraction of
their edges are outgoing. We prove the following claim formally in Appendix [C-5}

LEMMA 10.4. Let M be a k-dimensional HD-walk on d-dimensional two-sided ~y-local-spectral expander satisfying
v < w(M)=12=UMTR) gnd d > k. Then for every i-link X,, the deviation of the random variable ¢x. (v)
(v~ X,) is small:

1
E_[lox. (1) ~ (X)) < sapp

v~ X

where ¢x_(v) denotes the fraction of edges incident on v € X, that leave X .

BBKSS use an exact version of this statement for the Johnson (that expansion holds vertex-by-vertex) to
prove their analogous version of Lemma [I0.3] We relax the conditions required for their proof and show that the
approximate statement state above is sufficient in Appendix [C.5]

Finally, we complete the section by using Proposition and Lemma to prove Proposition (and
thereby Theorem as well). We restate the proposition here for convenience:

PROPOSITION 10.3. (RESTATEMENT OF PROPOSITION [10.1)) Let M be a k-dimensional complete HD-walk on a
d-dimensional, two-sided y-spectral expander with v < w(M)_12_Q(h(M)+k) and d >k, and I be an affine unique
games instance over M with value at least 1 —n where 1/2% <1n < .02. Let r = r(n) = R1_16,(M) — 1, and assume
r < k/2. Then given a degree—5 (% (f)) pseudodistribution p satisfying the azioms Ar, we can find in time | X (k)[*

an r-link X; with CR-val,(X;) > Q ((2))

Proof. Let f=19n and v = 567(’,;) as in Proposition By Proposition there exists an r-link X, with high

global potential:
@b, (ulr) >

By Lemma this implies that X, also has high induced potential:

¢)7I7‘,;/(lu) > %

r

As mentioned previously, this is just the usual potential function on the instance induced by X, (Definition ,
so we may apply the rounding theorem of BBKSS Theorem to bound X,’s CR-Value. In particular, since we

have set v such that (n —v) > Q(n) and ((I>7I,|,L (n) —v)>Q (1,c)>, Theorem |10.2| implies that rounding p, which

T

is a degree O(1/v) = 9] (% (f)) pseudodistribution as required, would give an assignment with large -value on X :

CR-val,,(X,) > ( — )(@15 (1) — v) > © (’7) .

()

1111 Copyright (© 2021 by SIAM
Unauthorized reproduction of this article is prohibited



Downloaded 04/01/22 to 77.124.29.22 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Now that we have shown that there exists an r-link X, with large CR-value, it remains to show that we can
efficiently find such a link. We can do a brute-force enumeration over all r-links in time | X (r)|, compute every
CR-value in time | X (7)|?, and therefore in time | X (r)[* find a link with large CR-value. Since |X (k)| > | X (r)] is
a standard consequence of X being a local-spectral expander [DDEHIS| the proposition follows. ]
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A  Proof of Lemma [T.1]

In this section, we prove a strengthening of the main technical lemma of DDFH Section 8 [DDEFH18, Claim 8.8],
which allows for better control of error propagation.

LEMMA A.1. (STRENGTHENED CrAIM 8.8 [DDFHIS]|) Let (X,I) be a d-dimensional two-sided ~-local-spectral
expander. Then for all j < k < d:

Jj—1

J+1 i
Dk+1U1’:fj1* k+1UI]:—j k+1Uk j—1Dr—j = Z k+1Uk I 1/ i
i=—1

where |T;|| < 7.

Proof. The proof follows by a simple induction. The base cases, j = 0 and k < d, follow immediately from
Equation (7.6). For the inductive step, consider:

+1 k—
Dk+1Uk+(1]+1) (Dk+1Uk+1 2+1U,’j_j k+1U’“ Dk j> Uk—j1
Jj+1 k
k+1UI§—j—1+k+1Uk —j-1Dk—Uk—j1

By the inductive hypothesis, the first term on the RHS may be written as:

) j—1 ,

kiiphrl  J 1o k— _ k—i k—1—i

(D Uk—j - k_|_1Uk7j k+1Uk J‘Dk J kajfl = Z mkaiflriUk—j—U
i=—1

where ||T';]| <. For the latter term, consider flipping DU and UD. By Equation (7.6 we have:

k—
kE+1

1 k—j—1
Uk j=1Dr=iUh=jm1 = Ui 1</lc+1j+ k+1

k-3
oD i T,
Uk]Q k‘jl+k+1 >

for some T'; satistying ||T'j|| < v. Combining these observations yields the desired result:

k+177k+1 G+ +1_, k—(G+1)
DM Gy = gt Ut = Uiy -aDesn
_ pkrlprktl J+1 i 1 k—j—1
=D Uk (+1) kE+ 1Uk —j—1 Uk-—j—l (k+ 11* ] Ugp—j—2Dp_j1
Jj—1
k k—1—i k
(g;k+1%11FU >+k+1%(ﬁnr

J

— k—1—1
_z:lk+1Uk =il G-

d

We now show how to use this strengthened result to prove tighter bounds on the quadratic form (f, N ,z f) which
implies a stronger version of Lemma [7.2] as an immediate corollary. This improvement mainly matters in the
regime where v < 27 for ¢ a small constant.

PROPOSITION A.1. Let (X,II) be a d-dimensional vy-local-spectral expander with ~y satisfying v < 272(F+3)
k+j<d, and fo € Vf. Then:

(lc
)

(fo, Nifo) =

2k + 20
<1i(g+ Z— +3)

:l: 03(‘167].56)72) <f£7 fﬁ>

where c3(k, j, ) = O((k + 7)3 (kﬂ))
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Proof. We proceed by induction on j. We will prove a slightly stronger statement for the base-case j = 1:

kit (k= t4 Dk +0+2)
k+1 2k + 1)

(fes Dk 1Uk fo) = ( v+ Cz(k,€)72> (fe, fe),

where ca(k, () O(k:3( )) Recall that f, may be expressed as U} /9, for go € H". ¢, For notational convenience, we
write f{ = Uige. Then we may expand the inner product based on Lemma [7.1} l and simplify based on applying the
naive bounds on N}, given by Corollary |7

(ft, Dpg1Up fo) = <fe7Dk+1Uf+1ge>

k—¢—1
E—0+1 1
= F @
T (fe, fo) + i:E_ fe,k+1Uk 1—iLiUy ge)
k—¢—1
k— e+1 . .
= e fo+ SRS N VT /)
k £+1 — . kzl) 1 1 kllk . 1
— } Ty ‘ E hi, iy~
k41 {fe for + k+1 * (fe ife 0+ 1_71k+1< fem

where ||h;|| < v(k—£)(i 4+ 1) ||ge||. We now apply Cauchy-Schwarz, and Lemma [7.2] to collect terms in {fy, f¢):

k E —f— . (k—i—1 . .
(fo, Dis1Upfo) = kﬁl (fo, fo) + ( () )< Fodmi k10 o) (k07 (ge, ge)
j=—1 ¢
k-1 P ki1
= k+—1F (fo, fo) £ i; ﬁ@<geage>ﬂ:az(k7f)’}’2<gzage>
_E—t+1 " i {fefo) (fer fo)

2
E (fo, fe) £~ Z k—i—l(l—cl(k,é)y)i@(k’éh

_k—t+1 (1i(k;+£+2)

(1 - Cl(kv £))

k+1 2 Viaiﬂ(kﬂ)“ﬁ) (fe; fo)

where the final step comes from a Taylor expansion assuming v sufficiently small, and a3(k,¢) = O(k® (lz))
The inductive step follows from noting that the canonical walk essentially acts like a product of upper walks
from lower levels in the following sense:

(fo, Nifo) = (U= 4, Dy iU £2)
= (U7 o, N, (U7 f)).

Thus by the base-case and inductive hypothesis we get:

(fo, NLfo) = (U7 o, Ny (U1 f))
B (k+j—€i (k+j—0Ok+ji+L+1)
o\ k4 2(k + 5)
) (k+j+0+1) k+j
G (HE 2 T k=
-(lﬁ: (g—l)(]+jk+2£+2)

_ (1ij(j+2k+2€+3)
4

yEeak+j— 175)W2> (fo, NI 7' fo)

gk 4= 1.07)

== CB(kaj - 176)72> <fZ7f£>

v £ cs(k, g, 5)72> (fe, fe)s
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Notice that this immediately implies a stronger version of Lemma , since (UFge, Uk ge) = (N, f_egg, ge). Finally,
we conjecture that a stronger result is true, and the error dependence on « should in fact be exp(—poly(k)7).
Proving this would require a more careful and involved analysis of how the error term propogates.

B Orthogonality and the HD-Level-Set Decomposition

In this section we discuss in a bit more depth the error in [KO20, Theorem 5.10], and further show by direct
counter-example that its implication [KS20] that the HD-Level-Set is orthogonal does not hold. In [KO20],
Kaufman and Oppenheim analyze an approximate eidgendecomposition of the upper walk N} for two-sided
local-spectral expanders. They prove a specialized version of Theorem for this case, and in particular that for
sufficiently strong two-sided local-spectral expanders, the spectra of N}! is divided into strips concentrated around
the approximate eigenvalues of their decomposition. They call the span of each strip W?, and note that the W?
form an orthogonal decomposition of the space. Let V' be the space in the original approximate eigendecomposition
corresonding to strip W¢. Kaufman and Oppenheim claim in [KO20, Theorem 5.10] that the W are closely related
to the original approximate decomposition in the following sense:

Vo € Cr: [[Pwid| < c|[Pvig||

for some constant ¢ > 0, where Py« and Py are projection operators. Unfortunately, this relation cannot hold, as
it implies [KS20] that the HD-Level-Set Decomposition is orthogonal for sufficiently strong two-sided local-spectral
expanders, which we will show below is false by direct example. In slightly greater detail, the issue in the argument
is the following. The authors show that for any j # i

HPwJPV‘ < cl7

for some small constant ¢/, and then claim that this fact implies for any ¢ € C:
[ Pwi Pyigl| < ¢ || Pyigll-

Unfortunately, this is not true—the righthand side should read Py: rather than Py; for the relation to hold, but
this makes it impossible to compare Py : ¢ solely to Pyi¢.

We now move to showing that for any v > 0, there exists a two-sided y-local-spectral expander such that the
HD-Level-Set Decomposition is not orthogonal, which implies [KO20, Theorem 5.10] cannot hold by arguments of
[KS20].

PRrROPOSITION B.1. For any v > 0, there exists a two-sided y-local-spectral expander such that the HD-Level-Set
Decomposition is not orthogonal.

Proof. Our construction is based off of a slight modification of the complete complex J(n,3). In particular,
we consider the uniform distribution II over triangles X = ([g]) \ (123). It is not hard to see through direct
computation that (X,II) is a two-sided O(1/n)-local-spectral expander. Recall that the link of 1, U1y, lies in
VY @ Vit Our goal is to prove the existence of a function f = Ug € V2 such that the inner product:

(B.1) (UL ) o Y g(la) + g(ly) + g(ay)
(lzy)eX

is non-zero. To do this, we first simplify the above expression assuming g € Ker(D3), which we recall implies the
following relations:

Vyeln]: > Ta(xy)gley) = 0.
(zy)ex(2)

In particular, summing over all y € [n] gives

> Ma(ay)g(ey) = 0.

(zy)eX(2)
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Notice further that by definition of Ilp, we have II5(12) = TI5(13) = II5(23) = 3(&5%3, and otherwise
3

Iy (zy) = 3(’;533. We then may write:

3

S () = 222 (5(12) 1 (13)),

n—2
(1z)eX (2)
z¢[3]
n—3
> gley) =———(9(12) +g(13) + g(23)).
(zv)eX (2):
(zy)€[3]x[3]

Plugging this into Equation (B.1]), the inner product drastically simplifies to depend only on ¢(23). To see this, we
separate the inner product into two terms and deal with each separately:

> g(la)+g(ly) +glzy) = | > g(x)+g9(y) |+ > glay)

(lzy)eX (lzy)eX (lzy)eX

We start with the former. Notice that each face (1z) in this term is counted exactly the number of times it appears
in a triangle in X, and further that this is exactly how II; is defined. Thus we have:

Y. 9(e)+g(ly) | o D Ta(lz)g(lz) = 0.

(lzy)eX (1z)eX (2)

It is left to analyze the latter term. Since (123) is not in our complex, we may write:

Sooglay) = D> gy |- D g(a)

(lzy)eX (zy)eX(2): (lz)e X (2):

(zy) (3] x [3] z¢ (3]
n—3 n—3

= - (9(12) + 9(13) + 9(23)) + — (9(12) + ¢(13))
n—2 n—2
n—3

= — 23).
—59(23)

Thus it remains to show that there exists g € Ker(Ds) such that ¢(23) # 0. Note that the kernel of Dy is
exactly the space of solutions to the underdetermined linear system of equations given by Dag(i) = 0 for all
1 < i < n. Thus we can check if a solution exists with ¢g(23) = ¢ for ¢ # 0 by ensuring that this constraint is
linearly independent of the Dyg(i). This can be checked through a direct but tedious computation that we leave
to the reader. |

C Unique Games

C.1 Random-walks and Weighted graphs Unique games are defined on weighted, undirected constraint
graphs, unlike most of the walks we analyze in the previous section. However, it is not hard to see that every
self-adjoint random walk corresponds to some underlying undirected graph. In particular, recall that given a
weighted, undirected graph G(V, E), G induces a random walk on vertices where the transition probability from
x €V toy € V is given by the normalized weights:

W(s,t)
> Wi(s,v)

vEN(s)

P(x,y) =

In fact, every self-adjoint walk can be described as such a process.
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LEMMA C.1. Let M be a k-dimensional HD-walk on a weighted simplicial complex (X,II). Define Gy to be the
graph whose vertex set is X (k) and whose edge set consists of any pair (s,t) such that M(s,t) # 0. Further, endow
the edges of Gy with weight:

W (s, t) = Ii(s)M(s,1).

Then M is the random walk induced by Gy .

Proof. The crucial observation for this proof is the following implication due to M being self adjoint:
Vs, t € X (k) : Tg(s)M(s,t) = g () M(t, s).

Given this fact, let Pg(s,t) denote the transition probability of the induced walk on G. We have:

_ Mi(s)M(s,1)

Pa(s,t) 5 Iy (s)M (s, t)
vEN(s)
- M(g D 0i(s, 1)
vEN(s)
= M(s,t)

|

C.2 The Shift-Partition Potential The analysis of the Iterated Condition&Round algorithm relies on
analysing a quantity called the Approximate shift-partition potential which was defined in BBKSS. For completeness
we include the definitions of the various potential functions used in this section.

For analysing the Condition&Round subroutine, define a low-degree polynomial ®5, : XV x ¥V — [0, 00)
called the “approximate shift partition potential”:

DEFINITION C.1. (APPROXIMATE SHIFT-PARTITION POTENTIAL) For any v, € (0,1), and two assignments
X, X" € 2V define the approximate shift-partition potential to be the quantity

05, (X, X') =Y B, [1[X, — X}, = 5] - g (valy (X)),

sEX

for pg . (x) the degree-O(1/v) polynomial which SoS-certifiably approzimates the indicator 1[z > B8] for z € [0,1]
up to an error of v. The exact definition of pg, and the properties required of it are described in more detail in
Section 7 of BBKSS and we omit them here.

The approzimate shift-partition potential on a pseudodistribution p of degree at least O(deg(®gs,,)) is defined
as:

(I)/B,V(,u) = IE[(I)B,V(X’ Xl)]

For analysing the Iterated Condition&Round algorithm we further need to define the potential when restricted
to a subgraph which in our case will be a link of the complex.

DEFINITION C.2. (GLOBAL SHIFT-POTENTIAL RESTRICTED TO LINKS) Let I = (M,II) be a UG instance on a
complex X where M is a complete random walk on X (k) with stationary distribution m. For any v, € (0,1)
and a link X, of the complex X, define the approximate global shift-partition potential restricted to X, to be the
quantity:

Pg0 (X, X')|- = E [1[X.,— X, = s] ~p5,,,(valu(X))]2,
Sezuw‘n'kh'
where val,(X) = By w~nm [L[X satisfies (u,v))], and as before pg,,(x) is the degree-O(1/v) polynomial that
v-approzimates the indicator function 1lx > (]. The global potential restricted to X, with respect to a
pseudodistribution p will be denoted by g, (p|-):

(I)»B,V(M‘r) = E[(I)ﬁ,u(X? X/)"r]'

“w
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Note that the global shift-partition potential measures the size of the global partition inside X, and although
the expectation is taken only over the vertices u € X, val, (X) is a function of all the edges in M that are incident
on u, not just the edges in X ;. We will also need to consider the potential induced on a link, which is defined as
applying the potential function (Definition to the graph induced by X.:

DEFINITION C.3. (INDUCED SHIFT-POTENTIAL ON A LINK) Let I = (M,II) be a UG instance on a complex X
where M is a complete random walk on X (k) with stationary distribution 7. For any v, B € (0,1) and a link X,
of the complex X, define the approximate induced shift-partition potential on X, to be the quantity:

®p, (X, X) =) E [1[X,~X| = 5] pso(val (X)),

wu~T | T
s€X

where vall, (X) = E, v)~nm, [1[X satisfies (u,v))]. The induced potential on X, with respect to a pseudodistribution
p will be denoted by ®F ,(u):

5u(h) = [0, (X, X))

Note that in the above definition the value of a vertex u € X, is measured only with respect to the edges
incident on u that lie inside the link X..

C.3 Sum of Squares and the HD-Level-Set Decomposition This section is devoted to proving Lemma [T0.2]
which we separate into two parts. First, we examine the relation between || f;|| and |/g;||-

LEMMA C.2. (RESTATED LEMMA [10.2] (PART 1)) Let (X,II) be a d-dimensional two-sided ~y-local-spectral ex-
pander. Then for any f; = UFg; € V}':

Fo (fi, fi) € <<i> + WV) (9is 94)

Proof. 1t is sufficient to prove the following equality:

(C.2) (fis fi) = L<9mgi> +(9i, T'g4),

()

where ||T|| < $=25+D Ty see why, note that:

142
L+
(9i,Tgs) = <gi, gi>

2

where T'* is the adjoint of I'. Since ™I is self-adjoint and ||T*|| = ||T'||, we have both:
. k—i) (k
1. b <9i, %9» < %ng,gﬁ

2. ko <g¢, %g» 2 *%7(9%90

as desired. To prove Equation (C.2|), we induct on k. The base case k = i is trivial. Assume k > i, then we may
write:

(fi i) = (UF ' g;, DU g;)

In order to apply the inductive hypothesis, we recall the machinery of [DDFHI8, Claim 8.8| for pushing Dy
through UF. In particular:

k—i .
HDkUZ“ S URT = U D < (k=
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Since g; lies in the kernel of D;, combining this with our initial observation gives:

_ k—1 _ _
(UF1g;, DLU g;) = 3 (UF 19, U g5) + (9, Tgi)s

where ||T|| < (k —4)y. Since UF~'g; € V*~1. Applying the inductive hypothesis, we see that:

(fis fi) = % <(k1_1)<giagi> + <gi7FIgi>> + (95, Tgi)

%

- (%)(gi,gi) + (9i, (k;z +F) 9i),

where:

by the triangle inequality and inductive hypothesis. 0

Second, we prove that a version of approximate orthogonality of the HD-Level-Set Decomposition has a low-degree
SoS proof.

LEMMA C.3. (RESTATED LEMMA [10.2] (PART 2)) let (X,1II) be a two-sided vy-local-spectral expaner with v <
2=k gnd f € Cy. Then for any f; = Ukg, € Vi and f; = Ufgj e V/ we have:

Fo (fi, fi) < (L+en)(f, f),

and

}_2 <f7f2> Z _627<fa f>a

where ¢, co < 20(k)
Proof. First, note that by Lemma [7.1] ! and the fact that g; € Ker(D,), we have that:
(fi, fi) = (9i,Tg;)
where ||T'|| < 2°%), We can bound the latter by an SoS version of Cauchy Schwarz. In particular, we have that:
(fi, f5) = (96, Tgs)
_ Iy

1
> <gzvgz> + 7<Fg'a]-—‘g'>
2 2|0
I} I
< <za z>+7< ngj>

- 2
< ey((fi, fi) + (f5, £3)

where all inequalities are degree 2 SoS and ¢ < 2°(®) . Further, notice that that by applying the same argument to
(—fi, fj) we get that (f;, f;) is bounded above and below:

o —ey((fis fo) + (fs, £3)) < (fis [3) < ev({fis fi) + (fis )

We now apply this fact directly to prove the two desired inequalities. First, we have

k

)= o fo) + D fes fm)

=0 €7ém

>

(fe, fe) ZkCV fe, fe)
=0 . £=0
= (1 —key) Y (fe, fo)

£=0

> (1 —cy){fi, fi)s
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where ¢; < 2°9%). For small enough +, Taylor expanding (1 — ¢;7) ™! gives the desired result. We can now apply
the first inequality to easily prove the second inequality:

(f, fi) = (fi, i) + Z<fiafj>
J#i
(1= cky){fi, fi) = > ev(fir 1)
J#i
> _Ck’Y(]- + 627)<fa f> > _C3<fv f>

Y

for Co, Cg 2O(k) 0

C.4 Remaining Proofs from Section Here we prove Claim [10.1] restated for convenience.

CramM C.1. (RESTATED CLAM [10.1]) Let M be a k-dimensional complete HD-walk on a d-dimensional, two-sided
y-local-spectral expander with d > k and v < w(M)~12-RODYE) wyith stationary distribution w. If the total
laziness of M E[LTM1,] is at least .1, then the spectral gap of M is at least Q(1/k) and Aj,/2(M) < .68.

Proof. To see this, note that any walk can be (approximately) decomposed by Lemmainto an affine combination
of pure walks of the form (Uy_1Dy)*, that is:

h(M)
M = Z a;(Uy—1Dy)" + T,

1=0

where ||T|| < w(M)2°(M) and (Uy_1Dy)° = I. Notice that for any (Uy_1Dy)" for i > 0, the probability of
returning to any given k-face is at most . This follows from the fact that the probability of returning to any
particular face in the final up step (given that the previous step is at 0 € X (k — 1))) is at most [l 1]e0 < 7.
This last inequality follows from (X, II) being a two-sided 7-local-spectral expander satisfying d > k, as the link
(Xs,10,) (at level k) is then a y-spectral expander, which are easily shown to satisfy this property.

Since the total laziness of M is at most .1, by our assumption on  the above analysis implies that the coefficient
ap cannot be too large, say at most 1/5 (since the remaining parts cannot contribute much to the laziness). We
can use this fact to bound the spectral gap of M by the same trick used in Proposition transferring M over to
the complete complex. Since the approximate eigenvalues of M are independent of the underlying complex and
(UD)? has a vanishing lazy component on J(n,d) as n goes to infinity, it must be the case that in lazy component
of M on the Johnson complex is also small. Since M can be written as a convex combination of partial-swap
walks, all of which have spectral gap at least 1/k (save for the identity which carries at most a 1/5 of the weight),
we get that 1 — Xo(M) > Q(1/k) as desired. The bound on A/, follows similarly noting that all (non-identity)
partial-swap walks satisfy Ay o < 1/2. 0

C.5 Remaining Proofs from Section In this section we will prove the claims that were stated without
proof in Section [10.4] We will use the exact definition of the potential functions from Appendix [C.2] and also the
propertites of the polynomials pg ,(Y') that SoS certifiably v-approximate the indicator function 1[Y > j]. See
Section 7 of BBKSS for a detailed overview about these polynomials and their properties.

PROPOSITION C.1. (RESTATED PROPOSITION- Let M be a k-dimensional complete HD-walk on a d-
dimensional, two-sided ~y-local-spectral expander satisfying 'yw(M)QO(h(MHk) < 1/28 < <002 and d > k,
and I be an affine unique games instance over M with value at least 1 —n. Let r(n) = Ri—16,(M) — 1, and assume

r<k/2. Let $=19n and v = %. Then given a degree—é(l/u) pseudodistribution u satisfying the arioms Aj,

there exists an r-link X, such that the global potential restricted to X, is large:

1
(b[Ig,l/(/”T) > M

T

Proof. [Proof of Proposition [10.2] Before diving into the details of the proof we give a proof overview and some
high level intuition. Given two UG assignments X, X', BBKSS define a partition of the graph G into |X| parts and
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call this the approximate shift-partition of G' with respect to X, X’. The partition is given by the functions fX* '
for s € ¥, where XX /(u) roughly equals the indicator function of whether u belongs to part s. Concretely, we
have that fXX'(u) = 1[X,, — X!, = s] - ps.,(val, (X)), that is, u belongs to part s if X,, — X! = s and the value
of u measured with respect to assignment X is large. Note that any vertex can only belong to one part s but
some vertices may not belong to any part. BBKSS prove that for any instance of affine unique games and any two
UG assignments X, X’ that have large value, the functions fX* l satisfy three properties: a) they include a large
number of vertices in total, b) they form a non-expanding partition of G, that is, the fraction of edges that go
across parts is small (roughly at most edges violated by X, X'), and finally c) the functions fs are approximately
Boolean-valued on average. These properties are proved in Section 4 of their paper. They then apply the structure
theorem for non-expanding sets of G to conclude that there exists a subgraph H where the size of the partition
restricted to H (3, Eur [fXX (u)]?) must be large. The crucial observation then is that the pseudoexpectation
of the restricted size on H is by definition the global potential on H. Therefore by taking pseudoexpectation over
X, X’ ~ p where p is a pseudodistribution with high value, they conclude that there exists a subgraph with large
potential. We will use the same proof strategy to conclude that the global potential on a link is large, using the
SoS structure theorem (Theorem along the way.

Let us elaborate on the properties (proved in BBKSS Section 4) of the approximate shift-partition given
by the functions fSX’X/. We will drop the superscript X, X’ for convenience and throughout the proof the
pseudoexpectation is taken with respect to X, X’ ~ u. Since p is a degree 5(1/1/) pseudodistribution with value
at least 1 — 7 we have that:

1. The approximate shift-partition includes most of the vertices in pseudoexpectation over pu:

E [Z E[f.]

sSEX

>1-— —v

_n
1-8—v

2. The approximate shift-partition is non—expanding@ in pseudoexpectation over pu:

E lZm, (- Ac>fs>] Sk 2

SEX
3. The functions f, are approximately Boolean-valued in pseudoexpectation over u:

I’g[zsj B(f.)] =E [Z]g[fs - ff]] S R

sEX

Since the functions f, are non-expanding (property (2) above), this allows us to use our {5 characterization of
non-expansion, to get a lower bound on the size of f, restricted to r-links. We will now use the key observation that
)I? [fs]? is exactly DF fs(7)2. In particular, applying Theorem [10.3|to the function fs with £ set to 7(n) = Ri_16,(M),

gives:

ot =201 2 (=2 (00) (1= e ELL] = (F)DER.DEL) + (1= e)BU7) ).

where B(f) = Ey~x, [f(u) — f(u)?]. Now using the key observation that D¥ f, is exactly Ex_[fs] and noting that
1 — A\.41 > 167 by definition, we can simplify the above to:

st =a0p = (- emslrl - (1) B (BP0 anB).

r~X(r) X- ’

28Tf the functions fs (u) were exactly Boolean-valued and further exactly partitioned the graph, then the term > _(fs,(I — Ag)fs) is

equal to the fraction of edges in GG that have endpoints in different parts. Therefore this expression measures the non-expansion of a
partition.
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Taking a sum over s and then a pseudoexpectation over pu yields:

16 Bt 000 2B |5 (- enels - (1) & |2 [ﬁﬂﬂlm)B(ﬁ))]
—(-e BB - (1) B |E|X EIR| |+ (- an B B,
SEE SEX SEE

where ¢; < 20(k),
We will now use the observation that the global potential restricted to X, exactly corresponds to the second
term above! Recall that the global potential (Definition [C.2)) over an r-link X is given by:

oL, (uly) = HT:N#[ZW( L5 ()2
SEX

X, X'

For convenience of notation we will drop the superscript I in the potential notation henceforth. Re-arranging gives
a lower-bound on the global potential averaged across r-links:

(©3)  E (@suul)] 2 (i)(lm ZEfs (1= c17) [;B(fs)]@E[Z:(fs,(IM)sz)

Plugging in the properties of the functions fs discussed at the start of the proof, this gives the following bound on
the global potential:

1 1 1 n
E [®s,(u,)]> - (1—cty—2— T 2 m+2—" 1o,
LB [®au(l) (i)< vy -2 - o (22— ) )
Setting 8 = 19n and v = 567(]"') and recalling our assumptions on v and 7, this may be simplified by direct
computation to: i
1
E [®5, —
TEX(T)[ s (k) ()

As a result, we see by averaging that there must exist some r-link with high potential:

1
(C.4) I € X(r) s Banlil) 2
as desired. 0
We will now prove Lemma [10.3

LEMMA C.4. (LEMMA [10.3| RESTATED) Assume the conditions of Pmposz’tion hold. Let X be an r-link for
r = Ri_16n(M) — 1 with high global potential: @é’y(uh) > ﬁ, for B=19n and v = 561(7k)' Then the potential

induced on X, is also high:
o! \T( ) >
nw \H) = ey
8(z)
As discussed in Section [I0] proving Lemma [T10.3|requires that a strong expansion property holds for links: expansion
must be similar vertex-by-vertex. We now formalize this property and prove it holds for HD-walks.

DEFINITION C.4. The edge-expansion of a vertex v in a set S C X (k) with respect to a random walk operator M
is given by,

¢s(M,v) =1-1TM1s.
The edge-expansion of S with respect to M is the average edge-expansion taken over vertices in S':
(M, S) = Eyus [¢s(M,v)],

where v ~ S is the distribution m conditioned on S. As before, we drop M from the notation when clear from
context.
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We prove that the expansion of vertices in a link cannot vary much from the link’s overall expansion (which is
small by Theorem [9.1]).

LeEMMA C.5. (RESTATEMENT OF LEMMA [10.4]) Let M be a k-dimensional HD-walk on d-dimensional two-sided
~v-local-spectral expander satisfying v < w(M)_12_Q(h(M)+k) and d > k. Then for every i-link X,, the deviation
of the random variable ¢px_(v) (v ~ X;) is small:

1

LB [lox. () = (X)) < 5

We prove this claim by reducing to simpler HD-walks we can analyze directly. With that in mind, let’s first
prove that a stronger point-wise result holds for any product of “lower walks” (Uj_1 Dy,)".

ProOPOSITION C.2. Let M be a k-dimensional HD-walk on d-dimensional two-sided ~y-local-spectral expander
satisfying v < w(M)~12= MR and d > k. For every i-link X, walk (Uy_1Dy)t, and k-face v € X,, the
expansion of v in X, is almost exactly ¢(X,):

|ox, (Up—1Dk)",v) — ¢((Up—1Dy)", X;)| < t.

Proof. It is more convenient to analyze the non-expansion at v, ¢x ((Up—1Di)",v) = 1 — ¢x, (Us—1Dy)",v),
which for brevity we will denote by ¢(v). Below we will prove that for every v € X,, ¢(v) € [c, c + t7], for some
fixed constant c¢. This immediately implies the result. Since by definition the non-expansion of X, denoted
¢((Ux—1Dy)t, X), is an average over ¢(v), we get that:

|6(v) = ¢((Ur-1Dr)", X7)| = [¢(v) = 6((Uk-1D)", Xr)| < t,

as desired.

Therefore let us now prove that ¢(v) € [c,c + t7] for all v € X,. First, notice that the non-expansion at v is
lower bounded by the probability that the walk does not remove any element from 7 in any down-step. Since the
down step is uniformly random, this probability is the same across all v € X.. Denote this probability by c.

Let us now upper bound ¢(v). The probability that the walk returns to X, is equal to ¢ plus the probability
that starting from v, the walk leaves the link X, at some intermediate (down) step but ends back in X, regardless.
We will show that the latter probability is at most ¢+.

Consider the first down-step where the walk leaves X, removing an element w € 7. To end up in the link of 7,
the walk needs to add w back in one of the future up steps. The probability of this occurring at an up step from
any o € X(k —1) is exactly II, 1 (w) by definition (where I, ;(w) = 0 if w ¢ X,). Since (X,II) is a two-sided
~-local-spectral expander, (X,,I1,) is a standard «-spectral expander. It is a standard result that such graphs
cannot have any vertex of weight greater than -, thus I, ; (w) <. By a union bound the probability that w is
added back in any of the future up steps is therefore at most ¢y. Hence the probability that the walk returns to
X, given that it exited in an intermediate step is at most t7, so we get that ¢(v) € [c, c + t7]. O

It’s worth noting that the vertex-by-vertex expansion property actually holds exactly for the canonical walks.
However, we can only reduce to canonical walks when the height of M is small, an issue we avoid by analyzing
lower walks. We now prove Lemma [I0.4] by reducing general M to this case.

Proof. [Proof of Lemma By repeated application of Lemma any k-dimensional HD-walk M on a two-sided
~-local-spectral expander with k > 0 can be written as a linear combination of lower products (Uy_1Dyg)" up to
O(v) error in the following sense:
h(M)
M = Z ¢i(Up—1Dy)" + T,
i=0

where (Uy_1Dy)° denotes the identity matrix and ||T|| < w(M)2°" M)y, For simplicity of notation, we write
C = ||T||, which is in turn < 1/2'3* for v chosen to be small enough.

We also know by Lemma that for all ¢ there exists a constant u; such that for all vertices v € X,
éx, ((Ux—1Dy)%,v) = u; & h(M)y. Hence we get that,
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J
1—¢x, (Mv)=> ci1] (Up—1Dy)'Ix, + LI TLyx, = > cju; + 1] T1x, £ w(M)h(M)y.
=0

i

Let Y, ciu; = u. We will show that in expectation over v € X;, |1 —¢x_(M,v)—u| < [1TT1x_|+w(M)h(M )y
is small. Define err as the error vector I'lx_. We will bound the 1-norm of err when restricted to coordinates in
X,. Define the vector s to be sign(err(v)) for v € X, and 0 otherwise. First note that,

(s, err) Z Pr[v] - lerr(v)|.
7"k

veEX,

Applying Cauchy-Schwarz on the LHS we get that,

Y W()lerr(v)] < |ls]l - [lerr]]

veX,
= [|1x, |- IT1x, |
<[1x. |- Cl1x, |
=C(1x,, 1x, )n,

So we get that,

>vex, He(v)lerr(v)|
Mt e el = ¢

Using the fact that E,x, [¢x, (M,v)] = ¢(M, X,), we can conclude with a simple trick:

1= 6(M.X,) =l = [Eonx, [L — dx, (M, v) = u]| < Eypex, [lerr(v)[] + w(M)R(M)y < 2C.

Since the average deviation of (1 —¢as - (v)) from w is small, the average deviation from the mean (1 — ¢ (X))
should also be small by triangle inequality:

1

Evx., [I¢x, (M, v) = ¢(M, X7)|] < Bonx, [[1 = éx, (M,v) —ul] + C <30 < 5.

|

We are now ready to prove Lemma Lemma

Proof. [Proof of Lemma We will use Lemma [10.4] _ to relate the global potential on X, to the potential
induced on X,. As a remlnder we proved that for every i-link X, the deviation of the random variable ¢x_(M,u)
(u~ X,) is small:

1

E_[léx, (M,u) = 6(M, Xl < iz

U~

Let us partition X, into two sets, G and G, where G contains all vertices u for which ¢y x. (u) is close to
onm(X;). We will henceforth drop the subscripts M, X,. Formally we define:

6 ={ue X, llot) - 60X < g5

Now note that by Markov’s inequality on Lemma we have that Pry.x, [u ¢ G] := ¢ < 1/2!%. For an
assignment X, let Z, s denote 1[X, — X/ = s]. Expanding out the definition of the global potential on X,
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(Definition , for any two assignments X, X’ we get:

Co0 (X, X =) E [Zusppw(valy(X)))

. u~X
:Z (1=0) B [Zusppo(lu(X)] + ¢ B [ Zusps,(vlu(X))?
<Zl—c NG uépﬂ, Val +Z 1—C Né u,s]

+Zc Zus)

<Zl—c E, [Zu.sPs.0 (Val, (X)]? + (1 —¢) + 2,

where ¢ < 1/2'% and we used the fact that pg, (y) < 1, when y € [0,1], Z, s € [0,1] and }__ Z,, = 1.

To relate the two potentials we will relate the quantities val,(X) and val],(X) for u € G, where val,(X)
denotes the fraction of edges incident on u that are satisfied by X, and further val], (X) denotes the fraction of edges
incident on u that lie inside X, and are satisfied by X. We will use the fact that vertices in G have small expansion.
When 7 = Ry _16,(M), by Theorem [9.1] the expansion of the r-link X, is at most 1 — A1 + w(M)h(M)?20F)
which is less than 17n because of the way the parameters have been set up. Therefore for all vertices w in G,
é(u) < 18n since n > 1/2%. This implies that for any assignment X € ¥V and any u € G:

1vall}(X) > 8 — 187] > Lval,(X) > ],
Furthermore by the properties of the polynomials pg ., (Y'), since v < 7,
Pa—18n.w(val, (X)) + v = pg.u(valy (X)) —v.

Finally expanding out the definition of the potential induced on X, (Definition |C.3|), for any two assignments
X, X' we get:

(1)27187] v Z E u s pﬁ718n7V(ValzTL(X))]2
QEE
= Z EEX [Zu,s : (pﬁ,l/(valu(X)) - 21’)}2
sEZu T
=z (Z UNEXT [Zu,s - (pﬁ,V(Valu(X)))]2> —4v
seX
> Z (1—c¢)? G Z s (Valy, (X))]? — 4v
se€X
(C.5) > 5, (X, X")|; —c(1 —c) —c* —4v,

where we again used the facts that Z, , € [0,1], >, Z, s = 1 and pg . (y) € [0,1] when y € [0,1]. We also have
that ¢ < 21% < % since > 1/2% and therefore ¢ < v implying that: DL 18, (X, X)) > g, (X, X)|; — 6,

Now note that all the inequalities above are sum-of-squares inequalities of degree at most 2 deg(p) = O(1/v). We
can therefore relate the two potentials when measured with respect to p, which is a degree-O(1/v) pseudodistribution,
by applying the pseudoexpectation operator E, to Equation |i above:

OF 150 (1) = B[®F g, (X, X)) > E[@5, (X, X)|;] - 6v = g, (ul,) — 6v.
H w

By the conditions of the lemma, ®g,(p|;) = 1/4(?’f)7 B =190 and v = 56?’“) we get @7 (1) > L. This

completes the proof of the lemma. 0
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