
RAFT-3D: Scene Flow using Rigid-Motion Embeddings

Zachary Teed and Jia Deng
Princeton University

{zteed,jiadeng}@cs.princeton.edu

Abstract

We address the problem of scene flow: given a pair of

stereo or RGB-D video frames, estimate pixelwise 3D mo-

tion. We introduce RAFT-3D, a new deep architecture for

scene flow. RAFT-3D is based on the RAFT model devel-

oped for optical flow but iteratively updates a dense field

of pixelwise SE3 motion instead of 2D motion. A key inno-

vation of RAFT-3D is rigid-motion embeddings, which rep-

resent a soft grouping of pixels into rigid objects. Integral

to rigid-motion embeddings is Dense-SE3, a differentiable

layer that enforces geometric consistency of the embed-

dings. Experiments show that RAFT-3D achieves state-of-

the-art performance. On FlyingThings3D, under the two-

view evaluation, we improved the best published accuracy

(� < 0.05) from 34.3% to 83.7%. On KITTI, we achieve

an error of 5.77, outperforming the best published method

(6.31), despite using no object instance supervision. Code

is available at https://github.com/princeton-
vl/RAFT-3D.

1. Introduction

Scene flow is the task of estimating pixelwise 3D mo-
tion between a pair of video frames[44]. Detailed 3D mo-
tion is requisite for many downstream applications includ-
ing path planning, collision avoidance, virtual reality, and
motion modeling. In this paper, we focus on stereo scene
flow and RGB-D scene flow, which address stereo video
and RGB-D video respectively.

Many scenes can be well approximated as a collection
of rigidly moving objects. The motion of driving scenes,
for example, can be modeled as a variable number of cars,
buses, and trucks. The most successful scene flow ap-
proaches have exploited this structure by decomposing a
scene into its rigidly moving components[33, 46, 46, 48, 31,
2, 21, 20, 24]. This introduces a powerful prior which can
be used to guide inference. While optical flow approaches
typically assume piecewise smooth motion, a scene contain-
ing rigid objects will exhibit piecewise constant 3D motion
fields (Fig. 1).

Recently, many works have proposed integrating deep
learning into scene flow estimation pipelines. A common
approach has been to use object detection[2, 4] or segmen-
tation [2, 31, 30, 38] networks to decompose the scene into
a collection of potentially rigidly moving objects. Once the
scene has been segmented into its rigidly moving compo-
nents, more traditional optimization can be used to fit a mo-
tion model to each of the objects. One limitation of this
approach is that the networks require instance segmenta-
tions to be trained and cannot recover the motion of new un-
known objects. Object detection and instance segmentation
introduce non-differentiable components into the network,
making end-to-end training difficult without bounding box
or instance level supervision.

We introduce RAFT-3D, an end-to-end differentiable ar-
chitecture which estimates pixelwise 3D motion from stereo
or RGB-D video. RAFT-3D is built on top of RAFT [42], a
state-of-the-art optical flow architecture that builds all-pairs
correlation volumes and uses a recurrent unit to iteratively
refine a 2D flow field. We retain the basic iterative structure
of RAFT but introduce a number of novel designs.

The main innovation we introduce is rigid-motion em-
beddings, which are per-pixel vectors that represent a soft
grouping of pixels into rigid objects. During inference,
RAFT-3D iteratively updates the rigid-motion embeddings
such that pixels with similar embeddings belong to the same
rigid object and follow the same SE3 motion.

Integral to rigid-motion embeddings is Dense-SE3, a dif-
ferentiable layer that seeks to ensure that the embeddings
are geometrically meaningful. Dense-SE3 iteratively up-
dates a dense field of per-pixel SE3 motion by perform-
ing unrolled Gauss-Newton iterations such that the per-pixel
SE3 motion is geometrically consistent with the current es-
timates of rigid-motion embeddings and pixel correspon-
dence. Because of Dense-SE3, the rigid-motion embed-
dings can be indirectly supervised from only ground truth
3D scene flow, and our approach does not need any super-
vision of object boxes or masks.

Fig. 1 provides an overview of our approach. RAFT-3D
take a pair of RGB-D images as input. It extracts features
from the input images and builds a 4D correlation volume

ar
X

iv
:2

01
2.

00
72

6v
2

 [c
s.C

V
]

6
A

pr
 2

02
1

https://github.com/princeton-vl/RAFT-3D
https://github.com/princeton-vl/RAFT-3D

5
HVQHW��

2
S
WL
F
D
O�
)
OR
Z

5
R
WD
WL
R
Q

7
U
D
Q
V
OD
WL
R
Q

,
P
D
J
H
�
'
H
S
WK
��

,
P
D
J
H
�
'
H
S
WK
��

Figure 1. Overview of our approach. Features extracted from the input images are used to construct a 4D correlation volume. We initialize
the SE3 motion field, T, to be the identity at every pixel. During each iteration, the update operator uses the current SE3 motion estimate to
index from the correlation volume, using the correlation features and hidden state to produce estimates of pixel correspondence and rigid-
motion embeddings. These estimates are plugged into Dense-SE3, a least-squares optimization layer which uses geometric constraints to
produce an update to the SE3 field. After successive iterations we recover a dense SE3 field, which can be decomposed into a rotational
and translation component. The SE3 field can be projected onto the image to recover optical flow.

by computing the visual similarity between all pairs of pix-
els. RAFT-3D maintains and updates a dense field of pix-
elwise SE3 motion. During each iteration, it uses the cur-
rent estimate of SE3 motion to index from the correlation
volume. A recurrent GRU-based update operator takes the
correlation features and produces an estimate of pixel cor-
respondence, which is then used by Dense-SE3 to generate
updates to the SE3 motion field.

RAFT-3D achieves state-of-the-art accuracy. On Fly-
ingThings3D, under the two-view evaluation [26], RAFT-
3D improves the best published accuracy (� < 0.05) from
34.3% to 83.7%. On KITTI, RAFT-3D achieves an error of
5.77, outperforming the best published method (6.31), de-
spite using no object instance supervision.

2. Related Work

The task of reconstructing a 3D motion field from video
is often referred to as estimating “scene flow”.
Optical Flow: Optical flow is the problem of estimating
dense 2D pixel-level motion between a pair of frames. Early
work formulated optical flow as a energy minimization
problem, where the objective was a combination of a data
term—encouraging the matching of visually similar image
regions—and a regularization term—favoring piecewise
smooth motion fields. Many early scene flow approaches
evolved from this formulation, replacing piecewise smooth

flow priors with a piecewise constant rotation/translation
field prior[47, 33]. This greater degree of structure allowed
scene flow methods to outperform approaches which treated
optical flow or stereo separately[46].

Recently, the problem of optical flow has been reformu-
lated in the context of deep learning. Many works have

demonstrated that a neural network can be directly trained
to estimate optical flow between a pair of frames, and a
large variety of network architectures have been proposed
for the task [10, 19, 40, 37, 29, 50, 42]. RAFT[42] is a
recurrent network architecture for estimating optical flow.
RAFT builds a 4D correlation volume by computing the vi-
sual similarity between all pairs of pixels; then, during in-
ference, a recurrent update operator indexes from the corre-
lation volume to produce a flow update. A unique feature of
RAFT is that a single, high resolution, flow field is updated
and maintained.

Our approach is based on the RAFT architecture, but in-
stead of a flow field, we estimate a SE3 motion field, where
a rigid body transformation is estimated for each pixel.
When projected onto the image, our SE3 motion vectors
give more accurate optical flow than RAFT.

Rectified Stereo: Rectified stereo can be viewed as a 1-
dimensional analog to optical flow, where the correspon-
dence of each pixel in the left image is constrained to lie on
a horizontal line spanning the right image. Like optical flow,
traditional methods treated stereo as an energy minimiza-
tion problem[18, 36] often exploiting planar information[3].

Recent deep learning approaches have borrowed many
core concepts from conventional approaches such as the
use of a 3D cost volume [23], replacing hand-crafted fea-
tures and similarity metrics with learned features, and cost
volume filtering with a learned 3D CNN. Like optical
flow, a variety of network architectures have been proposed
[23, 52, 15, 6]. Here we use GA-Net[52] to estimate depth
between the each left/right image pair.

Scene Flow: Like optical flow and stereo, scene flow can
be approached as a energy minimization problem. The ob-

jective is to recover a flow field such that (1) visually sim-
ilar image regions are aligned and (2) the flow field maxi-
mizes some prior such as piecewise rigid motion and piece-
wise planar depth. Both variational optimization[35, 21, 20]
and discrete optimization[33, 20] approaches have been ex-
plored for inference. Our network is designed to mimic the
behavior an optimization algorithm. We maintain an esti-
mate of the current motion field which is updated and re-
fined with each iteration.

Jaimez et al.[21] proposed an alternating optimization
approach for scene flow estimation from a pair of RGB-D
images, iterating between grouping pixels into rigidly mov-
ing clusters and estimating the motion model for each of the
cluster. Our method shares key ideas with this approach,
namely the grouping of pixels into rigidly moving objects,
however, we avoid a hard clustering by using rigid-motion
embeddings, which softly and differentiably group pixels
into rigid objects.

Recent works have leveraged the object detection and se-
mantic segmentation ability of deep networks to improve
scene flow accuracy[31, 4, 38, 2, 13]. In these works,
an object detection or instance segmentation network is
trained to identify potentially moving objects, such as cars
or buses. While these approaches have been very effective
for driving datasets such as KITTI where moving objects
can be easily identified using semantics, they do not gener-
alize well to novel objects. An additional limitation is that
the detection and instance segmentation introduces non-
differentiable components into the pipeline, requiring these
components to be trained separately on ground truth anno-
tation. Ma et al. [31] was able to train an instance segmen-
tation network jointly with optical flow estimation by dif-
ferentiating through Gauss-Newton updates; however, this
required additional instance supervision and pre-training on
Cityscapes[8]. On the other hand, our network outperforms
these approaches without using object instance supervision.

Yang and Ramanan[51] take a unique approach and use a
network to predict optical expansion, or the change in per-
ceived object size. Combining optical expansion with op-
tical flow gives normalized 3D scene flow. The scale am-
biguity can be recovered using Lidar, stereo, or monocular
depth estimation. This approach does not require instance
segmentation, but also cannot directly enforce rigid motion
priors.

Another line of work has focused on estimating 3D mo-
tion between a pair [26, 49, 14] or sequence[27, 11] of
point clouds. These approaches are well suited for Lidar
data where the sensor produces sparse measurements. How-
ever, these works do not directly exploit scene rigidity. As
we demonstrate in our experiments, reasoning about object
level rigidity is critical for good accuracy.

3. Approach

We propose an iterative architecture for scene flow esti-
mation from a pair of RGB-D images. Our network takes
in two image/depth pairs, (I1, Z1), (I2, Z2), and outputs a
dense transformation field T 2 SE(3)H⇥W which assigns
a rigid body transformation to each pixel. For stereo im-
ages, the depth estimates Z1 and Z2 are obtained using an
off-the-shelf stereo network.

3.1. Preliminaries

We use the pinhole projection model and assume known
camera intrinsics. We use an augmented projection func-
tion which maps a 3D point to its projected pixel coordi-
nates, (x, y), in addition to inverse depth d = 1/Z. Given a
homogeneous 3D point X = (X,Y, Z, 1)

(x, y, d) = ⇡(X) =

0

@
fx(X/Z) + cx
fy(Y/Z) + cy

1/Z

1

A (1)

where (fx, fy, cx, cy) are the camera intrinsics.
Given a dense depth map Z 2 R+

H⇥W , we can use the
inverse projection function.

0

BB@

X
Y
Z
1

1

CCA = ⇡�1(x, y, d) =
1

d

0

BB@

(x� cx)/fx
(x� cy)/fy

1
d

1

CCA (2)

which maps from pixel (x, y, d) to the point (X,Y, Z, 1),
again with inverse depth d = 1/z.
Mapping Between Images: We use a dense transforma-
tion field, T 2 SE(3)H⇥W to represent the 3D motion
between a pair of frames. Using T, we can construct a
function which maps points in frame I1 to I2. Letting
xi = (xi, yi, di) be the pixel coordinate at index i then the
mapping

x
0
i
= (x0

i
, y0

i
, d0

i
) = ⇡(Ti ·Xi), Xi = ⇡�1(xi) (3)

can be used to find the correspondence of xi in I2.
A flow vector can be obtained by taking the difference

x
0
i
� xi. The first two components of the flow vector give

us the standard optical flow. The last component provides
the change in inverse depth between the pair of frames. The
focus of this paper is to recover T given a pair of frames.
Jacobians: For optimization purposes, we will need the Ja-
cobian of the Eqn. 3. Using the chain rule, we can compute
the Jacobian of Eqn. 3 as the product of the projection Ja-
cobian

J⇡ =
@⇡(X0)

@X0 =

0

@
fxd0 0 �fxX 0d02

0 fyd0 �fyY 0d02

0 0 �d02

1

A (4)

and the transformation Jacobian

JT = (I3⇥3, (X
0)^) , w

^ =

0

@
0 -w3 w2

w3 0 -w1

-w2 w1 0

1

A (5)

using local coordinates defined by the retraction exp(�^) ·
T. Giving the Jacobian of Eqn. 3 as J = J⇡ · JT 2 R3⇥6.
Optimization on Lie Manifolds: The space of rigid-body
transformations forms a Lie group, which is a smooth man-
ifold and a group. In this paper, we use the Gauss-Newton
algorithm to perform optimization steps over the space of
dense SE3 fields.

Given a weighted least squares objective

E(x) =
X

i

wi · (fi(x)� yi)
2 (6)

the Gauss-Newton algorithm linearizes the residual terms,
and solves for the update

J
T diag(w) J�x = J

T
r(x) (7)

ri = fi(x)� yi Ji =
@fi(exp(�^)x)

@�

����
�=0

(8)

The update is found by solving Eqn. 8 and applying the re-
traction T

0 = exp(�x
^) ·T. Eqn. 8 can be rewritten as the

linear system

H�x = b H = J
T diag(w) J, b = J

T
r(x) (9)

and H and b can be constructed without explicitly forming
the Jacobian matrices

H =
X

i

wi · JT

i
Ji, b =

X

i

wi · JT

i
ri(x). (10)

This fact is especially useful when solving optimization
functions with millions of residual terms. In this setting,
storing the full Jacobian matrix becomes impractical.

3.2. Network Architecture

Our network architecture is based on RAFT[42]. We
construct a full 4D correlation volume by computing the vi-
sual similarity between all pairs of pixels between the two
input images. During each iteration, the network uses the
current estimate of the SE3 field to index from the correla-
tion volume. Correlation features are then fed into an re-
current update operator which estimates a dense flow field.
We provide an overview of the RAFT architecture here, but
more details can be found in [42].
Feature Extraction: We first extract features from the two
input images. We use two separate feature extract networks.
The feature encoder, f✓, is applied to both images with
shared weights. f✓ extracts a dense 128-dimension feature

vector at 1/8 resolution. It consists of 6 residuals blocks, 2
at 1/2 resolution, 2 at 1/4 resolution, and 2 at 1/8 resolution.
We provide more details of the network architectures in the
appendix.

The context encoder extracts semantic and contextual in-
formation from the first image. Different from the origi-
nal RAFT[42], we use a pretrained ResNet50[17] with a
skip connection to extract context features at 1/8 resolution.
The reason behind this change is that grouping objects into
rigidly moving regions requires a greater degree of seman-
tic information and larger receptive field. During training,
we freeze the batch norm layers in the context encoder.
Computing Visual Similarity: We construct a 4D correla-
tion volume by computing the dot product between all-pairs
of feature vectors between the input images

Cijkh(I1, I2) = hf✓(I1)ij , f✓(I2)khi 2 RH⇥W⇥H⇥W

(11)
We then pool the last two dimensions of the correlation vol-
ume 3 times using average pooling with a 2 ⇥ 2 kernel, re-
sulting in a correlation pyramid {C1,C2,C3,C4} with

Ck 2 RH⇥W⇥H/2k�1⇥W/2k�1

(12)

Indexing the Correlation Pyramid: Given a current esti-
mate of correspondence x0 = (u, v), we can index from the
correlation volume to produce a set of correlation features.
First we construct a neighborhood grid around x

Nx = {(u+ du, v + dv) | du, dv 2 {�r, ..., r} } (13)

and then use the neighboorhood to sample from the cor-
relation volume using bilinear sampling. We note that the
constructing and indexing from the correlation volume is
performed in an identical manner to RAFT[41].
Update Operator: The update operator is a recurrent
GRU-unit which retrieves features from the correlation vol-
ume using the indexing operator and outputs a set of revi-
sions. RAFT uses a series of 1x5 and 5x1 GRU units; we
use a single 3x3 unit but use a kernel composed of 1 and 3
dilation rates. We provide more details on the architecture
of the update operator in the appendix.

Using Eqn. 3, we can use the current estimate of T to
estimate 2D correspondences x

0 = ⇡(T · ⇡�1(x)). The
following features are used as input to the GRU

– Flow field: x0 � x

– Twist field: log
SE3(T)

– Depth residual: d0 � d̄
0

– Correlation features: LC(x0)

In the depth residual term, the inverse depth d0
i

is obtained
from the depth component of x0

i
, i.e. the backprojected pixel

i expressed in the coordinate system of frame 2. The inverse
depth d̄0

i
is obtained by indexing the inverse depth map of

frame 2 using the correspondence x0
i

of pixel i. If pixel
i is non-occluded, an accurate SE3 field T should result
in a depth residual of 0. Each of the derived features are
processed through 2 convolutional layers and then provided
as input to the convolutional GRU.

The hidden state is then used to predict the inputs to the
Dense-SE3 layer. We apply two convolutional layers to hid-
den state to output a rigid-motion embedding map V. We
additionally predict a “revision map” rx, ry, rz and corre-
sponding confidence maps wx,wy,wz 2 [0, 1]. The re-
visions rx and ry correspond to corrections that should be
made to the optical flow induced by the current SE3 field.
In other words, the network is trying to get a new estimate
of pixel correspondence, but is expressing it on top of the
flow induced by the SE3 field. The revisions rz is the cor-
rections that should be made to the inverse depth in frame
2 when the inverse depth is used by Dense-SE3 to enforce
geometric consistency. This is to account for noise in the
input depth as well as occlusions. The embedding map and
revision maps are taken as input to the Dense-SE3 layer to
produce an update to the SE3 motion field.

SE3 Upsampling: The SE3 motion field estimated by the
network is at 1/8 of the resolution. We use convex up-
sampling [42] to upsample the transformation field to the
full input resolution. In RAFT[42], the high resolution flow
field was taken to be the convex combination of 3⇥ 3 grids
at the lower resolution with combination weights predicted
by the network. However, the SE3 field T lies on a mani-
fold and is not closed under linear combinations. Instead we
perform upsampling by first mapping T to the Lie algebra
using the logarithm map, performing convex upsampling in
the lie algebra, and then mapping back to the manifold using
the exponential map.

3.3. Dense-SE3 Layer

The key ingredient to our approach is the Dense-SE3
layer. Each application of the update module produces a
revision map r = (rx, ry, rz). The Dense-SE3 layer is a
differentiable optimization layer which maps the revision
map to a SE3 field update.

The rigid-motion embedding vectors are used to softly
group pixels into rigid objects. Given two embedding vec-
tors vi and vj , we compute an affinity aij 2 [0, 1] by taking
the sigmoid of the negative L2 distance

aij = 2 ⇤ �(�||vi � vj ||2) 2 [0, 1] (14)

Objective Function: Using the affinity terms, we define an

objective function based on the reprojection error

E(�) =
X

i2⌦

X

j2Ni

aije
2
ij
(�i) (15)

e2
ij
(�i) = ||rj + ⇡(TjXj)� ⇡(e�iTiXj)||2wj

(16)

with ||x||2w = x
T diag(w)x. The objective states that for

every pixel i, we want a transformation Ti which describes
the motion of pixels in a neighborhood j 2 Ni. However,
not every pixel j 2 Ni belongs to the same rigidly moving
object. That is the purpose for the embedding vector. Only
pairs (i, j) with similar embeddings significantly contribute
to the objective function.
Efficient Optimization: We apply a single Gauss-Newton
update to Eqn. 16 to generate the next SE3 estimate. Since
the Dense-SE3 layer is applied after each application of the
update operator, 12 iterations of the update operator yields
12 Gauss-Newton updates.

The objective defined in Eqn. 16 can result in a very
large optimization problem. We generally use a large neigh-
borhood Ni in practice; in some experiments we take Ni to
be the entire image. For the FlyingThings3D dataset, with
540 ⇥ 960 resolution, this results in 200 million equations
and 50,000 variables (Dense-SE3 layer operators at 1/8 the
input resolution). Trying the store the full system would
exceed available memory.

However, each term in Eqn. 16 only includes a single
Ti. This means that instead of solving a single optimization
problem with H ⇥W ⇥ 6 variables, we can instead solve a
set of H⇥W problems each with only 6 variables. Further-
more, we can leverage Eqn. 10 and build the linear system
in place without explicitly constructing the Jacobian. When
implemented directly in Cuda, a Gauss-Newton update of
Eqn. 16 can be performed very quickly and is not a bottle-
neck in our approach.

3.4. bi-Laplacian Embedding Optimization

Since our architecture operates primarily at high reso-
lution, it can be difficult for the network to group pixels
which span large objects. We implement a differentiable
bi-Laplacian optimization layer in order to smooth embed-
ding vectors within motion boundaries. Vogel et al. [45]
used a similar differentiable optimization layer to smooth
optical flow within motion boundaries; however, they use
iterative methods to solve the linear system while we use
direct Cholesky factorization which allows us to reuse the
factorization for each channel of the embedding vector.

Given an embedding map V 2 RH⇥W⇥C , we have the
GRU predict additional edge weights wx,wy 2 RH⇥W

+ and
define the objective

u
⇤ = min

u

n
||Dxu||2wx

+ ||Dxu||2wy
+ ||u� v||2

o
(17)

image flow ⌧ �

Figure 2. Visualization of the predicted motion fields on FlyingThings3D (top) and KITTI (bottom). Our network outputs a dense SE3
motion field, which can be used to compute optical flow. We visualize the SE3 field as the twist field where (⌧,�) = logSE3(T). Note
that the twist fields are piecewise constant—pixels from the same rigid object are assigned the same SE3 motion.

where Dx and Dy are linear finite difference operators, and
v is the flattened feature map.

In other words, we want to solve for a new embedding
map u which is smooth within motion boundaries and close
to the original embedding map v. At boundaries, the net-
work can set the weights to 0 so that edges do not get
smoothed over. Eqn. 17 can be solved in closed form using
sparse Cholesky decomposition and we use the Cholmod
library[7]. Using nested dissection[12] factorization can be
performed in O((HW)1.5) time and backsubstition can be
performed in O(C · (HW)1.5) time. In the appendix, we
derive the gradients of Eqn. 17. Since the optimization layer
is differentiable, the inputs wx and wy don’t require direct
supervision.

3.5. Supervision

We supervise our network on a combination of ground
truth optical flow and inverse depth change. Our network
outputs a sequences of {T1,T2, . . . ,TK}. For each trans-
formation, Tk, we computed the induced optical flow and
inverse depth change

f
k

est
= ⇡(Tk · ⇡�1(x))� x (18)

where x is a dense coordinate grid in I1. We compute the
loss as the sequence over all estimations

L =
NX

k=1

�N�k||fk
est

� fgt||1 (19)

with � = 0.9. Note that no supervision is applied to the em-
bedding vectors, and that rigid-motion embeddings are im-
plicitly learned by differentiating through the dense SE(3)

update layer. We also apply an additional loss directly to
the revisions predicted by the GRU with 0.2 weight.

4. Experiments

We evaluate our approach on a variety of real and syn-
thetic datasets. For all experiments we use the AdamW
optimizer[28] with weight decay set to 1 ⇥ 10�5 and un-
roll 12 iterations of the update operator. All components
of the network are trained from scratch, with the exception
of the context encoder which uses ImageNet [9] pretrained
weights.

Training RAFT-3D involves differentiating a computa-
tion graph which consists of both Euclidean tensors (e.g.
network weights, feature activation) and Lie Groups ele-
ments (e.g. SE3 transformation field). We use the LieTorch
library[43] to perform backpropagation in the tangent space
of manifold elements in the computation graph.

4.1. FlyingThings3D

The FlyingThings3D dataset was introduced as part of
the synthetic Scene Flow datasets by Mayer et al. [32]. The
dataset consists of ShapeNet [5] shapes with randomized
translation and rotations placed in a scene populated with
background objects. While the dataset is not naturalistic,
it offers a challenging combination of camera and object
motion, each of which span all 6 degrees of freedom.

We train our network for 200k iterations with a batch size
of 4 and a crop size of [320, 720]. We perform spatial aug-
mentation by random cropping and resizing and adjust in-
trinsics accordingly. We use an initial learning rate of .0001
and decay the learning rate linearly during training.

Method Input 2D Metrics 3D Metrics
�2D <1px EPE �3D < .05 �3D < 0.10 EPE

RAFT [42] RGB 79.4% 3.53 - - -
RAFT (2D flow backprojected) RGB-D 78.8% 3.42 50.6% 55.7% 5.442
RAFT (2D flow + depth change) RGB-D 75.2% 3.66 33.9% 47.2% 1.218
RAFT (3D flow) RGB-D 73.6% 4.42 36.2% 55.4% 0.266
Ours RGB-D 86.4% 2.46 87.8% 91.5% 0.062

Table 1. Results on the FlyingThings3D dataset using the images from the FlowNet3D split. We evaluate on the full images (excluding
pixels at infinity and extremely fast moving regions with flow > 250px)

Method Input �3D < .05 �3D < 0.10 EPE3D

FlowNet3D [26] XYZ 25.4% 57.9% 0.169
FlowNet3D++[49] RGB-D 30.3% 63.4% 0.137
FLOT[34] XYZ 34.3% 64.3% 0.156

Ours RGB-D 83.7% 89.2% 0.064

Table 2. 3D scene flow results on the FlyingThings3D dataset us-
ing the split proposed by Liu et al [26] where only non-occluded
points with depth <35m are considered for evaluation. Our
method outperforms existing point-based scene flow networks by
a large margin.

We evaluate our network using 2D and 3D end-point-
error (EPE). 2D EPE is defined as the euclidean distance
between the ground truth optical flow and the predicted op-
tical flow which can be obtained from the 3D transforma-
tion field using Eqn. 3. 3D EPE is the euclidean distance
between the ground truth 3D scene flow and the predicted
scene flow. We also report threshold metrics, which mea-
sure the portion of pixels which lie within a given threshold.

In Tab. 2 we compare to point cloud based scene
flow methods[26, 49, 34] using the split proposed in
FlowNet3D[26] containing roughly 2000 test examples
sampled from the FlyingThings3D test set. In this evalu-
ation setup, only non-occluded pixels with depth <35 me-
ters are used for evaluation. Our method improves the 3D
� < 0.05 accuracy from 34.3% to 83.7%.

In Tab. 1 we compare to RAFT[42] and several baselines
we implement to extend RAFT to predict 3D motion. All
RAFT baselines use the same network architecture as our
approach, including the pretrained ResNet-50. All baselines
are provided with inverse depth as input which is concate-
nate with the input images. We also experiment with di-
rectly provided depth as input, but found that inverse depth
gives the best results.

RAFT (2D flow backprojected) uses the depth maps to
backproject 2D motion into a 3D flow vector, but this only
works for non-occluded pixels, which is the reason for the
very large 3D EPE error. RAFT (2D flow + depth change)
predicts 2D flow in addition to inverse depth change, which
can be used to recover 3D flow fields. Finally, we also test a
version of RAFT which predicts 3D motion fields directly;
RAFT(3D flow). We find that our method outperforms all

these baselines by a large margin, particularly on the 3D
metrics. This is because our network operates directly on
the SE3 motion field, which offers a more structured repre-
sentation than flow fields and we produce analytically con-
strained updates which the other baselines lack.

In this experiment, we evaluate over all pixels (exclud-
ing extremely fast moving objects with flow >250 pixels).
Since we decompose the scene into rigidly moving compo-
nents, our method can estimate the motion of occluded re-
gions as well. We provide qualitative results in Fig. 2. These
examples show that our network can segment the scene into
rigidly moving regions, producing piecewise constant SE3
motion fields, even though no supervision is used on the
embeddings.

4.2. KITTI

Using our model trained on FlyingThings3D, we fine-
tune on KITTI for an additional 50k iterations with an ini-
tial learning rate of 5 ⇥ 10�5. We use a crop size of [288,
960] and perform spatial and photometric augmentation. To
estimate disparity, we use GA-Net[52], which provides the
input depth maps for our method.

We submit our method to the KITTI leaderboard and
report results from our method and other top performing
methods in Tab. 3. Our approach outperforms all pub-
lished methods. DRISP [31] is the next best performing
approach, and combines PSMNet[6], PWC-Net[40], and
Mask-RCNN[16]. Mask-RCNN is pretrained on Cityscapes
and fine-tuned on KITTI using bounding box and instance
mask supervision. Our network outperforms DRISP despite
only training on FlyingThings3D and KITTI, and uses no
instance supervision.

4.3. Ablations

We ablate various components of our model on the Fly-
ingThings dataset and report results in Tab. 4. For all ab-
lations, we use our network without bi-Laplacian optimiza-
tion as the baseline architecture.
Iterations: We evaluate the performance of our model as
function of the number of application of the update operator.
We find that more iterations gives better performance up to
about 16, after which we observe a slight degradation.

Disparity 1 Disparity 2 Optical Flow Scene Flow
Methods Runtime bg fg all bg fg all bg fg all bg fg all
OSF [33] 50 mins 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23
SSF [38] 5 mins 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07
Sense [22] 0.31s 2.07 3.01 2.22 4.90 10.83 5.89 7.30 9.33 7.64 8.36 15.49 9.55
DTF Sense [39] 0.76 sec 2.08 3.13 2.25 4.82 9.02 5.52 7.31 9.48 7.67 8.21 14.08 9.18
PRSM* [48] 5 mins 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97
OpticalExp [51] 2.0 sec 1.48 3.46 1.81 3.39 8.54 4.25 5.83 8.66 6.30 7.06 13.44 8.12
ISF [2] 10 mins 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08
ACOSF [25] 5mins 2.79 7.56 3.58 3.82 12.74 5.31 4.56 12.00 5.79 5.61 19.38 7.90
DRISF[31] 0.75 sec (2 GPUs) 2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31

Ours 2.0 sec 1.48 3.46 1.81 2.51 9.46 3.67 3.39 8.79 4.29 4.27 13.27 5.77

Table 3. Results of the top performing methods on the KITTI leaderboard. Ours ranks first on the leaderboard among all published methods.

Experiment Configuration 2D Metrics 3D Metrics
�2D <1px EPE �3D < .05 �3D < 0.10 EPE

Iterations

1 62.1 6.05 56.0 65.9 0.212
3 82.8 2.95 80.5 85.7 0.098
8 85.5 2.47 86.4 90.5 0.062
16 85.8 2.43 87.1 91.0 0.059

32 85.7 2.50 87.0 90.9 0.061

Neighborhood Radius (px)

8 73.2 4.01 38.7 59.0 0.192
64 83.8 2.52 78.1 86.6 0.078
256 85.8 2.43 87.1 91.0 0.059

Full Image 83.3 2.91 83.2 88.1 0.078

Revision Factors Flow 86.1 2.29 84.6 88.7 0.081
Flow + Inv. Depth 85.8 2.43 87.1 91.0 0.059

bi-Laplacian Smoothing No 85.8 2.43 87.1 91.0 0.059

Yes 86.3 2.45 87.8 91.5 0.062
Table 4. Ablation experiments, details of the individual experiments are provided in 4.3

Neighborhood Radius: The Dense-SE3 layer defines an
objective which such at all pairs of pixels within a specific
radius r contribute to the objective. Here, we train networks
where r is set to {8, 64, 256,1}. In the last case, all pairs of
pixels in the image contribute to the objective. We find that
256 gives the better performance than smaller radii; how-
ever, using the full image gives worse performance. This
is likely due to the fact that most rigid objects will be less
than 512 pixels in diameter, and imposing a restriction on
the radius is a useful prior.

Revision Factors: The update operator produces a set of
revisions which are used as input to the Dense-SE3 layer.
Here we experiment with different revisions. In Flow we
only use the optical flow revisions rx and ry . In flow + inv.

depth we include inverse depth revisions. We find that in-
cluding inverse depth revisions leads to better performance
on 3D metrics because it leverages depth consistency.

bi-Laplacian Optimization: Here we test the impact bi-
Laplacian optimization layer. Our pooling layer improves
the accuracy of the threshold metrics improving 1px accu-
racy from 85.8 to 86.3, and 3D accuracy from 87.1 to 87.8
and gives comparable average EPE. In Fig. 3 we see that
the pooling layer produces qualitatively better results, par-
ticularly over large objects.

Parameter Count and Timing: RAFT-3D has 45M train-

with bi-Laplacian without bi-Laplacian

Figure 3. Impact of bi-Laplacian optimization layer on motion
fields. This layer improves the ability of the network to aggregate
embedding vectors within motion boundaries.

able parameters. The ResNet50 backbone has 40M param-
eters, while the feature extractor and update operator make
up the remaining 5M parameters.

We provide a breakdown of the inference time in Tab.
5. Timing results are computed on 540x960 images with a
GTX 1080Ti GPU using 16 updates. Inference on 540x960
images requires 1.6G of GPU memory, which is mainly re-
quired to store the 4D correlation volume.

Component Time (ms)

Feature Extraction 52ms
Cost Volume 4ms
Update Operator (GRU) 208ms (13ms/iter)
Gauss Newton Iteration 120ms (7.5ms/iter)
SE3 Upsampling 2ms

Total 386ms

Table 5. Forward pass timing for different components.

5. Conclusion

We have introduced RAFT-3D, an end-to-end network
for scene flow. RAFT-3D uses rigid-motion embeddings,
which represent a soft grouping of pixels into rigidly mov-
ing objects. We demonstrate that these embeddings can be
used to solve for dense and accurate 3D motion fields.

Acknowledgements: This research is partially supported
by the National Science Foundation under Grant IIS-
1942981.

References

[1] Brandon Amos and J Zico Kolter. Optnet: Differentiable
optimization as a layer in neural networks. In Proceedings

of the 34th International Conference on Machine Learning-

Volume 70, pages 136–145. JMLR. org, 2017. 12
[2] Aseem Behl, Omid Hosseini Jafari, Siva Karthik

Mustikovela, Hassan Abu Alhaija, Carsten Rother, and
Andreas Geiger. Bounding boxes, segmentations and
object coordinates: How important is recognition for 3d
scene flow estimation in autonomous driving scenarios?
In International Conference on Computer Vision (ICCV),
volume 6, 2017. 1, 3, 8

[3] Michael Bleyer, Christoph Rhemann, and Carsten Rother.
Patchmatch stereo-stereo matching with slanted support win-
dows. In Bmvc, volume 11, pages 1–11, 2011. 2

[4] Zhe Cao, Abhishek Kar, Christian Hane, and Jitendra Ma-
lik. Learning independent object motion from unlabelled
stereoscopic videos. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5594–
5603, 2019. 1, 3

[5] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015. 6
[6] Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo

matching network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5410–
5418, 2018. 2, 7

[7] Yanqing Chen, Timothy A Davis, William W Hager, and
Sivasankaran Rajamanickam. Algorithm 887: Cholmod, su-
pernodal sparse cholesky factorization and update/downdate.
ACM Transactions on Mathematical Software (TOMS),
35(3):1–14, 2008. 6, 12

[8] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016. 3
[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 6

[10] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van
Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:
Learning optical flow with convolutional networks. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2758–2766, 2015. 2
[11] Hehe Fan and Yi Yang. Pointrnn: Point recurrent neural

network for moving point cloud processing. arXiv preprint

arXiv:1910.08287, 2019. 3
[12] Alan George. Nested dissection of a regular finite element

mesh. SIAM Journal on Numerical Analysis, 10(2):345–363,
1973. 6

[13] Ariel Gordon, Hanhan Li, Rico Jonschkowski, and Anelia
Angelova. Depth from videos in the wild: Unsupervised
monocular depth learning from unknown cameras. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 8977–8986, 2019. 3
[14] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and

Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3254–3263, 2019. 3
[15] Xiaoyang Guo, Kai Yang, Wukui Yang, Xiaogang Wang,

and Hongsheng Li. Group-wise correlation stereo network.
In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 3273–3282, 2019. 2
[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 7
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 4
[18] Heiko Hirschmuller. Accurate and efficient stereo processing

by semi-global matching and mutual information. In Com-

puter Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on, volume 2, pages
807–814. IEEE, 2005. 2

[19] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keu-
per, Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0:
Evolution of optical flow estimation with deep networks. In
IEEE conference on computer vision and pattern recognition

(CVPR), volume 2, page 6, 2017. 2
[20] Mariano Jaimez, Mohamed Souiai, Javier Gonzalez-

Jimenez, and Daniel Cremers. A primal-dual framework for
real-time dense rgb-d scene flow. In Robotics and Automa-

tion (ICRA), 2015 IEEE International Conference on, pages
98–104. IEEE, 2015. 1, 3

[21] Mariano Jaimez, Mohamed Souiai, Jörg Stückler, Javier
Gonzalez-Jimenez, and Daniel Cremers. Motion coopera-
tion: Smooth piece-wise rigid scene flow from rgb-d images.
In 2015 International Conference on 3D Vision, pages 64–
72. IEEE, 2015. 1, 3

[22] Huaizu Jiang, Deqing Sun, Varun Jampani, Zhaoyang Lv,
Erik Learned-Miller, and Jan Kautz. Sense: A shared en-
coder network for scene-flow estimation. In Proceedings

of the IEEE International Conference on Computer Vision,
pages 3195–3204, 2019. 8

[23] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 66–75, 2017. 2
[24] Suryansh Kumar, Yuchao Dai, and Hongdong Li. Monocular

dense 3d reconstruction of a complex dynamic scene from
two perspective frames. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4649–4657,
2017. 1

[25] Congcong Li, Haoyu Ma, and Qingmin Liao. Two-stage
adaptive object scene flow using hybrid cnn-crf model. In
International Conference on Pattern Recognition (ICPR),
2020. 8

[26] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 529–537, 2019. 2, 3, 7
[27] Xingyu Liu, Mengyuan Yan, and Jeannette Bohg. Meteor-

net: Deep learning on dynamic 3d point cloud sequences. In
Proceedings of the IEEE International Conference on Com-

puter Vision, pages 9246–9255, 2019. 3
[28] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 6
[29] Yao Lu, Jack Valmadre, Heng Wang, Juho Kannala,

Mehrtash Harandi, and Philip Torr. Devon: Deformable vol-
ume network for learning optical flow. In The IEEE Win-

ter Conference on Applications of Computer Vision, pages
2705–2713, 2020. 2

[30] Zhaoyang Lv, Kihwan Kim, Alejandro Troccoli, Deqing
Sun, James M Rehg, and Jan Kautz. Learning rigidity in
dynamic scenes with a moving camera for 3d motion field
estimation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 468–484, 2018. 1
[31] Wei-Chiu Ma, Shenlong Wang, Rui Hu, Yuwen Xiong, and

Raquel Urtasun. Deep rigid instance scene flow. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3614–3622, 2019. 1, 3, 7, 8
[32] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4040–4048, 2016. 6
[33] Moritz Menze and Andreas Geiger. Object scene flow for au-

tonomous vehicles. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3061–
3070, 2015. 1, 2, 3, 8

[34] Gilles Puy, Alexandre Boulch, and Renaud Marlet. FLOT:
Scene Flow on Point Clouds Guided by Optimal Transport.
In European Conference on Computer Vision, 2020. 7

[35] Julian Quiroga, Thomas Brox, Frédéric Devernay, and James
Crowley. Dense semi-rigid scene flow estimation from rgbd
images. In European Conference on Computer Vision, pages
567–582. Springer, 2014. 3

[36] Rene Ranftl, Stefan Gehrig, Thomas Pock, and Horst
Bischof. Pushing the limits of stereo using variational stereo

estimation. In 2012 IEEE Intelligent Vehicles Symposium,
pages 401–407. IEEE, 2012. 2

[37] Anurag Ranjan and Michael J Black. Optical flow estima-
tion using a spatial pyramid network. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4161–4170, 2017. 2
[38] Zhile Ren, Deqing Sun, Jan Kautz, and Erik Sudderth. Cas-

caded scene flow prediction using semantic segmentation. In
2017 International Conference on 3D Vision (3DV), pages
225–233. IEEE, 2017. 1, 3, 8

[39] René Schuster, Christian Unger, and Didier Stricker. A
deep temporal fusion framework for scene flow using a
learnable motion model and occlusions. arXiv preprint

arXiv:2011.01603, 2020. 8
[40] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.

Pwc-net: Cnns for optical flow using pyramid, warping,
and cost volume. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 8934–
8943, 2018. 2, 7

[41] Zachary Teed and Jia Deng. Deepv2d: Video to depth with
differentiable structure from motion. In International Con-

ference on Learning Representations ICLR, 2020. 4
[42] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field

transforms for optical flow. In European conference on com-

puter vision, pages 402–419. Springer, 2020. 1, 2, 4, 5, 7,
12

[43] Zachary Teed and Jia Deng. Tangent space backpropagation
for 3d transformation groups. In Conference on Computer

Vision and Pattern Recognition, 2021. 6
[44] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins,

and Takeo Kanade. Three-dimensional scene flow. In Com-

puter Vision, 1999. The Proceedings of the Seventh IEEE In-

ternational Conference on, volume 2, pages 722–729. IEEE,
1999. 1

[45] Christoph Vogel, Patrick Knöbelreiter, and Thomas Pock.
Learning energy based inpainting for optical flow. In Asian

Conference on Computer Vision, pages 340–356. Springer,
2018. 5

[46] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d
scene flow estimation with a rigid motion prior. In Com-

puter Vision (ICCV), 2011 IEEE International Conference

on, pages 1291–1298. IEEE, 2011. 1, 2
[47] Christoph Vogel, Konrad Schindler, and Stefan Roth. Piece-

wise rigid scene flow. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1377–1384,
2013. 2

[48] Christoph Vogel, Konrad Schindler, and Stefan Roth. 3d
scene flow estimation with a piecewise rigid scene model. In-

ternational Journal of Computer Vision, 115(1):1–28, 2015.
1, 8

[49] Zirui Wang, Shuda Li, Henry Howard-Jenkins, Victor
Prisacariu, and Min Chen. Flownet3d++: Geometric losses
for deep scene flow estimation. In The IEEE Winter Con-

ference on Applications of Computer Vision, pages 91–98,
2020. 3, 7

[50] Gengshan Yang and Deva Ramanan. Volumetric correspon-
dence networks for optical flow. In Advances in neural in-

formation processing systems, pages 794–805, 2019. 2

[51] Gengshan Yang and Deva Ramanan. Upgrading optical flow
to 3d scene flow through optical expansion. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 1334–1343, 2020. 3, 8
[52] Feihu Zhang, Victor Prisacariu, Ruigang Yang, and

Philip HS Torr. Ga-net: Guided aggregation net for end-
to-end stereo matching. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages
185–194, 2019. 2, 7

RAFT-3D: Appendix

&
RQ
Y�
[�
���
��

5
HV
8
QL
W��
��
�

5
HV
8
QL
W��
��
�

5
HV
8
QL
W��
��
�

5
HV
8
QL
W��
��
�

5
HV
8
QL
W��
��
��

5
HV
8
QL
W��
��
��

)HDWXUH�(QFRGHU

5
HV1

HW���

&
RQ
Y�
[�
��
��
�

&
RQ
Y�
[�
��
��
�

&RQWH[W�(QFRGHU

)ORZ���G�

7ZLVW���G�

'HSWK�5HV����G�

&
RQ
Y�
[�
���
��
�

&
RQ
Y�
[�
��
��
[�
�

&RUUHODWLRQ
)HDWXUHV

&
RQ
Y�
[�
���
��
�

&
RQ
Y�
[�
��
��
�

&
RQ
Y�
[�
��
��
[�
�

*58��[������

&
RQ
Y�
[�
���
��
�

&
RQ
Y�
[�
��
�

&
RQ
Y�
[�
���
��
�

&
RQ
Y�
[�
��
�

&
RQ
Y�
[�
���
��
�

&
RQ
Y�
[�
��
��

�UHYLVLRQV�

�ZHLJKWV�

�HPEHGGLQJV�

*58�&RQYROXWLRQ�.HUQHO

&RQWH[W�)HDWXUHV

Figure 4. Network architecture. The components include (1) a fea-
ture encoder (2) a context encoder with a ResNet50 backbone, and
(3) and GRU-based updated operator. The GRU uses a dilated con-
volution pattern as shown. In contrast to RAFT[42] where features
are concatenated before being passed to the GRU, we perform ele-
mentwise addition of the context features, correlation features, and
motion features.

A. Network Architecture

Details of the network architecture, including feature en-
coders and the GRU-based update operator are shown in
Figure 4.

B. bi-Laplacian Optimization Layer Gradients

This layer minimizes an objective function in the form

||Dxu||2wx
+ ||Dxu||2wy

+ ||u� v||2 (20)

where Dx and Dy are linear finite difference operators, and
v is the flattened feature map.

First consider the case of single channel, v 2 RHW . Let
Wx = diag(wx),Wy = diag(wy) 2 RHW⇥HW . We can
solve for u⇤

(I+DT

x
WxD

T

x
+DT

y
WyD

T

y
)u⇤ = v (21)

We perform sparse Cholesky factorization and backsubsti-
tion to solve for u⇤ using the Cholmod library[7].
Gradients: In the backward pass, given the gradient @L

@u⇤ ,
we need to find the gradients with respect to the boundary
weights @L

@wx
and @L

@wy
.

Given the linear system Hu = v, the gradients with re-
spect to H and v can be found by solving the system in the

backward direction [1]

@L

@v
= H

�T
@L

@u⇤ (22)

@L

@H
= u

⇤
d
T

v
(23)

dv = H
�T

@L

@u⇤ (24)

Here the column vector dv is defined for notational conve-
nience. Since H is positive definite, H�T = H

�1 so we
can reuse the factorization from the forward pass.

To compute the gradients with respect to wx and wx

@L

@wx

= diag

✓
@L

@H

@H

@Wx

◆
(25)

= diag
�
(Dxu

⇤)(Dxdv)
T
�

(26)

giving
@L

@wx

= (Dxu
⇤)� (Dxdv) (27)

where � is elementwise multiplication. Similarly

@L

@wy

= (Dyu
⇤)� (Dydv) (28)

Multiple Channels: We can easily extend Eqn. 21 to work
with multiple channels. Since the matrix H does not de-
pend on v, it only needs to be factored once. We can solve
Eqn. 21 for all channels by reusing the factorization, treat-
ing v as a HW ⇥ C matrix. The gradient formulas can
also be updated by summing the gradients over the channel
dimensions.

