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Abstract—Graph Neural Networks (GNNs) have emerged as
the state-of-the-art (SOTA) method for graph-based learning
tasks. However, it still remains prohibitively challenging to infer-
ence GNNs over large graph datasets, limiting their application to
large-scale real-world tasks. While end-to-end jointly optimizing
GNNs and their accelerators is promising in boosting GNNs’
inference efficiency and expediting the design process, it is still
underexplored due to the vast and distinct design spaces of GNNs
and their accelerators. In this work, we propose G-CoS, a GNN
and accelerator co-search framework that can automatically
search for matched GNN structures and accelerators to maximize
both task accuracy and acceleration efficiency. Specifically, G-
CoS integrates two major enabling components: (1) a generic
GNN accelerator search space which is applicable to various GNN
structures and (2) a one-shot GNN and accelerator co-search
algorithm that enables simultaneous and efficient search for
optimal GNN structures and their matched accelerators. To the
best of our knowledge, G-CoS is the first co-search framework for
GNNs and their accelerators. Extensive experiments and ablation
studies show that the GNNs and accelerators generated by G-
CoS consistently outperform SOTA GNNs and GNN accelerators
in terms of both task accuracy and hardware efficiency, while
only requiring a few hours for the end-to-end generation of the
best matched GNNs and their accelerators.

Index Terms—GNN-Accelerator, Neural Architecture Search

I. INTRODUCTION

Graph neural networks (GNNs) [1] have gained an increased
popularity recently as they demonstrated the state-of-the-art
(SOTA) performance in various graph-based learning tasks,
including node classification [1], graph classification [2], and
recommendation systems [3]. However, GNNs often suffer
from prohibitive inference cost, limiting their potential to han-
dle large-scale real-world graph applications. For example, a 2-
layer GNN model requires 19G FLOPs (FLOPs: floating point
operations) to inference the Reddit graph [4], which requires
a latency of 2.94E+5 milliseconds when being executed on an
Intel Xeon E5-2680 CPU platform [5], i.e., its required FLOPs
and latency are 2x and 5000x of a 50-layer convolutional
neural network (CNN), ResNet-50 [6].

The giant computational cost of GNN inference results from
three aspects. First, graphs are often very large as exacerbated
by their intertwined complex neighbor connections, e.g., a
total of 232,965 nodes in the Reddit graph with each node
having about 50 neighbors [7]. Second, real-world graphs
tend to follow the power-law distribution and therefore have
highly irregular adjacent matrices, resulting in prohibitive
inefficiencies in both data processing and movements. Third,
the dimension of GNNs’ node feature vectors can be very
high, e.g., each node in the CiteSeer graph has 3703 features.
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To tackle GNNs’ prohibitive inference cost, various effi-
cient GNN inference techniques have been developed. On
the algorithm level, several pioneering GNN compression
techniques have been developed. For instance, two concurrent
GNN pruning works [8], [9] aim to sparsify the connections
in GNNs’ graph adjacent matrices; and [4] for the first time
shows the feasibility of adopting 8-bit integer arithmetic for
GNN inference without sacrificing the accuracy. Another par-
alleled trend is to search for efficient GNN architectures [10],
[11]. On the hardware level, various GNN accelerators have
been proposed. For example, HyGCN [12] proposes hybrid
execution patterns of GNNs for leveraging their intra-vertex
and inter-vertex parallelisms to handle the irregularity in the
aggregation phase and reusability in the combination phase,
respectively; Later, AWB-GCN [5] identifies the workload
imbalance problem in the aggregation phase, and proposes
auto-tuning workload balancing techniques, achieving an av-
erage speedup of 7.4x over HyGCN. On the development
tool level, pioneering works have attempted to characterize the
design space of dataflows and micro-architectures for GNN
accelerators [13], and develop an automated framework to
generate GNN accelerators [14].

Despite the promising performance of existing efficient
GNN inference solutions, their achievable efficiency is still not
sufficient for enabling extensive GNN inference applications
due to GNNs’ extremely dynamic and irregular data accesses
and thus excessive acceleration cost. Motivated by the great
success of algorithm-accelerator co-exploration works for
CNN accelerations [15]-[21], this work targets to co-optimize
both the GNN structures and their accelerators with boosted
development speed, and makes the following contributions:

e We propose G-CoS, a GNN and accelerator co-search
framework that can automatically search for the matched
GNN structures and accelerators to maximize both task
accuracy and acceleration efficiency. To the best of our
knowledge, G-CoS is the first co-search framework for
GNNs and their accelerators.

o G-CoS integrates two enabling components: (1) a generic
GNN accelerator search space which is applicable to
various GNN structures and (2) a one-shot GNN and
accelerator co-search algorithm that enables simultane-
ous and efficient search for optimal GNN structures and
their matched accelerators, both of which can facilitate
the algorithmic exploration of efficient GNN solutions.

o Extensive hardware/algorithm experiments and ablation
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studies validate G-CoS’s effectiveness and advantage: G-
CoS generated networks/accelerators consistently outper-
form SOTA GNNs/accelerators, while requiring only a
few hours for the end-to-end search, (e.g., 4 GPU hours
for the Cora dataset).

II. RELATED WORKS

Graph neural networks (GNNs). GNNs have achieved
great success in graph-based learning tasks [22], [23]. De-
pending on their graph representation domains, GNNs can
be categorized into spectral and spatial GNNs. Specifically,
spectral GNNs model the representation in the graph Fourier
transform domain based on eigen-decomposition and usually
handle the whole graph simultaneously [24], [25]. However,
it becomes impractical for spectral GNNs to process large
graphs and difficult for them to take advantage of parallel
processing [10], [26]. On the other hand, spatial GNNs [7],
[27], which directly perform the computation in the graph
domain by aggregating the neighbor nodes’ features, have
undergone rapid development. Recently, [28] introduced an
attention mechanism to further improve the performance of
spatial GNNs; and [29] utilized mini-batch training to improve
GNNs’ scalability to handling large graphs. Combined with
sampling strategies, the whole graph is no longer required
during aggregation, leaving much room for potential hard-
ware acceleration [7], [30]. Therefore, in this work, we will
primarily focus on the spatial GNNs for their advantages on
scalability and potential hardware acceleration.

Graph neural architecture search (GNAS). Neural ar-
chitecture search (NAS) has become a popular approach to
designing neural networks [31]-[33], which can significantly
relieve human efforts from manually designing complex net-
works. The recent NAS success and the large distinction
among GNN structures for different tasks have motivated the
use of NAS for GNNs (denoted as GNAS). For example,
[10], [34] used reinforcement learning (RL) methods along
with parameter sharing to efficiently search for GNNs; [35]
adopted an evolutionary search algorithm; and [36] proposed a
more generic GNN design space and a standardized evaluation
method for GNNs across various graph learning tasks. Despite
the preliminary success, existing works still heavily rely on
excessive rounds of sampling and retraining, limiting their
scalability to more generic search spaces.

Hardware-aware architecture search (HA-NAS). To en-
sure the searched networks’ hardware efficiency, hardware-
aware NAS (HA-NAS) proposes to incorporate hardware
metrics, e.g., the latency on mobile phones, into the search
process. Early works, e.g., [37]-[39], utilized RL-based meth-
ods, and thus suffered from substantial search time and costs,
limiting their scalability to larger and more diverse search
spaces. Inspired by DARTS [40], differentiable HA-NAS [21],
[41]-[43] has emerged to greatly improve both the search and
hardware efficiency. However, restricted by the large difference
among different GNN structures and thus the difficulty for
hardware acceleration, HA-NAS targeting GNNs has rarely
been explored. Furthermore, existing HA-NAS methods have

not yet fully explored the hardware design space. As the
acceleration efficiency is determined by both the network
structures and their accelerators, it is thus desirable to jointly
search for both the networks and their accelerators.

GNN inference accelerators. GNNs’ ultra-sparse graph
matrices, corresponding to extremely dynamic and irregular
data accesses as well as distinct execution patterns from
DNNs, have fueled a growing interest in developing dedicated
GNN accelerators [44]. For instance, HyGCN [12] explored
both intra/inter-vertex parallelisms to separately handle the
irregularity in the aggregation phase and reusability in the
combination phase. Later, aiming to boost the overall hardware
utilization, AWB-GCN [5] proposed to balance the workload
during runtime with an auto-tuning algorithm and to increase
the data locality by regionally clustering the non-zero values
(i.e., connected neighbors) within the adjacency matrices;
EnGN [45] proposed a ring-edge-reduce dataflow to handle
graphs with arbitrary dimensions and increase the accelerator’s
scalability to large graphs; and GRIP [46] employed fine-
grained vertex-tiling to reduce the weight bandwidth require-
ments; In parallel, to reduce the human efforts in designing
GNN accelerators and democratize the process, pioneering
works have attempted to characterize the design space of
dataflows and micro-architectures for GNN accelerators [13],
and developed an automated framework to generate GNN ac-
celerators [14]. Nevertheless, existing automated frameworks
for GNN:ss still have limited support to various GNN structures
and thus suffer from low hardware utilization and achievable
efficiency on certain tasks.

Software/Hardware Co-exploration. Jointly exploring the
networks and their accelerators has shown promising re-
sults [15]—-[21], [47]. For instance, [16], [20] conducted RL-
based search to jointly optimize the networks and some
design parameters of FPGA-based accelerators; [15] devel-
oped the first differentiable network and accelerator co-search
framework to boost both the task accuracy and acceleration
efficiency; and [18] co-searches for networks, bitwidths, and
accelerators to achieve superior performance. However, co-
optimizing the GNN structures and their accelerators has not
been studied.

ITI. GNN PRELIMINARIES
A. GNN notation and formulation

A typical GNN graph can be represented as, G = (V, E),
where v; € V and (v;,v;) € E denote the nodes and edges,
respectively; and N = |V| and M = |E| denote the total
number of nodes and edges, respectively. The node degree
is denoted as d = {di,dq,- - ,dn} where d; indicates the
number of neighbors connected to node v;. We define D as
the degree matrix whose diagonal elements are formed using d.
The connectivity information is encoded within the adjacency
matrix A € RV*N | where the non-zero entries represent the
existed connections among different nodes. For each layer [
of a GNN, the nodes are encoded by their feature vectors
{a:gl),a:g), . ,xg\l,)} = X, where X € RN*F0) and F|;
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denotes the feature dimension used to encode the nodes at
layer [. Thus, a GNN layer [24] can be formulated as:

XD = ACT ) (AX(l)W(l)) 7 )

where A is a normalized version of A: A = D‘%AD_%,
ACT(;) represents the activation function of layer [ and
W e RFw*Kw represents the weights in layer [, with K ;)
denoting the hidden/weight dimension at layer /. The whole
GNN inference can thus be viewed as two separated phases:
Aggregation and Combination.

o Aggregation AX®: For each node in the graph, a GNN
aggregates its 1-hop neighbor nodes’ features into a
unified feature vector, corresponding to the multiplication
between the adjacent and feature matrix, i.e., AX.

o Combination [AXD]W®: The aggregated feature vec-
tor, AX (), will be further transformed to another feature
vector via an MLP network (shared among nodes) with
weights W) for learning better representations, corre-
sponding to the multiplication between the aggregated
feature matrix and weight matrix, i.e., [AX O] ®.

In the final/prediction layer of GNNS, after the feature vectors’
update, a softmax function is usually applied in a row-wise
manner, i.e., softmax(xz(-l)) = exp(xgl))/ Do exp(xgl)) [24].
For semi-supervised multiclass classification, the loss function
captures the cross-entropy errors over all labeled examples:

Lann(W) == D ) Yapln(O,y), 2)
neyYn f

where )y is the set of node indices that have labels, Y, is
the ground truth label matrix, and ©,,¢ denotes the predicted
possibilities of node n belonging to class f. During GNN
training, W is updated via gradient descents.

B. GNN variants and their implementations

Many advanced GNN variants have recently been proposed
to consider different aggregation functions and introduce ad-
ditional attention modules or sampling functions. Without loss
of generality, we summarize four popular GNN architectures:
GCN [24], GAT [28], GIN [48], and GraphSAGE [7]. We
analyze the difference among them as compared with vanilla
GNNs below, aiming to generally support them in G-CoS.

GCN [24]: During inference, each node can be written
Y = ZjeN(i)Ui(fdjW(l)xy)), where [ is the layer
index and N (7) represents the i-th node’s neighbor set. Thus,
compared with the vanilla GNNs, the only difference lies in
the entries of the adjacency matrix where each node is encoded
as fdj and can be filled offline before the processing.

GAT [28]: An attention module is introduced, i.e., mElH) =

ai,iW(l)xz(-l) +.Zj€N(i)(Oéi’jW(l)l';l)), where o denotes the
attention coefficients for the neighbor nodes and can be viewed
as the elements to replace the original adjacency matrix’s
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Fig. 1. FPGA measured Frame-Per-Second (FPS; see the left axis) on a
VCUI128 FPGA [50] and accuracy on Cora dataset (see the right colorbar)
of 300 randomly sampled fully trained GNNs from supernet as defined in
Sec. IV-D, when each of the networks is accelerated by 300 randomly sampled
accelerators from the accelerator design space (see Sec. IV-C), leading to a
total of 9E+4 randomly sampled data points. Designs with ACC > 0.7 and
FPS > 5E+5 are circled out in red, which are extremely sparse.

entries. Adapting from the formulation of GAT [28], [49], o ;
can be calculated as:

exp(ACT (2T w!) + x}wél))) 3
Eke/\/(i)m‘ exp(ACT(gcingl) + xlwél)))

where ACT denotes the activation used in the attention
module and (w!”, w{") € (RFw*! RF0*1) denotes the
weights of the attention module. The whole set of a can then
be calculated by introducing an additional layer of matrix
multiplication of X s [w{"||w{"] along with the element-
wise activation and multiplication with the original adjacency
matrix. Thus, replacing the original adjacency matrix with o
captures the functionality of the attention module.

GIN [48]: An information-lossless aggregation function is
adopted, i.e., xElH) = MLP((l—&—e)xl(-l)—&-ZjeN(i) xy)), where
MLP denotes an MLP network and € is a learnable constant.
As € is trained and then fixed during inference, GIN can be
realized by fusing € into the original adjacency matrix and
incorporating an additional MLP layer into the aggregation
phase of vanilla GNNs.

GraphSAGE [7]: Uniform neighbor sampling is introduced
to alleviate the extreme memory consumption during training,
ie., 2tV = Mean(WO2), j € {i} U {S(i)}, where S(i)
denotes the sampled neighbors, which can be easily supported
by introducing an additional node sampling layer and using
mean aggregation to the original GNN formulation as in Eq. 1.

Qg

IV. THE PROPOSED G-COS FRAMEWORK

This section describes our G-CoS framework by first pro-
viding an overview and the problem formulation, and then G-
CoS’s two major enablers: a generic GNN accelerator design
space and network structure design space, followed by G-
CoS’s efficient one-shot evolutionary co-search algorithm.

A. G-CoS: the overview and challenges

To maximize both task accuracy and hardware efficiency, G-
CoS jointly searches for the best matched GNN structures and
accelerators, under the specified datasets, resource constraints,
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Fig. 2. An overview of our G-CoS GNN-accelerator co-search framework, where Accel. denotes accelerators.

and optimizing metrics (e.g., accuracy and latency), as shown
in Fig. 2.

To enable effective GNN-accelerator co-search, there exist
three major challenges, including (1) the prohibitively large
and distinct joint space versus very sparse optima excelling
at both accuracy and efficiency, as shown in Fig. 1, (2)
the excessive retraining cost during GNAS, and (3) the lack
of either generic GNN structure or accelerator search space
description. To tackle the first two aforementioned challenges,
G-CoS employs a one-shot evolutionary GNN-accelerator co-
search algorithm, as introduced in Sec. IV-E. G-CoS first
one-shot pre-trains the proposed GNN supernet to avoid the
necessity of cumbersome retraining in the GNN-accelerator
co-search phase, and then utilizes an evolutionary search
algorithm to efficiently navigate the joint network-accelerator
space to locate the optimal GNN-accelerator pairs based on the
feedback of the estimated inference accuracy and hardware
efficiency. For the third challenge, G-CoS integrates (1) a
generic GNN network space description which is compatible
with its one-shot search algorithm and (2) a generic GNN
accelerator design space which includes accelerators with
high hardware utilization across various GNN structures.

B. G-CoS: the co-optimization formulation

G-CoS’s co-optimization process can be formulated as:

arg min  L,q(w*, gnet, hw) + ALcost(gnet, hw)  (4)
{gnet,hw}
s.t. w* =argmin Ly.qin(w, gnet), (5)
w

where w denotes the GNN weights; Lirqin, Lyai, and Leost
are the task loss during training, task loss during validation,
and hardware-cost, respectively, given the GNN structure, the
accelerator parameter set, and the specified metrics; and gnet
and hw are the selected GNN structure and accelerator to
be optimized, respectively. Note that the hardware-cost is co-
determined by both the GNN structure and accelerator.

C. G-CoS: a generic GNN accelerator template and space

To comprehensively cover potential parallelism and reuse
opportunities for various GNN structures, we propose a
generic GNN accelerator template along with a set of cor-
responding searchable parameters, forming a design space
featuring a total of ~ 1E+15 GNN accelerator choices with
different micro-architectures and dataflows.

[ Host CPU |
Initial Feature¢ Tlnference Output
[ Off-Chip Memory
. A . A A
Weight Weight Weight
T ’ Inter. Output R Inter. Output D Inter. Output
Sub-accelerator 1 Sub-accelerator 2 Sub-accelerator n
FBuf. Dense/SpMM FBuf. Dense/SpMM FBUf. Dense/SpMM
OBuT. Hybrid Engine € - »{ [ oBur Hybrid Engine l€- - [ osur Hybrid Engine
wau. | [Activation Unit wa. | [Activation Unit | [Optional | "weur. | |Activation Unit
ldxBuf. || Sampling Unit ldxBuf. || Sampling Unit SYIVaBriLr‘\fg IdxBuf. Sampling Unit
YA VA YA

Ctrl./States Bus

Fig. 3. An illustration of G-CoS’s accelerator micro-architecture template.

The micro-architecture overview. To maximize the ac-
celeration throughput while at the same time minimizing
the latency, we adopt a multi-accelerator micro-architecture
template to accelerate both the combination and aggregation
phases, as shown in Fig. 3. This template has two overall
advantages:

o Latency friendly: When working on either of the two
phases, all the hardware components will be instantiated
and subsequently reused for the other phase, thus reduc-
ing the startup latency of GNN inference which would
otherwise be much higher if a pipeline structure was
employed for the two phases as in [5].

« Utilization friendly: Given the workload allocation
scheme as introduced later in Sec. IV-C, all sub-
accelerators work on different parts of the feature/weight
data in parallel; the hardware utilization and latency
can thus be further improved as each sub-accelerator is
configured to better fit the corresponding data structure
and thus can utilize more parallelism/reuse opportunities.

In particular, the aforementioned template is composed of

(1) multiple sub-accelerators which are able to handle both
the sparse and dense matrix multiplications, (2) the off-chip
memory which holds the data that cannot be stored entirely on
chip, and (3) a host CPU to manage the states of different sub-
accelerators. Each sub-accelerator has local buffers assigned
to the intermediate features (i.e., adjacency matrices), the
index for sparse features (assuming a COO format [51]),
and the weights and intermediate outputs, respectively. The
buffers among sub-accelerators can be configured to be inter-
connected so that the buffered data can be shared to minimize
the costly off-chip memory accesses, as presented in Fig. 3.

The GNN parsing & sparsity analysis auxiliaries. Here

we briefly describe GNN parsing & sparsity analysis aux-
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Fig. 4. The choices of kernel modes for each sub-accelerator, where different modes represent different spatial mapping/temporal mapping methods. For
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Fig. 5. The choices of tiling modes for each sub-accelerator, where the black
box represents the temporal tiles, each arrow color represents the first direction
that the tile will move towards, and the color gradient represents the output
process from start to complete. The three arrow choices favor weight reuses,
feature reuses, and output reuses, respectively. For instance, when tiles first
move along the red arrow direction, the tiles of the weights can stay stationary.

Feature Output

iliaries for a given GNN, e.g., from PyG [52]. As shown
in Fig. 2, a pre-trained GNN choice is first passed through
the blocks of GNN parser and sparsity analyzer before be-
ing loaded for G-CoS’s automated accelerator generation.
Specifically, (1) the GNN parser helps to extract the GNN
structure parameters (e.g., the dimensions of the weights and
features) and (2) the sparsity analyzer analyzes the sparsity of
each adjacency matrix row. They together help the accelerator
design space generator produce all the possible choices and
balance the workloads for each sub-accelerator.

Flexible workload allocation. As different GNN struc-
tures can have drastically different sparsity patterns and fea-
ture/weight dimensions, G-CoS employs two flexible workload
allocation schemes to ensure each sub-accelerator’s assigned
workload better fit its micro-architecture, e.g., the processing
element (PE) array’s dimensions and tiling sizes, to achieve
high hardware utilization and thus efficiency. The main alloca-
tion principle is that the assigned workload is proportional to
each sub-accelerator’s capacity which is characterized by its
number of PEs. The two schemes balance the workload with
(1) the number of feature (i.e., adjacency matrix) rows which
will be scaled with the pre-analyzed sparsity of the adjacency
matrix and (2) the number of weight columns, respectively.

The sub-accelerator design. Based on G-CoS’s micro-
architecture template, the sub-accelerators are auto-generated
according to different tiling/kernel modes (as introduced be-
low) to be equipped with different functional components
for (1) reflecting different data reuse strategies, (2) favoring
different resource trade-offs, and (3) supporting the special
operations from various GNN structures, aiming to maximize
the hardware efficiency on a wide range of GNNs. Specifically,
the sub-accelerators consider:

« Tiling modes/sizes: The data per assigned workload may
not fit the on-chip memory of each sub-accelerator. As
shown in Fig. 5, temporal tiling is then enabled to process
the workload temporally. With different tiling modes,
a sub-accelerator features more reuses of the features
(adjacency matrices), weights, and outputs, respectively.
The tiling sizes are defined by K, M, and N (see Fig. 5).

o Kernel modes: As illustrated in Fig. 4, with different
data mapping and processing patterns for the PE array,
each sub-accelerator design would have different off-chip
bandwidth consumption, on-chip buffer consumption, and
parallelism opportunities.

Moreover, each sub-accelerators is equipped with:

o Dedicated Buffers to facilitate local reuse opportunities.

e Dense/SpMM Hybrid Engine which supports both
dense and sparse matrix multiplication within one unit
aided with an configurable PE array as in [49].

« Element-wise Activation Units to process the non-linear
activation operations.

o Sampling Units to schedule the node sampling.

To further increase on-chip reuse opportunities and reduce
off-chip accesses, the sub-accelerators can support (1) weight
buffer sharing which inter-connects all the on-chip weight
buffers for weight reuses to reduce off-chip accesses and
(2) buffer re-purposing where the feature, weight and output
buffers are inter-changeable, so no/reduced off-chip accesses

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on March 31,2022 at 22:37:26 UTC from IEEE Xplore. Restrictions apply.



Input Features !
]

Adjacency Matrix

% HY ¥

Attention Block Combination Block

:Selected operation during pre-training / exploration

A*H Aggregation Block Activation Block
A

# of Att. heads| |Att. types‘ # of h_idden dims

0000 0j 0 - 1

00-0

Linear

\4

Sampling Block
Node sampling rate

R

Act. types

-
I"' .

"1 [#of hidden dims
i LA —>>
nopm - 0
Agg. types

Fig. 6. The GNN supernet of the proposed G-CoS which covers a comprehensive range of GNN options and is compatible with one-shot NAS methods.

TABLE I
THE SEARCHABLE ACCELERATOR PARAMETERS FOR THE PROPOSED
G-CoS, WHERE n DENOTES THE NUMBER OF POSSIBLE TILING SIZES
RANGING ABOUT 10~ 100 DEPENDING ON THE ACCELERATED GNNS.

Tiling Kernel Buffer WBuf Tiling
Mode Mode Re-purposing | Sharing Size
Choice
Fome® || 10121 | 101.23] [0,1] 011 | [0nne1]
# of
Choices 3 4 2 2 n (~10-100)

are necessary for the intermediate results between the combi-
nation and aggregation phases and/or between layers. Consid-
ering the controlling complexity and limited on-chip memory
size, if either of these two options are enabled, the number of
sub-accelerators will be restricted (e.g., 5 in this work).

The searchable accelerator parameters. Based on the
accelerator template (see Fig. 3), we extract the searchable
parameters, of which different combinations lead to different
accelerators and form a generic GNN accelerator space to be
used by the automated co-search of G-CoS, as summarized
in Tab. I. All design choices can be configured differently for
each sub-accelerator, except when either buffer re-purposing
or weight buffer sharing is enabled. Otherwise, the tiling and
kernel modes are fixed for all sub-accelerators for the ease
of controlling and scheduling. The tiling size can range from
about 10 to 100 for each sub-accelerator, depending on the
given GNN structure. Together, these design choices lead to a
hardware design space size of 1E+10 ~ 1E+15.

D. G-CoS: a generic GNAS search space

The GNN supernet. To avoid the retraining cost during
co-search, G-CoS incorporates a GNN supernet as its GNN
design space which is compatible with the adopted one-shot
NAS method and able to produce subnetworks covering a
comprehensive range of GNN structures, as shown in Fig. 6.
Specifically, the GNN supernet is composed of five blocks
denoting the attention, combination, sampling, aggregation,
and activation blocks. Each block will also have multiple
attributes to be determined from a wide range of options
as specified in Tab. II. For instance, an attention block may
assume a GAT-sym structure and have two heads as in Fig. 6;
The combination and aggregation blocks share the same at-
tributes for their hidden dimensions; The attention, sampling,
and activation blocks all have a ’skip’ option to cover GNNs
devoid of these modules. For better generality, each layer
of the GNNs assumes this format of supernet, with attribute
choices different among layers. For the final/prediction layer,
the hidden dimensions and activations are fixed according to
the given dataset. Combining all the possible choices in Tab. II,
the GNN supernet in G-CoS is able to produce ~ 1E+9 choices

TABLE 11
THE AVAILABLE CHOICES FOR EACH BLOCK ATTRIBUTE IN THE GNN
SUPERNET, WITH THE ATTENTION TYPES (ATT. TYPES) FOLLOWING [10].

[skip, GCN, GAT, GAT-sym]
Aft. types [COS, Linear, Gene-Linear]
Agg. types [sum, mean, max, MLP]
Act. types [Skip, Sigmoid, Tanh, ReLu, Linear]
- yp [Softplus, Leaky ReLu, ReLu6, Elu]
# of hidden [4, 8, 16, 32, 64, 128, 256]
#or A [1.2,4,6.8,16]
Node
sampling rate (0.1.0:5.1]

for a 2 layer GNN, leading to a joint GNN-accelerator space
with more than 1E+19 choices.

The subnetwork sampling. The subnetwork is sampled
by choosing an option for each attributes of the blocks, e.g.,
red boxes in Fig. 6. In particular, G-CoS employs uniform
random sampling during the pre-training stage, and samples
the subnetworks based on the proposed evolutionary algorithm
(see Sec. IV-E) during the exploration stage.

E. G-CoS: one-shot evolutionary GNN-accelerator co-search

To tackle the aforementioned challenge of excessively large
GNN-accelerator joint search space and costly retraining
rooted in many NAS methods [10], [35], we propose to employ
an one-shot based search approach as inspired by [53], to
decouple the supernet pre-training and GNN-accelerator co-
search processes, along with an evolutionary algorithm to effi-
ciently navigate through the large joint space to locate optimal
GNN-accelerator design pairs for boosting both task accuracy
and hardware efficiency. In particular, we only pre-train the
GNN supernet once and only inference on the validation set
as needed during the exploration stage. To the best of our
knowledge, we are the first to study the effectiveness of one-
shot NAS within the scope of GNNs.

The supernet pre-training. During supernet pre-training,
a random subnetwork is uniformly sampled from the GNN
supernet by selecting the attribute options from each block
and then the subnetwork weights w are updated via back-
propagation. As [53] pointed out, uniform sampling can decou-
ple the weights among possible subnetworks and thus provide
a better estimate for their individual fully trained accuracy
when these subnetworks are inferenced on the validation
dataset during the GNN structure exploration.

The weight sharing. For more effective pre-training, G-CoS
adopts a weight sharing strategy as inspired by [10], [53] dur-
ing pre-training, such that different subnetworks share certain
slices of weights. In particular, the weights for combination
and aggregation will be shared and retrieved according to the
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Algorithm 1 G-CoS’s GNN-accelerator co-search algorithm

1: Inputs: the target performance 7'; the number of outputs No; the
samples pool size pmaz, the fitness function fit(); the mutation
function mut(); the birth/dying rate s

2: Outputs: N2 number of best found designs O,

3: [Procedures]:

4: P ={}; fitawg =0

5: While fitgng < T

6: If |P| < pmax

7: If |P|==0

8: Randomly generate (s * pmaz) new designs PNEW[gnet, hw)
9: Else

10: Find top (s * pmax) fit designs topgpnet, huw)

11: Mutate for new designs prewgnet, hw) = MU L0P[gnet,hw])
12: Evaluate new designs for fitness: fit(pnew|gpet,nw))

13: Add {prnewgnet, huw)> ﬁt(pnew[gnetth])a to P

14: Else
15: Remove the bottom s * pyqq designs from P

16: fitavg = average fitness of top No designs in P
17: Return N> top fit designs Oy,

chosen # of hidden dimensions when a subnetwork is sampled.
For the attention block, only the options belonging to the same
attention types share their weights and are retrieved according
to the number of attention heads.

The evolutionary co-search algorithm. As illustrated in
Alg. 1, a specially tailored evolutionary algorithm is devel-
oped to efficiently search for best satisfied GNN-accelerator
pairs, characterized by (gnet, hw). Overall, it operates by
constantly generating new designs around the good design
options stored in a pool P, filtering out the inferior designs,
and then outputting the top N performing designs. Specif-
ically, the algorithm inputs include: (1) the fitness function
fit(), which evaluates the designs given the GNN-accelerator
specs (gnet, hw), (2) mutation function mut() which randomly
changes the attributes of good designs to generate new designs,
(3) the largest samples pool size py,q., (4) the birth/dying rate
which controls how many designs will be generated/filtered
out, and (5) performance target 7' which determines the
terminating conditions and follows the same units as the
fitness function. After search, the algorithm outputs the top N
performing designs within P. More input specification choices
are provided in Sec.V-A.

V. EXPERIMENT RESULTS

In this section, we first introduce the experiment setups
in Sec. V-A, and then benchmark the proposed G-CoS with
SOTA GCN accelerators, GNAS and handcrafted GNNs in
Sec. V-B, Sec. V-C and Sec. V-D, respectively.

A. Experiment Setup
Baselines and datasets. For evaluating G-CoS over SOTA

GNN accelerators, we consider three baselines: HyGCN [12],

AWB-GCN [5], and Deepburning-GL [14], respectively. For
evaluating G-CoS over SOTA GNAS, we consider three
GNAS baselines: GraphNAS [10], Auto-GNN [34], and Auto-
Graph [35]. For benchmarking over SOTA handcrafted GNNss,
we consider four baselines: GCN [24], GAT [28], LGCN [30],
and GraphSAGE [7], covering the most common GNN vari-
ants. Our experiments are conducted on four datasets: three

citation graph datasets (Cora, CiteSeer and Pumbed) [54], and
the Reddit post dataset [7]), respectively.

GNN training setup. For the GNN training, we follow the
same dataset splits as [7], [24], [55]. The GNN supernet is
trained using an Adam optimizer [56] with a learning rate
of 0.001 for 1000 epochs, L2 regularization, and dropout.
After the design space exploration is finished, the final derived
models are trained with additional 400 epochs from scratch
under the same configurations.

Evolutionary search algorithm setup. For the evolutionary
search algorithm presented in Alg. 1, we use a set of generic
configurations. Specifically, the fitness function is set as the
weighted sum of (inverse)latency and task accuracy, such that
latency and task accuracy contributes similarly to the fitness
score. The mutation function is set to have a 50% chance, i.e.,
the selected GNN-accelerator design pairs have half of the
randomly picked design attributes changed. The birth/dying
rate (s) is set to 0.2.

Hardware experiment setup. To evaluate G-CoS’s gen-
erated accelerators, we adopt standard the FPGA evaluation
and implementation flows in Vivado 2020.2 [57]. For the
platform, we picked the Xilinx VCU128 FPGA board [50],
which is equipped with 9024 DSPs, 42MB on-chip memory
and 460GB/s HBM of-chip memory. For a fair comparison
with other baselines, we limit the DSP consumption to be
less than 4096 throughout the design. The generated GNN
accelerators are clocked at 330MHz and adopt a 16-bit fixed
point precision. For the accelerator template, we fix the num-
ber of sub-accelerators to 5 (unless otherwise specified). Note
that the design principles of G-CoS introduced in Sec. IV-C is
platform agnostic, i.e., G-CoS can be flexibly extended to other
platforms such as ASIC. During the design space exploration,
to quickly go over numerous design options, we design and
implement an in-house performance simulator to measure the
execution time (i.e., the number of cycles).

B. G-CoS over SOTA GNN accelerators

In this set of experiments, we compare G-CoS with existing
SOTA GNN accelerators: HyGCN [12], AWB-GCN [5], and
Deepburning-GL [14], in terms of latency and bandwidth
consumption. For a fair comparison, we fix the GNN structures
and datasets in G-CoS to be the same as the baselines and only
search for the accelerator parameters. Since most of them do
not provide absolute performance values while reporting the
relative speedups over PyG-CPU on an Intel Xeon E5-2680 v3
CPU instead. We also measure and verify the latency on the
same CPU and calculate the FPGA speedups over it, so that
PyG-CPU is a common baseline for all methods, and then we
can analyze the relative improvements as elaborated below:

(1) Speedup. As shown in Fig. 8, G-CoS achieves an
average of 5.52x, 1.92x, 35.98x, and 21.54x speedups
over HyGCN, AWB-GCN, Deepburning-GL-KCU1500, and
Deepburning-GL-Alveo US50, respectively. G-CoS’s much re-
duced latency is mostly attributed to its enabling better hard-
ware(DSP) utilization as the multi-sub-accelerator scheme of
G-CoS can better cover GNNs’ high irregularity and the wide
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Fig. 8. The normalized inference speedups (w.r.t. PyG-CPU) achieved by G-CoS over the four SOTA baseline platforms on three GNN models and four
representative graph datasets, where KCU1500 and Alveo U50 are two implementation platforms for Deepburning-GL [14]

range of searchable accelerator parameters make G-CoS’s
searched accelerators matching different variation in GNNs.
(2) Off-chip memory Bandwidth Consumption. G-CoS only
requires an average of 50% off-chip memory bandwidth as
compared to HyGCN. The high bandwidth of HyGCN is due
to to its high-degree parallelism while G-CoS’s versatile kernel
mode as illustrated in Sec. IV-C alleviates such an off-chip
bandwidth pressure.

C. G-CoS over SOTA GNAS.

In this set of experiments, we benchmark G-CoS with
the SOTA GNAS works: GraphNAS [10], Auto-GNN [34],
and AutoGraph [35] based on the metrics of task accuracy
and latency. For G-CoS, we co-optimize both the GNN and
accelerator design parameters as introduced in Sec. IV-C
and Sec. IV-D, respectively. For a fair comparison, we also
accelerate the baselines’ generated GNNs under the same
hardware platform and optimize the corresponding accelerator
parameters. To demonstrate the tradeoff between the hardware
efficiency and task accuracy, we restricted the baseline gener-
ated GNNs with different flops and then select the designs with
the lowest latency; for G-CoS, we simply decrease/increase
the weighting coefficient of the latency in the search metrics
to achieve flexible tradeoffs. The results are presented in
Fig. 7: G-CoS consistently maintains a better performance
frontier, i.e., a higher accuracy and lower latency. In partic-
ular, G-CoS achieves a 1.60%, 1.3% and 2.11% increase in
task accuracy with a similar or lower latency, and a 2.54 %,
2.15x and 2.98x latency reduction with a similar or higher
accuracy, as compared with the SOTA GNAS works on the
Cora, CiteSeer and Pubmed datasets, respectively. Although,
considering flops during the search can offer some guidance
for more hardware-friendly GNNs, it can not fully capture
the compatibility between the searched GNNs and the specific
hardware platform, resulting the searched GNNs which satisfy
the flops requirement but might be hard to accelerate. Thus,

co-optimizing the GNN-accelerator pairs can excel both in
terms of accuracy and hardware efficiency against traditional
GNAS works by offering better guidance and fully customized
architecture to every single searched network. The entire
process takes as low as 4 GPU hours depending on the dataset.

D. G-CoS over SOTA handcrafted GNNs.

We also compare the performance of the proposed G-CoS
against the SOTA handcrafted GNNs: GCN [24], GAT [28],
LGCN [30], and GraphSAGE [7]. For G-CoS, we co-optimize
the GNN-accelerator design pairs. For the baselines GNNs, we
optimize their accelerator parameters for fair comparison. As
shown in Fig. 7, G-CoS’s generated GNN-accelerator design
pairs consistently achieve better accuracy and lower latency
at the same time. Specifically, the G-CoS generated designs
achieve up to 2.7%, 3.22% and 1.01% increase in accuracy
while having 1.91x, 1.08x and 1.19x reduction in latency.

VI. CONCLUSION

We propose G-CoS, a GNN and accelerator co-search
framework to automatically search for matched GNN struc-
tures and accelerators to maximize both task accuracy and
acceleration efficiency. To the best of our knowledge, G-CoS is
the first co-search framework for GNNs and their accelerators.
Extensive experiments show that the GNNs and accelerators
generated by G-CoS consistently outperform SOTA GNNs
and GNN accelerators, while only requiring a few hours for
the end-to-end generation of the matched GNNs and their
accelerators. We believe that our G-CoS has made an important
heuristic step towards boosted GNN acceleration efficiency
and fast development of efficient GNN solutions.
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