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Abstract—Graph Neural Networks (GNNs) have emerged as
the state-of-the-art (SOTA) method for graph-based learning
tasks. However, it still remains prohibitively challenging to infer-
ence GNNs over large graph datasets, limiting their application to
large-scale real-world tasks. While end-to-end jointly optimizing
GNNs and their accelerators is promising in boosting GNNs’
inference efficiency and expediting the design process, it is still
underexplored due to the vast and distinct design spaces of GNNs
and their accelerators. In this work, we propose G-CoS, a GNN
and accelerator co-search framework that can automatically
search for matched GNN structures and accelerators to maximize
both task accuracy and acceleration efficiency. Specifically, G-
CoS integrates two major enabling components: (1) a generic
GNN accelerator search space which is applicable to various GNN
structures and (2) a one-shot GNN and accelerator co-search
algorithm that enables simultaneous and efficient search for
optimal GNN structures and their matched accelerators. To the
best of our knowledge, G-CoS is the first co-search framework for
GNNs and their accelerators. Extensive experiments and ablation
studies show that the GNNs and accelerators generated by G-
CoS consistently outperform SOTA GNNs and GNN accelerators
in terms of both task accuracy and hardware efficiency, while
only requiring a few hours for the end-to-end generation of the
best matched GNNs and their accelerators.

Index Terms—GNN-Accelerator, Neural Architecture Search

I. INTRODUCTION

Graph neural networks (GNNs) [1] have gained an increased

popularity recently as they demonstrated the state-of-the-art

(SOTA) performance in various graph-based learning tasks,

including node classification [1], graph classification [2], and

recommendation systems [3]. However, GNNs often suffer

from prohibitive inference cost, limiting their potential to han-

dle large-scale real-world graph applications. For example, a 2-

layer GNN model requires 19G FLOPs (FLOPs: floating point

operations) to inference the Reddit graph [4], which requires

a latency of 2.94E+5 milliseconds when being executed on an

Intel Xeon E5-2680 CPU platform [5], i.e., its required FLOPs

and latency are 2× and 5000× of a 50-layer convolutional

neural network (CNN), ResNet-50 [6].

The giant computational cost of GNN inference results from

three aspects. First, graphs are often very large as exacerbated

by their intertwined complex neighbor connections, e.g., a

total of 232,965 nodes in the Reddit graph with each node

having about 50 neighbors [7]. Second, real-world graphs

tend to follow the power-law distribution and therefore have

highly irregular adjacent matrices, resulting in prohibitive

inefficiencies in both data processing and movements. Third,

the dimension of GNNs’ node feature vectors can be very

high, e.g., each node in the CiteSeer graph has 3703 features.

To tackle GNNs’ prohibitive inference cost, various effi-

cient GNN inference techniques have been developed. On

the algorithm level, several pioneering GNN compression

techniques have been developed. For instance, two concurrent

GNN pruning works [8], [9] aim to sparsify the connections

in GNNs’ graph adjacent matrices; and [4] for the first time

shows the feasibility of adopting 8-bit integer arithmetic for

GNN inference without sacrificing the accuracy. Another par-

alleled trend is to search for efficient GNN architectures [10],

[11]. On the hardware level, various GNN accelerators have

been proposed. For example, HyGCN [12] proposes hybrid

execution patterns of GNNs for leveraging their intra-vertex

and inter-vertex parallelisms to handle the irregularity in the

aggregation phase and reusability in the combination phase,

respectively; Later, AWB-GCN [5] identifies the workload

imbalance problem in the aggregation phase, and proposes

auto-tuning workload balancing techniques, achieving an av-

erage speedup of 7.4× over HyGCN. On the development

tool level, pioneering works have attempted to characterize the

design space of dataflows and micro-architectures for GNN

accelerators [13], and develop an automated framework to

generate GNN accelerators [14].

Despite the promising performance of existing efficient

GNN inference solutions, their achievable efficiency is still not

sufficient for enabling extensive GNN inference applications

due to GNNs’ extremely dynamic and irregular data accesses

and thus excessive acceleration cost. Motivated by the great

success of algorithm-accelerator co-exploration works for

CNN accelerations [15]–[21], this work targets to co-optimize

both the GNN structures and their accelerators with boosted

development speed, and makes the following contributions:

• We propose G-CoS, a GNN and accelerator co-search

framework that can automatically search for the matched

GNN structures and accelerators to maximize both task

accuracy and acceleration efficiency. To the best of our

knowledge, G-CoS is the first co-search framework for

GNNs and their accelerators.

• G-CoS integrates two enabling components: (1) a generic

GNN accelerator search space which is applicable to

various GNN structures and (2) a one-shot GNN and

accelerator co-search algorithm that enables simultane-

ous and efficient search for optimal GNN structures and

their matched accelerators, both of which can facilitate

the algorithmic exploration of efficient GNN solutions.

• Extensive hardware/algorithm experiments and ablation
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studies validate G-CoS’s effectiveness and advantage: G-

CoS generated networks/accelerators consistently outper-

form SOTA GNNs/accelerators, while requiring only a

few hours for the end-to-end search, (e.g., 4 GPU hours

for the Cora dataset).

II. RELATED WORKS

Graph neural networks (GNNs). GNNs have achieved

great success in graph-based learning tasks [22], [23]. De-

pending on their graph representation domains, GNNs can

be categorized into spectral and spatial GNNs. Specifically,

spectral GNNs model the representation in the graph Fourier

transform domain based on eigen-decomposition and usually

handle the whole graph simultaneously [24], [25]. However,

it becomes impractical for spectral GNNs to process large

graphs and difficult for them to take advantage of parallel

processing [10], [26]. On the other hand, spatial GNNs [7],

[27], which directly perform the computation in the graph

domain by aggregating the neighbor nodes’ features, have

undergone rapid development. Recently, [28] introduced an

attention mechanism to further improve the performance of

spatial GNNs; and [29] utilized mini-batch training to improve

GNNs’ scalability to handling large graphs. Combined with

sampling strategies, the whole graph is no longer required

during aggregation, leaving much room for potential hard-

ware acceleration [7], [30]. Therefore, in this work, we will

primarily focus on the spatial GNNs for their advantages on

scalability and potential hardware acceleration.

Graph neural architecture search (GNAS). Neural ar-

chitecture search (NAS) has become a popular approach to

designing neural networks [31]–[33], which can significantly

relieve human efforts from manually designing complex net-

works. The recent NAS success and the large distinction

among GNN structures for different tasks have motivated the

use of NAS for GNNs (denoted as GNAS). For example,

[10], [34] used reinforcement learning (RL) methods along

with parameter sharing to efficiently search for GNNs; [35]

adopted an evolutionary search algorithm; and [36] proposed a

more generic GNN design space and a standardized evaluation

method for GNNs across various graph learning tasks. Despite

the preliminary success, existing works still heavily rely on

excessive rounds of sampling and retraining, limiting their

scalability to more generic search spaces.

Hardware-aware architecture search (HA-NAS). To en-

sure the searched networks’ hardware efficiency, hardware-

aware NAS (HA-NAS) proposes to incorporate hardware

metrics, e.g., the latency on mobile phones, into the search

process. Early works, e.g., [37]–[39], utilized RL-based meth-

ods, and thus suffered from substantial search time and costs,

limiting their scalability to larger and more diverse search

spaces. Inspired by DARTS [40], differentiable HA-NAS [21],

[41]–[43] has emerged to greatly improve both the search and

hardware efficiency. However, restricted by the large difference

among different GNN structures and thus the difficulty for

hardware acceleration, HA-NAS targeting GNNs has rarely

been explored. Furthermore, existing HA-NAS methods have

not yet fully explored the hardware design space. As the

acceleration efficiency is determined by both the network

structures and their accelerators, it is thus desirable to jointly

search for both the networks and their accelerators.

GNN inference accelerators. GNNs’ ultra-sparse graph

matrices, corresponding to extremely dynamic and irregular

data accesses as well as distinct execution patterns from

DNNs, have fueled a growing interest in developing dedicated

GNN accelerators [44]. For instance, HyGCN [12] explored

both intra/inter-vertex parallelisms to separately handle the

irregularity in the aggregation phase and reusability in the

combination phase. Later, aiming to boost the overall hardware

utilization, AWB-GCN [5] proposed to balance the workload

during runtime with an auto-tuning algorithm and to increase

the data locality by regionally clustering the non-zero values

(i.e., connected neighbors) within the adjacency matrices;

EnGN [45] proposed a ring-edge-reduce dataflow to handle

graphs with arbitrary dimensions and increase the accelerator’s

scalability to large graphs; and GRIP [46] employed fine-

grained vertex-tiling to reduce the weight bandwidth require-

ments; In parallel, to reduce the human efforts in designing

GNN accelerators and democratize the process, pioneering

works have attempted to characterize the design space of

dataflows and micro-architectures for GNN accelerators [13],

and developed an automated framework to generate GNN ac-

celerators [14]. Nevertheless, existing automated frameworks

for GNNs still have limited support to various GNN structures

and thus suffer from low hardware utilization and achievable

efficiency on certain tasks.

Software/Hardware Co-exploration. Jointly exploring the

networks and their accelerators has shown promising re-

sults [15]–[21], [47]. For instance, [16], [20] conducted RL-

based search to jointly optimize the networks and some

design parameters of FPGA-based accelerators; [15] devel-

oped the first differentiable network and accelerator co-search

framework to boost both the task accuracy and acceleration

efficiency; and [18] co-searches for networks, bitwidths, and

accelerators to achieve superior performance. However, co-

optimizing the GNN structures and their accelerators has not

been studied.

III. GNN PRELIMINARIES

A. GNN notation and formulation

A typical GNN graph can be represented as, G = (V,E),
where vi ∈ V and (vi, vj) ∈ E denote the nodes and edges,

respectively; and N = |V | and M = |E| denote the total

number of nodes and edges, respectively. The node degree

is denoted as d = {d1, d2, · · · , dN} where di indicates the

number of neighbors connected to node vi. We define D as

the degree matrix whose diagonal elements are formed using d.

The connectivity information is encoded within the adjacency

matrix A ∈ R
N×N , where the non-zero entries represent the

existed connections among different nodes. For each layer l
of a GNN, the nodes are encoded by their feature vectors

{x
(l)
1 , x

(l)
2 , · · · , x

(l)
N } = X(l), where X(l) ∈ R

N×F(l) and F(l)
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denotes the feature dimension used to encode the nodes at

layer l. Thus, a GNN layer [24] can be formulated as:

X(l+1) = ACT(l)

(

ÂX(l)W (l)
)

, (1)

where Â is a normalized version of A: Â = D− 1
2AD− 1

2 ,

ACT(l) represents the activation function of layer l and

W (l) ∈ R
F(l)∗K(l) represents the weights in layer l, with K(l)

denoting the hidden/weight dimension at layer l. The whole

GNN inference can thus be viewed as two separated phases:

Aggregation and Combination.

• Aggregation ÂX(l): For each node in the graph, a GNN

aggregates its 1-hop neighbor nodes’ features into a

unified feature vector, corresponding to the multiplication

between the adjacent and feature matrix, i.e., ÂX .

• Combination [ÂX(l)]W (l): The aggregated feature vec-

tor, ÂX(l), will be further transformed to another feature

vector via an MLP network (shared among nodes) with

weights W (l) for learning better representations, corre-

sponding to the multiplication between the aggregated

feature matrix and weight matrix, i.e., [ÂX(l)]W (l).

In the final/prediction layer of GNNs, after the feature vectors’

update, a softmax function is usually applied in a row-wise

manner, i.e., softmax(x
(l)
i ) = exp(x

(l)
i )/

∑

i exp(x
(l)
i ) [24].

For semi-supervised multiclass classification, the loss function

captures the cross-entropy errors over all labeled examples:

LGNN (W ) = −
∑

n∈YN

∑

f

Ynf ln(Θnf ), (2)

where YN is the set of node indices that have labels, Ynf is

the ground truth label matrix, and Θnf denotes the predicted

possibilities of node n belonging to class f . During GNN

training, W (l) is updated via gradient descents.

B. GNN variants and their implementations

Many advanced GNN variants have recently been proposed

to consider different aggregation functions and introduce ad-

ditional attention modules or sampling functions. Without loss

of generality, we summarize four popular GNN architectures:

GCN [24], GAT [28], GIN [48], and GraphSAGE [7]. We

analyze the difference among them as compared with vanilla

GNNs below, aiming to generally support them in G-CoS.

GCN [24]: During inference, each node can be written

as x
(l+1)
i =

∑

j∈N (i)∪i(
1

didj
W (l)x

(l)
j ), where l is the layer

index and N (i) represents the i-th node’s neighbor set. Thus,

compared with the vanilla GNNs, the only difference lies in

the entries of the adjacency matrix where each node is encoded

as 1
didj

and can be filled offline before the processing.

GAT [28]: An attention module is introduced, i.e., x
(l+1)
i =

αi,iW
(l)x

(l)
i +

∑

j∈N (i)(αi,jW
(l)x

(l)
j ), where α denotes the

attention coefficients for the neighbor nodes and can be viewed

as the elements to replace the original adjacency matrix’s

Fig. 1. FPGA measured Frame-Per-Second (FPS; see the left axis) on a
VCU128 FPGA [50] and accuracy on Cora dataset (see the right colorbar)
of 300 randomly sampled fully trained GNNs from supernet as defined in
Sec. IV-D, when each of the networks is accelerated by 300 randomly sampled
accelerators from the accelerator design space (see Sec. IV-C), leading to a
total of 9E+4 randomly sampled data points. Designs with ACC > 0.7 and
FPS > 5E+5 are circled out in red, which are extremely sparse.

entries. Adapting from the formulation of GAT [28], [49], αi,j

can be calculated as:

αi,j =
exp(ACT(xᵀ

i w
(l)
1 + xᵀ

jw
(l)
2 ))

∑

k∈N (i)∪i exp(ACT(xᵀ

i w
(l)
1 + xᵀ

kw
(l)
2 ))

(3)

where ACT denotes the activation used in the attention

module and (w
(l)
1 , w

(l)
2 ) ∈ (RF(l)×1,RF(l)×1) denotes the

weights of the attention module. The whole set of α can then

be calculated by introducing an additional layer of matrix

multiplication of X(l) ∗ [w
(l)
1 ||w

(l)
2 ] along with the element-

wise activation and multiplication with the original adjacency

matrix. Thus, replacing the original adjacency matrix with α
captures the functionality of the attention module.

GIN [48]: An information-lossless aggregation function is

adopted, i.e., x
(l+1)
i = MLP((1+ε)x

(l)
i +

∑

j∈N (i) x
(l)
j ), where

MLP denotes an MLP network and ε is a learnable constant.

As ε is trained and then fixed during inference, GIN can be

realized by fusing ε into the original adjacency matrix and

incorporating an additional MLP layer into the aggregation

phase of vanilla GNNs.

GraphSAGE [7]: Uniform neighbor sampling is introduced

to alleviate the extreme memory consumption during training,

i.e., x
(l+1)
i = Mean(W (l)x

(l)
j ), j ∈ {i} ∪ {S(i)}, where S(i)

denotes the sampled neighbors, which can be easily supported

by introducing an additional node sampling layer and using

mean aggregation to the original GNN formulation as in Eq. 1.

IV. THE PROPOSED G-COS FRAMEWORK

This section describes our G-CoS framework by first pro-

viding an overview and the problem formulation, and then G-

CoS’s two major enablers: a generic GNN accelerator design

space and network structure design space, followed by G-

CoS’s efficient one-shot evolutionary co-search algorithm.

A. G-CoS: the overview and challenges

To maximize both task accuracy and hardware efficiency, G-

CoS jointly searches for the best matched GNN structures and

accelerators, under the specified datasets, resource constraints,
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Fig. 4. The choices of kernel modes for each sub-accelerator, where different modes represent different spatial mapping/temporal mapping methods. For
better visual clarity, the operation order for each mode is numbered in each sub-figure, and the corresponding properties on off-chip bandwidth consumption,
on-chip buffer consumption, and potential parallelism opportunities are summarized on the right corner of each sub-figure.
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1 1
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Fig. 5. The choices of tiling modes for each sub-accelerator, where the black
box represents the temporal tiles, each arrow color represents the first direction
that the tile will move towards, and the color gradient represents the output
process from start to complete. The three arrow choices favor weight reuses,
feature reuses, and output reuses, respectively. For instance, when tiles first
move along the red arrow direction, the tiles of the weights can stay stationary.

iliaries for a given GNN, e.g., from PyG [52]. As shown

in Fig. 2, a pre-trained GNN choice is first passed through

the blocks of GNN parser and sparsity analyzer before be-

ing loaded for G-CoS’s automated accelerator generation.

Specifically, (1) the GNN parser helps to extract the GNN

structure parameters (e.g., the dimensions of the weights and

features) and (2) the sparsity analyzer analyzes the sparsity of

each adjacency matrix row. They together help the accelerator

design space generator produce all the possible choices and

balance the workloads for each sub-accelerator.

Flexible workload allocation. As different GNN struc-

tures can have drastically different sparsity patterns and fea-

ture/weight dimensions, G-CoS employs two flexible workload

allocation schemes to ensure each sub-accelerator’s assigned

workload better fit its micro-architecture, e.g., the processing

element (PE) array’s dimensions and tiling sizes, to achieve

high hardware utilization and thus efficiency. The main alloca-

tion principle is that the assigned workload is proportional to

each sub-accelerator’s capacity which is characterized by its

number of PEs. The two schemes balance the workload with

(1) the number of feature (i.e., adjacency matrix) rows which

will be scaled with the pre-analyzed sparsity of the adjacency

matrix and (2) the number of weight columns, respectively.

The sub-accelerator design. Based on G-CoS’s micro-

architecture template, the sub-accelerators are auto-generated

according to different tiling/kernel modes (as introduced be-

low) to be equipped with different functional components

for (1) reflecting different data reuse strategies, (2) favoring

different resource trade-offs, and (3) supporting the special

operations from various GNN structures, aiming to maximize

the hardware efficiency on a wide range of GNNs. Specifically,

the sub-accelerators consider:

• Tiling modes/sizes: The data per assigned workload may

not fit the on-chip memory of each sub-accelerator. As

shown in Fig. 5, temporal tiling is then enabled to process

the workload temporally. With different tiling modes,

a sub-accelerator features more reuses of the features

(adjacency matrices), weights, and outputs, respectively.

The tiling sizes are defined by K, M, and N (see Fig. 5).

• Kernel modes: As illustrated in Fig. 4, with different

data mapping and processing patterns for the PE array,

each sub-accelerator design would have different off-chip

bandwidth consumption, on-chip buffer consumption, and

parallelism opportunities.

Moreover, each sub-accelerators is equipped with:

• Dedicated Buffers to facilitate local reuse opportunities.

• Dense/SpMM Hybrid Engine which supports both

dense and sparse matrix multiplication within one unit

aided with an configurable PE array as in [49].

• Element-wise Activation Units to process the non-linear

activation operations.

• Sampling Units to schedule the node sampling.

To further increase on-chip reuse opportunities and reduce

off-chip accesses, the sub-accelerators can support (1) weight

buffer sharing which inter-connects all the on-chip weight

buffers for weight reuses to reduce off-chip accesses and

(2) buffer re-purposing where the feature, weight and output

buffers are inter-changeable, so no/reduced off-chip accesses
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Fig. 6. The GNN supernet of the proposed G-CoS which covers a comprehensive range of GNN options and is compatible with one-shot NAS methods.

TABLE I
THE SEARCHABLE ACCELERATOR PARAMETERS FOR THE PROPOSED

G-COS, WHERE n DENOTES THE NUMBER OF POSSIBLE TILING SIZES

RANGING ABOUT 10∼100 DEPENDING ON THE ACCELERATED GNNS.

Tiling Kernel Buffer WBuf Tiling
Mode Mode Re-purposing Sharing Size

Choice
[0,1,2] [0,1,2,3] [0,1] [0,1] [0,...,n-1]

Format

# of
3 4 2 2 n (∼10-100)

Choices

are necessary for the intermediate results between the combi-

nation and aggregation phases and/or between layers. Consid-

ering the controlling complexity and limited on-chip memory

size, if either of these two options are enabled, the number of

sub-accelerators will be restricted (e.g., 5 in this work).

The searchable accelerator parameters. Based on the

accelerator template (see Fig. 3), we extract the searchable

parameters, of which different combinations lead to different

accelerators and form a generic GNN accelerator space to be

used by the automated co-search of G-CoS, as summarized

in Tab. I. All design choices can be configured differently for

each sub-accelerator, except when either buffer re-purposing

or weight buffer sharing is enabled. Otherwise, the tiling and

kernel modes are fixed for all sub-accelerators for the ease

of controlling and scheduling. The tiling size can range from

about 10 to 100 for each sub-accelerator, depending on the

given GNN structure. Together, these design choices lead to a

hardware design space size of 1E+10 ∼ 1E+15.

D. G-CoS: a generic GNAS search space

The GNN supernet. To avoid the retraining cost during

co-search, G-CoS incorporates a GNN supernet as its GNN

design space which is compatible with the adopted one-shot

NAS method and able to produce subnetworks covering a

comprehensive range of GNN structures, as shown in Fig. 6.

Specifically, the GNN supernet is composed of five blocks

denoting the attention, combination, sampling, aggregation,

and activation blocks. Each block will also have multiple

attributes to be determined from a wide range of options

as specified in Tab. II. For instance, an attention block may

assume a GAT-sym structure and have two heads as in Fig. 6;

The combination and aggregation blocks share the same at-

tributes for their hidden dimensions; The attention, sampling,

and activation blocks all have a ’skip’ option to cover GNNs

devoid of these modules. For better generality, each layer

of the GNNs assumes this format of supernet, with attribute

choices different among layers. For the final/prediction layer,

the hidden dimensions and activations are fixed according to

the given dataset. Combining all the possible choices in Tab. II,

the GNN supernet in G-CoS is able to produce ∼ 1E+9 choices

TABLE II
THE AVAILABLE CHOICES FOR EACH BLOCK ATTRIBUTE IN THE GNN

SUPERNET, WITH THE ATTENTION TYPES (ATT. TYPES) FOLLOWING [10].

Att. types
[skip, GCN, GAT, GAT-sym]
[COS, Linear, Gene-Linear]

Agg. types [sum, mean, max, MLP]

Act. types
[Skip, Sigmoid, Tanh, ReLu, Linear]
[Softplus, Leaky ReLu, ReLu6, Elu]

# of hidden
[4, 8, 16, 32, 64, 128, 256]

dims

# of Att.
[1,2,4,6,8,16]

heads

Node
[0.1,0.5,1]

sampling rate

for a 2 layer GNN, leading to a joint GNN-accelerator space

with more than 1E+19 choices.

The subnetwork sampling. The subnetwork is sampled

by choosing an option for each attributes of the blocks, e.g.,

red boxes in Fig. 6. In particular, G-CoS employs uniform

random sampling during the pre-training stage, and samples

the subnetworks based on the proposed evolutionary algorithm

(see Sec. IV-E) during the exploration stage.

E. G-CoS: one-shot evolutionary GNN-accelerator co-search

To tackle the aforementioned challenge of excessively large

GNN-accelerator joint search space and costly retraining

rooted in many NAS methods [10], [35], we propose to employ

an one-shot based search approach as inspired by [53], to

decouple the supernet pre-training and GNN-accelerator co-

search processes, along with an evolutionary algorithm to effi-

ciently navigate through the large joint space to locate optimal

GNN-accelerator design pairs for boosting both task accuracy

and hardware efficiency. In particular, we only pre-train the

GNN supernet once and only inference on the validation set

as needed during the exploration stage. To the best of our

knowledge, we are the first to study the effectiveness of one-

shot NAS within the scope of GNNs.

The supernet pre-training. During supernet pre-training,

a random subnetwork is uniformly sampled from the GNN

supernet by selecting the attribute options from each block

and then the subnetwork weights ω are updated via back-

propagation. As [53] pointed out, uniform sampling can decou-

ple the weights among possible subnetworks and thus provide

a better estimate for their individual fully trained accuracy

when these subnetworks are inferenced on the validation

dataset during the GNN structure exploration.

The weight sharing. For more effective pre-training, G-CoS

adopts a weight sharing strategy as inspired by [10], [53] dur-

ing pre-training, such that different subnetworks share certain

slices of weights. In particular, the weights for combination

and aggregation will be shared and retrieved according to the
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Algorithm 1 G-CoS’s GNN-accelerator co-search algorithm

1: Inputs: the target performance T ; the number of outputs N2; the
samples pool size pmax, the fitness function fit(); the mutation
function mut(); the birth/dying rate s

2: Outputs: N2 number of best found designs ON2

3: [Procedures]:

4: P ={}; fitavg = 0
5: While fitavg < T
6: If |P | ≤ pmax

7: If |P | == 0
8: Randomly generate (s ∗ pmax) new designs pnew[gnet,hw]
9: Else

10: Find top (s ∗ pmax) fit designs top[gnet,hw]
11: Mutate for new designs pnew[gnet,hw] = mut( top[gnet,hw])
12: Evaluate new designs for fitness: fit(pnew[gnet,hw])

13: Add {pnew[gnet,hw], fit(pnew[gnet,hw])} to P
14: Else

15: Remove the bottom s ∗ pmax designs from P
16: fitavg = average fitness of top N2 designs in P
17: Return N2 top fit designs ON2

chosen # of hidden dimensions when a subnetwork is sampled.

For the attention block, only the options belonging to the same

attention types share their weights and are retrieved according

to the number of attention heads.

The evolutionary co-search algorithm. As illustrated in

Alg. 1, a specially tailored evolutionary algorithm is devel-

oped to efficiently search for best satisfied GNN-accelerator

pairs, characterized by (gnet, hw). Overall, it operates by

constantly generating new designs around the good design

options stored in a pool P , filtering out the inferior designs,

and then outputting the top N2 performing designs. Specif-

ically, the algorithm inputs include: (1) the fitness function

fit(), which evaluates the designs given the GNN-accelerator

specs (gnet, hw), (2) mutation function mut() which randomly

changes the attributes of good designs to generate new designs,

(3) the largest samples pool size pmax, (4) the birth/dying rate

which controls how many designs will be generated/filtered

out, and (5) performance target T which determines the

terminating conditions and follows the same units as the

fitness function. After search, the algorithm outputs the top N2

performing designs within P . More input specification choices

are provided in Sec.V-A.

V. EXPERIMENT RESULTS

In this section, we first introduce the experiment setups

in Sec. V-A, and then benchmark the proposed G-CoS with

SOTA GCN accelerators, GNAS and handcrafted GNNs in

Sec. V-B, Sec. V-C and Sec. V-D, respectively.

A. Experiment Setup

Baselines and datasets. For evaluating G-CoS over SOTA

GNN accelerators, we consider three baselines: HyGCN [12],

AWB-GCN [5], and Deepburning-GL [14], respectively. For

evaluating G-CoS over SOTA GNAS, we consider three

GNAS baselines: GraphNAS [10], Auto-GNN [34], and Auto-

Graph [35]. For benchmarking over SOTA handcrafted GNNs,

we consider four baselines: GCN [24], GAT [28], LGCN [30],

and GraphSAGE [7], covering the most common GNN vari-

ants. Our experiments are conducted on four datasets: three

citation graph datasets (Cora, CiteSeer and Pumbed) [54], and

the Reddit post dataset [7]), respectively.

GNN training setup. For the GNN training, we follow the

same dataset splits as [7], [24], [55]. The GNN supernet is

trained using an Adam optimizer [56] with a learning rate

of 0.001 for 1000 epochs, L2 regularization, and dropout.

After the design space exploration is finished, the final derived

models are trained with additional 400 epochs from scratch

under the same configurations.

Evolutionary search algorithm setup. For the evolutionary

search algorithm presented in Alg. 1, we use a set of generic

configurations. Specifically, the fitness function is set as the

weighted sum of (inverse)latency and task accuracy, such that

latency and task accuracy contributes similarly to the fitness

score. The mutation function is set to have a 50% chance, i.e.,

the selected GNN-accelerator design pairs have half of the

randomly picked design attributes changed. The birth/dying

rate (s) is set to 0.2.

Hardware experiment setup. To evaluate G-CoS’s gen-

erated accelerators, we adopt standard the FPGA evaluation

and implementation flows in Vivado 2020.2 [57]. For the

platform, we picked the Xilinx VCU128 FPGA board [50],

which is equipped with 9024 DSPs, 42MB on-chip memory

and 460GB/s HBM of-chip memory. For a fair comparison

with other baselines, we limit the DSP consumption to be

less than 4096 throughout the design. The generated GNN

accelerators are clocked at 330MHz and adopt a 16-bit fixed

point precision. For the accelerator template, we fix the num-

ber of sub-accelerators to 5 (unless otherwise specified). Note

that the design principles of G-CoS introduced in Sec. IV-C is

platform agnostic, i.e., G-CoS can be flexibly extended to other

platforms such as ASIC. During the design space exploration,

to quickly go over numerous design options, we design and

implement an in-house performance simulator to measure the

execution time (i.e., the number of cycles).

B. G-CoS over SOTA GNN accelerators

In this set of experiments, we compare G-CoS with existing

SOTA GNN accelerators: HyGCN [12], AWB-GCN [5], and

Deepburning-GL [14], in terms of latency and bandwidth

consumption. For a fair comparison, we fix the GNN structures

and datasets in G-CoS to be the same as the baselines and only

search for the accelerator parameters. Since most of them do

not provide absolute performance values while reporting the

relative speedups over PyG-CPU on an Intel Xeon E5-2680 v3

CPU instead. We also measure and verify the latency on the

same CPU and calculate the FPGA speedups over it, so that

PyG-CPU is a common baseline for all methods, and then we

can analyze the relative improvements as elaborated below:

(1) Speedup. As shown in Fig. 8, G-CoS achieves an

average of 5.52×, 1.92×, 35.98×, and 21.54× speedups

over HyGCN, AWB-GCN, Deepburning-GL-KCU1500, and

Deepburning-GL-Alveo U50, respectively. G-CoS’s much re-

duced latency is mostly attributed to its enabling better hard-

ware(DSP) utilization as the multi-sub-accelerator scheme of

G-CoS can better cover GNNs’ high irregularity and the wide
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Fig. 8. The normalized inference speedups (w.r.t. PyG-CPU) achieved by G-CoS over the four SOTA baseline platforms on three GNN models and four
representative graph datasets, where KCU1500 and Alveo U50 are two implementation platforms for Deepburning-GL [14]

range of searchable accelerator parameters make G-CoS’s

searched accelerators matching different variation in GNNs.

(2) Off-chip memory Bandwidth Consumption. G-CoS only

requires an average of 50% off-chip memory bandwidth as

compared to HyGCN. The high bandwidth of HyGCN is due

to to its high-degree parallelism while G-CoS’s versatile kernel

mode as illustrated in Sec. IV-C alleviates such an off-chip

bandwidth pressure.

C. G-CoS over SOTA GNAS.

In this set of experiments, we benchmark G-CoS with

the SOTA GNAS works: GraphNAS [10], Auto-GNN [34],

and AutoGraph [35] based on the metrics of task accuracy

and latency. For G-CoS, we co-optimize both the GNN and

accelerator design parameters as introduced in Sec. IV-C

and Sec. IV-D, respectively. For a fair comparison, we also

accelerate the baselines’ generated GNNs under the same

hardware platform and optimize the corresponding accelerator

parameters. To demonstrate the tradeoff between the hardware

efficiency and task accuracy, we restricted the baseline gener-

ated GNNs with different flops and then select the designs with

the lowest latency; for G-CoS, we simply decrease/increase

the weighting coefficient of the latency in the search metrics

to achieve flexible tradeoffs. The results are presented in

Fig. 7: G-CoS consistently maintains a better performance

frontier, i.e., a higher accuracy and lower latency. In partic-

ular, G-CoS achieves a 1.60%, 1.3% and 2.11% increase in

task accuracy with a similar or lower latency, and a 2.54×,

2.15× and 2.98× latency reduction with a similar or higher

accuracy, as compared with the SOTA GNAS works on the

Cora, CiteSeer and Pubmed datasets, respectively. Although,

considering flops during the search can offer some guidance

for more hardware-friendly GNNs, it can not fully capture

the compatibility between the searched GNNs and the specific

hardware platform, resulting the searched GNNs which satisfy

the flops requirement but might be hard to accelerate. Thus,

co-optimizing the GNN-accelerator pairs can excel both in

terms of accuracy and hardware efficiency against traditional

GNAS works by offering better guidance and fully customized

architecture to every single searched network. The entire

process takes as low as 4 GPU hours depending on the dataset.

D. G-CoS over SOTA handcrafted GNNs.

We also compare the performance of the proposed G-CoS

against the SOTA handcrafted GNNs: GCN [24], GAT [28],

LGCN [30], and GraphSAGE [7]. For G-CoS, we co-optimize

the GNN-accelerator design pairs. For the baselines GNNs, we

optimize their accelerator parameters for fair comparison. As

shown in Fig. 7, G-CoS’s generated GNN-accelerator design

pairs consistently achieve better accuracy and lower latency

at the same time. Specifically, the G-CoS generated designs

achieve up to 2.7%, 3.22% and 1.01% increase in accuracy

while having 1.91×, 1.08× and 1.19× reduction in latency.

VI. CONCLUSION

We propose G-CoS, a GNN and accelerator co-search

framework to automatically search for matched GNN struc-

tures and accelerators to maximize both task accuracy and

acceleration efficiency. To the best of our knowledge, G-CoS is

the first co-search framework for GNNs and their accelerators.

Extensive experiments show that the GNNs and accelerators

generated by G-CoS consistently outperform SOTA GNNs

and GNN accelerators, while only requiring a few hours for

the end-to-end generation of the matched GNNs and their

accelerators. We believe that our G-CoS has made an important

heuristic step towards boosted GNN acceleration efficiency

and fast development of efficient GNN solutions.
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