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Abstract

We address the problem of performing backpropagation
for computation graphs involving 3D transformation groups
SO(3), SE(3), and Sim(3). 3D transformation groups
are widely used in 3D vision and robotics, but they do not
form vector spaces and instead lie on smooth manifolds.
The standard backpropagation approach, which embeds 3D
transformations in Euclidean spaces, suffers from numeri-
cal difficulties. We introduce a new library, which exploits
the group structure of 3D transformations and performs
backpropagation in the tangent spaces of manifolds. We
show that our approach is numerically more stable, eas-
ier to implement, and beneficial to a diverse set of tasks.
Our plug-and-play PyTorch library is available at ht tps :
//github.com/princeton-vl/lietorch

1. Introduction

3D transformation groups—SO(3), SE(3), Sim(3)—
have been extensively used in a wide range of computer vi-
sion and robotics problems. Important applications include
SLAM, 6-dof pose estimation, multiview reconstruction, in-
verse kinematics, pose graph optimization, geometric reg-
istration, and scene flow. In these domains, the state of
the system—configuration of robotic joints, camera poses,
non-rigid deformations—can be naturally represented as 3D
transformations.

Recently, many of these problems have been approached
using deep learning, either in an end-to-end manner[31,

, 40, 8, 38, 22, 18] or composed as hybrid systems[2 1,

, 29, 19]. A key ingredient of deep learning is auto-
differentiation, in particular, backpropagation through a
computation graph. A variety of general-purpose deep
learning libraries such as PyTorch [27] and TensorFlow [1]
have been developed such that backpropagation is automat-
ically performed by the library—users only need to specify
the computation graph and supply any custom operations.

A basic assumption of existing deep learning libraries is
that a computation graph represents a composition of map-
pings between Euclidean spaces. That is, each node of

the graph represents a differentiable mappings between Eu-
clidean spaces, e.g. from R™ to R". This assumption allows
us to use the standard definition of the gradient of a function
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However, this assumption breaks down when the com-
putation graph involves 3D transformations, such as when
a network iteratively updates its estimate of the camera
pose [31, 40, 33, 10, 20]. 3D transformations do not form
vector spaces and instead lie on smooth manifolds; the no-
tion of addition is undefined and the standard notion of gra-
dient defined in Euclidean spaces does not apply.

A typical approach in prior work is to embed the 3D
transforms in a Euclidean space. For example, a rigid body
transform from SE(3) is represented as a 4 x 4 matrix and
treated as a vector in RS, That is, SE(3) corresponds to
a subset of RS, or more specifically, an embedded sub-
manifold of R'S. Functions involving SFE(3) such as the
exponential map and the inverse are replaced with their ex-
tensions in the embedding space, i.e. the matrix exponential
and the matrix inverse:

exp : 5¢(3) = SE(3) — oxp : R® s R4

inv: SE(3) = SE(3) — inv : R** s R¥*4, M
Now, the computation graph involves only Euclidean ob-
jects, and backpropagation can be performed as usual as
long as the Jacobian of xp and inv can be calculated.
There are several problems with this approach. First,
while the extended functions such as the matrix exponential
are smooth as a whole, the individual substeps needed for
computing the backward passes often contain singularities.
As a result, small deviations off the manifold can result in
numerical instabilities causing gradients to explode. It can
often be quite difficult to implement these functions in li-
braries such as PyTorch[27] and Tensorflow[ ] in a way that
numerically stable gradients are achieved through automatic
differentiation. As a case in point, the commonly used Py-
Torch3D library[28] returns nan-gradients when the identity
matrix is given as input the matrix log. Furthermore, some
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Figure 1. Tangent space Backpropagation. The forward pass is a
composition of mappings between Lie groups. The backward pass
propogates gradients in the tangent space of each element.

extended functions have very complicated backward pass,
which leads to extremely large computation graphs, espe-
cially for groups like Sim(3) which involve complex ex-
pressions for the matrix exponential and logarithm. Partly
for this reason, to our knowledge, no prior work has per-
formed backpropagation on Sim(3).

Due to the aforementioned problems, existing deep
learning libraries are unable to handle 3D transformations
reliably and transparently. And incorporating 3D transfor-
mations into a computation graph typically requires a sub-
stantial amount of painstaking, ad-hoc manual effort.

In this work, we seek to make backpropagation on 3D
transformations robust and “painless”. We introduce a new
approach for performing backpropagation though mixed
computation graphs consisting of both real vectors and
3D transformations. Instead of embedding transformation
groups in Euclidean spaces, we retain the group structure
and perform backpropagation directly in the tangent space
of each group element (Fig. 1). For example, while a rigid
body transformation T € SFE(3) may be represented as a
R**4 matrix, we backpropagate the gradient in the tangent
space s¢(3), in particular, as a 6-dimensional vector in a lo-
cal coordinate system centered at 7.

We show that performing differentiation in the tangent
space has several advantages

— Numerical Stability: By performing backpropagation
in the tangent space, we avoid needing to differenti-
ate through singularity-ridden substeps required for the
embedding approach, guaranteeing numerically stable
gradients. This allows us to provide groups such as
Sim(3) which do not give stable gradients when auto-
matic differentiation is directly applied.

— Representation Agnostic: The computation of the gra-
dients does not depend on how the 3D transformations
are represented. Both quaternions and 3 x 3 matri-
ces can be used to represent rotations without changing
how the backward pass is computed.

— Reduced Computation Graphs: When functions such
as exp and 1og are implemented directly in PyTorch,

the output of each individual steps within exp and
log need to be stored for the backward pass, leading
to unnecessarily large computation graphs. We avoid
the need to store intermediate values by differentiating
through these functions using the group structure.

— Manifold Optimization: Our library can be directly
used for problems where the variables we want to op-
timize are 3D transforms. Since we compute gradients
directly in the tangent space, we avoid the need to re-
project gradients.

We demonstrate use cases of our approach on a wide
range of vision and robotics tasks. We show our approach
can be used for pose graph optimization, inverse kinemat-
ics, RGB-D scan registration, and RGB-D SLAM.

Our approach is implemented as an easy-to-use, plug-
and-play PyTorch library. It allows users to insert 3D trans-
formations, either as parameters or activations, into a com-
putation graph, just as regular tensors; backpropagation is
taken care of transparently. Our 3D transformation objects
expose an interface similar to the Tensor object, support-
ing arbitrary batch shapes, indexing, and reshaping opera-
tions.

Our contributions are two-fold. First, we introduce a new
method of auto-differentiation involving 3D transformation
groups by performing backpropagation in the tangent space.
To our knowledge, this is the first time backpropagation is
performed in the tangent space of Lie groups for training
neural networks. Second, we introduce LieTorch, an open-
source, easy-to-use PyTorch library that implements tangent
space backpropagation. We expect our library to be a useful
tool for researchers in 3D vision and robotics.

2. Related Work

Automatic Differentiation: Automatic Differentiation
(AD) is a family of algorithms for evaluating derivatives of a
program. AD frameworks expose a set of elementary oper-
ators (e.g. matrix multiplication, convolution, and pooling)
and programs can be constructed by composing operations.
Modern implementations can handle complex computations
graphs with branching, loops, and recursion[4, 27].

AD has two common forms: forward mode differentia-
tion applies the chain rule to each elementary operator in the
forward pass. Optimization frameworks such as Ceres|[2]
implement forward mode differentiation using dual num-
bers. Reverse mode differentiation is a general form of
backpropagation and works by complementing each inter-
mediate value with an gradient. During the forward pass,
the intermediate values are populated. In the backward pass,
gradients are propagated in reverse. Reverse mode differ-
entiation is well suited for differentiating functions with a
single objective f : R™ — R, such as the loss used to



train a neural network. Deep learning frameworks such
as Theano[32], Tensorflow[ 1], Autograd[23], PyTorch[27],
and JAX[7] all support reverse mode differentation.

Existing frameworks do not directly support manifold el-
ements in the computation graph. These libraries assume
every variable belongs to an Euclidean space and every
function maps from one Euclidean space to another. How-
ever, 3D transformations groups such as rotations do not
form a vector space, and the usual notions of derivatives do
not apply. We use a more general notation of gradient de-
fined in tangent spaces and show that we can support 3D
transformation groups by performing differentiation in the
tangent space. We build our library on top of PyTorch, and
expose an interface similar to the Tensor object, support-
ing arbitrary batch shapes, indexing, and reshaping opera-
tions. By building on PyTorch, we can compose Lie group
and tensor operations in a shared computation graph.

Numeric issues often arise in AD if operations are
naively implemented. For example, expressions such as the
L2 norm || - ||2 or the LogSumExp are problematic if im-
plemented directly, and various tricks are required in order
to ensure numeric stability. The exponential and logarith-
mic maps for 3D transformation groups contain many prob-
lematic expressions. We implement group operations (e.g.
exp, log, act, adj) as the elementary operations.

Manifold Optimization: Many vision and robotics prob-
lems requiring optimizing variables which lie on a mani-
fold. Libraries such as GTSAM[12] and g2o[ 4] provide
general frameworks for solving nonlinear least-squares and
MAP inference problems involving manifold elements such
as camera poses. GTSAM and Koppel et al.[17] provide
frameworks which can perform automatic differentiation
over lie groups. However, these frameworks are tailored to
the computation of Jacobian matrices and cannot be read-
ily used within the computation graphs for training neural
networks.

There are several libraries which provide tools for op-
timization on manifolds, such as Manopt[6], and Py-
Manopt includes autodifferentiation capabilities provided
by PyTorch[27], Tensorflow[!], and Autograd [23]. Sev-
eral extensions have been proposed to PyTorch which allow
optimization over smooth manifolds such as McTorch[25]
and Geopt[!6]. These libraries work by embedding man-
ifolds in the Euclidean space R", and manifold functions
f : N = M are implemented as the extension f : R"
R™. Automatic differentiation can be used to differentiate
f, and the gradient on M is obtained using the orthogonal
projection[5].

This strategy can be prone to large computation graphs
and numerical instabilities. Our library avoids the need to
differentiate f : R® ~ R™ by differentiating the original
function f : N'— M directly, i.e. obtaining the differential
of f, which is a map from the tangent space of N to the

tangent space of M. We note that this is not possible for
all manifolds, but using the additional structure provided
by Lie Groups, we demonstrate that AD can be performed
directly in the tangent space. An additional advantage of our
approach is that we never need to perform a projection step,
since gradients are already defined in the tangent space.

3. Preliminaries

A matrix Lie group M is both a group and a smooth
manifold. Each element X € M can be represented as a
matrix in R™*"™, The group operator is identical to matrix
multiplication and the group inverse is identical to matrix
inversion. Being a smooth manifold, each element X € M
has a unique tangent space. Moreover, the tangent space
of each group element is a vector space isomorphic to the
tangent space of the identity element.

Lie Algebra: The lie algebra g is defined as the tangent
space at the identity element, and each group has an asso-
ciated lie algebra. The lie algebra g forms a vector space
with a set of basis elements {G1, ..., Gy}. The lie algebra
is isomorphic to R*, and we can map between elements of
g and elements of R* using the hat

k
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and the vee operator ¥ : g — R¥ which is the inverse of the
wedge operator, such that (T/\)V = 7. The lie algebra g is
isomorphic to RF, g= R¥. Since it is often easier to work
in R¥, we perform differentiating using vectors in R*, but
it would be equivalent to representing gradients in g. The
definitions of the A and V operators for 3D transformation
groups are given in the appendix.

Exponential and Logarithm Map: Elements of the lie
algebra ¢" € g can be exactly mapped to the manifold
through the exponential map.

1

exp(¢p”) =1+ ¢" + %(qﬁA)2 + §(¢A)3 +... 3

The logarithm map is the inverse of the exponential map
and takes elements from the manifold to the lie algebra. For
convenience, we use vectorized versions of the exponential
and logarithm map which map directly between R* and M

Exp: RF - M Log: M — R* 4

Group Multiplication: The group is endowed with a bi-
nary operator o such that two group elements can be com-
bined to form a third element X o Y € M. Using the no-
tation of Sola et al. [30], we can overload the the addition
and subtraction operations

@ :RFx M > M

QX =Exp(§)oX (5)
O:Mx M—RF Yy~

XoY =Log(X-Y™!) (6)



Operation  Map Description

Exp g— M exponential map

Log Mi=g logarithm map

Inv M= M group inverse

Mul M X M — M group multiplication

Adj Mxgr—g adjoint operator

AdjT M x g*— g* dual adjoint operator

Act M x R3 +— R3  action on point (set)

ActP M x P3 — P3 action on homogeneous point (set)

Table 1. Summary of operations supported by our library. Each
operation is differentiable with respect to all the input arguments.
Both the lie algebra g and its dual g* are embedded in R¥.

If the manifold M is a Euclidean space, then & and © are
identical to standard vector addition and subtraction.

Adjoint: The Lie algebra and exponential map give us two
possible local parameterizations of a neighborhood around
a group element X: the “right action parameterization” X o
Exp(a) and the “left action parameterization” Exp(b) o X,
where a and b represent the local coordinates. For a group
element around X, its coordinates a and b are related by a
linear map, which is the adjoint of X:

Adjy(a) = (Xa XY, (7

from which it is easy to verify that
X oExp(a) = Exp(Adjy(a)) o X. (8)

Because Adjx is a linear map, we Adjy to denote its ma-
trix representation, i.e. Adjy is a n X n matrix where n is
the dimension of the tangent space of X. The expressions
of the adjoint for 3D transformation groups are given in the
appendix.

3D Transformation Groups In this paper we are particu-
larly concerned a special class of Lie groups that perform
3D transformation—SO(3), SE(3), and Sim(3). A descrip-
tion of the supported group operations is given in Tab. 1.

Differentials and Gradients: Given a function f : R™ —
R™ and a point x € R” the differential of f is the linear
operator

(€))

However, this is problematic for functions on Lie groups f :
M — M’ since in general M is not closed under addition.
However, we can generalize the differential as perturbations
in the tangent space

(10)

where v belongs to the tangent space of X. Eqn. 10 relates
perturbations in the tangent space of X to perturbations in
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Figure 2. Computation graph involving Lie groups. A network fo
producs a series of updates d1, d2, d2 which are applied to pose
G . The loss function is defined on the geodesic distance between
the estimated pose and the ground truth pose T.

the tangent space of f(X). Plugging in the (orthonormal)
basis vectors into Eqn. 10 we can recover the Jacobian ma-
trix J € R™*™

te; © X X), e,
J”:hm<f(e1@ )ef( )76 >’
t—0 t

1)

where <, > is an inner product defined on the tangent space
of M’.

Throughout this paper we will use g—}; to denote the Ja-
cobian of a mapping f : X — Y between two Lie groups,
under the basis vectors given by the left action parameter-
izations of the tangent spaces of Y and X. That is, the
dimension of % is m X n, where m is the dimension of the
tangent space of Y and n is the dimension of the tangent
space of X.

Note that under vector addition, a Euclidean space is a
Lie group whose tangent space is itself, so this definition
subsumes the standard notion of Jacobian. In particular, for
aloss function L(X) € R, g—f( is a row vector representing
the gradient of L in the tangent space of X.

4. Approach

Our approach performs backpropagation through com-
putation graphs consisting of Lie group elements and oper-
ations which map between groups. As an example, consider
the computation graph shown in Fig. 2. The computation
graph in Fig. 2 can be written as

L=[T "o (e Gy (12)

where a series of updates §1, d2, §3 are predicted by a net-
work fp. The loss is then taken to be the norm of the
geodesic distance between e ¢%2¢% G, and the ground
truth pose T. This type of computation graph shows up in
many different applications where incremental updates are
applied to an initial estimate.

4.1. Reverse Mode Autodifferentation

Each node in the computation graph (Fig. 2) represents
an element X on some Lie group M and each edge in the
computation graph represents a function which maps from
one Lie group N to another M.

f:M=N, XeM, f(X)eN  (13)



This notation subsumes standard Euclidean elements such
as vectors and matrices, which also form a Lie groups under
vector addition.

During the forward pass, we evaluate each function in
the computation graph in topological order. The output of
each function is stored for the backward pass. The back-
ward pass propagates gradients in reverse topological order.
Given a function as defined in Eqn. 13, Y = f(X), we can
backpropagate the gradient using the chain rule

oc _ocov _oc "
0X 9Y o0X oY

where % is a row vector with the same dimension as the
tangent space of X and J is the Jacobian in Eqn 11. Eqn.

14 computes a Jacobian-vector product.

4.2. Computing the Jacobians

We use Eqn. 10 to derive analytical expressions for the
Jacobians. As an example, we show how the Jacobians can
be computed for two functions: group multiplication and
the logarithm map. The derivations for other functions in-
cluding the group inverse and the exponential map are in-
cluded in the appendix.

Group Multiplication: Consider the first group multipli-
cation in Fig. 2: Z = X o Y. Using the definition of the
differential (Eqn. 10), we first compute the differential with
respect to X

DF(X)¥] = lim : (15)
tv
= lim % = lim W =v (16)
t—0 t t—0 ¢

The differential with respect to ) can be derived in a simil-
iar manner

Log((XeVY)(XY)™ 1)

Df(Y)[v] :tlg% ; a7
(18)
applying the adjoint (Eqn. 8)
Adjx-tv —1
~ lim Log(eAMNx V(XY )(XY)™ ) (19)
t—0 t

e LOg(eAde'tv) _ .

= }% =Adjy v (20)

Using equation Eqn, 14, we can propogate the gradients as

oL oL oL oL

ax 9z oy az™dix @

As an example, for R € SO(3), Adj = R.

Logarithm Map: The logarithm map ¢ = Log(X) takes a
group element to its Lie algebra. As example, for SO(3) its
logarithm map Log : SO(3) — R? can be expressed as

(m(xg-—l

(22)
Using Eqn. 10, we can express the differential of the loga-
rithm map (between tangent spaces) as

(X - XT)Y
2sin(y)

Log(X) = 1 =cos™ !

D Log(X)[v] = lim Log(Exp(tv) 3 X) — Log(X)

(23)
From the Baker-Campbell-Hausdorff formula [3] we have

log(exp(6¢) exp(¢)) =~ ¢ + J; ' (¢)d¢, when d¢ is small,

where J;(¢) is a matrix called “the left Jacobian” [30]
which maps a perturbation in the tangent space to a per-
turbations on the manifold. As an example, J l_l of SO(3)
has a closed form expression [30]:

1 T+cosg
@2 2¢sing
We can then derive the backpropagated gradient as (full

derivation in the appendix):

%:%.J—l
X  0¢

I (@) = Taxs — %aﬁA + ( ) (¢")* 24)

(¢), (25)

which is a vector in the tangent space. For SO(3), the gra-
dient is 3-dimensional.

There also exists a closed form for J; ! for the SE(3)
group. For Lie groups such as Sim(3) without an ana-
lytic expression for the left Jacobian, we can numerically
approximate the gradient (to some desired precision) using
the series expansion [3]

Mo => (71)”%@*)“. (26)

n=0

where ¢* = adj(¢”) and adj is the adjoint of the Lie
algebra sim(3). B,, are the Bernoulli numbers. For small ¢,
we can numerically approximate J;(¢) ~ L.

Embedding Space vs. Tangent Space The logarithm map
in SO(3) is a good example to show the advantages of
our approach over the standard embedding space back-
propagation (e.g. Autograd in Pytorch), which simply auto-
differentiates the expressions given in Eqn. 22 and obtains a
9-dimensional gradient, as opposed to a 3-dimensional gra-
dient in our approach.

The forward pass is the same for our approach and the
standard approach—both use Eqn. 22. Eqn. 22 as a whole
is smooth but contains numerically problematic terms such
as —¥ e The solution is to use approximations given by its

sin



Taylor expansion siﬁw ~ 1+ %1#2 + ..., when 1 is small.
This replacement is done only around singular points, cor-
responding to a dynamic modification of the computation
graph during the forward pass.

The backward pass, however, causes two difficulties for
the standard backpropagation. First, it needs to handle
backpropagating through numerically unstable terms such
as . In existing work, this is done by simply backpropa-
gating through the Taylor approximation formula. However,
the gradient of the Taylor approximation is not necessarily a
good approximation of the true gradient. As a result, when
to use and how many terms to use need to be very carefully
tuned. For example, it is common to have the term m—lg in
a Taylor approximation; including it risks division by zero
in the term x% in the backward pass, but excluding it risks
deviation from the manifold in the forward pass.

Second, the standard backpropagation needs to han-

dle terms with singular gradients. In Eqn. 22, the term

cos™! (%) has a singular gradient when X is iden-

tity because % cos~!(z) is undefined at z = 1. This issue

in fact remains unaddressed in existing libraries. For exam-
ple, PyTorch3D [28] returns a NaN gradient for its matrix
logarithm when the identity matrix is given as input.

In contrast, our approach suffers from none of these dif-
ficulties. For the backward pass we simply use Eqn. 24,
which is as straightforward as computing the forward pass.

4.3. Implementation

One of the technical challenges is integrating our tangent
space representation into automatic differentiation soft-
ware. We implement our library as an extension to PyTorch.
We define a new type to represent group elements, and sub-
class this type for different groups. The resulting computa-
tion graph consists of mixed types, both Euclidean vectors
and group elements. We implement a custom gradient for
any function with group inputs or outputs, including the ex-
ponential map, logarithm map, adjoint, group inverse, group
multiplication, and action on a point set.

Our implementation is a plug-and-play extension on Py-
Torch. To enable general use cases, we support arbitrary
batch shapes, and common tensor operations such as in-
dexing, reshaping, slicing, and repeating dimensions. We
use unit quaternions to represent rotations since they are
compact and have desirable numeric properties. All oper-
ations involving groups include both Cuda and c++ kernels
to leverage the GPU if available.

5. Experiments

We show that our library can help a wide range of tasks.

Inverse Kinematics We first evaluate our library on a toy
inverse kinematics task. Given a robot arm with joint
lengths dy, ...,dy € R and a target 2*, the task is to find a

set of relative rotations AR, ARo, ..., ARy such that the
end of the arm is positioned at z*. Given the relative joint
angles, we can use forward kinematics to compute the arm
position

R, =AR;-AR_;----- AR, (27)
N
T *
y=> Ri-(di 0 0), L=|ly—2"} (28)

We also experiment with extendable joints. These can be
represented as the group of rotation and scaling in 3D or the
R* x SO(3) group, which can be represented as a rotation
R € SO(3) and a scaling s € RT, sR € RT x SO(3)

We compare our approach to two different PyTorch/Au-
tograd implementations. First, we directly backpropagate
through each group operator, using the implementions pro-
vided by our library. For small angles, Backpropagation
is performed through a Taylor approximation of the func-
tions.We also show the performance of Autograd when the
operations are explictly tuned for better stability. This in-
cludes reimplementing normalization functions, decreasing
the threshold when Taylor approximations are used, and
making division operations safe for small angles by adding
a small epsilon to the denominator.

SO(3) R* x SO(3)

PyTorch+Autograd 0.0 0.0
PyTorch+Autograd (tuned)  99.8 100.0
Ours 100.0 100.0

The results from these experiments are provided in Tab.
5. We perform 1000 runs for both the SO(3) and R x
SO(3) experiments. We report the portion of runs which
converge to the correct solution within 1000 iterations using
a tolerance threshold of 1 x 1074,

We see that without tuning the forward pass, Py-
Torch+Autograd diverges on every single problem. By
modifying the forward expression to make it safe for au-
tomatic differentation, we can get near 100% convergence.
Our library converges on all the problems without modifi-
cation.

Figure 3. Optimized pose graphs on (left to right) sphere, torus,
grid, and parking-garage problems. We perform gradient de-
scent on the rotation group as initialization, followed by 7 Gauss-
Newton updates.

Pose Graph Optimization Pose graph optimization is the
problem of recovering the trajectory of a robot given a



‘ g20[14] gtsam[12] chordal+gtsam[9]  gradient+gtsam[Y] ‘ PyTorch+Autograd Ours
Parking-Garage 6.42 x 107" 6.35 x 107t 6.35 x 107t 6.35 x 1071 6.35 x 1071 6.35 x 107t
(n = 1661, m = 6275) - - 1.29 16.5 1.18
Sphere-A 5.32 x 1010 5.71 x 100 1.49 x 108 1.9 x 106 1.49 x 106 1.49 x 108
(n = 2200, m = 8647) - - 46.3 16.9 1.19
Torus 6.04 x 108 4.71 x 10'° 1.21 x 104 2.81 x 10* 1.21 x 104 1.21 x 104
(n = 5000, m = 9048) - - 20.2 17.2 1.17
Cube 5.39 x 107 6.59 x 10! 4.22 x 10 4.22 x 10* 4.22 x 10* 4.22 x 10*
(n = 8000, m = 22236) - - 26.4 18.3 1.21

Table 2. Error (top row) and time (bottom row) on pose graph optimization. Time (seconds) is reported for the initialization method; the

first two columns are run without any initiliation.

set of noisy measurements. Conventional methods use it-
erative solvers such as Gauss-Newton[!2] or Levenberg-
Marquardt[ | 4]. However, due to rotation, pose graph opti-
mization is a non-convex optimization problem, and second
order methods are prone to local minimum [9].

One solution for overcoming local minimum is to use a
good initialization. Riemannian gradient descent[37] pro-
vides an initialization for rotation by performing gradient
descent using a reshaped cost function. These rotations are
then used as initialization for second order methods.

We perform optimization over all rotations jointly, using
the reshaped cost function over the geodesic distance using
the reshaping function proposed by Tron et al. [36]

0 =||log(R; " R, - R;;")||2
L(0) =1/b— (1/b+0) exp(—b0)

(29)
(30)

where R;; are the noisy measurements and we set b = 1.5.
For optimization we use SGD with momentum set to 0.5.
We perform 1000 gradient steps and a exponentially decay-
ing learning rate .9957. Riemannian gradient descent can be
easily implemented using our library with only a few lines
of code, as shown in the sample below

# (ii, JJj) edges in pose graph

> from lietorch import SO3

Eij = SO3(torch.from_numpy(Eij)).to(’cuda’)
R = SO3(torch.from numpy (R)) .to(’cuda’)
optimizer = optim.SGD ([R], 1lr=1.0, momentum=0.5)

for 1 in range (n_steps):
optimizer.zero_grad()
dE = (R[ii].inv() = R[33])
loss = reshaping_fn (dE)

* Eij.inv ()

loss.backward()
optimizer.step ()

We follow the setup by Carlone et al.[9] and report con-
vergence and timing results in Tab. 5; optimized pose graphs
are shown in Fig. 3. We compare to g2o[14] and gtsam[ | 2];
gtsam also provides implementations of different initializa-
tion strategies such as chordal relaxation[24] and Rieman-
nian gradient descent[36]. We test both our approach and

Figure 4. Example Sim3 registration, the network takes two RGB-
D scans as input and predicts a similiarity transformation which
aligns the two scans.

a default PyTorch/Autograd implementation where back-
propagation is performed directly in the embedding space.

On all datasets, we find that our gradient based initial-
ization converges to the global minimum, matching the
performance of chordal relaxation. On two datasets, the
gradient based initializer in gtsam gets stuck in a local
minimum, while our implementation is able to converge.
On all datasets, our implementation is much faster than
gradient+gtsam since our library can leverage the GPU.
chordal+gtsam is faster on the smaller problems, but our
gradient based initializer is much faster on larger problems.
We find that our method converges to the same solution as
Autograd, but since our library performs a much simpler
backward pass, it can properly leverage the GPU, consis-
tently providing a 10-15x speedup.

RGB-D Sim3 Registration Given two RGB-D scans cap-
tured from different poses, we want to find a similarity
transformation which aligns the two scans. This registra-
tion problem shows up in scan-to-CAD registration and
loop closure in monocular SLAM[26]. While several recent
works have used deep networks for registration [10, 13],
they have focused on recovering a SE(3) transformation.
Here, we demonstrate that our library can recover a Sim(3)
transformation that allows scale change.

We run our experiments on the synthetic TartanAir
dataset[39], taking the scenes westerndesert, seasidetown,
seasonsforest_winter, office2 and gascola for testing and the
remaining scenes for validation and training. The network
is trained to predict a SE(3) or Sim(3) transformation be-
tween a pair of frames.

In order to select training pairs which have sufficient dif-



SE(3) Sim(3)

tr. (<lcm) rot. (< 0.1°) ‘ tr. (<lem)  rot. (< 0.1°) scale (<1%)
Identity 0.05 0.05 0.05 0.05 0.65
PyTorch+Autograd 0.0 (NaN) 0.0 (NaN) 0.0 (NaN) 0.0 (NaN) 0.0 (NaN)
PyTorch+Autograd (tuned) 78.75+0.25 90.9+0.25 | 77.0+0.25 90.8+0.25 98.04+0.25
Ours (1st order) 78.55+0.28 91.1+0.40 | 77.4+0.28 90.94+0.40 98.1 £0.43
Ours (2nd order) 79.0+0.59 91.04+0.39 | 77.3+£0.59 91.1+0.39 98.3+0.35
Ours (3rd order) 786+048 91.24058 | 7744048 91.2+0.58 97.24+0.25
Ours (Analytic) 78.7+£0.33  91.1+0.36 - - -

Table 3. Results on RGB-D registration task. We provide the mean and standard deviation over 3 runs each.

‘ 360 desk  desk2 floor plant room rpy teddy xyz ‘ avg
DeepTAM [40] 0.111 0.053 0.103 0.206 0.064 0.239 0.093 0.144 0.036 | 0.116
DeepV2DI[33] 0.072 0.069 0.074 0317 0.046 0.213 0.082 0.114 0.028 | 0.113
DeepV2D (ours) | 0.096 0.077 0.072 0.268 0.024 0.173 0.057 0.136 0.040 | 0.105

Table 4. Tracking results in the RGB-D benchmark (ATE rmse [m]).

ficulty, we compute the magnitude of the optical flow be-
tween all pairs of frames and uniformly sample pairs where
the mean flow magnitude is between 16 and 120 pixels, re-
sulting in a median translation of 54cm and a median ro-
tation angle of 4.7°.. For Sim(3), we sample scaling uni-
formly in the range [0.5,2.0] and rescale the depth maps
accordingly.

We use a network architecture based on RAFT[35] and
build a full 4D correlation volume by computing the visual
similarity between all-pairs of pixels in the input images
(more details on the network architecture are provided in
the appendix). We start by initializing the estimate of the 3D
similarity transform to be the identity element I € Sim/(3).
The network predicts a series of updates ATy, € Sim(3)
which are applied to the current estimate.

In each iteration, we use the current estimate of the trans-
formation to compute the optical flow and inverse depth
change. We use the optical flow to index from the correla-
tion volume similiar to RAFT. A GRU uses the correlation
features and inverse depth error to output pixelwise residu-
als r,, ry, 7, € R along with respective confidence weights
Wy, Wy, w, € [0,1]. 7, and 7, is the residual flow in the x
and y directions, while 7, is the residual inverse depth.

The residual terms are used as input to a differentiable
least squares optimization layer, which performs 3 Gauss-
Newton updates which update the estimated transformation
through T;4+1 = Ax @ T). During training, we use our
library to backprop through the Gauss-Newton updates to
train the weights of the network. We train the network using
the geodesic loss

L(Ty,...,Tx) =Y || Log(T; - T (D)
where T* is the ground truth ¥ransformation.

We provide results from this experiment in Tab. 3, and

qualitative results are shown in Fig. 4. As we note earlier,

there isn’t a closed form expression for the left Jacobian of
Sim(3). Hence, we use a series approximation based on
the Taylor expansion. We find that the order of the approx-
imation makes little difference in the final accuracy. To the
best of our knowledge, this is the first time backpropagation
has been performed on similarity transformations, which is
easily enabled by our approach.

RGB-D SLAM In our final experiment, we use our library
to implement an deep RGB-D SLAM system. We reimple-
ment the approach from DeepV2D[33] in PyTorch so that it
can be directly used with our library. DeepV2D maintains
a set of keyframes as it processes the video. It estimates
optical flow between all pairs of keyframes, then the op-
tical flow is used to solve for a set of pose updates over
all pairs jointly. This is done using a differentiable least
squares solver which minimizes the reprojection error.

Like DeepV2D, we train on a combination of the NYU
and ScanNet datasets using 4 frame video sequences as in-
put. Pose estimation in DeepV2D was trained using an indi-
rect proxy loss on the optical flow induced by the estimated
poses. We train using the more direct geodesic error (Eq.
31), made possible by our library.

We provide results in Tab. 4 and compare to the clas-
sical method RGBD-SLAM][ 5] along with deep learning
methods DeepTAM[4 1] and DeepV2D[34]. We see that the
new loss, difficult to implement with standard backpropa-
gation but made easy by our approach, resulted in improved
tracking performance.

6. Conclusions

We have proposed a new approach for backpropagation
through computation graphs containing 3D transformation
groups. We have shown that our approach can benefit a
wide range of vision and robotics tasks.
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Tangent Space Backpropagation for 3D Transformation Groups Appendix

A. SO(3), SE(3) and Sim(3) Formulas

Given a Lie group G with Lie algebra g, we provide the expressions for SO(3), SE(3), and Sim(3)
A Operator: The A operator takes elements from R¥ to the lie algebra g. For ¢p € R?

O 'd)z d)y
o " =1¢. 0 -¢.| €50(3) (32)
'¢y (b:r 0
for¢& = (1,¢) € RS
0 -9 ¢y Tx

A
§A=<¢ T): ‘Z;y Q?z %z :y € s5¢(3) (33)
0 0 0 1

and forn = (1,¢,0) € R”

o ¢, ¢ Tx
A ¢" +olsxs T ¢. o -fzﬁi Ty .
n = . )= 6 o = € sim(3) (34)

0 0 0 1

A Operator: The A operator takes elements from R to the lie algebra adj(g), where adj(g) is the Lie algebra associated
with the group Adj(G) = {Adj(X) | X € G}, It can be shown that Adj(G) also forms a Lie group [3].
For ¢ € R3

¢" = ¢" € adj(s0(3)) (35)
foré = (1,¢) € RS
N A
e = (9% ;A) € adj(se(3)) (36)
and forn = (1,¢,0) € R”
d)/\ =+ 013><3 TA —T
nt = 0 ¢" 0 | €adj(sim(3)) (37)
0 0 0

Exp Map: The exponential map takes elements from the Lie algebra to the Lie group. For SO(3), SE(3), and Sim(3) the
exponential map has a closed form expressions. For ¢ € R3

sin(6) 1 — cos(6)

Exp(¢) = exp(¢”) = Tsxs + —5—¢" + —5——(8"), 0 =[¢]| (38)
for¢& = (1,¢) € RS
@ = (5 V7). R=Bo@ (9)
— 0 6 — sin(6
V =Tyt ;ZS( Jgr 1 Z?( Vg2, 6=l (40)
and forn = (1, ¢,0) € R”
Expl(¢ =< “R WT), R = Exp(¢) 1)
-1 1 7sin(f)o + (1 —e? 0))0
(e )13x3+0 <e (@) 02(+ef cos(9)) >¢A+ “2)
1 (e —1 (e cos(f)—1)o + e sin(6)0 AvD _
7 (S e J@r o=lel @
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When 6 or o is small, we use second order Taylor approximations of the exponential maps to avoid numerical issues.

Log Map: The logarithm map takes elements from the Lie group to the Lie algebra. For SO(3), SE(3), and Sim(3) the
logarithm map can be computed in closed form. For a rotation R € SO(3)

_Yy®R-RT)Y L (tr(R)—1
Log(R) = “oem() Y = cos <2> (44
for G = (1; :) € SE(3) we have
T Vit
£= <¢> = <Log(R)> = Log(G) (45)
1 1 1 0
V=T - 500+ (¢2 - m) (@)% 0=l (46)
and for T = (5(1){ ;) € Sim(3)
T Wit
n=|¢|=|LogR) | =Log(T) 7
o In(s)

where W~ can be computed by taking the inverse Eqn. 43.
Adj Operator: The ajoint operator is a linear map which allows us to move an element v € g in the right tangent space of
X € G to the left tangent space

Exp(Adjx v) o X = X o Exp(v) (48)

For R € SO(3)
Adjg =R (49)

R t
for G = (0 1) € SE(3)

. R 'R
Adjg = <0 R ) (50)
and for T = (S;{ i) € Sim(3) we have
sR "R -t
Adip=[0 R 0 (51)
0 0 1
Inv Operator: Since SO(3), SE(3), and Sim(3) all form a group, each element has a unique inverse. For R € SO(3)
R '=RT (52)
R t
for G = <0 1) € SE(3)
R” —RTt
—1 _
Gl = ( o h ) (53)
and for T = <S(I)l ;) € Sim(3) we have
—IRT —IRT
1 (sTRY —sT'Rt
T = ( 0 1 ) (54)
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Figure 5. Illistration of the differential between two Lie groups.

B. Differentials and Jacobians

In the main paper, we derived the gradients for group multiplication. Here we provide derivations of the gradients for the
remaining operators

Group Inverse: Using the definition of the differential

Log((e™X)~"1(X~1H)™)

Df(X)lv] = lim ; (55)
L X*l 7th
_ iy 208X X (56)
t—0 t
using the adjoint
Log(Exp(— Adj - XX
_ iy Zo8ExD(— Adjy (tv)) ) 57)
t—0 t

1 — AdJXl tv o .

= }E,% —————— = —-Adjxa v (58)

This can be used to recover the Jacobian — Adj y-1.

Action on a Point: We can use elements from the 3D transformation groups to transform a 3D point or set of points. Given
a homogeneous point p = (X, Y, Z,1)T we can transform p using a transformation X

p' = Xp (59)

R 0>. X is a linear

To make the notation consistent for all groups, a rotation can be represented as the 4 x 4 matrix X = < 0 1

operator on p, so the Jacobian is simply the matrix representation of X

op" _

= 60
ap (60)
We can also get the differential with respect to the transformation
d tv d tv_ ./ N/
Df(X)[v] = d—(e Xp) = —(e"Vp') =v'p 61)
t =0 At t=0

Adjoint: We consider the adjoint as the function Adj : G X g — g, Adjx (w) = v. We need the Jacobians with respect to
both X and w. Since the adjoint is a linear map in terms of v then
ov oL 0L

o = Adjy, w  ov Adjx (62)
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where Adjy € R6%% is the matrix representation of the adjoint. The gradient with respect to X can be found

D Adix(@)[v] = o (e X (¢ X))

63

B o (63)

= D (X x ey (64)

ot 0

— €tvv/\67tv v (65)

i { )
\%

— (aatetvv/\etv> (66)
t=0

=V " ="V = vty (67)

Where A is defined in Sec A. We note that the differential is linear in v allowing us to write the Jacobian and gradients as

ov oL oL
ax vV ax - a? (68)

Exponential and Logarithm Maps: The Jacobian of the exponential map J; = a% Exp(x) is referred to as the left-Jacobian
and can be written using the series [3] (page 235)

()= (n%l),w (69)
n=0 :

For SO(3) and SE(3) closed form expressions exist for Eqn. 69, otherwise we use the first 3 terms.
The Jacobian of the logarithm map J l_l = % Log(X) and can be computed using the series

_ — By, n
I 0) =) —1(6h) (70)
n=0
where B,, are the Bernoulli numbers [3](page 234). Again, we used analytic expressions of J fl for SO(3) and SE(3), and
the first 3 terms for Sim(3).

C. Sim(3) Network Architecture

A overview of the Sim(3) network architecture is shown in Fig. 6. The context and feature encoders are identical to RAFT.
We replace the 5 x 1, 1 x 5 GRU used in RAFT with a single 3 x 3 convolutional GRU, using a hidden state size of 128
channels. We apply 12 iterations during both training and testing.
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|:| |:| Feature Encoder
|:| |:| Context Encoder
AF

Image/Depth 2

Figure 6. Network architecture used for our Sim(3) registration experiments. The network architecture is based on RAFT[35]. The top
branch estimates motion from I; — I and the bottom branch estimates motion in the opposite direction I — I;. Features are first
extracted from each of the two input images and used to construct two 4D correlation volumes, which are pooled at multiple resolutions
according to RAFT. During each iteration, the current estimate of the transformation T is used to index from each of the correlation
volumes. The correlation features are processed by the GRU which outputs a residual flow estimate (optical flow not explained by the
current transformation T. Both bidirectional residual flow estimates are used as input to a optimization layer, which unrolls 3 Gauss-
Newton iterations to produced a transformation update AT, which is applied to the current transformation estimate.
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